
A Detailed Guide to spmodel

Michael Dumelle, Matt Higham, and Jay M. Ver Hoef

1 Introduction
spmodel is an R package used to fit, summarize, and predict for a variety of spatial statistical models. The
vignette provides an introduction to both the basic and advanced features of the spmodel package coupled
with a brief theoretical explanation of the methods. In Section 2, we give a brief theoretical introduction
to spatial linear models. In Section 3, we outline the variety of methods used to estimate the parameters
of spatial linear models. In Section 4, we explain how to obtain predictions at unobserved locations. In
Section 5, we detail some advanced modeling features, including random effects, partition factors, anisotropy,
and big data approaches. In Section 6, we end with a short discussion. Before proceeding, we load spmodel
by running
library(spmodel)

If using spmodel in a formal publication or report, please cite it. Citing spmodel lets us devote more resources
to the package in the future. We view the spmodel citation by running
citation(package = "spmodel")

#>
#> To cite spmodel in publications use:
#>
#> Michael Dumelle, Matt Higham, and Jay M. Ver Hoef (2022). spmodel:
#> Spatial Statistical Modeling and Prediction. R package version 0.2.0.
#>
#> A BibTeX entry for LaTeX users is
#>
#> @Manual{,
#> title = {spmodel: Spatial Statistical Modeling and Prediction},
#> author = {Michael Dumelle and Matt Higham and Jay M. {Ver Hoef}},
#> year = {2022},
#> note = {R package version 0.2.0},
#> }

There are two additional vignettes in spmodel. The first provides an overview of basic features in spmodel and
can be viewed by running vignette("basics", "spmodel"). THe second provides technical details regarding
many of the functions in spmodel and can be viewed by running vignette("technical", "spmodel").

We will create visualizations using ggplot2 (Wickham 2016), which we load by running
library(ggplot2)

ggplot2 is only installed alongside spmodel when dependencies = TRUE in install.packages(), so check
that the package is installed and loaded before reproducing any of these vignette’s visualizations. We will also
show code that can be used to create interactive visualizations of spatial data with mapview (Appelhans et
al. 2022). mapview also has many backgrounds available that contextualize spatial data with topographical
information. Before running the mapview code interactively, make sure mapview is installed and loaded.

1

2 The Spatial Linear Model
Statistical linear models are often parameterized as

y = Xβ + ϵ, (1)

where for a sample size n, y is an n × 1 column vector of response variables, X is an n × p design (model)
matrix of explanatory variables, β is a p × 1 column vector of fixed effects controlling the impact of X on y,
and ϵ is an n × 1 column vector of random errors. We typically assume that E(ϵ) = 0 and Cov(ϵ) = σ2

ϵ I,
where E(·) denotes expectation, Cov(·) denotes covariance, σ2

ϵ denotes a variance parameter, and I denotes
the identity matrix.

The model in Equation 1 assumes the elements of y are uncorrelated. Typically for spatial data, elements of
y are correlated, as observations close together in space tend to be more similar than observations far apart
(Tobler 1970). Failing to properly accommodate the spatial dependence in y can cause researchers to draw
incorrect conclusions about their data. To accommodate spatial dependence in y, an n × 1 spatial random
effect, τ , is added to Equation 1, yielding the model

y = Xβ + τ + ϵ, (2)

where τ is independent of ϵ, E(τ) = 0, Cov(τ) = σ2
τ R, R is a matrix that determines the spatial dependence

structure in y and depends on a range parameter, ϕ. We discuss R in more detail shortly. The parameter
σ2

τ is called the spatially dependent random error variance or partial sill. The parameter σ2
ϵ is called the

spatially independent random error variance or nugget. These two variance parameters are henceforth more
intuitively written as σ2

de and σ2
ie, respectively. The covariance of y is denoted Σ and given by σ2

deR + σ2
ieI.

The parameters that compose this covariance are typically referenced by the vector θ, which is called the
covariance parameter vector.

Equation 2 is called the spatial linear model. The spatial linear model applies to both point-referenced
and areal (i.e., lattice) data. Spatial data are point-referenced when the elements in y are observed at
point-locations indexed by x-coordinates and y-coordinates on a spatially continuous surface with an infinite
number of locations. The splm() function is used to fit spatial linear models for point-referenced data
(these are sometimes called geostatistical models). One spatial covariance function available in splm() is the
exponential spatial covariance function, which has an R matrix given by

R = exp(−M/ϕ),

where M is a matrix of Euclidean distances among observations. Recall that ϕ is the range parameter,
controlling the behavior of of the covariance function as a function of distance. Parameterizations for
splm() spatial covariance types and their R matrices can be seen by running help("splm", "spmodel") or
vignette("technical", "spmodel"). Some of these spatial covariance types (e.g., Matérn) depend on an
extra parameter beyond σ2

de, σ2
ie, and ϕ.

Spatial data are areal when the elements in y are observed as part of a finite network of polygons whose
connections are indexed by a neighborhood structure. For example, the polygons may represent counties in a
state that are neighbors if they share at least one boundary. Areal data are often equivalently called lattice
data (Cressie 1993). The spautor() function is used to fit spatial linear models for areal data (these are
sometimes called spatial autoregressive models). One spatial autoregressive covariance function available in
spautor() is the simultaneous autoregressive spatial covariance function, which has an R matrix given by

R = [(I − ϕW)(I − ϕW)⊤]−1,

where W is a weight matrix describing the neighborhood structure in y. Paremertizations for spautor()
spatial covariance types and their R matrices can be seen by running help("spautor", "spmodel") or
vignette("technical", "spmodel").

One way to define W is through queen contiguity (Anselin, Syabri, and Kho 2010). Two observations are
queen contiguous if they share a boundary. The ijth element of W is then one if observation i and observation

2

j are queen contiguous and zero otherwise. Observations are not considered neighbors with themselves, so
each diagonal element of W is zero.

Sometimes each element in the weight matrix W is divided by its respective row sum. This is called
row-standardization. Row-standardizing W has several benefits, which are discussed in detail by Ver Hoef et
al. (2018).

3 Model Fitting
In this section, we show how to use the splm() and spautor() functions to estimate parameters of the
spatial linear model. We also explore diagnostic tools in spmodel that evaluate model fit. The splm() and
spautor() functions share similar syntactic structure with the lm() function used to fit linear models without
spatial dependence from Equation 1. splm() and spautor() generally require at least three arguments:

• formula: a formula that describes the relationship between the response variable (y) and explanatory
variables (X)

– formula in splm() is the same as formula in lm()
• data: a data.frame or sf object that contains the response variable, explanatory variables, and spatial

information
• spcov_type: the spatial covariance type ("exponential", "matern", "car", etc)

If data is an sf (Pebesma 2018) object, spatial information is stored in the object’s geometry. If data
is a data.frame, then the x-coordinates and y-coordinates must be provided via the xcoord and ycoord
arguments (for point-referenced data) or the weight matrix must be provided via the W argument (for areal
data). Appendix A uses the caribou data, a tibble (a special data.frame), to show how to provide spatial
information via xcoord and ycoord (in splm()) or W (in spautor()).

In the following subsections, we use the point-referenced moss data, an sf object that contains data on heavy
metals in mosses near a mining road in Alaska. We view the first few rows of moss by running
moss

#> Simple feature collection with 365 features and 7 fields
#> Geometry type: POINT
#> Dimension: XY
#> Bounding box: xmin: -445884.1 ymin: 1929616 xmax: -383656.8 ymax: 2061414
#> Projected CRS: NAD83 / Alaska Albers
#> # A tibble: 365 x 8
#> sample field_dup lab_rep year sideroad log_dist2road log_Zn
#> <fct> <fct> <fct> <fct> <fct> <dbl> <dbl>
#> 1 001PR 1 1 2001 N 2.68 7.33
#> 2 001PR 1 2 2001 N 2.68 7.38
#> 3 002PR 1 1 2001 N 2.54 7.58
#> 4 003PR 1 1 2001 N 2.97 7.63
#> 5 004PR 1 1 2001 N 2.72 7.26
#> 6 005PR 1 1 2001 N 2.76 7.65
#> 7 006PR 1 1 2001 S 2.30 7.59
#> 8 007PR 1 1 2001 N 2.78 7.16
#> 9 008PR 1 1 2001 N 2.93 7.19
#> 10 009PR 1 1 2001 N 2.79 8.07
#> # ... with 355 more rows, and 1 more variable: geometry <POINT [m]>

We can learn more about moss by running help("moss", "spmodel"), and we can visualize the distribution
of log zinc concentration in moss (Figure 1) by running
ggplot(moss, aes(color = log_Zn)) +

geom_sf(size = 2) +

3

scale_color_viridis_c() +
theme_gray(base_size = 14)

67.0°N

67.2°N

67.4°N

67.6°N

67.8°N

68.0°N

68.2°N

164.0°W 163.5°W 163.0°W

4

5

6

7

8
log_Zn

Figure 1: Distribution of log zinc concentration in the moss data.

