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1 Introduction
In network meta-analysis we synthesize all relevant available evidence about health outcomes from competing
treatments. That evidence might come from different study designs and in different formats: from non-
randomized studies (NRS) or randomized controlled trials (RCT) as individual participant data (IPD) or
as aggregate data (AD). We set up the package crossnma to synthesize all available evidence for a binary
outcome with the odds ratio as effect measure.

This document demonstrates how to use crossnma to synthesize cross-design evidence and cross-format data
via Bayesian network meta-analysis and meta-regression (NMA and NMR). All models are implemented in
JAGS (Plummer 2003).

We describe the workflow within the package using a worked example from a network meta-analysis of studies
for treatments in relapsing remitting multiple sclerosis (RRMS). The primary outcome is the occurrence of
relapses in two years (binary outcome). In the analysis, the relative effect will be the odds ratio (OR). The
aim is to compare the efficacy of four treatments using the data from 6 different studies in different formats
and different designs.

2 The synthesis models
We first introduce the model that synthesizes studies with individual-level (IPD) or/and aggregate data (AD)
ignoring their design (unadjusted synthesis). Then, we present three possible models that account for the
different study designs. In the table below we set the notation that will be used in the description of the four
synthesis models.

Notation Description
Argument in
crossnma.model()

i = 1, ..., npj participant id
j = 1, ..., ns study id study
k = 1, ..., K treatment index trt
nsIP D, nsAD, nsRCT , nsNRS the number of studies. The

index refers to the design or
format of the study

yijk binary outcome (0/1) outcome
pijk probability of the event to

occur
rjk the number of events per arm outcome
njk the sample size per arm n
b the study-specific reference *
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Notation Description
Argument in
crossnma.model()

ujb The treatment effect of the
study-specific reference b when
xijk = x̄j = 0

δjbk log(OR) of treatment k relative
to b

xijk the covariate cov1, cov2, cov3
x̄j the mean covariate for study j
dAk the basic parameters. Here,

dAA = 0 when A is set as the
reference in the network

use reference to
assign the
reference
treatment

zj study characteristics to
estimate the bias probability πj

bias.covariate

w common inflation factor of
variance for the NRS estimates

the element
var.infl in
run.nrs

ζ common mean shift of the NRS
estimates

the element
mean.shift in
run.nrs

*The study-specific reference b is assigned automatically to be the network reference for studies that have the
network reference treatment. If not, it is assigned to the first alphabetically ordered treatment on the study.

2.1 Unadjusted network meta-regression (NMR)
We synthesize the evidence from RCT and NRS without acknowledging the differences between them. We
combine the IPD data from RCT and NRS in one model and we do the same in another model with the AD
information. Then, we combine the estimates from both parts as described in Section 2.5.

NMR model for IPD studies

yijk ∼ Bernoulli(pijk)

logit(pijk) =
{

ujb + β0jxijk if k = b

ujb + δjbk + β0jxijk + βw
1,jbkxijk + (βB

1,jbk − βw
1,jbk)x̄j if k ̸= b

(1)

NMR model for AD studies
rjk ∼ Binomial(p.jk, njk)

logit(p.jk) =
{

ujb if k = b

ujb + δjbk + βB
1,jbkx̄j if k ̸= b

(2)

2.2 Using non-randomized studies (NRS) to construct priors for the treatment
effects

First, the (network) meta-regression with only NRS data estimates the relative treatment effects with posterior
distribution of mean d̃NRS

Ak and variance V NRS
Ak (use run.nrs in crossnma.model() to control this process).

The posteriors of NRS results are then used as priors for the corresponding basic parameters in the RCT
model, dAk ∼ N (d̃NRS

Ak , V NRS
Ak ). We can adjust for potential biases associated with NRS by either shifting the

mean of the prior distribution with a bias term ζ or by dividing the prior variance with a common inflation
factor w, 0 < w < 1 controls NRS contribution. The assigned priors become dAk ∼ N (d̃NRS

Ak + ζ, V NRS
Ak /w).
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2.3 Bias-adjusted model 1
We incorporate judgments about study risk of bias (RoB) in bias-adjusted model 1 and model 2. Each
judgment about the risk of bias in a study is summarized by the index Rj which takes binary values 0 (no
bias) or 1 (bias). In bias-adjusted model 1, we extend the method introduced by Dias et al. (2010) by adding
a treatment-specific bias term γ2,jbkRj to the relative treatment effect on both the AD and IPD parts of the
model. A multiplicative model can also be employed, where treatment effects are multiplied by γ

Rj

1,jbk. We
can add either multiplicative bias effects, additive bias effects, or both (in this case, δjbk should be dropped
from the additive part). The models in previous section are extended to adjust for bias as follows.

