The release version on CRAN:
install.packages("CondCopulas")
From GitHub, using the devtools
package:
# install.packages("devtools")
::install_github("AlexisDerumigny/CondCopulas") devtools
simpA.NP
: in a purely nonparametric
framework
simpA.param
: assuming that the conditional copula
belongs to a parametric family of copulas for all values of the
conditioning variable
simpA.kendallReg
: test of the simplifying assumption
based on the constancy of the conditional Kendall’s tau assuming that it
satisfies a regression-like equation
estimateNPCondCopula
: nonparametric estimation of
conditional copulas
estimateParCondCopula
: parametric estimation of
conditional copulas
estimateParCondCopula_ZIJ
: parametric estimation of
conditional copulas using (already computed) conditional
pseudo-observations
A general wrapper function:
CKT.estimate
: that can be used for any method of
estimating conditional Kendall’s tau. Each of these methods is detailed
below and has its own function.CKT.kernel
: for any number of variable and with
possible choice of the bandwidthCKT.kendallReg.fit
: fit Kendall’s regression, a
regression-like method for the estimation of conditional Kendall’s
tau
CKT.kendallReg.predict
: for prediction of the new
conditional Kendall’s tau (given new covariates)
CKT.fit.tree
: for fitting a tree-based model for the
conditional Kendall’s tauCKT.predict.tree
: for prediction of new conditional
Kendall’s tausCKT.fit.randomForest
: for fitting a random forest-based
model for the conditional Kendall’s tauCKT.predict.randomForest
: for prediction of new
conditional Kendall’s tausCKT.predict.kNN
: for several numbers of nearest
neighborsCKT.fit.nNets
: for fitting a neural networks-based
model for the conditional Kendall’s tauCKT.predict.nNets
: for prediction of new conditional
Kendall’s tausCKT.fit.GLM
: for fitting a GLM-like model for the
conditional Kendall’s tauCKT.predict.GLM
: for prediction of new conditional
Kendall’s tausCKT.hCV.Kfolds
: for K-fold cross-validation choice
of the bandwidth for kernel smoothing
CKT.hCV.l1out
: for leave-one-out cross-validation
choice of the bandwidth for kernel smoothing
CKT.KendallReg.LambdaCV
: cross-validated choice of
the penalization parameter lambda
CKT.adaptkNN
: for a (local) aggregation of the
number of nearest neighbors based on Lepski’s method
bCond.simpA.param
: assuming that the copula belongs to
a parametric familybCond.pobs
: computation of the conditional
pseudo-observations \(F_{1|A(i)}(X_{i,1} |
A(i))\) and \(F_{2|A(i)}(X_{i,2} |
A(i))\) for every \(i=1, \dots,
n\).
bCond.estParamCopula
: estimation of a conditional
parametric copula, i.e. for every set \(A\), a conditional parameter \(\theta(A)\) is estimated.
Derumigny, A., & Fermanian, J. D. (2017). About tests of the “simplifying” assumption for conditional copulas. Dependence Modeling, 5(1), 154-197.
Derumigny, A., & Fermanian, J. D. (2019). A classification point-of-view about conditional Kendall’s tau. Computational Statistics & Data Analysis, 135, 70-94.
Derumigny, A., & Fermanian, J. D. (2019). On kernel-based estimation of conditional Kendall’s tau: finite-distance bounds and asymptotic behavior. Dependence Modeling, 7(1), 292-321.
Derumigny, A., & Fermanian, J. D. (2020). On Kendall’s regression. Journal of Multivariate Analysis, 178, 104610.