Log zinc concentration can be viewed interactively in mapview by running
mapview(moss, zcol = "log_Zn")

3.1 Estimation
Generally the covariance parameters (θ) and fixed effects (β) of the spatial linear model require estimation.
The default estimation method in spmodel is restricted maximum likelihood (Patterson and Thompson
1971; Harville 1977; Wolfinger, Tobias, and Sall 1994), but the estimation method can be changed with
the estmethod argument to splm() or spautor(). Maximum likelihood estimation is also available. For
point-referenced data, semivariogram weighted least squares (Cressie 1985) and semivariogram composite
likelihood (Curriero and Lele 1999) are additional estimation methods. The estimation method is chosen
using the estmethod argument.

We estimate parameters of a spatial linear model regressing log zinc concentration (log_Zn) on log distance
to a haul road (log_dist2road) using an exponential spatial covariance function by running
spmod <- splm(log_Zn ~ log_dist2road, moss, spcov_type = "exponential")

We summarize the model fit by running
summary(spmod)

#>
#> Call:
#> splm(formula = log_Zn ~ log_dist2road, data = moss, spcov_type = "exponential")
#>
#> Residuals:
#> Min 1Q Median 3Q Max
#> -2.6801 -1.3606 -0.8103 -0.2485 1.1298
#>
#> Coefficients (fixed):

4

#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) 9.76825 0.25216 38.74 <2e-16 ***
#> log_dist2road -0.56287 0.02013 -27.96 <2e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Pseudo R-squared: 0.683
#>
#> Coefficients (exponential spatial covariance):
#> de ie range
#> 3.595e-01 7.897e-02 8.237e+03

The fixed effects coefficient table contains estimates, standard errors, z-statistics, and asymptotic p-values for
each fixed effect. From this table, we notice there is evidence that mean log zinc concentration significantly
decreases with distance from the haul road (p-value < 2e-16). We see the fixed effect estimates by running
coef(spmod)

#> (Intercept) log_dist2road
#> 9.7682525 -0.5628713

The model summary also contains the exponential spatial covariance parameter estimates, which we can view
by running
coef(spmod, type = "spcov")

#> de ie range rotate scale
#> 3.595316e-01 7.896824e-02 8.236712e+03 0.000000e+00 1.000000e+00
#> attr(,"class")
#> [1] "exponential"

The dependent random error variance (σ2
de) is estimated to be approximately 0.36 and the independent

random error variance (σ2
ie) is estimated to be approximately 0.079. The range (ϕ) is estimated to be

approximately 8,237. The effective range is the distance at which the spatial covariance is approximately
zero. For the exponential covariance, the effective range is 3ϕ. This means that observations whose distance
is greater than 24,711 meters are approximately uncorrelated. The rotate and scale parameters affect the
modeling of anisotropy (Section 5.5). By default, they are assumed to be zero and one, respectively, which
means that anisotropy is not modeled (i.e., the spatial covariance is assumed isotropic, or independent of
direction). We plot the fitted spatial covariance function (Figure 2) by running
plot(spmod, which = 7)

We can learn more about the plots available for fitted models by running help("plot.spmod", "spmodel").

3.2 Model-Fit Statistics
The quality of model fit can be assessed using a variety of statistics readily available in spmodel. The first
model-fit statistic we consider is the pseudo R-squared. The pseudo R-squared is a generalization of the
classical R-squared from non-spatial linear models that quantifies the proportion of variability in the data
explained by the fixed effects. The pseudo R-squared is defined as

PR2 = 1 − D(Θ̂)
D(Θ̂0)

,

where D(Θ̂) is the deviance of the fitted model indexed by parameter vector Θ̂ and D(Θ̂0) is the deviance
of an intercept-only model indexed by parameter vector Θ̂0. For maximum likelihood, Θ̂ = {θ̂, β̂}. For
restricted maximum likelihood Θ̂ = {θ̂}.

We compute the pseudo R-squared by running We compute the pseudo R-squared by running

5

0 50000 100000 150000

0.
0

0.
1

0.
2

0.
3

0.
4

Fitted spatial covariance function

Distance

C
ov

ar
ia

nc
e:

 e
xp

on
en

tia
l

splm(log_Zn ~ log_dist2road)

Figure 2: Empirical spatial covariance of fitted model.

pseudoR2(spmod)

#> [1] 0.6829687

Roughly 68% of the variability in log zinc is explained by log distance from the road. The pseudo R-squared
can be adjusted to account for the number of explanatory variables using the adjust argument. Pseudo
R-squared (and the adjusted version) is most helpful for comparing models that have the same covariance
structure.

The next two model-fit statistics we consider are the AIC and AICc. The AIC and AICc evaluate the fit
of a model with a penalty for the number of parameters estimated. This penalty balances model fit and
model parsimony. Lower AIC and AICc indicate a better balance of model fit and parsimony. The AICc is a
correction to AIC for small sample sizes. As the sample size increases, AIC and AICc converge.

The spatial AIC and AICc are given by

AIC = −2ℓ(Θ̂) + 2(|Θ̂|)
AICc = −2ℓ(Θ̂) + 2n(|Θ̂|)/(n − |Θ̂| − 1),

where ℓ(Θ̂) is the log-likelihood of the data evaluated at the estimated parameter vector Θ̂ that maximized
ℓ(Θ), |Θ̂| is the dimension of Θ̂, and n is the sample size. As with the deviance, for maximum likelihood,
Θ̂ = {θ̂, β̂}, and for restricted maximum likelihood Θ̂ = {θ̂}. There are some nuances to consider when
comparing AIC across models: AIC comparisons between a model fit using restricted maximum likelihood
and a model fit using maximum likelihood are meaningless, as the models are fit with different likelihoods;
AIC comparisons between models fit using restricted maximum likelihood are only valid when the models
have the same fixed effect structure; AIC comparisons between models fit using maximum likelihood are valid
even when the models have different fixed effect structures (Pinheiro and Bates 2006).

Suppose we want to quantify the difference in model quality between the spatial model and a non-spatial
model using the AIC and AICc criteria. We fit a non-spatial model (Equation 1) in spmodel by running

6

lmod <- splm(log_Zn ~ log_dist2road, moss, spcov_type = "none")

We compute the spatial AIC and AICc of the spatial model and non-spatial model by running
AIC(spmod, lmod)

#> df AIC
#> spmod 3 373.2089
#> lmod 1 636.0635
AICc(spmod, lmod)

#> df AICc
#> spmod 3 373.2754
#> lmod 1 636.0745

The noticeably lower AIC and AICc of of the spatial model indicate that it is a better fit to the data than
the non-spatial model.

Another approach to comparing the fitted models is to perform leave-one-out cross validation (Hastie et al.
2009). In leave-one-out cross validation, a single observation is removed from the data, the model is re-fit,
and a prediction is made for the held-out observation. Then, a loss metric like mean-squared-prediction
error is computed and used to evaluate model fit. The lower the mean-squared-prediction error, the better
the model fit. For computational efficiency, leave-one-out cross validation in spmodel is performed by first
estimating θ using all the data and then re-estimating β for each observation. We perform leave-one-out
cross validation for the spatial and non-spatial model by running
loocv(spmod)

#> [1] 0.1110895
loocv(lmod)

#> [1] 0.3237897

The noticeably lower mean-squared-prediction error of the spatial model indicates that it is a better fit to the
data than the non-spatial model.

3.3 Diagnostics
In addition to model fit metrics, spmodel provides functions that compute diagnostic metrics that help assess
model assumptions and identify unusual observations.

An observation is said to have high leverage if its combination of explanatory variable values is far from the
mean vector of the explanatory variables. For a non-spatial model, the leverage of the ith observation is the
ith diagonal element of the hat matrix given by

H = X(X⊤X)−1X⊤.

For a spatial model, the leverage of the ith observation is the ith diagonal element of the spatial hat matrix
given by

H∗ = (X∗(X∗⊤X)−1X∗⊤),

where X∗ = Σ−1/2X and Σ−1/2 is the inverse matrix square root of the covariance matrix, Σ (Montgomery,
Peck, and Vining 2021). The spatial hat matrix can be viewed as the non-spatial hat matrix applied X∗

instead of X. We compute the hat values (leverage) by running
hatvalues(spmod)

7

Larger hat values indicate more leverage.

