Multiscale Inference for Nonparametric
Time Trends

Marina Khismatullina, Michael Vogt

January 20, 2023

We present the R package ‘MSinference’, which performs multiscale tests
for nonparametric time trends.

Contents
1 Introduction 1

2 Multiscale Inference for a Single Nonparametric Regression with Time Se-
ries Errors 2

3 Multiscale Inference for Multiple Nonparametric Regressions 10

1 Introduction

The main functions of the MSinference package are given in the following list:

e compute_quantiles(): Computes the quantiles of the Gaussian version of the
statistics that are used to approximate the critical values for the multiscale test;
see Sections 2 and 3.

e compute_statistics(): Computes the value of the test statistics based on a single
time series or multiple time series supplied; see Sections 2 and 3.

e multiscale_test(): Performs the test; see Sections 2 and 3.

e estimate_lrv(): Computes the estimator for the long-run variance of the errors
in a nonparametric regression model; see Section 77.

To demonstrate the use of our functions, we analyse two datasets. In order to
illustrate the method from ?, we examine the Central England temperature record,
which is the longest instrumental temperature time series in the world. The data
are publicly available on the webpage of the UK Met Office. A detailed description

of the data can be found in 7. In order to illustrate the method from 7, we examine
the daily number of infections of COVID-19 across different countries. The data are
freely available on the homepage of the European Center for Disease Prevention
and Control (https://www.ecdc.europa.eu) and were downloaded on 20 July
2020.

The temperature dataset can be obtained from the multiscale package using
the function data(temperature, package = "MSinference"). The COVID-19
dataset can be obtained from the multiscale package using the function
data(covid, package = "MSinference").

This vignette is organized as follows. Section 2 presents our mutliscale test for
analysing a single time trend as in? and the results of applying it to the temper-
ature data. Section 3 describes the multiscale procedure for comparing different
time trends as in ? and displays the results of analysing the COVID-19 data with
the help of our test. Section ?7?7 introduces the estimator of the long-run vari-
ance which is needed for analyzing a nonparametric regression with errors of class

AR(p).

2 Multiscale Inference for a Single Nonparametric
Regression with Time Series Errors

As an illustration for the multiscale testing procedure proposed in 7, we analyse the

CET dataset, which is the longest instrumental record of temperature in the world.

It contains the mean monthly surface air temperatures (in degrees Celsius) from the

year 1659 to the present. CET datasets are freely available for use under Open Gov-

ernment License and can be downloaded from https://www.metoffice.gov.uk /hadobs/hadcet/.
You can load the data using the function data(temperature, package = "MSinference").

require (MSinference)

Loading required package: MSinference

data(temperature, package = "MSinference")
str(temperature)

num [1:359] 8.87 9.1 9.78 9.52 8.63 9.34 8.29 9.86 8.52 9.51 ...

As you can see, this is an array of length T" = 359 where each element denotes the
mean yearly temperature starting from year 1659 and ending with year 2017.

t_len <- length(temperature)
t_len

[1] 359

ts_start <- 1659

We assume that the temperature data Y; follow the nonparametric trend model
Yi=m(t/T)+e fort=1,...,T,

where m is the unknown time trend of interest. We are interested in identifying
local increases/decreases of the trend function m. We assume throughout that m
is continuously differentiable on [0,1]. The test problem then can be formulated
as follows: Let Hy(u,h) be the hypothesis that m is constant on the interval
[u— h,u+ h|] € [0, 1], or, equivalently,

Ho(u, h) : m'(w) =0 for all w € [u— h,u+ hl.

We want to test the hypothesis Hy(u, h) simultaneously for many different intervals
[u — h,u + h|. The overall null hypothesis is thus given by

Hy : The hypothesis Hy(u, h) holds true for all (u,h) € Gr,

where Gr is some set of points (u,h). Specifically, for this application we take
into account the default set of points, i.e. all locations u on an equidistant grid
w = 5/T,10/T,...,355/T and all bandwidths h = 5/T,10/T,15/T,...,85/T.
More on the construction of G you can find in ? and in the package documenta-
tion.

grid <- construct_grid(t_len)
str(grid$gset, max.level = 1, vec.len = 4)

'data.frame': 1136 obs. of 2 variables:

