
Hierarchical analysis of distance sampling data in

R using HierarchicalDS: a vignette

Paul B. Conn (paul.conn ‘at’ noaa.gov)

July 15, 2013

HierarchicalDS version 2.1

Contents

1 Introduction 2

2 Model structure 2

3 Installation 4

4 Example 4

5 Speeding up analyses 29

6 Troubleshooting 30

1

1 Introduction

This vignette describes the R package, HierarchicalDS, which was designed to
perform MCMC inference using a hierarchical modeling formulation for distance
sampling data. The initial publication associated with this work is Conn et al.
(2012), who described a hierarchical framework for double observer distance
sampling data. The model structure in HierarchicalDS is quite similar, but
has been expanded to include additional modeling features, such as the ability
to include intrinsic conditionally autocorrelated (ICAR) spatial random effects,
to include zero inflation in underlying abundance intensity, and to account for
species misclassification under a double observer setup (see e.g. Conn et al.,
Accepted).

The hierarchicalDS package is a flexible and powerful tool for analyzing
distance sampling data, but there are some possible drawbacks associated with
this flexibility. First, it assumes some familiarity with Markov chain Monte
Carlo (MCMC; Gelman et al., 2004) diagnostics to interpret Markov chain con-
vergence. A basic knowledge of linear models and design matrices is useful for
setting starting values for MCMC estimation and for interpretation of parame-
ter estimates. Some intuition about parameter identifiability will be useful too;
for instance, with single observers only it will not be possible to estimate the
point independence correlation parameter (see below), nor will it be possible
to implement species misidentification unless informative priors are used. Sim-
ilarly, it would typically be a bad idea to implement advanced features such as
spatially autocorrelated random effects or zero inflation with sparse data. In
short, hierarchicalDS is a sharp tool; watch that you don’t get cut!

The remainder of this vignette is structured as follows. First, we describe
the model structure of associated with hierarchicalDS. Our description is ad-
mittedly brief, as basic components (including Gibbs sampling algorithms) have
been described elsewhere (e.g. Conn et al., 2012, Accepted). Next, we describe
procedures for installation, focusing on the Windows environment (it is as-
sumed that those using Unix, Linux, MacOS, etc. already know what they are
doing). Next, we simulate a distance sampling dataset to use as an example
when describing implementation of HierarchicalDS. Finally, we include a small
troubleshooting section.

2 Model structure

Temporarily assuming no zero inflation, the basic model structure assumed by
HierarchicalDS can be summarized by a directed, acyclic graph (Fig. 1).
Under this setup, an areal model for the log of abundance intensity is assumed,
where the log of abundance intensity over a collection of sites (ν) can be written
as

log(ν) = Xβ + η + ε.

Here, X is a design matrix constructed using user-input covariates and regression
formulae, β is a vector of regression coefficients, η represent spatially autocor-

2

habβ

ν

Process
model

G x

θ

N

ε

detβ

ρ

Y

Individual
covariate
model

Observation
model

υτ

ητ

η

Y ′π

misID model

Figure 1: Directed, acyclic graph for the hierarchical model for distance sam-
pling (here, assuming no zero inflation).

related random effects, and ε represents additional, spatially uncorrelated error
that can be used to impart extra-Poisson variation.

Conditional on abundance intensity for each species (separate abundance
intensity models can be written for each species), and additional quantities
such as the effective area sampled in each cell (also input by the user), we
assume that the true numbers of clusters of animals G observed in each cell
for each species is a realization of a Poisson process. If individual covariates
associated with groups are available (e.g., group size, etc.), a variety of user-
specified probability density and mass functions can be specified to model them
with species-specific parameters. This is necessary for our “complete data”
(Dempster et al., 1977) representation of state space since individual covariates
for undetected groups are modeled in areas where sampling occurs.

We assume that the detection of each these groups by either single- or double-
observers is the outcome of a Bernoulli process, where detection probability
(success probability) is modeled on the probit scale as a function of covariates.

3

Detection covariates can be entered on a cell-by-cell basis (as when sightability
conditions may alter detection rates), or can be specified to be a function of
individual covariates (e.g. group size). In the case of double observers, we allow
a correlation between Bernoulli success probabilties, which occurs via a bivariate
normal distribution on the probit scale. In this case, the correlation can increase
linearly with distance from the transect line, in an effort to duplicate “point
independence” (Borchers et al., 2006; Laake & Borchers, 2004) - a modeling
construct designed to combat the situation where some groups of animals are
just must more detectable than other groups, especially at a distance (when this
happens, detections by double observers are no longer independent).

3 Installation

There are several ways to install hierarchicalDS. The easiest is to simply
download it from CRAN. In an R window, this can be achieved by typing

install.packages("hierarchicalDS")

Typically, the version of hierarchicalDS on CRAN will lag slightly behind
development versions. The latest source code is publicly available at https:

//github.com/NMML/Hierarchical_DS, which can also be used to download
base R functions for debugging if one runs into indeciphable errors (also see
Troubleshooting below).