The fitted value of an observation is the estimated mean response given the observation’s explanatory variable
values and the model fit:

ŷ = Xβ̂.

We compute the fitted values by running
fitted(spmod)

Fitted values for the spatially dependent random errors (τ), spatially independent random errors (ϵ), and
random effects can also be obtained via fitted() by changing the type argument.

The residuals measure each response’s deviation from its fitted value. The raw residuals are given by

er = y − ŷ.

We compute the raw residuals of the spatial model by running
residuals(spmod)

The raw residuals are typically not directly checked for linear model assumptions, as they have covariance
closely resembling the covariance of y. Pre-multiplying the residuals by Σ−1/2 yields the Pearson residuals
(Myers et al. 2012):

ep = Σ−1/2er.

When the model is correct, the Pearson residuals have mean zero, variance approximately one, and are
uncorrelated. We compute the Pearson residuals of the spatial model by running
residuals(spmod, type = "pearson")

The covariance of ep is (I − H∗), which is approximately I for large sample sizes. Explicitly dividing ep by
the respective diagonal element of (I − H∗) yields the standardized residuals (Myers et al. 2012):

es = ep√
(1 − diag(H∗))

,

where diag(H∗) denotes the diagonal of H∗.

We compute the standardized residuals of the spatial model by running
residuals(spmod, type = "standardized")

or
rstandard(spmod)

When the model is correct, the standardized residuals have mean zero, variance one, and are uncorrelated. It
is common to check linear model assumptions through visualizations. We can plot the standardized residuals
vs fitted values by running
plot(spmod, which = 1) # figure omitted

When the model is correct, the standardized residuals should be evenly spread around zero with no discernible
pattern. We can plot a normal QQ-plot of the standardized residuals by running
plot(spmod, which = 2) # figure omitted

When the standardized residuals are normally distributed, they should closely follow the normal QQ-line.

An observation is said to be influential if its omission has a large impact on model fit. Typically, this is
measured using Cook’s distance (Cook and Weisberg 1982). For the non-spatial model, the Cook’s distance

8

of the ith observation is denoted D and given by

D = e2
s

diag(H)
p(1 − diag(H)) ,

where p is the dimension of β (the number of fixed effects).

For a spatial model, the Cook’s distance of the ith observation is denoted D∗ and given by

D∗ = e2
s

diag(H∗)
p(1 − diag(H∗)) .

A larger Cook’s distance indicates more influence from the observation. We compute Cook’s distance by
running
cooks.distance(spmod)

The Cook’s distance versus leverage (hat values) can be visualized by running
plot(spmod, which = 6) # figure omitted

Though we described the model diagnostics in this subsection using Σ, generally the covariance parameters
are estimated and Σ is replaced with Σ̂.

3.4 The broom functions: tidy(), glance(), and augment()

The tidy(), glance(), and augment() functions from the broom R package (Robinson, Hayes, and Couch
2021) provide convenient output for many of the model fit and diagnostic metrics discussed in the previous
two sections. The tidy() function returns a tidy tibble of the coefficient table from summary():
tidy(spmod)

#> # A tibble: 2 x 5
#> term estimate std.error statistic p.value
#> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 (Intercept) 9.77 0.252 38.7 0
#> 2 log_dist2road -0.563 0.0201 -28.0 0

This tibble format makes it easy to pull out the coefficient names, estimates, standard errors, z-statistics, and
p-values from the summary() output.

The glance() function returns a tidy tibble of model-fit statistics:
glance(spmod)

#> # A tibble: 1 x 9
#> n p npar value AIC AICc logLik deviance pseudo.r.squared
#> <int> <dbl> <int> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 365 2 3 367. 373. 373. -184. 363 0.683

The glances() function is an extension of glance() that can be used to look at many models simultaneously:
glances(spmod, lmod)

#> # A tibble: 2 x 10
#> model n p npar value AIC AICc logLik deviance pseudo.r.squared
#> <chr> <int> <dbl> <int> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 spmod 365 2 3 367. 373. 373. -184. 363 0.683
#> 2 lmod 365 2 1 634. 636. 636. -317. 363. 0.671

Finally, the augment() function augments the original data with model diagnostics:

9

augment(spmod)

#> Simple feature collection with 365 features and 7 fields
#> Geometry type: POINT
#> Dimension: XY
#> Bounding box: xmin: -445884.1 ymin: 1929616 xmax: -383656.8 ymax: 2061414
#> Projected CRS: NAD83 / Alaska Albers
#> # A tibble: 365 x 8
#> log_Zn log_dist2road .fitted .resid .hat .cooksd .std.resid
#> * <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 7.33 2.68 8.26 -0.928 0.102 0.112 -1.48
#> 2 7.38 2.68 8.26 -0.880 0.0101 0.000507 -0.316
#> 3 7.58 2.54 8.34 -0.755 0.0170 0.000475 -0.236
#> 4 7.63 2.97 8.09 -0.464 0.0137 0.000219 0.178
#> 5 7.26 2.72 8.24 -0.977 0.0177 0.00515 -0.762
#> 6 7.65 2.76 8.21 -0.568 0.0147 0.000929 -0.355
#> 7 7.59 2.30 8.47 -0.886 0.0170 0.00802 -0.971
#> 8 7.16 2.78 8.20 -1.05 0.0593 0.0492 -1.29
#> 9 7.19 2.93 8.12 -0.926 0.00793 0.000451 -0.337
#> 10 8.07 2.79 8.20 -0.123 0.0265 0.00396 0.547
#> # ... with 355 more rows, and 1 more variable: geometry <POINT [m]>

By default, only the columns of data used to fit the model are returned alongside the diagnostics. All
original columns of data are returned by setting drop to FALSE. augment() is especially powerful when the
data are an sf object because model diagnostics can be easily visualized spatially. For example, we could
subset the augmented object so that it only includes observations whose standardized residuals have absolute
values greater than some cutoff and then visualize them spatially. To learn more about the broom functions
for spatial linear models, run help("tidy.spmod", "spmodel"), help("glance.spmod", "spmodel"), and
help("augment.spmod", "spmodel").

3.5 An Areal Data Example
Next we use the seal data, an sf object that contains the log of the estimated harbor-seal trends from
abundance data across polygons in Alaska, to provide an example of fitting a spatial linear model for areal
data using spautor(). We view the first few rows of seal by running
seal

#> Simple feature collection with 62 features and 1 field
#> Geometry type: POLYGON
#> Dimension: XY
#> Bounding box: xmin: 913618.8 ymin: 1007542 xmax: 1116002 ymax: 1145054
#> Projected CRS: NAD83 / Alaska Albers
#> # A tibble: 62 x 2
#> log_trend geometry
#> <dbl> <POLYGON [m]>
#> 1 NA ((1035002 1054710, 1035002 1054542, 1035002 1053542, 1035002 10525~
#> 2 -0.282 ((1037002 1039492, 1037006 1039490, 1037017 1039492, 1037035 10394~
#> 3 -0.00121 ((1070158 1030216, 1070185 1030207, 1070187 1030207, 1070211 10302~
#> 4 0.0354 ((1054906 1034826, 1054931 1034821, 1054936 1034822, 1055001 10348~
#> 5 -0.0160 ((1025142 1056940, 1025184 1056889, 1025222 1056836, 1025256 10567~
#> 6 0.0872 ((1026035 1044623, 1026037 1044605, 1026072 1044610, 1026083 10446~
#> 7 -0.266 ((1100345 1060709, 1100287 1060706, 1100228 1060706, 1100170 10607~
#> 8 0.0743 ((1030247 1029637, 1030248 1029637, 1030265 1029642, 1030328 10296~
#> 9 NA ((1043093 1020553, 1043097 1020550, 1043101 1020550, 1043166 10205~

10

#> 10 -0.00961 ((1116002 1024542, 1116002 1023542, 1116002 1022542, 1116002 10215~
#> # ... with 52 more rows

We can learn more about the data by running help("seal", "spmodel").

We can visualize the distribution of log seal trends in the seal data (Figure 3) by running
ggplot(seal, aes(fill = log_trend)) +

geom_sf(size = 0.75) +
scale_fill_viridis_c() +
theme_bw(base_size = 14)

58.5°N

59.0°N

138°W 137°W 136°W 135°W

−0.4
−0.3
−0.2
−0.1
0.0
0.1

log_trend

Figure 3: Distribution of log seal trends in the seal data. Polygons are gray if seal trends are missing.

Log trends can be viewed interactively in mapview by running
mapview(seal, zcol = "log_trend")

The gray polygons denote areas where the log trend is missing. These missing areas need to be kept in the
data while fitting the model to preserve the overall neighborhood structure.