NMR model for IPD studies

logit(pijk) =


ujb + β0jxijk if k = b

ujb +

multiplicative︷ ︸︸ ︷
δjbkγ

Rj

1,jbk +
additive︷ ︸︸ ︷

δjbk + γ2,jbkRj +β0jxijk + βw
1,jbkxijk + (βB

1,jbk − βw
1,jbk)x̄j if k ̸= b

(3)

NMR model for AD studies

logit(p.jk) =


ujb if k = b

ujb +

multiplicative︷ ︸︸ ︷
δjbkγ

Rj

1,jbk +
additive︷ ︸︸ ︷

δjbk + γ2,jbkRj +βB
1,jbkx̄j if k ̸= b

(4)

The bias indicator Rj follows the following distribution

Rj ∼ Bernoulli(πj)

The bias probabilities πj are study-specific and can be estimated in two different ways. They are either given
informative beta priors (Beta(a1, a2)) that are set according to the risk of bias for each study.

πj ∼ Beta(a1, a2)

The hyperparameters a1 and a2 should be chosen in a way that reflects the risk of bias for each study. The
degree of skewness in beta distribution can be controlled by the ratio a1/a2 . When a1/a2 equals 1 (or
a1 = a2), there is no skewness in the beta distribution (the distribution is reduced to a uniform distribution),
which is appropriate for studies with unclear risk of bias. When the ratio a1/a2 is closer to 1, the more the
mean of probability of bias (expected value of πj = a1/(a1 + a2)) gets closer to 1 and the study acquires
‘major’ bias adjustment. The default beta priors are as follows: high bias RCT pi.high.rct='dbeta(10,1)',
low bias RCT pi.low.rct='dbeta(1,10)', high bias NRS pi.high.nrs='dbeta(30,1)' and low bias NRS
pi.low.nrs='dbeta(1,30)'. Alternatively, we can use the study characteristics zj to estimate πj through a
logistic transformation (internally coded).

We combine the multiplicative and the additive treatment-specific bias effects across studies by assuming they
are exchangeable γ1,jbk ∼ N (g1,bk, τ2

1,γ),γ2,jbk ∼ N (g2,bk, τ2
2,γ)) or common γ1,jbk = g1,bk and γ2,jbk = g2,bk.

Dias et al. (2010) proposed to model the mean bias effect (g1,bk, g2,bk) based on the treatments being compared.

gm,bk =
{

gm if b is inactive treatment
0 or (−1)dirbk gact

m if b and k are active treatments
(5)

where m = 1, 2. This approach assumes a common mean bias for studies that compare active treatments
with an inactive treatment (placebo, standard or no treatment). For active vs active comparisons, we could
assume either a zero mean bias effect or a common bias effect gact

m . The direction of bias dirbk in studies
that compare active treatments with each other should be defined in the data. That is set to be either 0,
meaning that bias favors b over k, or 1 , meaning that k is favored to b. In crossnma.model(), the bias
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direction is specified by providing the unfavoured treatment for each study, unfav. To select which mean
bias effect should be applied, the user can provide the bias.group column as data. Its values can be 0 (no
bias adjustment), 1 (to assign for the comparison mean bias effect gm) or 2 (to set bias gact

m ).

Another parameterisation of the logistic model with additive bias effect is

NMR model for IPD studies

logit(pijk) =
{

ujb + β0jxijk if k = b

ujb + (1 − Rj)δjbk + δbias
jbk Rj + β0jxijk + βw

1,jbkxijk + (βB
1,jbk − βw

1,jbk)x̄j if k ̸= b
(6)

NMR model for AD studies

logit(p.jk) =
{

ujb if k = b

ujb + (1 − Rj)δjbk + δbias
jbk Rj + βB

1,jbkx̄j if k ̸= b
(7)

Then the bias-adjusted relative treatment effect (δbias
jbk = δjbk + γjbk) can be assumed exchangeable across

studies δbias
jbk ∼ N (gbk + dAk − dAb, τ2/qj) or fixed as δbias

jbk = gbk + dAk − dAb. In this parameterisation,
instead of assigning prior to the between-study heterogeneity in bias effect τγ , we model the RoB weight
qj = τ2/(τ2 + τ2

γ ) for each study. This quantity 0 < qj < 1 quantifies the proportion of the between-study
heterogeneity that is not explained by accounting for risk of bias. The values of v determine the extent
studies at high risk of bias will be down-weighted on average. Setting v = 1 gives E(qj) = v/(v + 1) = 0.5,
which means that high risk of bias studies will be penalized by 50% on average. In crossnma.model(), the
user can assign the average down-weight E(qj) to the argument down.wgt.