Github no longer hosts binaries or .zip files; these can currently be found on
the following Google drive:

https://drive.google.com/folderview?id=0BzomuXDutCcRT2VHMUlqWDhqNlk&usp=

sharing

This is the preferred place for downloading installation versions of the pack-
age between stable CRAN releases. There are several ways to install hierarchicalDS
locally. The most stable way I have found is to open a DOS terminal window,
navigate to the directory where hierarcichalDS.tar resides, and type Rcmd

INSTALL hierarchicalDS.tar. There are other options from within R; for
instance, one can use the install.packages function:

setwd("mydir") #mydir is where the binary resides

install.packages("hierarchicalDS.tar.gz", repos = NULL, type = "source")

4 Example

I now consider implementing hierarchicalDS on a simulated data example.
We will simultaneously demonstrate the use of complex model features, includ-

4

https://github.com/NMML/Hierarchical_DS
https://github.com/NMML/Hierarchical_DS
https://drive.google.com/folderview?id=0BzomuXDutCcRT2VHMUlqWDhqNlk&usp=sharing
https://drive.google.com/folderview?id=0BzomuXDutCcRT2VHMUlqWDhqNlk&usp=sharing

ing zero infation, spatial random effects, and species misidentification. The
complete R code for the example is as follows:

library(hierarchicalDS)

1) First, simulate data

S = 100 #Number of grid cells; square grid assumed for simulation

n.transects = S #one transect per cell

Observers = matrix(NA, 2, n.transects)

set.seed(11112)

for (i in 1:n.transects) {
Observers[, i] = sample(c(1, 2, 3), size = 2, replace = FALSE)

}
Sim = simulate_data(S = S, Observers = Observers, misID = TRUE, ZIP = TRUE,

tau.pois = 15, tau.bern = 10)

Dat = Sim$Dat

2) declare inputs and call hierarchicalDS

Obs.cov = array(0, dim = c(2, n.transects, 1))

Obs.cov[1, ,] = 1

n.obs.cov = 1

Adj = square_adj(sqrt(S))

misID.mat = matrix(0, 2, 3) # misID matrix

misID.mat[1,] = c(1, -1, 2)

misID.mat[2,] = c(-1, 3, -1)

misID.models = c(~1, ~1, ~1)

MisID = vector("list", max(misID.mat))

MisID[[1]] = 2 #parameters for getting it right

MisID[[2]] = 1

MisID[[3]] = 3 #parameters for getting it right

misID.symm = TRUE

Mapping = c(1:S)

Area.trans = rep(1, S)

n.bins = length(unique(Dat[, "Distance"]))

Area.hab = rep(1, S)

Bin.length = rep(1, n.bins) #equal bin lengths

Hab.cov = data.frame(rep(log(c(1:sqrt(S)/sqrt(S))), each = sqrt(S)))

(covariate on abundance intensity same as used to simulate data)

colnames(Hab.cov) = c("Cov1")

Hab.pois.formula = vector("list", 2)

Hab.bern.formula = Hab.pois.formula

for (i in 1:2) {
Hab.pois.formula[[i]] = ~Cov1

Hab.bern.formula[[i]] = ~1

}
detect = TRUE

5

Det.formula = ~Observer + Distance + Group

n.species = nrow(misID.mat)

Cov.prior.parms = array(0, dim = c(n.species, 2, 1))

Cov.prior.parms[1, , 1] = c(2, 1)

Cov.prior.parms[2, , 1] = c(2, 1)

Cov.prior.fixed = matrix(0, n.species, dim(Cov.prior.parms)[3])

Cov.prior.pdf = Cov.prior.fixed

Cov.prior.pdf[, 1] = c("pois1", "pois1") #model group size as a zero truncated poisson

Cov.prior.n = matrix(2, 2, 1)

point.ind = TRUE #include point independence

spat.ind = FALSE #do not make spatially independent

fix.tau.nu = FALSE

srr = TRUE

srr.tol = 0.5

misID = TRUE

last.ind = FALSE

cor.const = FALSE

grps = TRUE

post.loss = FALSE

M = t(Out$G.true * 10)

M[which(M < 30)] = 50

Control = list(iter = 21000, burnin = 1000, thin = 10, MH.cor = 0.2, MH.nu = matrix(0.2,

2, S), MH.misID = matrix(0.1, 3, 1), RJ.N = matrix(rep(5, S * n.species),

n.species, S), adapt = 100, iter.fix.N = 100)

hab.pois = matrix(0, n.species, 2) #covariates are intercept, index

hab.pois[1, 1:2] = c(log(50), 0)

hab.pois[2, 1:2] = c(log(10), -2)

hab.bern = matrix(0, n.species, 1)

hab.bern[, 1] = c(1, 1)

provide some initial values to ensure MCMC doesn't start out at weird

place

Inits = list(hab.pois = hab.pois, hab.bern = hab.bern, tau.nu = c(500, 500),

MisID = MisID)

misID.mu = vector("list", max(misID.mat))

misID.sd = misID.mu

misID.mu[[1]] = 0

misID.mu[[2]] = 0

misID.mu[[3]] = 0

misID.sd[[1]] = 1.75

misID.sd[[2]] = 1.75

misID.sd[[3]] = 1.75

Prior.pars = list(a.eta = 1, b.eta = 0.01, a.nu = 1, b.nu = 0.01, beta.tau = 0.01,

misID.mu = misID.mu, misID.sd = misID.sd)

(1,.01) prior makes it closer to a uniform distribution near the origin

adapt = TRUE

6

ZIP = TRUE

set.seed(8327329) #chain1

Out = hierarchical_DS(Dat = Dat, Adj = Adj, Area.hab = Area.hab, Mapping = Mapping,

Area.trans = Area.trans, Observers = Observers, Bin.length = Bin.length,

Hab.cov = Hab.cov, Obs.cov = Obs.cov, n.obs.cov = n.obs.cov, Hab.pois.formula = Hab.pois.formula,

Hab.bern.formula = Hab.bern.formula, detect = detect, Det.formula = Det.formula,

Cov.prior.pdf = Cov.prior.pdf, Cov.prior.parms = Cov.prior.parms, Cov.prior.fixed = Cov.prior.fixed,

Cov.prior.n = Cov.prior.n, pol.eff = NULL, ZIP = ZIP, point.ind = point.ind,

spat.ind = spat.ind, fix.tau.nu = fix.tau.nu, srr = srr, srr.tol = srr.tol,

misID = misID, last.ind = last.ind, cor.const = cor.const, Inits = Inits,

grps = grps, M = M, Control = Control, adapt = adapt, Prior.pars = Prior.pars,

misID.mat = misID.mat, misID.models = misID.models, misID.symm = misID.symm,

post.loss = post.loss)