We estimate parameters of a spatial autoregressive model for log seal trends (log_trend) using an intercept-
only model with a conditional autoregressive (CAR) spatial covariance by running
sealmod <- spautor(log_trend ~ 1, seal, spcov_type = "car")

If a weight matrix is not provided to spautor(), it is calculated internally using queen contiguity. Recall
queen contiguity defines two observations as neighbors if they share at least one common boundary. If at
least one observation has no neighbors, the extra parameter is estimated, which quantifies variability among
observations without neighbors. By default, spautor() uses row standardization (Ver Hoef et al. 2018) and
assumes an independent error variance (ie) of zero.

We tidy and glance at the fitted model and augment the data by running
tidy(sealmod)

#> # A tibble: 1 x 5
#> term estimate std.error statistic p.value
#> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 (Intercept) -0.0710 0.0250 -2.85 0.00443

11

glance(sealmod)

#> # A tibble: 1 x 9
#> n p npar value AIC AICc logLik deviance pseudo.r.squared
#> <int> <dbl> <int> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 34 1 3 -36.9 -30.9 -30.1 18.4 32.9 0
augment(sealmod)

#> Simple feature collection with 34 features and 6 fields
#> Geometry type: POLYGON
#> Dimension: XY
#> Bounding box: xmin: 980001.5 ymin: 1010815 xmax: 1116002 ymax: 1145054
#> Projected CRS: NAD83 / Alaska Albers
#> # A tibble: 34 x 7
#> log_trend .fitted .resid .hat .cooksd .std.resid geometry
#> * <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <POLYGON [m]>
#> 1 -0.282 -0.0710 -0.211 0.0179 0.0233 -1.14 ((1037002 1039492, 10370~
#> 2 -0.00121 -0.0710 0.0698 0.0699 0.0412 0.767 ((1070158 1030216, 10701~
#> 3 0.0354 -0.0710 0.106 0.0218 0.0109 0.705 ((1054906 1034826, 10549~
#> 4 -0.0160 -0.0710 0.0550 0.0343 0.00633 0.430 ((1025142 1056940, 10251~
#> 5 0.0872 -0.0710 0.158 0.0229 0.0299 1.14 ((1026035 1044623, 10260~
#> 6 -0.266 -0.0710 -0.195 0.0280 0.0493 -1.33 ((1100345 1060709, 11002~
#> 7 0.0743 -0.0710 0.145 0.0480 0.0818 1.30 ((1030247 1029637, 10302~
#> 8 -0.00961 -0.0710 0.0614 0.0143 0.00123 0.293 ((1116002 1024542, 11160~
#> 9 -0.182 -0.0710 -0.111 0.0131 0.0155 -1.09 ((1079864 1025088, 10798~
#> 10 0.00351 -0.0710 0.0745 0.0340 0.0107 0.561 ((1110363 1037056, 11103~
#> # ... with 24 more rows

4 Prediction
In this section, we show how to use predict() to perform spatial prediction (also called Kriging) in spmodel.
We will fit a model using the point-referenced sulfate data, an sf object that contains sulfate measurements in
the conterminous United States, and make predictions for each location in the point-referenced sulfate_preds
data, an sf object that contains locations in the conterminous United States at which to predict sulfate.

We first visualize the distribution of the sulfate data (Figure 4, left) by running
ggplot(sulfate, aes(color = sulfate)) +

geom_sf(size = 2.5) +
scale_color_viridis_c(limits = c(0, 45)) +
theme_gray(base_size = 18)

We then fit a spatial linear model for sulfate using an intercept-only model with a spherical spatial covariance
function by running
sulfmod <- splm(sulfate ~ 1, sulfate, spcov_type = "spherical")

Then we obtain best linear unbiased predictions (Kriging predictions) using predict(), where the newdata
argument contains the locations at which to predict, storing them as a new variable in sulfate_preds called
preds:
sulfate_preds$preds <- predict(sulfmod, newdata = sulfate_preds)

We can then visualize the model predictions (Figure 4, right) by running

12

ggplot(sulfate_preds, aes(color = preds)) +
geom_sf(size = 2.5) +
scale_color_viridis_c(limits = c(0, 45)) +
theme_gray(base_size = 18)

25°N

30°N

35°N

40°N

45°N

120°W 110°W 100°W 90°W 80°W

0
10
20
30
40

sulfate

25°N

30°N

35°N

40°N

45°N

120°W 110°W 100°W 90°W 80°W

0
10
20
30
40

preds

Figure 4: Distribution of observed sulfate (left) and sulfate predictions (right) in the conterminous United
States.

Before making predictions, it is important to properly specify the newdata object. If explanatory variables
were used to fit the model, the same explanatory variables must be included in newdata with the same
names they have in data. If data is a data.frame, coordinates must be included in newdata with the same
names as they have in data. If data is an sf object, coordinates must be included in newdata with the same
geometry name as they have in data. When using projected coordinates, the projection for newdata should
be the same as the projection for data.

Prediction standard errors are returned by setting the se.fit argument to TRUE:
predict(sulfmod, newdata = sulfate_preds, se.fit = TRUE)

The interval argument determines the type of interval returned. If interval is "none" (the default), no
intervals are returned. If interval is "prediction", 100 * level% prediction intervals are returned (the
default is 95% prediction intervals):
predict(sulfmod, newdata = sulfate_preds, interval = "prediction")

If interval is "confidence", the predictions are instead the estimated mean given each observation’s
explanatory variable values. The corresponding 100 * level% confidence intervals are returned:
predict(sulfmod, newdata = sulfate_preds, interval = "confidence")

Previously we used the augment() function to augment data with model diagnostics. We can also use
augment() as an alternative to predict() to augment newdata with predictions, standard errors, and
intervals. We remove the model predictions from sulfate_preds before showing how augment() is used to
obtain the same predictions by running
sulfate_preds$preds <- NULL

We then view the first few rows of sulfate_preds augmented with 90% prediction intervals by running
augment(sulfmod, newdata = sulfate_preds, interval = "prediction", level = 0.90)

#> Simple feature collection with 100 features and 3 fields
#> Geometry type: POINT

13

#> Dimension: XY
#> Bounding box: xmin: -2283774 ymin: 582930.5 xmax: 1985906 ymax: 3037173
#> Projected CRS: NAD83 / Conus Albers
#> # A tibble: 100 x 4
#> .fitted .lower .upper geometry
#> * <dbl> <dbl> <dbl> <POINT [m]>
#> 1 1.40 -5.33 8.14 (-1771413 1752976)
#> 2 24.5 18.2 30.8 (1018112 1867127)
#> 3 8.99 2.36 15.6 (-291256.8 1553212)
#> 4 16.4 9.92 23.0 (1274293 1267835)
#> 5 4.91 -1.56 11.4 (-547437.6 1638825)
#> 6 26.7 20.4 33.0 (1445080 1981278)
#> 7 3.00 -3.65 9.66 (-1629090 3037173)
#> 8 14.3 7.97 20.6 (1302757 1039534)
#> 9 1.49 -5.08 8.06 (-1429838 2523494)
#> 10 14.4 7.97 20.8 (1131970 1096609)
#> # ... with 90 more rows

Here, .fitted represents the predictions.

An alternative (but equivalent) approach can be used for model fitting and prediction that circumvents the
need to keep data and newdata as separate objects. Suppose that observations requiring prediction are stored
in data as missing (NA) values. We can add a column of missing values to sulfate_preds and then bind it
together with sulfate by running
sulfate_preds$sulfate <- NA
sulfate_with_NA <- rbind(sulfate, sulfate_preds)

We can then fit a spatial linear model by running
sulfmod_with_NA <- splm(sulfate ~ 1, sulfate_with_NA, "spherical")

The missing values are ignored for model-fitting but stored in sulfmod_with_NA as newdata:
sulfmod_with_NA$newdata

#> Simple feature collection with 100 features and 1 field
#> Geometry type: POINT
#> Dimension: XY
#> Bounding box: xmin: -2283774 ymin: 582930.5 xmax: 1985906 ymax: 3037173
#> Projected CRS: NAD83 / Conus Albers
#> First 10 features:
#> sulfate geometry
#> 198 NA POINT (-1771413 1752976)
#> 199 NA POINT (1018112 1867127)
#> 200 NA POINT (-291256.8 1553212)
#> 201 NA POINT (1274293 1267835)
#> 202 NA POINT (-547437.6 1638825)
#> 203 NA POINT (1445080 1981278)
#> 204 NA POINT (-1629090 3037173)
#> 205 NA POINT (1302757 1039534)
#> 206 NA POINT (-1429838 2523494)
#> 207 NA POINT (1131970 1096609)

We can then predict the missing values by running
predict(sulfmod_with_NA)

