Extra Recipes for Encoding Predictors


[Up] [Top]

Documentation for package ‘embed’ version 1.0.0

Help Pages

add_woe Add WoE in a data frame
dictionary Weight of evidence dictionary
embed_control Encoding Factors into Multiple Columns
is_tf_available Test to see if tensorflow is available
solubility Compound solubility data
step_collapse_cart Supervised Collapsing of Factor Levels
step_collapse_stringdist collapse factor levels using stringdist
step_discretize_cart Discretize numeric variables with CART
step_discretize_xgb Discretize numeric variables with XgBoost
step_embed Encoding Factors into Multiple Columns
step_feature_hash Dummy Variables Creation via Feature Hashing
step_lencode_bayes Supervised Factor Conversions into Linear Functions using Bayesian Likelihood Encodings
step_lencode_glm Supervised Factor Conversions into Linear Functions using Likelihood Encodings
step_lencode_mixed Supervised Factor Conversions into Linear Functions using Bayesian Likelihood Encodings
step_pca_sparse Sparse PCA Signal Extraction
step_pca_sparse_bayes Sparse Bayesian PCA Signal Extraction
step_umap Supervised and unsupervised uniform manifold approximation and projection (UMAP)
step_woe Weight of evidence transformation
tidy.recipe Tidy the Result of a Recipe
tidy.step_collapse_cart Tidy the Result of a Recipe
tidy.step_collapse_stringdist Tidy the Result of a Recipe
tidy.step_discretize_cart Tidy the Result of a Recipe
tidy.step_discretize_xgb Tidy the Result of a Recipe
tidy.step_embed Tidy the Result of a Recipe
tidy.step_feature_hash Tidy the Result of a Recipe
tidy.step_lencode_bayes Tidy the Result of a Recipe
tidy.step_lencode_glm Tidy the Result of a Recipe
tidy.step_lencode_mixed Tidy the Result of a Recipe
tidy.step_pca_sparse Tidy the Result of a Recipe
tidy.step_pca_sparse_bayes Tidy the Result of a Recipe
tidy.step_umap Tidy the Result of a Recipe
tidy.step_woe Tidy the Result of a Recipe
woe_table Crosstable with woe between a binary outcome and a predictor variable.