3) plot and summarize results; note that chain would need to be run a

lot longer to summarize the posterior very well!!!

plot(Out$MCMC)

summary_N(Out)

post_loss(Out)

Okay, now let’s run through this bit by bit. To start with, we’ll load the
hierarchicalDS library:

library(hierarchicalDS)

source("c:/users/paul.conn/git/hierarchicalDS/hierarchicalDS/R/simulate_data.R")

source("c:/users/paul.conn/git/hierarchicalDS/hierarchicalDS/R/hierarchical_DS.R")

source("c:/users/paul.conn/git/hierarchicalDS/hierarchicalDS/R/mcmc_ds.R")

source("c:/users/paul.conn/git/hierarchicalDS/hierarchicalDS/R/spat_funcs.R")

Now we’ll simulate some data using the simulate data function. This func-
tion is hardwired to produce data for two species; abundance for species one
increases linearly as one moves west to east but stays relatively constant for
species two. Both are subject to zero inflation, with a spatial regression model
for both the zero component and non-zero component. This is a particularly
data hungry formulation, so data are simulated assuming the entire area is cov-
ered by transects.

1) First, simulate data

S = 100 #Number of grid cells; square grid assumed for simulation

n.transects = S #one transect per cell

Observers = matrix(NA, 2, n.transects)

set.seed(11112)

7

for (i in 1:n.transects) {
Observers[, i] = sample(c(1, 2, 3), size = 2, replace = FALSE)

}
Sim = simulate_data(S = S, Observers = Observers, misID = TRUE, ZIP = TRUE,

tau.pois = 15, tau.bern = 10)

Dat = Sim$Dat

Let’s take a look at the contents of the simulated data list object

names(Sim)

[1] "Dat" "G.true" "True.species"

The data frame object Sim$Dat includes data suitable to pass to the analysis
function hierarchical DS, while the matrix object Sim$G.true holds the true
number of groups of each species for each grid cell (recall there are S = 100
grid cells). The latter is useful for checking that hierarchicalDS is estimat-
ing a reasonable number of animals (at least for simulated data!). Finally,
Sim$True.species holds the true species identity for each record.

Let’s take a look at the first few records for the data frame holding the data
we’ll input into hierarchicalDS :

head(Dat)

Transect Match Observer Obs Species Seat Distance Group

1 1 1 3 1 3 1 2 3

2 1 1 2 1 1 0 2 3

3 1 2 3 0 1 1 4 3

4 1 2 2 1 1 0 4 3

5 1 3 3 1 1 1 3 3

6 1 3 2 1 1 0 3 3

The order in which columns appear is important; hierarchicalDS expects
data will be in a similar format. The order expected is as follows:

1. The first column gives a numeric transect value, for 1, 2, . . . , T (note that
T will often be less than S). hierarchicalDS assumes that the inves-
tigator enters in a separate transect number for each transect-grid cell
combination. For instance, if one transect spans 4 grid cells (recall there
are S grid cells), then data collected on that transect would need to be
partitioned by grid cell and the data would be entered as if 4 separate
transects had been conducted. Note that transect numbers are associated
with grid cell numbers using an input variable that will be described later.

2. The second column, ‘Match,’ holds a value for each animal cluster (group)
that is detected. For double observers, there will be two rows for each clus-
ter (rows corresponding to the same animal cluster get the same value of

8

‘Match’); for single observers there will just be one row per cluster, and
thus one value of ‘Match’. No two groups of animals should have the same
‘Match’ value.

3. The third column, ‘Observer’ holds a factor variable indicating which ob-
server was involved with a particular observation (or non-observation in
the case of double observers).

4. The fourth column ‘Obs’ holds an indicator describing whether the par-
ticular observer saw the animal or not (for single observer data, all entries
will be a ‘1’).

5. The next row, ‘Species’ gives a numeric value for observed species. When
there are > 1 species, hierarchicalDS allows the possibility of ‘unknown’
species observations, which are by default assumed to have a code equal
to the number of species plus one (so for example, the first record in our
simulated data was a record where species was entered as unknown).

6. The next record, ‘Seat’ is an example of an observer-level covariate. Ob-
server level covariates are entered in columns between ‘Species’ and ‘Dis-
tance,’ and record variables the investigator can record on an observer-
by-observer basis (e.g. experience level, etc.) or on a transect-by-transect
basis (e.g. survey condition covariates). The investigator should take care
to make sure that the class of these variables (e.g. numeric, factor) is
the entered in the same manner one wishes to analyze the data in (i.e.
factor variables will be analyzed as categorical, numeric variables will be
analyzed as continuous).

7. The next column, ‘Distance’ gives distances of observed animals from the
survey platform. If distance data are binned, distances should be en-
tered as factor variables; if continuous, hierarchicalDS assumes that
the investigator has standardized all distances to the (0, 1) interval (with
1 corresponding to a truncation distance).

8. Finally, the remaining columns represent individual level covariates asso-
ciated with detected animal groups. The individual covariate ‘Group’ is
required, and is assumed to occur in the column immediately after ‘Dis-
tance.’ Other individual covariates could be entered here as well, but are
not required.

Okay, now that we have our data defined, let’s continue by specifying some
different observer options.

9

Obs.cov = array(0, dim = c(2, n.transects, 1))

Obs.cov[1, ,] = 1

n.obs.cov = 1

Here, we define a 3-D array, Obs.cov, whose first dimension is equal to two
(for double observers), the second dimension is equal to the number of tran-
sects (recall that each transect-grid cell combination is entered in as a separate
‘transect’), and whose third dimension is the number of observer-level covari-
ates. Here, we have just one covariate, ‘Seat,’ so the third dimension is 1. After
defining the array, we fill the array for the ‘front seat’ observer to have a value
of 1.0. We also declare that there is one observer-level covariate by setting
n.obs.cov=1.

