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1 Introduction

We illustrate the process of incorporating dependence between uncertain quantities using a
multivariate (bivariate) normal copula.

As an example, suppose a clinical trial is to be conducted for a new treatment. The trial will
take place at two centres, with treatment intended to last for one year. It is believed that a
proportion of patients recruited at each centre will not complete the treatment and hence
drop out of the trial. Denote these two uncertain proportions by X1 and X2. We suppose
that patient characteristics are believed to be different at the second centre, such that the
expert is expecting a slightly higher drop-out rate (although she is not certain that X2 > X1).

2 Eliciting the marginal distributions

We first elicit marginal distributions for X1 and X2. We suppose the experts states

P (X1 ≤ 0.12) = 0.25, P (X1 ≤ 0.15) = 0.5, P (X1 ≤ 0.20) = 0.75,

P (X2 ≤ 0.15) = 0.25, P (X2 ≤ 0.2) = 0.5, P (X1 ≤ 0.25) = 0.75.

We fit distributions to each of these set of judgements.
library(SHELF)
p <- c(0.25, 0.5, 0.75)
v1 <- c(0.12, 0.15, 0.2)
v2 <- c(0.15, 0.2, 0.25)
myfit1 <- fitdist(vals = v1, probs = p, lower = 0, upper = 1)
myfit2 <- fitdist(vals = v2, probs = p, lower = 0, upper = 1)

We choose to use beta distributions for each marginal, and suppose that we have gone
through the process of feedback with the expert, so that she is satisfied with the two fitted
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distributions. The two fitted distributions are plotted below. (To aid comparison, lower and
upper axes limits xl and xu are specified in the plotfit commands.)
plotfit(myfit1, d = "beta", xl = 0, xu = 0.5)
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Figure 1: The fitted marginal distribution for X1.

plotfit(myfit2, d = "beta", xl = 0, xu = 0.5)
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Figure 2: The fitted marginal distribution for X2.
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3 Incorporating dependence

We can incorporate dependence through the use of a bivariate normal copula. The general
form of the joint density function of X1 and X2 is a little complex, but simulating from the
joint distribution is more straightforward. The idea is as follows.

1. We can simulate a random value of X from any univariate probability distribution
using inversion: we sample U from the U [0, 1] distribution, and then set our generated
value of X to be the solution x of

P (X ≤ x) = U.

2. We can sample dependent values of X1 and X2 from two separate marginal distributions
by sampling dependent uniforms U1 and U2, and then setting the generated values of
X1 and X2 to be the solutions x1 and x2 of

P (X1 ≤ x1) = U1, P (X2 ≤ x2) = U2.

3. In the bivariate normal copula method, we generate dependent uniforms U1 and U2 by
sampling z1, z2 from the bivariate normal distribution(

Z1
Z2

)
∼ N

{(
0
0

)
,

(
1 r
r 1

)}
,

(with the choice of r discussed shortly), and then setting U1 = P (Z1 ≤ z1) and
U2 = P (Z2 ≤ z2).

To obtain r, the expert is asked to consider her concordance probability

p = P (X1 > 0.15, X2 > 0.2, or X1 < 0.15, X2 < 0.2),

i.e. her probability that the two uncertain proportions are either both above their medians or
both below their medians. Values 0, 0.5 and 1 for this probability corresponding to perfect
negative correlation, independence, and perfect positive correlation respectively. Suppose she
judges p = 0.8, in that if one proportion is higher than her median, she believes the other is
likely to be also. The correlation parameter r can be obtained as

r = sin
(

2π
(
p

2 − 0.25
))

= 0.81.

The function copulaSample can be used to sample from the required distribution. The
function generalises to d dependent variables X1, . . . , Xd (though we don’t recommend using
this method for d > 3), and takes as input a matrix of concordance probabilities, where
element i, j of this matrix is the probability

P (Xi > mi, Xj > mj or Xi < mi, Xj < mj),

where mi and mj are the corresponding elicited medians. It is only necessary to specify
the upper triangular elements of this matrix. Note that with d > 2, the elicited pairwise
concordance probabilities may not result in a positive-definite variance matrix. We discuss
this further at the end.
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conc.prob <- matrix(0, 2, 2)
conc.prob[1, 2] <- 0.8
X <- copulaSample(myfit1, myfit2, cp = conc.prob,

n = 1000, d = c("beta", "beta"))

The object X is a 1000 × 2 matrix, with i-th column corresponding to Xi. We verify that the
sample has the right properties, checking the sample quartiles and quadrant probability.
quantile(X[, 1], probs = c(0.25, 0.5, 0.75))

## 25% 50% 75%
## 0.1148048 0.1526923 0.1927256
quantile(X[, 2], probs = c(0.25, 0.5, 0.75))

## 25% 50% 75%
## 0.1477030 0.1946258 0.2487145
mean((X[, 1] > 0.15 & X[, 2] > 0.2) | (X[, 1] < 0.15 & X[, 2] < 0.2))

## [1] 0.794

We plot the sample below.
library(ggplot2)
ggplot(data.frame(X), aes(x = X1, y = X2)) +

geom_point(alpha = 0.1, colour = "red") +
geom_hline(yintercept = 0.2) +
geom_vline(xintercept = 0.15) +
labs(x=expression(X[1]), y = expression(X[2]))