$ u: num 0.0139 0.0279 0.0418 0.0557 0.0696 ...
$ h: num 0.0279 0.0279 0.0279 0.0279 0.0279 ...
- attr(x, "out.attrs")=List of 2

Furthermore, the test statistic requires an estimator of the long-run variance
0?2 =372 Couv(eg,ep) of the error process {e;}. Here we assume that the error
process {e¢} has the AR(2) structure

2
€t = Zaj€t—j + e,
j=1
where 7; are i.i.d. innovations with mean 0 and variance v2. We estimate the
the long-run error variance o by the procedure from ? (with tuning parameters
q = 25 and 7 = 10), which produces the following value:

parameters <- estimate_lrv(data = temperature,
q = 25, r_bar = 10, p = 2)

cat("Long-run variance is equal to ", parameters$lrv, "\n")
Long-run variance is equal to 0.7576827

sigmahat <- sqrt(parameters$lrv)

Details of the estimation procedure together with the description of the tuning
parameters are deferred to Section ?77?.

Throughout the section, we set the significance level to @ = 0.05 and the number
of the simulations for producing critical values to 5000:

alpha <- 0.05
sim_runs <- 5000

Since we consider increases and decreases of the function, we are interested in the
first derivative of the function:

deriv_order = 1

The package currently supports only deriv_order = 0 for testing m = 0 and
deriv_order = 1 for testing m' = 0.

Now we are ready to perform the test.

Step 1. Compute the quantile g7 gauss(a) by Monte Carlo simulations. Specifi-
cally, draw a large number sim_runs = 5000 samples of independent stan-
dard normal random variables {Zt(z) :1<t<T}for1</¢<sim_runs.
Compute the value Q)gf) of the Gaussian statistic & for each sample ¢ by
the following formula:

T
®r = max ‘ w Z)—Ah},
T (%h)egT{ ; 172 (h)

where w; 7(u, h) are local linear kernel weights with the Epanechnikov
kernel, and A\(h) = /2log{1/(2h)} is an additive correction term.

Then calculate the empirical (1 — «)-quantile 7 Gauss(@) from the values
{(IDFE,?) :1 < ¢ < sim_runs}. Use @r Gauss(c) as an approximation of the
quantile g7 Gauss(cv). This step is done with these lines of code (running
this can take a while):

quantiles <- compute_quantiles(t_len = t_len, grid = grid,
sim_runs = 10)

probs <- as.vector(quantiles$quant[1, 1)

pos <- which.min(abs(probs - (1 - alpha)))
quant <- quantiles$quant[2, pos]

quant

[1] 1.606722

Step 2.

Step 3.

Compute the kernel averages 1 (u, h) as

—~ T
¢T(U7 h’) = Zt:l ’U)t’T(u, h’)}/ta

where, as before, w7 (u, h) are local linear kernel weights based on the
Epanechnikov kernel. Based on these kernel averages, calculate the test

statistic N
U= max {‘W‘—)\(h)}
(u,h)egT ag

This step is done with these lines of code:
result <- compute_statistics(data = temperature,

sigma = sigmahat,

grid = grid,

deriv_order = deriv_order)
str(result, max.level = 2, vec.len = 2)

List of 2

$ stat : num 3.14

$ gset_with_vals:'data.frame': 1136 obs. of 4 variables:
..$u : num [1:1136] 0.0139 0.0279 ...

#i# ..$h : num [1:1136] 0.0279 0.0279 ...

#it ..$ vals : num [1:1136] -0.263 -1.38 ...

..$ vals_cor: num [1:1136] -2.14 -1.02 ...

..— attr(x, "out.attrs")=List of 2

We get the list with the following elements as the result:
— stat denotes \/I}T;

— gset_with_vals is a dataframe that contains the normalised kernel
average. The dataframe is coded in the following way. Columns u
and h determine the element (u,h) € Gr for which we calculate the

kernel average. Column vals consists of the values of M, and

N c
column vals_cor contains the values of M) — A(h) for the given

G

pair (u, h).