2.4 Bias-adjusted model 2
Another way to incorporate the RoB of the study is by replacing δjbk by a “bias-adjusted” relative treatment
effect θjbk. Then θjbk is modeled with a bimodal normal distribution as described in Section 2.5. For more
details see Verde (2020).

NMR model for IPD studies

logit(pijk) =
{

ujb + β0jxijk if k = b

ujb + θjbk + β0jxijk + βw
1,jbkxijk + (βB

1,jbk − βw
1,jbk)x̄j if k ̸= b

(8)

NMR model for AD studies

logit(pjk) =
{

ujb if k = b

ujb + θjbk + βB
1,jbkx̄j if k ̸= b

(9)

where the bias-adjusted relative treatment effect (θjk) are modeled via random-effects model with a mixture
of two normal distributions.

θjbk ∼ (1 − πj)N (dAk − dAb, τ2) + πjN (dAk − dAb + γjbk, τ2 + τ2
γ )

Alternatively, we can summarize these relative effects assuming a common-effect model

θjbk = dAk − dAb + πjγjbk
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2.5 Assumptions about the model parameters
The table below summarizes the different assumptions implemented in the package about combining the
parameters in the models described above.

Parameter Assumptions
Argument in
crossnma.model()

Relative treatment effect (δjbk) Random-effects:
δjbk ∼ N (dAk − dAb, τ2)

trt.effect='random'

Common-effect:
δjbk = dAk − dAb

trt.effect='common'

Covariate effect (β0j) Independent effects:
β0j ∼ N (0, 102)

reg0.effect='independent'

Random-effects:
β0j ∼ N (B0, τ2

0 )
reg0.effect='random'

Within-study covariate-treatment interaction (βW
1,jbk) Independent effects:

βW
1,jbk ∼ N (0, 102)

regw.effect='independent'

Random-effects: βW
1,jbk ∼

N (BW
1,Ak − BW

1,Ab, τ2
W )

regw.effect='random'

Common-effect:
βW

1,jbk = BW
1,Ak − BW

1,Ab

regw.effect='common'

Between-study covariate-treatment interaction (βB
1,jbk) Independent effects:

βB
1,jbk ∼ N (0, 102)

regb.effect='independent'

Random-effects:
βB

1,jbk ∼ N (BB
1,Ak−BB

1,Ab, τ2
B)

regb.effect='random'

Common-effect:
βB

1,jbk = BB
1,Ak − BB

1,Ab

regb.effect='common'

Bias effect (γm,jbk), m = 1, 2 Random-effects:
γm,jbk ∼ N (gm,bk, τ2

m,γ)
bias.effect='random'

Common-effect:
γm,jbk = gm,bk

bias.effect='common'

Mean bias effect gm,bk The treatment k is active.
gm,bk = gm (b inactive),
gm,bk = 0 (b active & no bias)
gm,bk = gact

m (b active & bias)

unfav=0,
bias.group=1
unfav=1,
bias.group=0
unfav=1,
bias.group=2

Bias probability (πj) πj ∼ Beta(a1, a2) pi.high.nrs,
pi.low.nrs,
pi.high.rct,
pi.low.rct

πj = e + fzj bias.covariate

3 Synthesis of studies comparing drugs for relapsing-remitting
multiple sclerosis

3.1 Description of the data
The data we use are fictitious but have been developed to resample to real RCTs with IPD and aggregate
data included in Tramacere and Filippini (2015). The studies provide either aggregate data stddata (2
RCTs) or as individual participant data ipddata (3 RCTs and 1 cohort study). Both datasets compare in
total four drugs which are anonymized.
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The ipddata contains 2950 rows, each row refers to a participant in the study. We display the first few rows
of the data set:
head(ipddata)
#> id relapse treat design age sex rob unfavored bias.group year
#> 1 1 0 D rct 22 0 low 1 1 2002
#> 3 1 0 D rct 37 0 low 1 1 2002
#> 6 1 0 D rct 34 1 low 1 1 2002
#> 7 1 0 D rct 38 1 low 1 1 2002
#> 9 1 0 D rct 31 0 low 1 1 2002
#> 10 1 0 D rct 38 0 low 1 1 2002

