CDM reference backends

Overview

The CDMConnector package allows us to work with cdm data in different locations consistently. The cdm_reference may be to tables in a database, files on disk, or tables loaded into R. This allows computation to take place wherever is most convenient.

Here we have a schematic of how CDMConnector can be used to create cdm_references to different locations.

Example

To show how this can work (and slightly overcomplicate things to show different options), let´s say we want to create a histogram with age of patients at diagnosis of tear of meniscus of knee (concept_id of “4035415”). We can start in the database and, after loading the required packages, subset our person table people to only include those people in the condition_occurrence table with condition_concept_id “4035415”

library(CDMConnector)
library(dplyr, warn.conflicts = FALSE)
library(ggplot2)
db <- DBI::dbConnect(duckdb::duckdb(), dbdir = eunomia_dir())
cdm <- cdm_from_con(db, cdm_tables = c("person", "condition_occurrence"))

# first filter to only those with condition_concept_id "4035415"
cdm$condition_occurrence %>% tally()
#> # Source:   SQL [1 x 1]
#> # Database: DuckDB 0.6.1 [root@Darwin 21.6.0:R 4.2.2//var/folders/xx/01v98b6546ldnm1rg1_bvk000000gn/T//RtmpnQ23cR/hslnivhk]
#>       n
#>   <dbl>
#> 1 65332

cdm$condition_occurrence <- cdm$condition_occurrence %>%
  filter(condition_concept_id == "4035415") %>%
  select(person_id, condition_start_date)

cdm$condition_occurrence %>% tally()
#> # Source:   SQL [1 x 1]
#> # Database: DuckDB 0.6.1 [root@Darwin 21.6.0:R 4.2.2//var/folders/xx/01v98b6546ldnm1rg1_bvk000000gn/T//RtmpnQ23cR/hslnivhk]
#>       n
#>   <dbl>
#> 1    83

# then left_join person table
cdm$person %>% tally()
#> # Source:   SQL [1 x 1]
#> # Database: DuckDB 0.6.1 [root@Darwin 21.6.0:R 4.2.2//var/folders/xx/01v98b6546ldnm1rg1_bvk000000gn/T//RtmpnQ23cR/hslnivhk]
#>       n
#>   <dbl>
#> 1  2694
cdm$person <- cdm$condition_occurrence %>%
  select(person_id) %>%
  left_join(select(cdm$person, person_id, year_of_birth), by = "person_id")

cdm$person %>% tally()
#> # Source:   SQL [1 x 1]
#> # Database: DuckDB 0.6.1 [root@Darwin 21.6.0:R 4.2.2//var/folders/xx/01v98b6546ldnm1rg1_bvk000000gn/T//RtmpnQ23cR/hslnivhk]
#>       n
#>   <dbl>
#> 1    83

We can save these tables to file

dOut <- tempfile()
dir.create(dOut)
CDMConnector::stow(cdm, dOut)

And now we can create a cdm_reference to the files

cdm_arrow <- cdm_from_files(dOut, as_data_frame = FALSE)

cdm_arrow$person %>%
  nrow()
#> [1] 83

cdm_arrow$condition_occurrence %>%
  nrow()
#> [1] 83

And create an age at diagnosis variable

cdm_arrow$result <- cdm_arrow$person %>%
  left_join(cdm_arrow$condition_occurrence, by = "person_id") %>%
  mutate(age_diag = year(condition_start_date) - year_of_birth)

We can then bring in this result to R and make the histogram

result <- cdm_arrow$result %>%
  collect()

str(result)
#> tibble [85 × 4] (S3: tbl_df/tbl/data.frame)
#>  $ person_id           : num [1:85] 430 458 372 452 165 459 99 66 161 145 ...
#>  $ year_of_birth       : num [1:85] 1931 1972 1961 1962 1968 ...
#>  $ condition_start_date: Date[1:85], format: "1997-12-05" "2010-06-25" ...
#>  $ age_diag            : num [1:85] 66 38 57 51 45 14 10 58 39 25 ...

result %>%
  ggplot(aes(age_diag)) +
  geom_histogram()