14

The call to predict() finds in sulfmod_with_NA the newdata object and is equivalent to
predict(sulfmod_with_NA, newdata = sulfmod_with_NA$newdata)

We can also use augment() to make the predictions on the data set with missing values by running
augment(sulfmod_with_NA, newdata = sulfmod_with_NA$newdata)

#> Simple feature collection with 100 features and 2 fields
#> Geometry type: POINT
#> Dimension: XY
#> Bounding box: xmin: -2283774 ymin: 582930.5 xmax: 1985906 ymax: 3037173
#> Projected CRS: NAD83 / Conus Albers
#> # A tibble: 100 x 3
#> sulfate .fitted geometry
#> * <dbl> <dbl> <POINT [m]>
#> 1 NA 1.40 (-1771413 1752976)
#> 2 NA 24.5 (1018112 1867127)
#> 3 NA 8.99 (-291256.8 1553212)
#> 4 NA 16.4 (1274293 1267835)
#> 5 NA 4.91 (-547437.6 1638825)
#> 6 NA 26.7 (1445080 1981278)
#> 7 NA 3.00 (-1629090 3037173)
#> 8 NA 14.3 (1302757 1039534)
#> 9 NA 1.49 (-1429838 2523494)
#> 10 NA 14.4 (1131970 1096609)
#> # ... with 90 more rows

Unlike predict(), augment() explicitly requires the newdata argument be specified in order to obtain
predictions. Omitting newdata (e.g., running augment(sulfmod_with_NA)) returns model diagnostics, not
predictions.

For areal data models fit with spautor(), predictions cannot be computed at locations that were not
incorporated in the neighborhood structure used to fit the model. Thus, predictions are only possible for
observations in data whose response values are missing (NA), as their locations are incorporated into the
neighborhood structure. For example, we make predictions of log seal trends at the missing polygons from
Figure 3 by running
predict(sealmod)

We can also use augment() to make the predictions:
augment(sealmod, newdata = sealmod$newdata)

#> Simple feature collection with 28 features and 2 fields
#> Geometry type: POLYGON
#> Dimension: XY
#> Bounding box: xmin: 913618.8 ymin: 1007542 xmax: 1115097 ymax: 1132682
#> Projected CRS: NAD83 / Alaska Albers
#> # A tibble: 28 x 3
#> log_trend .fitted geometry
#> * <dbl> <dbl> <POLYGON [m]>
#> 1 NA -0.113 ((1035002 1054710, 1035002 1054542, 1035002 1053542, 10350~
#> 2 NA -0.0108 ((1043093 1020553, 1043097 1020550, 1043101 1020550, 10431~
#> 3 NA -0.0608 ((1099737 1054310, 1099752 1054262, 1099788 1054278, 10998~
#> 4 NA -0.0383 ((1099002 1036542, 1099134 1036462, 1099139 1036431, 10991~
#> 5 NA -0.0730 ((1076902 1053189, 1076912 1053179, 1076931 1053179, 10769~
#> 6 NA -0.0556 ((1070501 1046969, 1070317 1046598, 1070308 1046542, 10703~

15

#> 7 NA -0.0968 ((1072995 1054942, 1072996 1054910, 1072997 1054878, 10729~
#> 8 NA -0.0716 ((960001.5 1127667, 960110.8 1127542, 960144.1 1127495, 96~
#> 9 NA -0.0776 ((1031308 1079817, 1031293 1079754, 1031289 1079741, 10312~
#> 10 NA -0.0647 ((998923.7 1053647, 998922.5 1053609, 998950 1053631, 9990~
#> # ... with 18 more rows

5 Advanced Features
spmodel offers several advanced features for fitting spatial linear models. We briefly discuss some of these
features next using the moss data and some simulated data. Technical details for each advanced feature can
be seen by running vignette("technical", "spmodel").

5.1 Fixing Spatial Covariance Parameters
We may desire to fix specific spatial covariance parameters at a particular value. Perhaps some parameter
value is known, for example. Or perhaps we want to compare nested models where a reduced model
uses a fixed parameter value while the full model estimates the parameter. Fixing spatial covariance
parameters while fitting a model is possible using the spcov_initial argument to splm() and spautor().
The spcov_initial argument takes an spcov_initial object (run help("spcov_initial", "spmodel")
for more). spcov_initial objects can also be used to specify initial values used during optimization, even if
they are not assumed to be fixed. By default, spmodel uses a grid search to find suitable initial values to use
during optimization.

As an example, suppose our goal is to compare a model with an exponential covariance with dependent error
variance, independent error variance, and range parameters to a model that assumes the independent random
error variance parameter (nugget) is zero. First, the spcov_initial object is specified for the latter model:
init <- spcov_initial("exponential", ie = 0, known = "ie")
print(init)

#> $initial
#> ie
#> 0
#>
#> $is_known
#> ie
#> TRUE
#>
#> attr(,"class")
#> [1] "exponential"

The init output shows that the ie parameter has an initial value of zero that is assumed to be known. Next
the model is fit:
spmod_red <- splm(log_Zn ~ log_dist2road, moss, spcov_initial = init)

Notice that because the spcov_initial object contains information about the spatial covariance type, the
spcov_type argument is not required when spcov_initial is provided. We can use glances() to glance at
both models:
glances(spmod, spmod_red)

#> # A tibble: 2 x 10
#> model n p npar value AIC AICc logLik deviance pseudo.r.squared
#> <chr> <int> <dbl> <int> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 spmod 365 2 3 367. 373. 373. -184. 363 0.683
#> 2 spmod_red 365 2 2 378. 382. 382. -189. 374. 0.703

16

The lower AIC and AICc of the full model compared to the reduced model indicates that the independent
random error variance is important to the model. A likelihood ratio test comparing the full and reduced
models is also possible using anova().

Another application of fixing spatial covariance parameters involves calculating their profile likelihood
confidence intervals (Box and Cox 1964). Before calculating a profile likelihood confidence interval for Θi, the
ith element of a general parameter vector Θ, it is necessary to obtain −2ℓ(Θ̂), minus twice the log-likelihood
evaluated at the estimated parameter vector, Θ̂. Then a (1 − α)% profile likelihood confidence interval
is then the set of values for Θi such that 2ℓ(Θ̂) − 2ℓ(Θ̂−i) ≤ χ2

1,1−α, where ℓ(Θ̂−i) is the value of the
log-likelihood maximized after fixing Θi and optimizing over the remaining parameters, Θ−i, and χ2

1,1−α is
the 1 − α quantile of a chi-squared distribution with one degree of freedom. The result follows from inverting
a likelihood ratio test comparing the full model to a reduced model that fixes the value of Θi. Because this
approach requires refitting the model many times for different fixed values of Θi, it can be computationally
intensive. This approached can be generalized to yield joint profile likelihood confidence intervals cases when
i has dimension greater than one.

5.2 Fitting and Predicting for Multiple Models
Fitting multiple models is possible with a single call to splm() or spautor() when spcov_type is a vector
with length greater than one or spcov_initial is a list (with length greater than one) of spcov_initial
objects (Section 5.1). We fit three separate spatial linear models using the exponential spatial covariance,
spherical spatial covariance, and no spatial covariance by running
spmods <- splm(sulfate ~ 1, sulfate, spcov_type = c("exponential", "spherical", "none"))

Then glances()is used to glance at each fitted model object:
glances(spmods)

#> # A tibble: 3 x 10
#> model n p npar value AIC AICc logLik deviance pseudo.r.squared
#> <chr> <int> <dbl> <int> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 spherical 197 1 3 1137. 1143. 1143. -569. 196. 0
#> 2 exponent~ 197 1 3 1140. 1146. 1146. -570. 196. 0
#> 3 none 197 1 1 1448. 1450. 1450. -724. 196 0

And predict() is used to predict newdata separately fo each fitted model object:
predict(spmods, newdata = sulfate_preds)

Currently, glances() and predict() are the only spmodel generic functions that operate on an object that
contains multiple model fits. Generic functions that operate on individual models can still be called when the
argument is an individual model object. For example, we can compute the AIC of the model fit using the
exponential covariance function by running
AIC(spmods$exponential)

#> [1] 1145.824

5.3 Random Effects
Non-spatial random effects incorporate additional sources of variability into model fitting. They are accommo-
dated in spmodel using similar syntax as for random effects in the nlme (Pinheiro and Bates 2006) and lme4
(Bates et al. 2015) R packages. Random effects are specified via a formula passed to the random argument.
Next we show two examples that incorporate random effects into the spatial linear model using the moss
data.