For each participant, we have information for the outcome relapse (0=no, 1=yes), the treatment label treat,
the age (in years) and sex (0 = Female, 1 = Male) of the participant. The following columns are set on
study-level (it is repeated for each participant in each study): the id, the design of the study (needs to
be either rct or nrs), the risk of bias rob on each study (can be set as low, high or unclear), the year of
publication, the bias.group for the study comparison and the study unfavoured treatment unfavored.

The aggregate data has the standard format for meta-analysis with the exact same variable names
head(stddata)
#> id relapse n treat design age sex rob unfavored bias.group year
#> 1 1 19 25 A rct 34.3 0.2 high 0 1 2010
#> 2 1 11 25 C rct 34.3 0.3 high 1 1 2010
#> 3 2 97 126 A rct 30.0 0.4 high 0 1 2015
#> 4 2 89 125 C rct 30.0 0.5 high 1 1 2015

3.2 Analysis
There are two steps to run the NMA/NMR model. The first step is to create a JAGS model using
crossnma.model() which produces the JAGS code and the data. In the second step, the output of that
function will be used in crossnma() to run the analysis through JAGS.

3.2.1 Unadjusted network meta-analysis

We start by providing the essential variables which - as stated earlier - must have equal names in both data
sets. Next, we give the names of the datasets on participant-level (argument prt.data) and aggregate data
(argument std.data). The reference treatment needs to be assigned (we set it to drug A). By choosing
trt.effect='random', we are assigning a normal distribution to each relative treatment effect to allow
the synthesis across studies, see the table in Section 2.1. Finally, the different designs; RCT and NRS are
combined with the information taken at face-value as method.bias = 'naive'.

Optionally, we can specify a prior to the common heterogeneity of the treatment effect across studies. We
indicate that distribution in the argument prior as tau.trt='dunif(0,3)', see below.
# jags model: code+data
mod1 <- crossnma.model(treat, id, relapse, n, design,

prt.data = ipddata, std.data = stddata,
reference = NULL, trt.effect = "random",
#---------- bias adjustment ----------
method.bias = "naive",
#---------- assign a prior ----------
prior = list(tau.trt='dunif(0,3)')
)

#> Both designs are combined naively without acknowledging design differences

The network should be checked for its connectivity before running the analysis. This is a vital step as the
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model will run even if the network is not connected.
netgraph(mod1)

A

B

C

D

Next, we fit the NMA model using crossnma() which requires us to set the number of adaptations, iterations,
thinning and chains.
# run jags
jagsfit1 <- crossnma(mod1,

n.adapt = 500, n.iter = 5000, n.burnin = 2000,
thin = 1, n.chains = 2)

We summarize the estimated parameters in the following table.
knitr::kable(summary(jagsfit1, exp = FALSE), digits = 3)

Mean SD 2.5% 50% 97.5% Rhat n.eff
d.A 0.000 0.000 0.000 0.000 0.000 NaN 0
d.B -0.939 0.458 -1.964 -0.900 -0.094 1.001 4262
d.C -0.194 0.423 -1.115 -0.176 0.642 1.002 2797
d.D -1.132 0.583 -2.435 -1.103 0.003 1.001 3404
tau 0.613 0.415 0.103 0.516 1.737 1.021 468

The estimated OR of B vs A can be obtained as exp(d.B) and similarly for exp(d.C) and exp(d.D) are the
ORs of C and D relative to A, respectively. The value of tau refers to the estimates of the heterogeneity
standard deviation in the relative treatment effects across studies.

We need also to assess the convergence of the MCMC chains either by checking the Gelman and Rubin
statistic, Rhat (it should be approximately 1) in the table above or visually inspect the trace plot.
oldpar <- par(mar = rep(2, 4), mfrow = c(2, 3))
plot(jagsfit1)
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3.2.2 Unadjusted network meta-regression

In this part, we set argument cov1 = age to run a NMR model with one covariate. Again, datasets ipddata
and stddata must use the same variable name.
# jags model: code+data
mod2 <- crossnma.model(treat, id, relapse, n, design,

prt.data = ipddata, std.data = stddata,
reference = "A", trt.effect = "random",
#---------- bias adjustment ----------
method.bias = "naive",
#---------- meta-regression ----------
cov1 = age,
split.regcoef = FALSE
)

#> Both designs are combined naively without acknowledging design differences

We could add two more covariates to the NMR model using arguments cov2 and cov3.

