CRE

Installation

Installing from CRAN.

install.packages("CRE")

Installing the latest developing version.

library(devtools)
install_github("NSAPH-Software/CRE", ref = "develop")

Import.

library("CRE")

Arguments

Data (required)

y The observed response/outcome vector (binary or continuos).

z The treatment/exposure/policy vector (binary).

X The covariate matrix (binary or continuos).

Parameters (not required)

method_parameters The list of parameters to define the models used, including:
- ratio_dis The ratio of data delegated to the discovery sub-sample (default: 0.5).
- ite_method_dis The method to estimate the individual treatment effect (ITE) on the discovery sub-sample (default: ‘aipw’) [1].
- ps_method_dis The estimation model for the propensity score on the discovery sub-sample (default: ‘SL.xgboost’).
- or_method_dis The estimation model for the outcome regressions estimate_ite_aipw on the discovery sub-sample (default: ‘SL.xgboost’).
- ite_method_inf The method to estimate the individual treatment effect (ITE) on the infernce sub-sample (default: ‘aipw’) [1].
- ps_method_inf The estimation model for the propensity score on the inference subsample (default: ‘SL.xgboost’).
- or_method_inf The estimation model for the outcome regressions in estimate_ite_aipw on the inference subsample (default: ‘SL.xgboost’).

hyper_params The list of hyper parameters to fine tune the method, including:
- intervention_vars Intervention-able variables used for Rules Generation (default: NULL).
- offset Name of the covariate to use as offset (i.e. ‘x1’) for T-Poisson ITE Estimation. NULL if not used (default: NULL).
- ntrees_rf A number of decision trees for random forest (default: 20).
- ntrees_gbm A number of decision trees for the generalized boosted regression modeling algorithm. (default: 20).
- node_size Minimum size of the trees’ terminal nodes (default: 20).
- max_nodes Maximum number of terminal nodes per tree (default: 5).
- max_depth Maximum rules length (default: 3).
- replace Boolean variable for replacement in bootstrapping for rules generation by random forest (default: TRUE).
- t_decay The decay threshold for rules pruning (default: 0.025).
- t_ext The threshold to define too generic or too specific (extreme) rules (default: 0.01).
- t_corr The threshold to define correlated rules (default: 1).
- t_pvalue The threshold to define statistically significant rules (default: 0.05).
- stability_selection Whether or not using stability selection for selecting the rules (default: TRUE).
- cutoff Threshold defining the minimum cutoff value for the stability scores (default: 0.9).
- pfer Upper bound for the per-family error rate (tolerated amount of falsely selected rules) (default: 1).
- penalty_rl Order of penalty for rules length during LASSO for Regularization (i.e. 0: no penalty, 1: rules_length, 2: rules_length^2) (default: 1).

Additional Estimates (not required)

ite The estimated ITE vector. If given, both the ITE estimation steps in Discovery and Inference are skipped (default: NULL).

Notes

Options for the ITE estimation

[1] Options for the ITE estimation are as follows:

  • S-Learner (slearner)
  • T-Learner (tlearner)
  • T-Poisson (tpoisson)
  • X-Learner (xlearner)
  • Augmented Inverse Probability Weighting (aipw)
  • Causal Forests (cf)
  • Bayesian Causal Forests (bcf)
  • Bayesian Additive Regression Trees (bart)

if other estimates of the ITE are provided in ite additional argument, both the ITE estimations in discovery and inference are skipped and those values estimates are used instead.

Customized wrapper for SuperLearner

One can create a customized wrapper for SuperLearner internal packages. The following is an example of providing the number of cores (e.g., 12) for the xgboost package in a shared memory system.

m_xgboost <- function(nthread = 12, ...) {
  SuperLearner::SL.xgboost(nthread = nthread, ...)
}

Then use “m_xgboost”, instead of “SL.xgboost”.

Examples

Example 1 (default parameters)

set.seed(9687)
dataset <- generate_cre_dataset(n = 1000, 
                                rho = 0, 
                                n_rules = 2, 
                                p = 10,
                                effect_size = 2, 
                                binary_covariates = TRUE,
                                binary_outcome = FALSE,
                                confounding = "no")
y <- dataset[["y"]]
z <- dataset[["z"]]
X <- dataset[["X"]]

cre_results <- cre(y, z, X)
summary(cre_results)
plot(cre_results)

Example 2 (personalized ite estimation)

set.seed(9687)
dataset <- generate_cre_dataset(n = 1000, 
                                rho = 0, 
                                n_rules = 2, 
                                p = 10,
                                effect_size = 2, 
                                binary_covariates = TRUE,
                                binary_outcome = FALSE,
                                confounding = "no")
  y <- dataset[["y"]]
  z <- dataset[["z"]]
  X <- dataset[["X"]]

ite_pred <- ... # personalized ite estimation
cre_results <- cre(y, z, X, ite = ite_pred)
summary(cre_results)
plot(cre_results)

Example 3 (setting parameters)

set.seed(9687)
dataset <- generate_cre_dataset(n = 1000, 
                                  rho = 0, 
                                  n_rules = 2, 
                                  p = 10,
                                  effect_size = 2, 
                                  binary_covariates = TRUE,
                                  binary_outcome = FALSE,
                                  confounding = "no")
y <- dataset[["y"]]
z <- dataset[["z"]]
X <- dataset[["X"]]

method_params <- list(ratio_dis = 0.25,
                      ite_method_dis="aipw",
                      ps_method_dis = "SL.xgboost",
                      oreg_method_dis = "SL.xgboost",
                      ite_method_inf = "aipw",
                      ps_method_inf = "SL.xgboost",
                      oreg_method_inf = "SL.xgboost")

hyper_params <- list(intervention_vars = c("x1","x2","x3","x4"),
                     offset = NULL,
                     ntrees_rf = 20,
                     ntrees_gbm = 20,
                     node_size = 20,
                     max_nodes = 5,
                     max_depth = 3,
                     t_decay = 0.025,
                     t_ext = 0.025,
                     t_corr = 1,
                     t_pvalue = 0.05,
                     replace = FALSE,
                     stability_selection = TRUE,
                     cutoff = 0.8,
                     pfer = 0.1,
                     penalty_rl = 1)

cre_results <- cre(y, z, X, method_params, hyper_params)
summary(cre_results)
plot(cre_results)

More synthetic data sets can be generated using generate_cre_dataset().