The next thing we’ll do is to specify an adjacency matrix, Adj, which de-
scribes the neighborgood structure associated with the particular spatial grid cell
topology one is using. This is only needed if one wants to estimate spatially au-
tocorrelated random effects. There are several tools that are provided to help the
user construct such a matrix; in particular, the function square adj constucts a
square adjacency matrix (assuming a queen’s move neighborhood), the function
rect adj constucts an adjacency matrix on a rectangle, and rect adj RW2 con-
structs an RW2 adjacency matrix (which provides a greater degree of smoothing;
see ?). In practice, I have found it useful to construct these adjacency matrices
on a rectangle, and then to delete rows and columns of that rectangle that are not
actually in the survey area (in the likely case that the survey area isn’t a perfect
rectangle). Of course, one will usually also want to be projecting their study area
from 3-D space to 2-D space using standard tools from geography; I personally
find the sp package and related libraries (e.g. rgeos,rgdal,raster,maptools)
to be quite helpful in this regard. For our particular case, we’ll simply use a
square adjacency matrix:

Adj = square_adj(sqrt(S))

Next, we’ll establish a structure for modelling species misidentification (this
step can be ignored if only conducting single species analysis, or when species
misidentification is assumed negligible):

misID.mat = matrix(0, 2, 3) # misID matrix

misID.mat[1,] = c(1, -1, 2)

misID.mat[2,] = c(-1, 3, -1)

misID.models = c(~1, ~1, ~1)

MisID = vector("list", max(misID.mat))

MisID[[1]] = 2 #parameters for getting it right

MisID[[2]] = 1

MisID[[3]] = 3 #parameters for getting it right

misID.symm = TRUE

10

The first thing we’ve done for our simulated dataset is to establish a 2x3 ma-
trix, where rows define true species (recall there are two species in our simulated
dataset), and columns define observation types. Because species classification
probabilities should sum to one for each species, we need to specify which clasi-
fication probability is obtained by subtraction. This is done by specifying a
‘-1’ for specific entries of of misId.mat. In this example, we specify symmetric
misclassification probabilities with the option misID.symm=TRUE. As such, the
misclassification probability of misclassifying species 2 as species 1 (π[1|2]) is set
equal to the probability of misclassifying species 1 as species 2 (π[2|1]). This spec-
ification helps render misclassification probabilities indentifiable (Conn et al.,
Accepted) without having to resort to informative prior distributions. This
also means we have to estimate one less classification probability; when using
symmetric classification parameters our convention is to replace classification
parameters set by constraint to -1 (so in this case we set the first column of
the second row of misID.mat to -1). So, our specification means that we are
estimating parameters associated with π[1|1], π[3|1], and π[2|2], and obtaining
the rest through constraints. The non-negative entries of misID.mat provide
an index to the entries of the formula vector, misID.models, as well as to the
list entries for initial values. Here, we have simply specified intercept formula
(type ? formula for more information) for each of these species classification
parameters. Note that these parameters are modeled with a multinomial logit
link function and we could, in theory, specify more complicated formulae (e.g.
making them a function of group size, etc.). However, these parameters are
tend to be poorly estimated and imposing additional structure will likely only
increase issues with identifiability. The other thing we have done here is to pro-
vide some initial values for these parameters via MisID. If we had considered a
more complicated model for misclasification, each list entry would be a vector.

The next thing we’ll do is to specify some details associated with our tran-
sects and tesselated study area:

Mapping = c(1:S)

Area.trans = rep(1, S)

n.bins = length(unique(Dat[, "Distance"]))

Area.hab = rep(1, S)

Bin.length = rep(1, n.bins) #equal bin lengths

The first thing we’ve done is to define a vector called Mapping, which maps
our transects to the grid cells in our tesselated study area. In the simulated
example, we just have a one to one mapping between transects and grid cells, so
it is easy to construct the Mapping vector. In general, the length of the Mapping
vector is equal to the number of ‘transects’ (recalling that an actual transect
that spans multiple grid cells is broken into multiple segments). For example,
in a hypothetical study with three transects (1,2,3) that were conducted in
grid cells 1, 3, and 10, then we’d have Mapping=c(1,3,10). The second thing
we’ve done here is to specify the proportion of area that each of our transects
covers in relation to the total area of the grid cell. In the simple simulated

11

data example, our transect covers the entire area of the grid cell, so we simply
have all entries of Area.trans equal one. If, instead, we had three transects
that covered 20%, 30%, and 10% of their respective grid cells, this vector would
be specified as Area.trans=c(0.2,0.3,0.1). Within this code block, we have
also specified the relative area of our grid cells through Area.hab. This vector
can be used to account for grid cells that are of different size, or have different
amounts of target habitat. Note that all modeling of abundance intensity occurs
at Area.trans=1, so we wouldn’t want to enter very large or very large numbers
here (i.e., it’s better to standardize Area.trans so that it has a mean near one).
For distance data that are binned (which they are for our simulated example),
the other things we have done here is to specify the number of distance bins via
n.bins, as well as indicate the relative length of the each bin via Bin.length.

The next thing we’ve done when setting up analysis for our simulated dataset
is to specify the habitat covariates and fixed effects models for spatial regres-
sion. We enter habitat covaraiates in the data frame Hab.cov, where each
column specifies a separate habitat covariates, and the column name provides
the name of the covariate (there should be S rows in the Hab.cov data frame).
Here, we’ve simply provided the same easterly-westerly covariate used to gener-
ate the simulated data (which is hardwired in the simulate data function). We
also provide formulae for (1) the Poisson models for abundance intensity (via
Hab.pois.formula), and, where zero inflation is modeled, (2) the Bernoulli
model for abundance intensity [here, zero infation is modeled as in ?]. We pro-
vide formula in a list object, since we can potentially have different regression
models for each species (here, our list is of length 2 since we have 2 species). In
particular, we allow the fixed effects model for the Poisson component of abun-
dance intensity to include our easterly-westerly covariate (here, names ‘Cov1’),
and specify an intercept model for the the Bernoulli zero-inflation model.