The first example explores random intercepts for the sample variable. The sample variable indexes each
unique location, which can have replicate observations due to field duplicates (field_dup) and lab replicates

17

(lab_rep). There are 365 observations in moss at 318 unique locations, which means that 47 observations in
moss are either field duplicates or lab replicates. It is likely that the repeated observations at a location are
correlated with one another. We can incorporate this repeated-observation correlation by creating a random
intercept for each level of sample. We model the random intercepts for sample by running
rand1 <- splm(

log_Zn ~ log_dist2road,
moss,
spcov_type = "exponential",
random = ~ sample

)

Note that ~ sample is shorthand for (1 | sample), which is more explicit notation that indicates random
intercepts for each level of sample.

The second example adds a random intercept for year, which creates extra correlation for observations within
a year. It also adds a random slope for log_dist2road within year, which lets the effect of log_dist2road
vary between years. We fit this model by running
rand2 <- splm(

log_Zn ~ log_dist2road,
moss,
spcov_type = "exponential",
random = ~ sample + (log_dist2road | year)

)

Note that sample + (log_dist2road | year) is shorthand for (1 | sample) + (log_dist2road |
year). If only random slopes within a year are desired (and no random intercepts), a - 1 is given to
the relevant portion of the formula: (log_dist2road - 1 | year). When there is more than one term
in random, each term must be surrounded by parentheses (recall that the random intercept shorthand
automatically includes relevant parentheses). More examples of random effect syntax are provided in
Appendix B.

We glance at the models by running
glances(rand1, rand2)

#> # A tibble: 2 x 10
#> model n p npar value AIC AICc logLik deviance pseudo.r.squared
#> <chr> <int> <dbl> <int> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 rand2 365 2 6 190. 202. 202. -94.9 363. 0.215
#> 2 rand1 365 2 4 335. 343. 343. -168. 363 0.661

rand2 has the lowest AIC and AICc.

It is possible to fix random effect variances using the randcov_initial argument, and randcov_initial
can also be used to set initial values for optimization.

5.4 Partition Factors
A partition factor is a variable that allows observations to be uncorrelated when they are from different levels
of the partition factor. Partition factors are specified in spmodel by providing a formula with a single variable
to the partition_factor argument. Suppose that for the moss data, we would observations in different
years (year) to be uncorrelated. We fit a model that treats year as a partition factor by running
part <- splm(

log_Zn ~ log_dist2road,
moss,
spcov_type = "exponential",

18

partition_factor = ~ year
)

5.5 Anisotropy
A spatial covariance function for point-referenced data is isotropic if it behaves similarly in all directions
(i.e., is independent of direction) as a function of distance. An anisotropic covariance function does not
behave similarly in all directions as a function of distance. Consider the spatial covariance imposed by an
eastward-moving wind pattern. A one-unit distance in the x-direction likely means something different than
a one-unit distance in the y-direction. Figure 5 shows ellipses for an isotropic and anisotropic covariance
function centered at the origin (a distance of zero).

0

0
x−distance

y−
di

st
an

ce

0

0
x−distance

y−
di

st
an

ce

Figure 5: Ellipses for an isotropic (left) and anisotropic (right) covariance function centered at the origin.
The black outline of each ellipse is a level curve of equal correlation.

The black outline of each ellipse is a level curve of equal correlation. The left ellipse (a circle) represents an
isotropic covariance function. The distance at which the correlation between two observations lays on the
level curve is the same in all directions. The right ellipse represents an anisotropic covariance function. The
distance at which the correlation between two observations lays on the level curve is different in different
directions.

Accounting for anisotropy involves a rotation and scaling of the x-coordinates and y-coordinates such that
the spatial covariance function that uses these transformed distances is isotropic. We use the anisotropy
argument to splm() to fit a model with anisotropy by running
spmod_anis <- splm(

log_Zn ~ log_dist2road,
moss,
spcov_type = "exponential",
anisotropy = TRUE

)
summary(spmod_anis)

#>
#> Call:
#> splm(formula = log_Zn ~ log_dist2road, data = moss, spcov_type = "exponential",
#> anisotropy = TRUE)
#>
#> Residuals:
#> Min 1Q Median 3Q Max
#> -2.5279 -1.2239 -0.7202 -0.1921 1.1659

19

#>
#> Coefficients (fixed):
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) 9.54798 0.22291 42.83 <2e-16 ***
#> log_dist2road -0.54601 0.01855 -29.44 <2e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Pseudo R-squared: 0.7048
#>
#> Coefficients (exponential spatial covariance):
#> de ie range rotate scale
#> 3.561e-01 6.812e-02 8.732e+03 2.435e+00 4.753e-01
#> attr(,"class")
#> [1] "exponential"

The rotate parameter is between zero and π radians and represents the angle of a clockwise rotation of the
ellipse such that the major axis of the ellipse is the new x-axis and the minor axis of the ellipse is the new
y-axis. The scale parameter is between zero and one and represents the ratio of the distance between the
origin and the edge of the ellipse along the minor axis to the distance between the origin and the edge of
the ellipse along the major axis. Figure 6 shows a transformation that turns an anisotropic ellipse into an
isotropic one (i.e., a circle). This transformation requires rotating the coordinates clockwise by rotate and
then scaling them the reciprocal of scale. The transformed coordinates are then used instead of the original
coordinates to compute distances and spatial covariances.

rotate
1

scale

Figure 6: A visual representation of the anisotropy transformation. In the left figure, the first step is to
rotate the anisotropic ellipse clockwise by the rotate parameter (here rotate is 0.75 radians or 135 degrees).
In the middle figure, the second step is to scale the y axis by the reciprocal of the scale parameter (here
scale is 0.5). In the right figure, the anisotropic ellipse has been transformed into an isotropic one (i.e., a
circle). The transformed coordinates are then used instead of the original coordinates to compute distances
and spatial covariances.

Note that specifying an initial value for rotate that is different from zero, specifying an initial value for
scale that is different from one, or assuming either rotate or scale are unknown in spcov_initial will
cause splm() to fit a model with anisotropy (and will override anisotropy = FALSE). Estimating anisotropy
parameters is only possible for maximum likelihood and restricted maximum likelihood estimation, but fixed
anisotropy parameters can be accommodated for semivariogram weighted least squares or semivariogram
composite likelihood estimation. Also note that anisotropy is not relevant for areal data because the spatial
covariance function depends on a neighborhood structure instead of distances between points.

5.6 Simulating Spatial Data
The sprnorm() function is used to simulate normal (Gaussian) spatial data. To use sprnorm(), the
spcov_params() function is used to create an spcov_params object. The spcov_params() function requires
the spatial covariance type and and parameter values. We create an spcov_params object by running

20

sim_params <- spcov_params("exponential", de = 5, ie = 1, range = 0.5)

We set a reproducible seed and then simulate data at 3000 random locations in the unit square using the
spatial covariance parameters in sim_params by running
set.seed(0)
n <- 3000
x <- runif(n)
y <- runif(n)
sim_coords <- tibble::tibble(x, y)
sim_response <- sprnorm(sim_params, data = sim_coords, xcoord = x, ycoord = y)
sim_data <- tibble::tibble(sim_coords, sim_response)

We can visualize the simulated data (Figure 7, left) by running
ggplot(sim_data, aes(x = x, y = y, color = sim_response)) +

geom_point(size = 1.5) +
scale_color_viridis_c(limits = c(-7, 7)) +
theme_gray(base_size = 18)

There is noticeable spatial patterning in the response variable (sim_response). The default mean in
sprnorm() is zero for all observations, though a mean vector can be provided using the mean argument. The
default number of samples generated in sprnorm() is one, though this can be changed using the samples
argument. Because sim_data is a tibble (data.frame) and not an sf object, the columns in sim_data
representing the x-coordinates and y-coordinates must be provided to sprnorm().

Note that the output from coef(object, type = "spcov") is a spcov_params object. This is useful if we
want to simulate data given the estimated spatial covariance parameters from a fitted model. Random effects
are incorporated into simulation via the randcov_params argument.

5.7 Big Data
The computational cost associated with model fitting is exponential in the sample size for all estimation
methods. For maximum likelihood and restricted maximum likelihood, the computational cost of estimating θ
is cubic. For semivariogram weighted least squares and semivariogram composite likelihood, the computational
cost of estimating θ is quadratic. The computational cost associated with estimating β and prediction is
cubic in the model-fitting sample size, regardless of estimation method. Typically, samples sizes approaching
10,000 make the computational cost of model fitting and prediction infeasible, which necessitates the use
of big data methods. spmodel offers big data methods for model fitting of point-referenced data via the
local argument to splm(). The method is capable of quickly fitting models with hundreds of thousands to
millions of observations. Because of the neighborhood structure of areal data, the big data methods used for
point-referenced data do not apply to areal data. Thus, there is no big data method for areal data or local
argument to spautor(), so model fitting sample sizes cannot be too large

spmodel offers big data methods for prediction of point-referenced data or areal data via the local argument
to predict(), capable of quickly predicting hundreds of thousands to millions of observations rather quickly.
To show how to use spmodel for big data estimation and prediction, we use the sim_data data from Section 5.6.
Because sim_data is a tibble (data.frame) and not an sf object, the columns in data representing the
x-coordinates and y-coordinates must be explicitly provided to splm().