Now we carry out the test itself, comparing the normalised values of kernel
averagess from Step 2 with the critical value from Step 1. It is done by
the following lines of code:

gset <- result$gset_with_vals
test_results <- (gset$vals_cor > quant) * sign(gset$vals)
gsetPtest <- test_results

str(gset, max.level = 1, vec.len = 2)

'data.frame': 1136 obs. of 5 variables:

$ u :num 0.0139 0.0279 ...
$h : num 0.0279 0.0279 ...
$ vals : num -0.263 -1.38 ...
¢ vals_cor: num -2.14 -1.02 ...
$ test :num 0 0 00O ...

- attr(x, "out.attrs")=List of 2

Now the dataframe gset contains all the data from
result$gset_with_vals before and an additional column test. The
values in this column are calculated as follows. It is either 1 if we re-
ject the respective null hypothesis Hy(u, h) and detect an increase in the
trend, 0 if we do not reject Ho(u, h). or —1 if we reject the respective null
hypothesis Hy(u, h) and detect an decrease in the trend. For example, in
our application we do not detect any decreases in the trend function m:

sum(gset$test == -1)

[1] O

We can now use this dataframe to produce the plots for illustrating the
results.

All these steps are not necessary for performing the test, they are already incor-
porated in the function multiscale_test():

results <- multiscale_test(data = temperature,

sigma = sigmahat,

grid = grid,

alpha = alpha,

deriv_order = deriv_order,
sim_runs = 10)

str(results, max.level = 2, vec.len = 2)

List of 4

$ quant : num 1.41

$ stat : num 3.14

¢ test_matrix : num [1:16, 1:71] 0 0 0 O O ...

§ gset_with_vals:'data.frame': 1136 obs. of 5 variables:
#it .$u : num [1:1136] 0.0139 0.0279 ...

..$nh : num [1:1136] 0.0279 0.0279 ...

..$ vals : num [1:1136] -0.263 -1.38 ...

..$ vals_cor: num [1:1136] -2.14 -1.02 ...

..$ test : num [1:1136] 0 0O 0 0 O ...

#it ..— attr(x, "out.attrs")=List of 2

Now we are ready to present the results. First, we plot the the observed time
series.

plot(ts_start: (ts_start + t_len - 1), temperature, type = 'l',
1ty = 1, xlab = 'year', ylab = 'temperature',
ylim = c(min(temperature) - 0.1, max(temperature) + 0.1))
title(main = "(a) observed yearly temperature", font.main = 1,
0.5)

line

(a) observed yearly temperature

11

10

temperature

1650 1700 1750 1800 1850 1900 1950 2000

year

Then we plot the smoothed versions of the time series from (a), that is, the plot
shows nonparametric kernel estimates of the trend function m, where the band-
width is set to 0.01,0.05,0.1,0.15,0.2 and a rectangular kernel is used. This is not
necessary but sometimes useful.

Epanechnikov kernel function, which ts defined
as f(z) = 3/4(1-2°2) for [z/<1 and O elsewhere
epanechnikov <- function(x)

{

if (abs(x)<1)

{

result = 3/4 * (1 - x*x)
} else {
result = 0

}

return(result)

}

smoothing <- function(u, data_p, grid_p, bw){
res = 0
norm = 0O

for (i in 1:length(data_p)){
res = res + epanechnikov((u - grid_pl[i]) / bw) * data_pl[il
norm = norm + epanechnikov((u - grid_p[i]) / bw)

}

return(res/norm)

}

bws <- ¢(0.01, 0.05, 0.1, 0.15, 0.2)
grid_points <- seq(from = 1 / t_len, to = 1,
length.out = t_len)
plot(NA, xlim = c(1659, 2019), ylim = c(8, 10.5),
xlab = 'year', ylab = 'temperature',
yaxp = c(8, 10, 2), xaxp = c(1675, 2025, 7),
mgp = ¢(2,0.5,0))
for (i in 1:5){
smoothed <- mapply(smoothing, grid_points,
MoreArgs = list(temperature,
grid_points,

bws[1]))
lines(ts_start:(ts_start + t_len - 1), smoothed,
1ty = 1)
}
legend (1900, 8.5, legend=c("bw = 0.01", "bw = 0.05", "bw = 0.10",

"bw = 0.15", "bw = 0.2"),
1ty = 1:5, cex = 0.95, ncol=1)

title(main = "(b) smoothed time series for different bandwidths",
font.main = 1, line = 0.5)