Hab.cov = data.frame(rep(log(c(1:sqrt(S)/sqrt(S))), each = sqrt(S)))

(covariate on abundance intensity same as used to simulate data)

colnames(Hab.cov) = c("Cov1")

Hab.pois.formula = vector("list", 2)

Hab.bern.formula = Hab.pois.formula

for (i in 1:2) {
Hab.pois.formula[[i]] = ~Cov1

Hab.bern.formula[[i]] = ~1

}

Our next little code chunk is relatively simple...we (1) specify that we’re
interested in estimating a detection function, specifying detect=TRUE (note that
detect=FALSE can be specified for strip transects with detectability equal one),
(2) specify a model for the detection function through Det.formula (note that
the model is writted as a function of column names appearing in Dat), and (3)
indicate the number of species being modeled:

12

detect = TRUE

Det.formula = ~Observer + Distance + Group

n.species = nrow(misID.mat)

Next, we specify prior distributions for individual covariates:

Cov.prior.parms = array(0, dim = c(n.species, 2, 1))

Cov.prior.parms[1, , 1] = c(2, 1)

Cov.prior.parms[2, , 1] = c(2, 1)

Cov.prior.fixed = matrix(0, n.species, dim(Cov.prior.parms)[3])

Cov.prior.pdf = Cov.prior.fixed

Cov.prior.pdf[, 1] = c("pois1", "pois1")

Cov.prior.n = matrix(2, 2, 1)

This part actually takes some care, and is the one place we need to spec-
ify somewhat informative priors, especially if initial parameter values are not
provided. This is because vague priors can lead to outlandish initial covari-
ate values when MCMC is initialized and make the data augmentation algo-
rithm unstable. We start by initializing a 3-D array for individual covariate
priors, Cov.prior.parms. In general, the dimension of this arrray should be
(n.species ×max.par × n.cov) where n.cov gives the number of individual co-
variates nad max.par gives the maximum number of prior parameters required
for an individual covariate prior. In our case, we just have one individual co-
variate (group size), and have specified a zero truncated Poisson distribution
for it via ‘pois1’ (see documentation for hierarchical DS for alternative PMF
and PDF alternatives for individual covariates). Note that group size should
always use a zero truncated PMF to preclude the possibility of group sizes of 0!
By convention, the zero truncated Poisson uses a Gamma(α, β) prior; since the
zero-truncated Poisson is just a Poisson random variable + 1, our prior effec-
tively has a mean of 3.0 for both species (note that data were simulated with a
mean of 4.0 and 2.0 for species 1 and 2, respectively). In hierarchicalDS, we
have the option of fixing the parameters of individual covariate distribution to
initial values specified by the user by toggling elements of the Cov.prior.fixed
matrix to be 1. Here, we set them all zero so that parameters associated with
group size are estimated. The final thing we’ve done here is to specify the
number of parameters associated with each covariate distribution by filling the
matrix Cov.prior.n, where the rows of Cov.prior.n indicate species, and the
columns indicate the number of individual covariates. In this case, we’ve filled
the matrix with the number ‘2,’ since the prior distributions for groups size for
each species have 2 parameters. Often, group size will be the only individual
covariate of interest.

The next thing we’ve done is to define a number of other hierarchicalDS

options:

13

point.ind = TRUE #include point independence

spat.ind = FALSE #do not make spatially independent

fix.tau.nu = FALSE

srr = TRUE

srr.tol = 0.5

misID = TRUE

last.ind = FALSE

cor.const = FALSE

grps = TRUE

post.loss = FALSE

Specifically, we’ve turned on point independence with point.ind=TRUE, so
that a correlation parameter for double observer detections will be estimated
on the probit scale (the range of the correlation parameter is restricted to [-
0.95,0.95] to avoid numerical errors); we’ve enabled estimation of spatially au-
tocorrelated random effects by setting spat.ind=FALSE; and we’ve enabled esti-
mation of τν , which allows for estimation of overdispersion relative the Poisson
distribution (above and beyond that explained by fixed effects and spatial ran-
dom effects). By setting srr=TRUE, we enable a reduced dimension version of
spatial random effects, where the reduced rank effects are defined to be or-
thogonal to the design matrix associated with fixed effects; only positive eigen-
vectors associated with the spectral decomposition of the spatial process with
eigenvalues greater than srr.tol are modeled. This approach follows recent
developments in the statistics literature desribing spatially restricted regression
(e.g. Hughes & Haran, 2012; Reich et al., 2006), and allow for a smoother, sta-
bler implementation that preserves the primacy of fixed effects for explaining
variation in abundance. Here, we have set srr.tol=0.5; for a smoother sur-
face, one might consider increasing this value. The option misID=TRUE turns
on species misidentification. The next two options, last.ind and cor.const

pertain to point independence model only. The typical setup is to have ob-
server independence assumed in the first bin, and increasing linearly with dis-
tance (last.ind=FALSE). However, we’ve encountered certain cases where dou-
ble observers have slightly different views out of side of an airplane which are
accentuated the closer an animal is to the trackline. For these, cases we’ve
allowed (last.ind=TRUE), which assumes observers obtain indpendent detec-
tions at maximal distances. The option cor.const=TRUE will impose even more
structure; in particular, when last.ind=FALSE, posterior samples are limited
to positive values for the correlation parameter, and when last.ind=FALSE,
the correlation parameter will be restricted to negative values. The next op-
tion, grps, indicates whether group size should be modeled (if grps=FALSE, it
is assumed that all detections are of single animals). Finally, post.loss toggles
whether or not a posterior loss criterion (sensu Gelfand & Ghosh, 1998) should
be calculated for model comparison. This criterion is somewhat time consuming
to compute, but is only computed for iterations that are stored (so computation
time is reduced by storing less iterations; see the Control$thin option below).