5.7.1 Model-fitting

spmodel uses a “local indexing” approximation for big data model fitting of point-referenced data. Observations
are first assigned an index. Then for the purposes of model fitting, observations with different indexes are
assumed uncorrelated. Assuming observations with different indexes are uncorrelated induces sparsity in the
covariance matrix, which greatly reduces the computational time of operations that involve the covariance
matrix.

21

The local argument to splm() controls the big data options. local is a list with several arguments. The
arguments to the local list control the method used to assign the indexes, the number of observations with
the same index, the number of unique indexes, variance adjustments to the covariance matrix of β̂, whether
or not to use parallel processing, and if parallel processing is used, the number of cores.

The simplest way to accommodate big data is to set local to TRUE. This is shorthand for local =
list(method = "random", size = 50, var_adjust = "theoretical", parallel = FALSE), which ran-
domly assigns observations to groups, ensures each group has approximately 50 observations, uses the
theoretically-correct variance adjustment, and does not use parallel processing.
local1 <- splm(sim_response ~ 1, sim_data, spcov_type = "exponential",

xcoord = x, ycoord = y, local = TRUE)
summary(local1)

#>
#> Call:
#> splm(formula = sim_response ~ 1, data = sim_data, spcov_type = "exponential",
#> xcoord = x, ycoord = y, local = TRUE)
#>
#> Residuals:
#> Min 1Q Median 3Q Max
#> -5.0356 -1.3514 -0.1468 1.2842 6.5381
#>
#> Coefficients (fixed):
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -1.021 0.699 -1.46 0.144
#>
#> Coefficients (exponential spatial covariance):
#> de ie range
#> 2.8724 0.9735 0.2644

Instead of using local = TRUE, we can explicitly set local. For example, we can fit a model using using
k-means clustering (MacQueen and others 1967) on the x-coordinates and y-coordinates to create 60 groups
(clusters), use the pooled variance adjustment, and use parallel processing with two cores by running
local2_list <- list(method = "kmeans", groups = 60, var_adjust = "pooled",

parallel = TRUE, ncores = 2)
local2 <- splm(sim_response ~ 1, sim_data, spcov_type = "exponential",

xcoord = x, ycoord = y, local = local2_list)

Likelihood-based statistics like AIC(), AICc(), logLik(), and deviance() should not be used to compare
a model fit with a big data approximation to a model fit without a big data approximation, as the two
approaches maximize different likelihoods.

5.7.2 Prediction

For point-referenced data, spmodel uses a “local neighborhood” approximation for big data prediction. Each
prediction is computed using a subset of the observed data instead of all of the observed data. Before further
discussing big data prediction, we simulate 1000 locations in the unit square requiring prediction:
n_pred <- 1000
x <- runif(n_pred)
y <- runif(n_pred)
sim_preds <- tibble::tibble(x = x, y = y)

The local argument to predict() controls the big data options. local is a list with several arguments. The
arguments to the local list control the method used to subset the observed data, the number of observations

22

in each subset, whether or not to use parallel processing, and if parallel processing is used, the number of
cores.

The simplest way to accommodate big data prediction is to set local to TRUE. This is shorthand for local
= list(method = "covariance", size = 50, parallel = FALSE), which implies that, for each location
requiring prediction, only the 50 observations in the data most correlated with it are used in the computation
and parallel processing is not used. Using the local1 fitted model, we store these predictions as a variable
called preds in the sim_preds data by running
sim_preds$preds <- predict(local1, newdata = sim_preds, local = TRUE)

The predictions are visualized (Figure 7, right) by running
ggplot(sim_preds, aes(x = x, y = y, color = preds)) +

geom_point(size = 1.5) +
scale_color_viridis_c(limits = c(-7, 7)) +
theme_gray(base_size = 18)

They display a similar pattern as the observed data.

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

x

y

−4

0

4

sim_response

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

x

y

−4

0

4

preds

Figure 7: Observed data and big data predictions at unobserved locations. In the left figure, spatial data
are simulated in the unit square. A spatial linear model is fit using the default big data approximation
for model-fitting. In the right figure, predictions are made using the fitted model and the default big data
approximation for prediction.

Instead of using local = TRUE, we can explicitly set local:
pred_list <- list(method = "distance", size = 30, parallel = TRUE, ncores = 2)
predict(local1, newdata = sim_preds, local = pred_list)

This code implies that uniquely for each location requiring prediction, only the 30 observations in the data
closest to it (in terms of Euclidean distance) are used in the computation and parallel processing is used with
two cores.

For areal data, no local neighborhood approximation exists because of the data’s underlying neighborhood
structure. Thus, all of the data must be used to compute predictions, and by consequence, method and size
are not components of the local list. The only components of the local list for areal data are parallel
and ncores.

5.8 Random Forest Spatial Residual Models
Random forest spatial residual models are used for prediction. They combine aspects of random forest
prediction and spatial linear model prediction, which can lead to significant improvements in predictive

23

accuracy compared to standard random forest prediction (Fox, Ver Hoef, and Olsen 2020). To fit a random
forest spatial residual model, use splmRF() (for point-referenced data) or spautorRF() (for areal data).
These functions require at least one explanatory variable be specified, so we add an explanatory variable
called var to sulfate and sulfate_preds for illustrative purposes.
sulfate$var <- rnorm(NROW(sulfate))
sulfate_preds$var <- rnorm(NROW(sulfate_preds))

Then we fit a random forest spatial residual model by running
sprfmod <- splmRF(sulfate ~ var, sulfate, spcov_type = "exponential")

And we make predictions by running
predict(sprfmod, newdata = sulfate_preds)

6 Discussion
Throughout this vignette, we have shown how to use spmodel to fit, summarize, and predict for a variety of
spatial statistical models. Spatial linear models for point-referenced data (i.e., geostatistical models) are fit
using the splm() function while spatial linear models for areal data (i.e., spatial autoregressive models) are fit
using the spautor() function. Several model-fit statistics and diagnostics are available. The broom functions
tidy() and glance() are used to tidy and glance at a fitted model. The broom function augment() is used
to augment data with model diagnostics and augment newdata with predictions. Several advanced features
are available to accommodate fixed covariance parameter values, random effects, partition factors, anisotropy,
simulated data, and big data approximations for model fitting and prediction.

We appreciate feedback from users regarding spmodel. To learn more about how to provide feedback or
contribute to spmodel, please visit our GitHub repository at https://github.com/USEPA/spmodel.

References
Anselin, Luc, Ibnu Syabri, and Youngihn Kho. 2010. “GeoDa: An Introduction to Spatial Data Analysis.” In
Handbook of Applied Spatial Analysis, 73–89. Springer.

Appelhans, Tim, Florian Detsch, Christoph Reudenbach, and Stefan Woellauer. 2022. Mapview: Interactive
Viewing of Spatial Data in R. https://CRAN.R-project.org/package=mapview.

Bates, Douglas, Martin Mächler, Ben Bolker, and Steve Walker. 2015. “Fitting Linear Mixed-Effects Models
Using lme4.” Journal of Statistical Software 67 (1): 1–48. https://doi.org/10.18637/jss.v067.i01.

Box, George EP, and David R Cox. 1964. “An Analysis of Transformations.” Journal of the Royal Statistical
Society: Series B (Methodological) 26 (2): 211–43.

Cook, R Dennis, and Sanford Weisberg. 1982. Residuals and Influence in Regression. New York: Chapman;
Hall.

Cressie, Noel. 1985. “Fitting Variogram Models by Weighted Least Squares.” Journal of the International
Association for Mathematical Geology 17 (5): 563–86.

———. 1993. Statistics for Spatial Data. John Wiley & Sons.

Curriero, Frank C, and Subhash Lele. 1999. “A Composite Likelihood Approach to Semivariogram Estimation.”
Journal of Agricultural, Biological, and Environmental Statistics, 9–28.

Fox, Eric W, Jay M Ver Hoef, and Anthony R Olsen. 2020. “Comparing Spatial Regression to Random
Forests for Large Environmental Data Sets.” PloS One 15 (3): e0229509.

Harville, David A. 1977. “Maximum Likelihood Approaches to Variance Component Estimation and to
Related Problems.” Journal of the American Statistical Association 72 (358): 320–38.

