The BIS
package package provides an R
interface to data hosted by the Bank for
International Settlements, specifically the single-file
data sets available on the BIS homepage.
The package can be installed from GitHub.
library(devtools)
install_github("stefanangrick/BIS") # GitHub
To import data, first load the package:
library("BIS")
Next, run the get_datasets()
function to obtain a list
of available data sets:
<- get_datasets()
ds head(ds, 20)
## # A tibble: 20 × 3
## name id url
## <chr> <chr> <chr>
## 1 Locational banking statistics full_lbs… http…
## 2 Consolidated banking statistics full_cbs… http…
## 3 Debt securities statistics full_deb… http…
## 4 Credit to the non-financial sector full_tc_… http…
## 5 Credit-to-GDP gaps full_cre… http…
## 6 Debt service ratios for the private non-financial sector full_dsr… http…
## 7 Global liquidity indicators full_gli… http…
## 8 Exchange-traded derivatives statistics full_xtd… http…
## 9 OTC derivatives outstanding full_otc… http…
## 10 US dollar exchange rates (monthly, quarterly and annual) full_xru… http…
## 11 US dollar exchange rates (daily, horizontal time axis) full_xru… http…
## 12 US dollar exchange rates (daily, vertical time axis) full_xru… http…
## 13 Effective exchange rate indices (monthly) full_eer… http…
## 14 Effective exchange rate indices (daily, horizontal time axis) full_eer… http…
## 15 Effective exchange rate indices (daily, vertical time axis) full_eer… http…
## 16 Triennial Survey statistics on turnover full_der… http…
## 17 Property prices: selected series full_spp… http…
## 18 Property prices: long series full_bis… http…
## 19 Payments and financial market infrastructures statistics full_bis… http…
## 20 Consumer prices full_lon… http…
The get_datasets()
function returns a tibble data frame listing the
available data sets. The column url
can be used as input
for the get_bis()
function which downloads, parses and
imports the corresponding data set.
To import monthly-frequency data on central banks’ policy rates, run:
<- get_bis(ds$url[ds$id == "full_cbpol_m_csv"])
rates head(rates)
## # A tibble: 6 × 15
## freq freque…¹ ref_a…² refer…³ time_…⁴ time_…⁵ compi…⁶ decim…⁷ decim…⁸ sourc…⁹
## <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr>
## 1 M Monthly AR Argent… <NA> <NA> From 0… 4 Four Centra…
## 2 M Monthly AR Argent… <NA> <NA> From 0… 4 Four Centra…
## 3 M Monthly AR Argent… <NA> <NA> From 0… 4 Four Centra…
## 4 M Monthly AR Argent… <NA> <NA> From 0… 4 Four Centra…
## 5 M Monthly AR Argent… <NA> <NA> From 0… 4 Four Centra…
## 6 M Monthly AR Argent… <NA> <NA> From 0… 4 Four Centra…
## # … with 5 more variables: supp_info_breaks <chr>, title <chr>, series <chr>,
## # date <chr>, obs_value <dbl>, and abbreviated variable names ¹frequency,
## # ²ref_area, ³reference_area, ⁴time_format, ⁵time_format.1, ⁶compilation,
## # ⁷decimals, ⁸decimals.1, ⁹source_ref
To plot the data using ggplot2, run the following:
library("dplyr")
library("ggplot2")
library("zoo")
<- subset(rates, ref_area %in% c("US", "XM", "JP", "GB", "CH", "CA"))
rates_plot <- mutate(rates_plot, date = as.Date(as.yearmon(date, format = "%Y-%m")))
rates_plot
ggplot(rates_plot, aes(date, obs_value, color = reference_area)) +
geom_line(show.legend = FALSE) +
facet_wrap(~reference_area) +
labs(title = "Central bank policy rates",
subtitle = "% per annum", x = NULL, y = NULL)
Note that BIS data sets come with a number of different time formats.
The zoo package
(e.g. as.yearmon()
) should be able to parse most
formats.
Large data sets (e.g. the Locational banking statistics and Debt
securities statistics) may cause get_bis()
to fail if the
amount of available memory is insufficient for executing a required
pivot operation. As a workaround, users may wish to set
auto_pivot = FALSE
when calling get_bis()
,
then subset the data and run pivot_longer_bis()
manually.
options(timeout = 600)
<- get_bis(ds$url[(ds$id == "full_lbs_d_pub_csv")], auto_pivot = FALSE)
lbs <- subset(lbs, l_parent_cty %in% c("US", "DE", "JP"))
lbs <- pivot_longer_bis(lbs) lbs
To retrieve individual data series instead of full data sets, consider using the BIS SDMX RESTful API. The rsdmx R package is able to process SDMX data within R. The latest rsdmx development version contains a BIS connector that streamlines the process.
This package is in no way officially related to or endorsed by the Bank for International Settlements. It’s based on a fork of CC0-licensed code by expersso. Please don’t abuse the BIS’s servers with unnecessary calls.