14

The next thing we define is the M matrix, which defines the maximum number
of animals for each species that is allowed in a given transect. This is to help set
the dimension of the data augmentation matrix, but has practical ramifications
for inference. Optimally, we’d set this upper bound high enough so that we
would never hit it, but low enough to avoid extraneous calculations (covariate
values are simulated for all rows ≤M). In practice, some trial and error/tuning
may be needed here (hierarchicalDS outputs warning messages when bounds
are hit). Of course, the higher detection probabilities are, the lower M will need
to be; tightening up model structure will (eliminating overdispersion and/or
random effects, providing informative priors for species classification probabili-
ties, etc.) will also, decrease the likelihood of hitting up against upper bounds.
In our experience a limited amount of flirtation with the upper bound is some-
times acceptable, particularly at the initial stages of MCMC estimation, when
the Markov chain is still converging to the posterior distribution (especially if
vague priors are assumed and initial value generation is automated). For our
example, we’ve initialized M as a (2 × T) matrix (T being the number of tran-
sects), and set values equal to 10 times the true abundance (increasing smaller
M values to be a minimum of 50):

M = t(Out$G.true * 10)

M[which(M < 30)] = 50

The next thing we’ll do is specify some MCMC options through the list
object, Control:

Control = list(iter = 21000, burnin = 1000, thin = 10, MH.cor = 0.2, MH.nu = matrix(0.2,

2, S), MH.misID = matrix(0.1, 3, 1), RJ.N = matrix(rep(5, S * n.species),

n.species, S), adapt = 100, iter.fix.N = 100)

Here, we’ve indicated the number of MCMC iterations through iter, the
number of iterations to discard as a burn-in burnin, the number of iterations
to store values for (posterior samples will be stored for one out of every thin

iterations). Although there is no real advantage to discarding MCMC output
from an analysis standpoint, the sheer volume of values stored can be quite
large for hierarchicalDS, so one can run into memory limitations if not care-
ful (limiting the number of stored posterior samples to a reasonable number can
fix this problem). We then specify a few Metropolis-Hastings tuning parame-
ters; MH.cor controls the length of a uniform proposal kernel for the correlation
parameter (if double observers with point independence); similarly MH.nu is a
(2×#sampledcells) matrix providing the length of the uniform proposal kernel
for Metropolis-Hastings updates of ν, the log of abundance intensity; MH.misID
give the length of the uniform kernel proposal distribution for misidentifica-
tion parameters on the multinomial-logit scale (where the number of rows is
equal to the number of misclassification probabilites that are modeled, and the
number of columns is the maximum number of parameters associated with a
misclassfication model). Next, RJ.N specify control values influencing reversible

15

jump updates of the number of animals in the surveyed area of a given cell.
In particular, it should be a matrix with number of rows equal to the num-
ber of species, and number of columns equal to the number of grid cells that
are actually sampled. The values making up the matrix control the maximum
number of latent (unobserved animals) that can be proposed to be added or
subtracted to the local population at every iteration of the Markov chain. For
large populations, these should ideally be set larger than for small populations
(here, we’ve set them all to 5). Ideally, acceptance rates for all of these updates
(Metropolis-Hastings and reversible jump) would be in the 0.3-0.4 range to pro-
mote good mixing and fast convergence to the posterior distribution (Gelman
et al., 2004). An adapt phase that automatically adjusts these initial inputes
to try to achieve optimal acceptance rates can be implemented by setting the
number of adapt iterations > 0 (here we’ve set adapt=100) and adapt=TRUE (see
below). In practice, it may be difficult to achieve globally optimal acceptance
rates unless the adapt phase is quite long; however, if poor initial values are
provided/generated, the adapt phase may be somewhat unstable. Tuning these
values ‘by hand’ may sometimes be necessary.

To start the Markov chain in a reasonable quadrant of parameter space,
we next provide some initial values for certain parameters using the Inits list
object.

hab.pois = matrix(0, n.species, 2) #covariates are intercept, index

hab.pois[1, 1:2] = c(log(50), 0)

hab.pois[2, 1:2] = c(log(10), -2)

hab.bern = matrix(0, n.species, 1)

hab.bern[, 1] = c(1, 1)

Inits = list(hab.pois = hab.pois, hab.bern = hab.bern, tau.nu = c(500, 500),

MisID = MisID)

Although we could provide more values than those included here (type ?

hierarchical DS for a full list), these few seem reasonably sufficient. In addi-
tion to the initial values for species classification parameters (MisID, described
previously), we’ve also defined initial values for the precision (recall that preci-
sion is 1/variance) of the ν parameters through tau.nu (there are two values,
one for each species), and for fixed effects of habitat regression models. For the
Poisson model for abundance, recall that we specified a linear relationship with
a habitat covariate, so we need to provide initial values for each parameter (and
separate parameters for each species) - we start these slightly off from their true
values. The Bernoulli submodel for zero-inflation was simply specified as an
intercept-only model so we only require one initial value for each species.

The next thing on our task list is to provide a list of prior distribution
parameters through the list object Prior.pars:

misID.mu = vector("list", max(misID.mat))

misID.sd = misID.mu

misID.mu[[1]] = 0

16

misID.mu[[2]] = 0

misID.mu[[3]] = 0

misID.sd[[1]] = 1.75

misID.sd[[2]] = 1.75

misID.sd[[3]] = 1.75

Prior.pars = list(a.eta = 1, b.eta = 0.01, a.nu = 1, b.nu = 0.01, beta.tau = 0.01,

misID.mu = misID.mu, misID.sd = misID.sd)

Here, we enter conjugate Gamma(a.eta, b.eta) priors for the precision of spa-
tial random effects Gamma(a.nu, b.nu) priors for the precision of ν parameters,
and a Normal(0, 1/beta.tau) prior for fixed effect regression parameters. We
also put normal prior distributions on the parameters associated with misclas-
sification models. Here, we’ve assumed parameters all have Normal(0, 1.75)
priors in the multinomial logit scale (this results in an approximately uniform
distribution on the real scale).