24

https://github.com/USEPA/spmodel
https://CRAN.R-project.org/package=mapview
https://doi.org/10.18637/jss.v067.i01

Hastie, Trevor, Robert Tibshirani, Jerome H Friedman, and Jerome H Friedman. 2009. The Elements of
Statistical Learning: Data Mining, Inference, and Prediction. Vol. 2. Springer.

MacQueen, James, and others. 1967. “Some Methods for Classification and Analysis of Multivariate
Observations.” In Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability,
1:281–97. 14. Oakland, CA, USA.

Montgomery, Douglas C, Elizabeth A Peck, and G Geoffrey Vining. 2021. Introduction to Linear Regression
Analysis. John Wiley & Sons.

Myers, Raymond H, Douglas C Montgomery, G Geoffrey Vining, and Timothy J Robinson. 2012. Generalized
Linear Models: With Applications in Engineering and the Sciences. John Wiley & Sons.

Patterson, Desmond, and Robin Thompson. 1971. “Recovery of Inter-Block Information When Block Sizes
Are Unequal.” Biometrika 58 (3): 545–54.

Pebesma, Edzer. 2018. “Simple Features for R: Standardized Support for Spatial Vector Data.” The R
Journal 10 (1): 439–46. https://doi.org/10.32614/RJ-2018-009.

Pinheiro, José, and Douglas Bates. 2006. Mixed-Effects Models in S and S-Plus. Springer science & business
media.

Robinson, David, Alex Hayes, and Simon Couch. 2021. Broom: Convert Statistical Objects into Tidy Tibbles.
https://CRAN.R-project.org/package=broom.

Tobler, Waldo R. 1970. “A Computer Movie Simulating Urban Growth in the Detroit Region.” Economic
Geography 46 (sup1): 234–40.

Ver Hoef, Jay M, Erin E Peterson, Mevin B Hooten, Ephraim M Hanks, and Marie-Josèe Fortin. 2018.
“Spatial Autoregressive Models for Statistical Inference from Ecological Data.” Ecological Monographs 88 (1):
36–59.

Wickham, Hadley. 2016. Ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York. https:
//ggplot2.tidyverse.org.

Wolfinger, Russ, Randy Tobias, and John Sall. 1994. “Computing Gaussian Likelihoods and Their Derivatives
for General Linear Mixed Models.” SIAM Journal on Scientific Computing 15 (6): 1294–1310.

25

https://doi.org/10.32614/RJ-2018-009
https://CRAN.R-project.org/package=broom
https://ggplot2.tidyverse.org
https://ggplot2.tidyverse.org

Appendices
A An Additional Example Using caribou

The purpose of this example is to show more applications of the splm() and spautor() functions when
the data are not an sf object, as well as to show a few other functions in spmodel. The caribou data are
are designed experiment with two treatments observed on an equally spaced grid and can be analyzed as
point-referenced or areal data. We view the first few rows of caribou by running
caribou

#> # A tibble: 30 x 5
#> water tarp z x y
#> <fct> <fct> <dbl> <dbl> <dbl>
#> 1 Y clear 2.42 1 6
#> 2 Y shade 2.44 2 6
#> 3 Y none 1.81 3 6
#> 4 N clear 1.97 4 6
#> 5 N shade 2.38 5 6
#> 6 Y none 2.22 1 5
#> 7 N clear 2.10 2 5
#> 8 Y clear 1.80 3 5
#> 9 Y shade 1.96 4 5
#> 10 Y none 2.10 5 5
#> # ... with 20 more rows

First we analyze caribou as point-referenced data. Because caribou is not an sf object, we must provide
the columns in caribou that represent the x-coordinates and y-coordinates. We fit a spatial linear model
regressing nitrogen percentage (z) on water presence (water) and tarp cover (tarp) by running
cariboumod <- splm(z ~ water + tarp, data = caribou,

spcov_type = "exponential", xcoord = x, ycoord = y)

An analysis of variance can be conducted to assess the overall impact of the tarp variable, which has three
levels (clear, shade, and none), and the water variable, which has two levels (water and no water). We
perform an analysis of variance and tidy the results by running
tidy(anova(cariboumod))

#> # A tibble: 3 x 4
#> effects df statistic p.value
#> <chr> <int> <dbl> <dbl>
#> 1 (Intercept) 1 43.5 4.33e-11
#> 2 water 1 1.66 1.98e- 1
#> 3 tarp 2 15.4 4.51e- 4

There is significant evidence that at least one tarp cover impacts nitrogen. Note that, like in summary(),
these p-values are associated with an asymptotic hypothesis test (here, an asymptotic Chi-squared test).

Next we analyze caribou as areal data. Because caribou is not an sf object, we must create a weights
matrix. We define two observations as neighbors if they are adjacent (directly east, west, north, or south) to
one another. Two observations in caribou are adjacent if the distance between them equals one (recall that
observations are not neighbors with themselves):
coords <- cbind(caribou$x, caribou$y)
dists <- as.matrix(dist(coords))
W <- dists == 1

Currently, W is a logical matrix with TRUEs and FALSEs. We coerce it to a numeric matrix by running

26

W <- W * 1

The ijth value in W is 1 if the observation in the ith row is neighbors with the observation in the jth row and
0 otherwise. We fit a spatial autoregressive model regressing the nitrogen percentage (z) on water presence
(water) and tarp cover (tarp) by running
cariboumod <- spautor(z ~ water + tarp, data = caribou,

spcov_type = "car", W = W)

We perform an analysis of variance and tidy the results by running
tidy(anova(cariboumod))

#> # A tibble: 3 x 4
#> effects df statistic p.value
#> <chr> <int> <dbl> <dbl>
#> 1 (Intercept) 1 714. 2.36e-157
#> 2 water 1 1.82 1.77e- 1
#> 3 tarp 2 15.1 5.17e- 4

There is significant evidence that at least one tarp cover impacts nitrogen. Note that, like in summary(),
these p-values are associated with an asymptotic hypothesis test (here, an asymptotic Chi-squared test).

B Random Effect Syntax
A couple of common ways to specify random effects in the random argument to splm() or spautor() include:

• ~ (1 | group) : Random intercepts for each level of group. ~ group is shorthand for ~ (1 | group).
• ~ (var | group): Random intercepts for each level of group and random slopes that depend on the

variable var for each level of group.

Some additional syntax for more complicated random effects structures include:

• ~ (var - 1 | group): Random slopes (without intercepts) that depend on the variable var for each
level of group.

• ~ (1 | group:subgroup): Random intercepts for each combination of levels in group and levels in
subgroup. ~ group:subgroup is shorthand for ~ (1 | group:subgroup).

• ~ (var | group:subgroup): Random intercepts for each combination of levels in group and levels in
subgroup and random slopes that depend on the variable var for each combination of levels in group
and levels in subgroup.

• ~ (var - 1 | group:subgroup): Random slopes (without intercepts) that depend on the variable
var for each combination of levels in group and levels in subgroup.

• ~ (1 | group/subgroup): Shorthand for ~ (1 | group) + (1 | group:subgroup). Commonly, the
group/subgroup notation implies subgroup is nested within group.

• ~ (var | group/subgroup): Shorthand for ~ (var | group) + (var | group:subgroup). Com-
monly, the group/subgroup notation implies subgroup is nested within group.

• ~ (var - 1 | group/subgroup): Shorthand for ~ (var - 1 | group) + (var - 1 | group:subgroup).
Commonly, the group/subgroup notation implies subgroup is nested within group.

Distinct random effects terms are separated in random by +. Each term must be wrapped in parentheses.
For example, to incorporate random intercepts for group and subgroup, random looks like ~ (1 | group)
+ (1 | subgroup). For random intercepts, recall that ~ group is shorthand for ~ (1 | group). Thus,
an equivalent representation of ~ (1 | group) + (1 | subgroup) is ~ group + subgroup. Note that for
both random intercepts and random slopes, the variable on the right-hand side of | (i.e., group, subgroup,
group:subgroup) must be a factor (or character) variable.

27

	Introduction
	The Spatial Linear Model
	Model Fitting
	Estimation
	Model-Fit Statistics
	Diagnostics
	The broom functions: tidy(), glance(), and augment()
	An Areal Data Example

	Prediction
	Advanced Features
	Fixing Spatial Covariance Parameters
	Fitting and Predicting for Multiple Models
	Random Effects
	Partition Factors
	Anisotropy
	Simulating Spatial Data
	Big Data
	Model-fitting
	Prediction

	Random Forest Spatial Residual Models

	Discussion
	References
	Appendices
	An Additional Example Using caribou
	Random Effect Syntax