(b) smoothed time series for different bandwidths

10

temperature
\
\
\

— bw=0.01

-- bw=0.05

bw = 0.10

- bw=0.15
--= bw=02

T T T T T T T T
1675 1725 1775 1825 1875 1925 1975 2025
year

Finally, we present the results produced by our test. Specifically, we depict in
grey the set I} which is the collection of time intervals Tupy = [u—h,u+h] €
[0,1] for which our test rejects Ho(u,h) and indicates an increase in the trend
function. Furthermore, we depict in black the set of minimal intervals TI;,"™"
The definition of the minimal intervals and some dicsussion on the topic are
given in 7. The function in the package that calculates the minimal intervals
is compute_minimal_intervals().

According to theoretical results in 7, we can make the following simultaneous con-
fidence statement about the intervals plotted below: we can claim, with confidence
of about 95%, that the trend function m increases on each of these intervals. In
particular, we can claim with this confidence that there has been some upward
movement in the trend both in the period from around 1680 to 1740 and in the
period from about 1870 onwards. Hence, our test in particular provides evidence
that there has been some warming trend in the period over approximately the last
150 years. On the other hand, as the set I}, is empty, there is no evidence of any
downward movement of the trend.

gset <- results$gset_with_vals

reject <- subset(gset, (test == 1 & u - h > 0 & u + h <= 1),
select = c(u, h))
p_plus <- data.frame('startpoint' = (reject$u - reject$h) x*
t_len + ts_start,
"endpoint' = (reject$u + reject$h) * t_len +

ts_start, 'values' = 0)
p_plus$values <- (1:nrow(p_plus)) / nrow(p_plus)
p_plus_min <- compute_minimal_intervals(p_plus)

plot (NA, xlim=c(ts_start, ts_start + t_len - 1),
ylim = c¢(0, 1 + 1 / nrow(p_plus)),
xlab=" ", mgp=c(2, 0.5, 0), yaxt = "n", ylab = "")
title(main = "(c) (minimal) intervals produced by the test",
font.main = 1, line 0.5)
title(xlab = "year", line = 1.7, cex.lab = 0.9)
segments (p_plus_min$startpoint, p_plus_min$values,
p_plus_min$endpoint, p_plus_min$values, lwd = 2)
segments (p_plus$startpoint, p_plus$values,
p_plus$endpoint, p_plus$values,
col = "gray")

(c) (minimal) intervals produced by the test

T T T T T T T T
1650 1700 1750 1800 1850 1900 1950 2000
year

3 Multiscale Inference for Multiple Nonparametric
Regressions

As an illustration for the multiscale method proposed in ?, we analyse the dataset
on the daily new cases of infections of COVID-19. The data are freely avail-

10

able on the homepage of the European Center for Disease Prevention and Control
(https://www.ecdc.europa.eu) and were downloaded on 20 July 2020. You can
load the data using the function data(covid, package = ”MSinference”).

require (MSinference)
data(covid, package = "MSinference")
str(covid)

num [1:148, 1:42] 15 8 27 25 26 43 0 35 29 38 ...
- attr(x, "dimnames")=List of 2

..$: NULL

#i# ..$: chr [1:42] "AFG" "ARG" "BEL" "BGD"

Each entry in the dataset denotes the number of new cases of infection per day
and per country. In our dataset, we have data for 42 countries and the longest
time series consists of 148 observations.

We assume that the outbreak patterns in different countries follow quasi-Poisson
distribution with time-varying intensity parameters. Specifically, we let X;; be the
number of newly confirmed COVID-19 cases on day t in country ¢ and suppose Xj;
satisfy the following nonparametric regression equation:

Xit = Az(%) +o)\z‘(%)mt, (1)

for 1 <t < T and 1 < i < n, where o is so-called overdispersion parameter that
controls the noise variance, and the noise residuals 7;; have zero mean and unit
variance.

In model (1), the outbreak pattern of COVID-19 in country i is determined by
the intensity function)\;. Hence, the question whether the outbreak patterns
are comparable across countries amounts to the question whether the intensity
functions \; have the same shape across countries .