There’s just a few more things to specify before we can run our model. This
includes specifying that we want to include an adapt phase, and the we want
to estimate zero inflation (currently, if spat.ind=FALSE, spatial random effects
will be estimated for both the Poisson and Bernoulli submodels). Finally, we
provide a seed to the random number generator so that we can exactly duplicate
our analysis in the future (should we wish)/

adapt = TRUE

ZIP = TRUE

set.seed(8327329) #chain1

Now, we can call the function hierarchical DS using all predefined options.
Note, however, that this particular analysis takes ≈ 40 hours. You can load the
resulting dataset by simply typing data(sim data)!

Out = hierarchical_DS(Dat = Dat, Adj = Adj, Area.hab = Area.hab, Mapping = Mapping,

Area.trans = Area.trans, Observers = Observers, Bin.length = Bin.length,

Hab.cov = Hab.cov, Obs.cov = Obs.cov, n.obs.cov = n.obs.cov, Hab.pois.formula = Hab.pois.formula,

Hab.bern.formula = Hab.bern.formula, detect = detect, Det.formula = Det.formula,

Cov.prior.pdf = Cov.prior.pdf, Cov.prior.parms = Cov.prior.parms, Cov.prior.fixed = Cov.prior.fixed,

Cov.prior.n = Cov.prior.n, pol.eff = NULL, ZIP = ZIP, point.ind = point.ind,

spat.ind = spat.ind, fix.tau.nu = fix.tau.nu, srr = srr, srr.tol = srr.tol,

misID = misID, last.ind = last.ind, cor.const = cor.const, Inits = Inits,

grps = grps, M = M, Control = Control, adapt = adapt, Prior.pars = Prior.pars,

misID.mat = misID.mat, misID.models = misID.models, misID.symm = misID.symm,

post.loss = post.loss)

##

Beginning adapt phase

##

11 eigenvectors selected for spatially restricted regression

17

##

11 eigenvectors selected for spatially restricted regression

##

12 eigenvectors selected for spatially restricted regression

##

12 eigenvectors selected for spatially restricted regression

iteration 1 of 100 completed

##

Approximate time till completion: 0 hours

##

total elapsed time: 7.05807411670685 minutes

##

Beginning MCMC phase

##

11 eigenvectors selected for spatially restricted regression

##

11 eigenvectors selected for spatially restricted regression

##

12 eigenvectors selected for spatially restricted regression

##

12 eigenvectors selected for spatially restricted regression

iteration 1 of 21000 completed

##

Approximate time till completion: 24.6 hours

iteration 1001 of 21000 completed

iteration 2001 of 21000 completed

iteration 3001 of 21000 completed

iteration 4001 of 21000 completed

iteration 5001 of 21000 completed

iteration 6001 of 21000 completed

iteration 7001 of 21000 completed

iteration 8001 of 21000 completed

iteration 9001 of 21000 completed

iteration 10001 of 21000 completed

iteration 11001 of 21000 completed

iteration 12001 of 21000 completed

iteration 13001 of 21000 completed

iteration 14001 of 21000 completed

iteration 15001 of 21000 completed

iteration 16001 of 21000 completed

iteration 17001 of 21000 completed

iteration 18001 of 21000 completed

iteration 19001 of 21000 completed

iteration 20001 of 21000 completed

##

18

total elapsed time: 2441.22804905176 minutes

Let’s take a look at the structure of the output list produced after a run by
hierarchicalDS:

names(Out)

[1] "Post" "MCMC" "Accept" "Control" "Obs.N" "Pred.N"

[7] "Obs.det" "Pred.det"

The first item in the list, Out$Post, is itself a list that includes objects
G and N, which are each 3D arrays holding posterior samples for the number
of groups (G) and total number of individuals (N). The dimension of each of
these objects is (#species×#iterations× S). These objects can thus be used
to plot posterior maps of abundance (see below). The second object in our
list is Out$MCMC which is actually a coda object holding posterior samples of
most other parameters of interest. By loading the coda R package, we can
then bring to bear many existing procedures for MCMC diagnostics and plots.
Next, Out$Accept holds acceptance numbers for parameters and latent variables
subject to accept/reject steps (e.g. Metropolis-Hastings or reversible jump).
This can be useful for further tuning of MCMC. Similarly, Out$Control returns
the final value of the Control used in estimation (these values are often adjusted
during the adapt phase). The next two values Obs.N and Pred.N are soon to
be deprecated. Finally, Obs.det and Pred.det hold observed and predicted
detections that are used by the post loss function to calculate a posterior loss
statistic for model comparison; these are only filled if post loss=TRUE when
calling hierarchicalDS.