0.1

0.2

0.3

0.4

0.1 0.2 0.3
X1

X
2

Figure 3: A sample from the joint distribution of X1, X2. The horizontal and vertical lines
indicated the elicited medians. Note that expert has judged a probability of 0.8 of X1 and
X2 being either both above or both below their median values, and so approximately 80% of
the points are in the top right and bototm left quadrants.
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Note that an interactive tool is available for specifying a concordance probability and viewing
a corresponding joint sample for two uncertain quantities. In this example, it would be run
with the command
elicitConcProb(myfit1, myfit2, m1 = 0.15, m2 = 0.2, d = c("Beta", "Beta"))

4 Coherent concordance probabilities and positive def-
inite correlation matrices

With three or more uncertain quantities, it is possible to specify pair-wise concordance
probabilities that are not coherent, resulting in a correlation matrix that is not positive
definite. To illustrate this, suppose we have three uncertain quantities X1, X2 and X3, with
elicited medians m1,m2 and m3 and consider the following three statements:

1. X1 is strongly positively correlated with X2;
2. X1 is strongly positively correlated with X3;
3. X2 is strongly negatively correlated with X3.

Statement 3 is not ‘consistent’ with the first two: Statements 1 and 2 imply that we expect
to see either both X2 and X3 above their medians (if X1 > m1), or both below their medians
(if X1 < m1), but Statement 3 says that we expect to see one of X2, X3 above its median,
and the other to be below.

Continuing the example, suppose we have elicited a marginal distribution for X3 (with the
elicited quartiles being 0.2, 0.25 and 0.35.)
v3 <- c(0.2, 0.25, 0.35)
myfit3 <- fitdist(vals = v3, probs = p, lower = 0, upper = 1)

Defining
pi,j = P (Xi > mi, Xj > mj or Xi < mi, Xj < mj),

the expert has already stated p1,2 = 0.8, and we suppose she now also judges

p1,3 = 0.7, p2,3 = 0.1

We set up the matrix of concordance probabilities as follows (upper diagonal elements only )
conc.prob <- matrix(0, 3, 3)
conc.prob[1, 2] <- 0.8
conc.prob[1, 3] <- 0.7
conc.prob[2, 3] <- 0.1

so we have the matrix
conc.prob
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## [,1] [,2] [,3]
## [1,] 0 0.8 0.7
## [2,] 0 0.0 0.1
## [3,] 0 0.0 0.0

We now attempt to obtain a joint sample using a multivariate normal copula
theta <- copulaSample(myfit1, myfit2, myfit3,

cp = conc.prob, n = 1000,
d = rep("Beta", 3))

## Elicited correlation matrix is not positive definite.
## Consider adjusting one of the concordance probabilities
## to be within the following limits.
##
## p_{1,2} p_{1,3} p_{2,3}
## lower 0.2 0.1 0.5
## upper 0.4 0.3 0.9

The output tells us how any one of the concordance probabilities should be adjusted to make
it cohere with the other two. (This feature is only available for three uncertain quantities.)
For example, p2,3 would need to be specified in the range [0.5, 0.9], given the values of p1,2
and p1,3.

The valid ranges for each concordance probability (given the other two) are obtained by
considering a multivariate normal random vector Z1

Z2
Z3

 ∼ N


 0

0
0

 ,
 1 r1,2 r1,3
r2,1 1 r2,3
r3,1 r3,2 1


 ,

where each correlation parameter ri,j is obtained from a concordance probability pi,j via

ri,j = sin
(

2π
(
pi,j

2 − 0.25
))

To obtain the range for any concordance probability pi,j given the other two pi,k, pj,k, we
note that

V ar(Zi|Zj, Zk) = 1− (ri,j ri,k)
(

1 rj,k

rj,k 1

)−1 (
ri,j

ri,k

)
,

and so, given the values of rj,k and ri,k, we can solve a quadratic equation to find the limits
of ri,j (and hence pi,j) such that V ar(Zi|Zj, Zk) > 0.

To confirm that p2,3 would need to be in the range [0.5, 0.9], we do
conc.prob[2, 3] <- 0.9
theta <- copulaSample(myfit1, myfit2, myfit3,

cp = conc.prob, n = 1000,
d = rep("beta", 3))
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and to plot the samples we do
GGally::ggpairs(data.frame(theta),

lower = list(continuous = GGally::wrap(GGally::ggally_points,
color = "red",
alpha = 0.1)),

columnLabels = c("X[1]", "X[2]", "X[3]"),
labeller = ggplot2::label_parsed)

## Registered S3 method overwritten by 'GGally':
## method from
## +.gg ggplot2

Corr:
0.818***

Corr:
0.613***

Corr:

0.955***
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