In order to make the data comparable across countries, we take the day of the
100th confirmed case in each country as the starting date ¢ = 1. Obviously, for
some countries we have longer time series than for the others because the starting
point of the outbreak varies across the countries. For the sake of brevity, we present
here the analysis only of the data from five European countries: Germany, Italy,
Spain, France and the United Kingdom:

covid <- covid[, c("DEU", "GBR", "ESP", "FRA", "ITA")]
covid <- na.omit(covid)

As a result, we study n = 5 time series of the sample size T' = 137:

11

n <- ncol(covid)
t_len <- nrow(covid)
n

[1] 5
t_len
[1] 137

Some of the time series contain negative values which we replaced by 0. Overall,
this resulted in 6 replacements:

sum(covid < 0)
[1] 6

covid[covid < 0] <- O

Here are the plots of the time series:

matplot(l:t_len, covid, type = 'l', 1ty = 1, col = 1:t_len,
xlab = 'Number of days since 100th case', ylab = 'cases')
legend("topright", legend = c("DEU", "GBR", "ESP", "FRA", "ITA"),
inset = 0.02, 1ty = 1, col = 1:t_len, cex = 0.8)

8000

6000
|

cases

4000

2000
|

Number of days since 100th case

12

In order to be able to implement the test, we first estimate the overdispersion
parameter o. For or each country 7, let

s2_ Lia(Xit — Xig)?
1 2 Zthl Xit

2

and set 62 = %Z?:l 62. As shown in ?, 6% is a consistent estimator of o under

some regularity conditions.

sigma_vec <- rep(0, n)

for (i in 1:n){
diffs <- (covid[2:t_len, i] - covid[1l:(t_len - 1), i])
sigma_squared <- sum(diffs~2) / (2 * sum(covid[, il))
sigma_vec[i] <- sqrt(sigma_squared)

}

sigmahat <- sqrt(mean(sigma_vec * sigma_vec))
sigmahat

[1] 14.43772

Throughout the section, we set the significance level to @ = 0.05 and the number
of the simulations for producing critical values to 5000:

alpha <- 0.05
sim_runs <- 5000

Furthermore, we compare all pairs of countries (4,7) with ¢ < j (hence, S = {1 <
i < j < n}), and we choose the family of intervals F for calculating the test
statistics as follows. We consider the intervals of lengths 7 days (1 week), 14 days
(2 weeks), 21 days (3 weeks), or 28 days (4 weeks). For each length of the interval,
we include all intervals that start at dayst =14+7(j — 1) and t =4+ 7(j — 1) for
i=1,2,....

ijset <- expand.grid(i = 1:n, j = 1:n)
ijset <- ijset[ijset$i < ijset$j,]
rownames (ijset) <- NULL

ijset
##
1
2
3
4

N SIS
W w N .

13

#i#
##
##
##
##
10

© 00 N O O
B W N R, W
(21O 2 BN@ 2 B @ 2 I St o

grid <- construct_weekly_grid(t_len, min_len = 7, nmbr_of_wks = 4)

A graphical presentation of the family F for our sample size T = 137 (as in the
application) is given here:

intervals <- data.frame('left' = grid$gset$u - grid$gset$h,
'right' = grid$gset$u + grid$gset$h,
'v' = 0)

intervals$v <- (1:nrow(intervals)) / nrow(intervals)

plot(NA, x1im=c(0,t_len), ylim = c(0, 1 + 1/nrow(intervals)),

xlab="days", ylab = "", yaxt= "n", mgp=c(2,0.5,0))
title(main = expression(The ~ family ~ of ~ intervals ~ italic(F)),
line = 1)

segments(intervals$left * t_len, intervals$v,
intervals$right * t_len, intervals$v,
lwd = 2)

The family of intervals F

With the help of our multiscale method, we simultaneously test the null hypothesis
Héw’k) that A;(-) = A;(-) on the interval Zj, € F for each (4, j, k). We denote the
length of the intervals from the grid as hg.

Now we are ready to perform the test.

Step 1.

Step 2.