Let’s call a few functions to visualize out output. To get coda-like output
(i.e. trace and kernel density plots), we can simply do the following:

plot(Out$MCMC)

19

20

21

22

23

24

25

26

In our enviable position of having the ‘true’ answer regarding abundance, we
can thus see that true abundances (species 1: 4633, species 2: 1118) are in the
‘meat’ of estimated posterior distibutions. We could also get a table of posterior
moments and credible intervals by using the function table.mcmc. I used to
have a plotting function for producing maps of output, but dependencies were
unstable (e.g. ggplot2) and I removed it. Here’s some code that can help in
plotting, however.

library(sp)

library(raster)

r1 = raster(nrows = sqrt(S), ncol = sqrt(S))

Tmp <- rasterToPolygons(r1, na.rm = FALSE)

iter.start = 1

New.dat = matrix(0, S, 2 * n.species)

for (isp in 1:n.species) {
New.dat[, isp] = apply(Out$Post$G[isp, iter.start:(dim(Out$Post$G)[2]),

], 2, "mean")

27

}
New.dat[, 3:4] = Sim$G.true

colnames(New.dat) = c("Sp1.est", "Sp2.est", "Sp1.true", "Sp2.true")

Tmp@data = cbind(Tmp.grid@data, New.dat)

library(ggplot2)

library(plyr)

library(grid)

Tmp@data$id = rownames(Tmp@data)

tmp1 <- fortify(Tmp, region = "id")

tmp2 <- join(tmp1, Tmp@data, by = "id")

new.colnames = colnames(tmp2)

new.colnames[1:2] = c("Easting", "Northing")

colnames(tmp2) = new.colnames

pushViewport(viewport(layout = grid.layout(2, 2)))

tmp.theme = theme(axis.ticks = element_blank(), axis.text = element_blank())

p1 = ggplot(tmp2) + aes(Easting, Northing, fill = Sp1.est) + geom_raster() +

tmp.theme

print(p1, vp = viewport(layout.pos.row = 1, layout.pos.col = 1))

p2 = ggplot(tmp2) + aes(Easting, Northing, fill = Sp2.est) + geom_raster() +

tmp.theme

print(p2, vp = viewport(layout.pos.row = 1, layout.pos.col = 2))

p3 = ggplot(tmp2) + aes(Easting, Northing, fill = Sp1.true) + geom_raster() +

tmp.theme

print(p3, vp = viewport(layout.pos.row = 2, layout.pos.col = 1))

p4 = ggplot(tmp2) + aes(Easting, Northing, fill = Sp2.true) + geom_raster() +

tmp.theme

print(p4, vp = viewport(layout.pos.row = 2, layout.pos.col = 2))

28

5 Speeding up analyses

Clearly, the time it took to run our simulated data analysis (40 hours) is not
ideal. Profiling the code, it’s clear that the greatest time sinks are (i) data
augmentation associated with RJMCMC, and (ii) updating species and species
classification parameters. The time associated with (i) can be reduced by de-
creasing M values (the maximum number of animals in the sampled area of each
sampled cell). The trick, however, is decreasing these to a level where the pos-
terior distribution doesn’t bump up against the upper bound. This is less likely
to happen when detection probability is high, so one effective strategy is to de-
crease the distance threshold for analysis so that the detection curve is relatively
high for all modeled distances. In our simulated example the total value of M

across all sampled sites and species was 21,820 - this requires considerable com-
putation to update latent covariates and parameters at each MCMC iteration.
Similarly, if species classification rates are high enough, turning off estimation

29

of species misidentification (i.e. by setting misID=FALSE) would dramatically
improve computation speed.

6 Troubleshooting

My general strategy for fitting models using hierarchicalDS is to start simply
and build up. For instance, one probably wants to make sure the model is
behaving reasonably before adding in data-hungry features such as estimation
of spatial random effects and zero inflation. Analysts should also take care to fit
models that do not extrapolate ‘past the range of observed data.’ With a single
predictive covariate, this isn’t too difficult as one can simply impose a ‘cap’ on
the covariate such that it can’t take more extreme values in unsampled areas
than it does in sampled areas. However, it can be more difficult to diagnose
when there are multiple covariates. Since abundance intensity is modeled on
the log scale, predictions past the range of observed data can easily lead to
overpredictions in unsampled areas that are orders of magnitude greater than
they should be, simply because of over-extrapolation.

Currently, there are only limited tools for detecting problems and mis-
matches between hierarchicalDS function inputs; for instance, inputting a vector
that is too short or too long. Although I am still adding to the list of checks
(and appreciate user input), some ability to troubleshoot (e.g., by downloading
and stepping through source code) would be useful on the part of the analyst.

References

Borchers, D. L., Laake, J. L., Southwell, C. & Paxton, C. G. M. (2006). Ac-
comodating unmodeled heterogeneity in double-observer distance sampling
surveys. Biometrics, 62, 372–378.

Conn, P. B., Laake, J. L. & Johnson, D. S. (2012). A hierarchical modeling
framework for multiple observer transect surveys. PLoS ONE , 7, e42294.

Conn, P. B., McClintock, B. T., Cameron, M. F., Johnson, D. S., Moreland,
E. E. & Boveng, P. L. (Accepted). Accommodating species identification
errors in transect surveys. Ecology .

Dempster, A. P., Laird, N. M. & Rubin, D. B. (1977). Maximum likelihood
from incomplete data via the EM algorithm. Journal of the Royal Statistical
Society B (Methodological), 39, 1–38.

Gelfand, A. E. & Ghosh, S. (1998). Model choice: A minimum posterior pre-
dictive loss approach. Biometrika, 85, 1–11.

Gelman, A., Carlin, J. B., Stern, H. S. & Rubin, D. B. (2004). Bayesian Data
Analysis, 2nd Edition. Chapman and Hall, Boca Raton.

30

Hughes, J. & Haran, M. (2012). Dimension reduction and alleviation of
confounding for spatial generalized mixed models. ArXiv , 1101.6649v1
[stat.ME] .

Laake, J. & Borchers, D. (2004). Methods for incomplete detection at distance
zero. Advanced Distance Sampling (eds. S. Buckland, D. Anderson, K. Burn-
ham, J. Laake, D. Borchers & L. Thomas), pp. 108–189. Oxford University
Press, Oxford, U.K.

Reich, B., Hodges, J. & Zadnik, V. (2006). Effects of residual smoothing on
the posterior of the fixed effects in disease-mapping models. Biometrics, 62,
1197–1206.

31

	Introduction
	Model structure
	Installation
	Example
	Speeding up analyses
	Troubleshooting