The MCMC is run under the same set up as in the network meta-analysis.
# run jags
jagsfit2 <- crossnma(mod2,

n.adapt = 500, n.iter = 5000, n.burnin = 2000,
thin = 1, n.chains = 2)

and the output table is presented below
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knitr::kable(summary(jagsfit2, exp = FALSE), digits = 3)

Mean SD 2.5% 50% 97.5% Rhat n.eff
b_1 -0.009 0.056 -0.106 -0.009 0.085 1.085 2417
d.A 0.000 0.000 0.000 0.000 0.000 NaN 0
d.B -0.642 0.503 -1.721 -0.607 0.292 1.010 312
d.C -0.090 0.500 -1.098 -0.095 0.919 1.022 331
d.D -0.989 0.651 -2.348 -0.973 0.230 1.024 442
tau 0.542 0.376 0.027 0.469 1.518 1.074 436
tau.b_1 0.047 0.086 0.001 0.018 0.298 1.102 171

Now, we additionally estimate b_1 which indicates the mean effect of age and tau.b_1 which refers to the
heterogeneity standard deviation in the effect of age across studies. Here, we obtain a single estimate because
we choose to not split the within- and between-study age coefficients (βw

1,jbk = βB
1,jbk = β1,jbk) to improve the

convergence of MCMC.

The league table summarizes the relative effect with the 95% credible interval of each treatment on the top
compared to the treatment on the left. All estimates are computed for participant age 38. We can display
the table in wide format
league(jagsfit2, exp = TRUE, cov1.value = 38)
#>
#> A 0.55 (0.18 to 1.34) 0.91 (0.33 to 2.51)
#> 1.83 (0.75 to 5.59) B 1.74 (0.60 to 5.45)
#> 1.10 (0.40 to 3.00) 0.58 (0.18 to 1.65) C
#> 2.65 (0.79 to 10.47) 1.41 (0.34 to 6.54) 2.37 (0.61 to 12.07)
#>
#> 0.38 (0.10 to 1.26)
#> 0.71 (0.15 to 2.91)
#> 0.42 (0.08 to 1.63)
#> D

or in long format
league(jagsfit2, exp = TRUE, cov1.value = 38, direction = "long")
#> Treatment Comparator median lci uci
#> 1 A A 1.0000000 1.00000000 1.000000
#> 2 B A 0.5452486 0.17893549 1.338929
#> 3 C A 0.9096305 0.33349012 2.505780
#> 4 D A 0.3780428 0.09553057 1.259173
#> 5 A B 1.8340258 0.74686576 5.588606
#> 6 B B 1.0000000 1.00000000 1.000000
#> 7 C B 1.7363298 0.60472976 5.446063
#> 8 D B 0.7112164 0.15283074 2.912748
#> 9 A C 1.0993475 0.39907741 2.998590
#> 10 B C 0.5759275 0.18361895 1.653631
#> 11 C C 1.0000000 1.00000000 1.000000
#> 12 D C 0.4212818 0.08281752 1.632032
#> 13 A D 2.6452033 0.79417191 10.467853
#> 14 B D 1.4060419 0.34331847 6.543187
#> 15 C D 2.3737078 0.61273328 12.074743
#> 16 D D 1.0000000 1.00000000 1.000000
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3.2.3 Using non-randomized studies (NRS) to construct priors for the treatment effects

To run NMA with a prior constructed from NRS, two additional arguments are needed: we indicate using
NRS as a prior by setting method.bias='prior'. That means that the model runs internally NMA with
only NRS data which are then used to construct informative priors. This requires defining MCMC settings
(the number of adaptations, iterations, burn-ins, thinning and chains) in the argument run.nrs.