Compute the quantile g7 Gauss(c) by Monte Carlo simulations. Specif-
ically, draw a large number sim_runs = 5000 samples of independent

standard normal random variables {Z() 1<i<mn1<t<T} for
)

1 </ < sim_runs. Compute the value <I>(T of the Gaussian statistic &

for each sample ¢ by the following formula:

@7 = max ag (|pik,r| — i),
(4,5,k)

where

T
1 t
Gijk, T = T, E 1 <T € Ik) {Zis — Zj},

t=1

= {log(e/hy)}"/?/loglog(e®/hy,) and b, = \/2log(1/hy). Then cal-
culate the empirical (1 — «)-quantile ¢r gauss(e) from the values {<I>(T) :
1 < ¢ < sim_runs}. Use §rGauss(r) as an approximation of the quantile
QT,Gauss(a)-
This step is done with these lines of code:

quantiles <- compute_quantiles(t_len = t_len, grid = grid,
n_ts = n, ijset = ijset,
sigma = sigmahat,
sim_runs = sim_runs,
epidem = TRUE)

probs <- as.vector(quantiles$quant([1, 1)

pos <- which.min(abs(probs - (1 - alpha)))
quant <- quantiles$quant[2, pos]

quant

[1] 2.187759
Compute the kernel averages zﬂijkj as

i1 (4 € T) (Xie — Xji)
G{3 "1 1 € Ti) (Xt + Xjo) }1/2

together with the scale-adjusted values of individual test statistics for test-
ing the hypothesis HSZ’J’k) that \; = \; on an interval Zj, ay, (‘l;z]kT‘ — bk>,

YijhT =

15

where, as before, a, = {log(e/hy)}"/?/loglog(e®/hs,) and by, = /21log(1/hs).

Based on these values, we can calculate the pairwise test statistics
U7 = max a (A-‘ —b)
i3, T TeF k |1;Z)z]k,T| k

for testing that A\; and A; are different at least on one of the intervals
I € F, as well as the value of the overall test statistics for testing that
at least two of the mean functions are different somewhere:

\I/T = Imax \I'ij,T~
(i.7)€S

This step is done with these lines of code:

result <- compute_statistics(data
n_ts = n, grid = grid,
epidem = TRUE)

str(result, max.level = 3, vec.len = 2, list.len = 2)

covid, sigma = sigmahat,

List of 4

$ stat : num 15.5

$ stat_pairwise : num [1:5, 1:5] 00 00 O ...
[list output truncated]

As a result, we get the list with the following elements:
— stat denotes \i/T;

— stat_pairwise is a matrix that consists of the values of the pairwise
statistics W;; 13

— ijset denotes the set [and lists all pairwise comparisons that have
been performed;

— gset_with_values is a list with dataframes that contains the indi-
vidual test statistics. The order of the dataframes corresponds to the
order of the elements in ijset, i.e. the results of the first comparison
is in the first dataframe, etc. Each dataframe is coded in the following
way. Columns u and h determine the interval Z, with u-h and u+h
being the left and the right end of the interval respectively. Column
vals consists of kt)he scale-adjusted values of individual test statistics

0.,

for testing H(() for the respective interval Zj.

Step 3. Now we carry out the test itself, comparing the scale-adjusted values of
individual test statistics from Step 2with the critical value from Step 1.
It is done by the following lines of code:

gset_with_values <- result$gset_with_values

for (i in seq_len(nrow(ijset))) {

16

test_results <- gset_with_values[[i]]$vals > quant
gset_with_values[[i]]$test <- test_results

}

str(gset_with_values, max.level = 2, vec.len = 2, list.len = 2)

List of 10
$:'data.frame': 140 obs. of b5 variables:

##
##
##

$

##
##
#Hit
##

% : num [1:140] 0.0292 0.0511
.$ h : num [1:140] 0.0255 0.0255
[list output truncated]

:'data.frame': 140 obs. of 5 variables:
..$u : num [1:140] 0.0292 0.0511
.$h : num [1:140] 0.0255 0.0255

[list output truncated]
[list output truncated]

Now each dataframe from gset_with_values contains additional column

that is either TRUE if we reject the respective null hypothesis H((]i’j’k) or
FALSE if we do not reject. We can use these dataframes to produce the
plots for illustrating the results.