In this method, the prior for the basic parameters is set to a normal distribution. For basic parameters
not examined in the NRS, the code sets a minimally informative prior d~dnorm(0, 1e-2). To account for
possible bias, the means of the distribution can be shifted by mean.shift and/or the variance can be inflated
by var.infl to control the influence of NRS on the final estimation. Both should be provided in run.nrs.
# jags model: code+data
mod3 <- crossnma.model(treat, id, relapse, n, design,

prt.data = ipddata, std.data = stddata,
reference = "D", trt.effect = "random",
#---------- meta-regression ----------
cov1 = age,
split.regcoef = FALSE,
#---------- bias adjustment ----------
method.bias = "prior",
run.nrs =

list(trt.effect = "common",
var.infl = 0.6, mean.shift = 0,
n.adapt = 500, n.iter = 10000, n.burnin = 4000,
thin = 1, n.chains = 2)

)
#> The data is analyzed assuming the studies have the same design

# run jags
jagsfit3 <- crossnma(mod3,

n.adapt = 500, n.iter = 5000, n.burnin = 2000,
thin = 1, n.chains = 2)

The heat plot summarizes the relative effect with the 95% credible interval of each treatment on the top
compared to the treatment on the left. All estimates are computed for participant age 38.
heatplot(jagsfit3, exp = TRUE, cov1.value = 38,

size = 6, size.trt = 20, size.axis = 12)
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3.2.4 Bias-adjusted model 1

In this part, the overall relative treatment effects are estimated from both NRS and RCT with adjustment to
study-specific bias.

To fit the model, we set method.bias='adjust1' and we need to provide the bias variable bias=rob in the
datasets. The direction of bias is determined by the column unfav=unfavored which indicates the unfavoured
treatment. The mean bias effect can be indicated by bias.group, 0 (bias.group=0), g (bias.group=1)
or gact (bias.group=2). By default, the effect of bias is assumed to be additive bias.type='add' and
equal across studies bias.effect='common'. We also use the year of study publication to estimate the
study-probability of bias, bias.covariate = year.
# jags model: code+data
mod4 <- crossnma.model(treat, id, relapse, n, design,

prt.data = ipddata, std.data = stddata,
reference = "A", trt.effect = "random",
#---------- bias adjustment ----------
method.bias = 'adjust1',
bias.type = 'add',
bias.effect = 'common',
bias = rob,
unfav = unfavored,
bias.group = bias.group,
bias.covariate = year

)
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#> Bias effect is assumed common across studies

# run jags
jagsfit4 <- crossnma(mod4,

n.adapt = 500, n.iter = 5000, n.burnin = 2000,
thin = 1, n.chains = 2)

The results are presented below
knitr::kable(summary(jagsfit4, exp = FALSE), digits = 3)

Mean SD 2.5% 50% 97.5% Rhat n.eff
d.A 0.000 0.000 0.000 0.000 0.000 NaN 0
d.B -0.915 0.456 -1.966 -0.878 -0.035 1.022 2381
d.C -0.181 0.413 -1.065 -0.163 0.635 1.020 2392
d.D -1.109 0.565 -2.356 -1.084 -0.022 1.021 3362
g -4.567 9.517 -18.356 -5.683 16.542 1.669 3156
tau 0.603 0.389 0.070 0.522 1.591 1.081 274

The parameter g refers to the mean bias effect, common for all studies.

3.2.5 Bias-adjusted model 2

The arguments for method.bias='adjust2' are similar to the ones used before in method.bias='adjust1'.
# jags model: code+data
mod5 <- crossnma.model(treat, id, relapse, n, design,

prt.data = ipddata, std.data = stddata,
reference = "A", trt.effect = "random",
#---------- bias adjustment ----------
method.bias = 'adjust2',
bias.type = 'add',
bias = rob,
unfav = unfavored,
bias.group = bias.group,

)
#> Bias effect is assumed common across studies

# run jags
jagsfit5 <- crossnma(mod5,

n.adapt = 500, n.iter = 5000, n.burnin = 2000,
thin = 1, n.chains = 2)

knitr::kable(summary(jagsfit5, exp = FALSE), digits = 3)

Mean SD 2.5% 50% 97.5% Rhat n.eff
d.A 0.000 0.000 0.000 0.000 0.000 NaN 0
d.B -0.853 0.477 -1.878 -0.837 0.131 1.015 1008
d.C -0.280 0.455 -1.278 -0.250 0.630 1.005 1293
d.D -1.347 0.729 -2.969 -1.301 0.131 1.012 760
g 0.540 0.800 -1.095 0.521 2.260 1.026 340
tau 0.689 0.426 0.077 0.611 1.692 1.007 189
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