You do not have to perform these steps yourself, the function multiscale_test ()
carries them out automatically for you:

results <- multiscale_test(data = covid, sigma = sigmahat,

n_ts = n, grid = grid, ijset = ijset,
alpha = alpha,

sim_runs = sim_runs,

epidem = TRUE)

str(results, max.level = 3, vec.len = 2,

##
##
##
##

list.len = 2)

List of 6
$ testing_result : chr "We reject H_O with probability 0.05. Psihat_statistic
$ quant : num 2.19

[list output truncated]

Now we are ready to present the results. For the sake of brevity, we only show the
results for the pairwise comparisons of Germany (i = 1) with the United Kingdom
(j = 2). This is coded as the first comparison in ijset. The remaining figures can
be found in 7.

First, we plot the the observed time series for the two countries.

17

plot(covid[, 1], ylim=c(min(covid[, 1], covidl[, 21),
max(covid[, 1], covid[, 21)),
type="1", col="blue", ylab="", xlab="", mgp=c(l, 0.5, 0))
lines(covid[, 2], col="red")
title(main = "(a) observed new cases per day", font.main = 1,
line = 0.5)
legend("topright", inset = 0.02, legend=c("Germany", "UK"),
col = c("blue", "red"), 1ty = 1, cex = 0.95, ncol = 1)

(a) observed new cases per day

— Germany
— UK

SOPO

6000

40‘00

2000

T T T
0 20 40 60 80 100 120 140

Now we plot the smoothed versions of the time series from (a), that is, the plot
shows nonparametric kernel estimates of the two trend functions A1 and A9, where
the bandwidth is set to 7 days and a rectangular kernel is used. This is not
necessary but sometimes useful.

smoothing <- function(u, data_p, grid_p, bw){

result =20
norm =0
T_size = length(data_p)

result = sum((abs((grid_p - uw) / bw) <= 1) * data_p)
norm = sum((abs((grid_p - u) / bw) <= 1))
return(result/norm)

18

grid_points <- seq(from = 1 / t_len, to = 1, length.out = t_len)
smoothed_1 <- mapply(smoothing, grid_points,
MoreArgs = list(covid[, 1], grid_points,
bw = 3.5 / t_len))

smoothed_2 <- mapply(smoothing, grid_points,
MoreArgs = list(covid[, 2], grid_points,
bw = 3.5 / t_len))

plot(smoothed_1, ylim=c(min(covid[, 1], covid[, 2]),
max(covid[, 1], covid[, 2])),

type="1", col="blue", ylab="", xlab = "", mgp=c(1,0.5,0))
title(main = "(b) smoothed curves from (a)", font.main = 1,
line = 0.5)

lines(smoothed_2, col="red")

(b) smoothed curves from (a)

SqOO

6900

4000

ZOPO

Finally, we present the results produced by our test. Specifically, we depict in
grey the set Freject(1,2) of all the intervals 7, for which the test rejects the null

Hél’2’k). The minimal intervals in the subset f%igct(l,Q) are depicted in black.
The definition of the minimal intervals and some dicsussion on the topic are
given in ?. The function that computes minimal intervals can be accessed as

compute_minimal_intervals().

19

According to theoretical results in this paper, we can make the following simulta-
neous confidence statement about the intervals plotted below: we can claim, with
confidence of about 95%, that there is a difference between the functions A; and
A9 on each of these intervals.

1 <- 1 #First comparison in ijset

gset <- results$gset_with_values[[1]]
reject <- subset(gset, test == TRUE, select = c(u, h))
reject_set <- data.frame('startpoint' = (reject$u - reject$h) *
t_len,
'endpoint' = (reject$u + reject$h) *
t_len, 'values' = 0)
reject_set$values <- (l:nrow(reject_set)) / nrow(reject_set)
reject_min <- compute_minimal_intervals(reject_set)

plot(NA, xlim=c(0, t_len), ylim = c(0, 1 + 1 / nrow(reject_set)),
xlab="", mgp=c(2, 0.5, 0), yaxt = "n", ylab = "")
title(main = "(c) minimal intervals produced by our test",
font.main = 1, line = 0.5)
title(xlab = "days since the hundredth case", line = 1.7,
cex.lab = 0.9)
segments(reject_min$startpoint, reject_min$values,
reject_min$endpoint, reject_min$values, lwd = 2)
segments(reject_set$startpoint, reject_set$values,
reject_set$endpoint, reject_set$values,
col = "gray")

20

(c) minimal intervals produced by our test

20

40

T T T
60 80 100

days since the hundredth case

21

T
120

T
140

