Package 'DSSAT'

October 12, 2022

2 add_v_fmt

Index		24
	write_wth	23
	write_tier	
	write_sol	
	write_filex	21
	write_filet	20
	write_filea	19
	write_eco	18
	write_dssbatch	17
	write_cul	17
	run_dssat	16
	read_wth	15
	read_tier	13
	read_sol	12
	read_soil_profile	11
	read_pest	
	read_output	10
	read_filex	9
	read_filet	8
	read_filea	8
	read_eco	7
	read_dssbatch	6

 ${\sf add_v_fmt}$

Adds variable format information to a tibble

Description

Adds variable format information to a tibble

Usage

```
add_v_fmt(input_tbl, v_fmt = NULL)
```

Arguments

input_tbl a tibble

v_fmt a named vector containing variable format information to be added to 'input_tbl'

Value

a tibble containing the original tibble with an additional attribute that contains variable format information

as_DSSAT_tbl 3

Examples

```
# Extract file path for sample ecotype file
sample_eco_file <- system.file('extdata','SAMPLE.ECO',package='DSSAT')
# Read sample ecotype file
eco <- read_eco(sample_eco_file)
# Replace formats for TSEN and CDAY parameters
eco <- add_v_fmt(eco,v_fmt=c(TSEN='%6.1f',CDAY='%6.1f'))</pre>
```

as_DSSAT_tbl

Convert tibble to DSSAT_tbl

Description

Convert tibble to DSSAT_tbl

Usage

```
as_DSSAT_tbl(tbl_in, v_fmt = NULL, tier_info = NULL)
```

Arguments

tbl_in a tibble

v_fmt a character vector specifying the sprintf() format for each column

tier_info a list of character vectors storing the history of which original table that columns

came from for tibbles that are comprised of multiple joined tables

Value

```
a tibble of class DSSAT_tbl
```

mutate_cond

Convenience function that allows mutating a subset of rows

Description

Convenience function that allows mutating a subset of rows

Usage

```
mutate_cond(.data, condition, ..., envir = parent.frame())
```

4 read_cul

Arguments

```
.data a tibble
condition a logical vector for subsetting rows of '.data'
... Name-value pairs of expressions to be evaluated by 'mutate()'
envir environment within which expressions should be evaluated
```

Details

Original code taken from https://stackoverflow.com/questions/34096162/dplyr-mutate-replace-several-column

Value

a tibble with specified rows modified

```
read_cul Reads parameters from a single DSSAT cultivar parameter file (*.CUL)
```

Description

Reads parameters from a single DSSAT cultivar parameter file (*.CUL)

Usage

```
read_cul(
  file_name,
  col_types = NULL,
  col_names = NULL,
  left_justified = c("VAR#", "VARNAME\\.*", "VAR-NAME\\.*", "VRNAME\\.*")
)
```

Arguments

```
file_name a character vector of length one that contains the name of a single DSSAT output file

col_types One of NULL, a cols() specification, or a string. See read_fwf or vignette("readr") for more details.

col_names A character vector of column names; primarily helpful for cases where there are no white spaces between column names within the header line

left_justified A character vector of column names that should be left justified
```

Value

a tibble containing the data from the raw DSSAT output

read_dssat 5

Examples

```
# Extract file path for sample cultivar file path
sample_cul_file <- system.file('extdata','SAMPLE.CUL',package='DSSAT')
# Read sample cultivar file
cul <- read_cul(sample_cul_file)</pre>
```

read_dssat

Reads data from a single DSSAT file

Description

Reads data from a single DSSAT file

Usage

```
read_dssat(
   file_name,
   col_types = NULL,
   col_names = NULL,
   na_strings = NULL,
   left_justified = "EXCODE",
   guess_max = 10
)
```

Arguments

file_name	a character vector of length one that contains the name of a single DSSAT output file
col_types	One of NULL, a cols() specification, or a string. See $read_fwf$ or $vignette("readr")$ for more details.
col_names	A character vector of column names; primarily helpful for cases where there are no white spaces between column names within the header line
na_strings	A character vector containing strings that should be interpreted as missing values
$left_justified$	A character vector of column names that should be left justified
guess_max	An integer indicating the maximum number of lines that should be used to guess the type of a column

Value

a tibble containing the data from the raw DSSAT output

6 read_dssbatch

Examples

```
# Extract file path for sample output file path
sample_output <- system.file('extdata','SAMPLE.OUT',package='DSSAT')
read_dssat(sample_output)</pre>
```

read_dssbatch

Reads data from a single DSSAT batch file

Description

Reads data from a single DSSAT batch file

Usage

```
read_dssbatch(file_name = "DSSBatch.V47")
```

Arguments

file_name

a character vector of length one that contains the name of a single DSSAT batch file

Value

a tibble containing the data from the DSSAT batch file

```
# Create example batch file path
batch_file_path <- paste0(tempdir(),'/DSSBatch.V47')

# Write example batch file
write_dssbatch(x='UFGA0601.BMX',trtno=1:4,file_name = batch_file_path)

# Read example batch file
dssbatch <- read_dssbatch(batch_file_path)</pre>
```

read_eco 7

read_eco	Reads parameters from a single DSSAT ecotype parameter file (*.ECO)

Description

Reads parameters from a single DSSAT ecotype parameter file (*.ECO)

Usage

```
read_eco(
  file_name,
  col_types = NULL,
  col_names = NULL,
  left_justified = c("ECO ", "ECO#", "ECONAME\\.*", "ECO-NAME\\.*")
)
```

Arguments

file_name	a character vector of length one that contains the name of a single DSSAT output file
col_types	One of NULL, a cols() specification, or a string. See $\mbox{read_fwf}$ or vignette("readr") for more details.
col_names	A character vector of column names; primarily helpful for cases where there are no white spaces between column names within the header line
left_justified	A character vector of column names that should be left justified

Value

a tibble containing the data from the raw DSSAT file

```
# Extract file path for sample ecotype file path
sample_eco <- system.file('extdata','SAMPLE.ECO',package='DSSAT')
eco <- read_eco(sample_eco)</pre>
```

8 read_filet

read_filea Reads data from a single DSSAT file A
--

Description

Reads data from a single DSSAT file A

Usage

```
read_filea(file_name, col_types = NULL, col_names = NULL, na_strings = NULL)
```

Arguments

file_name	a character vector of length one that contains the name of a single DSSAT output file
col_types	One of NULL, a cols() specification, or a string. See $read_fwf$ or $vignette("readr")$ for more details.
col_names	A character vector of column names; primarily helpful for cases where there are no white spaces between column names within the header line
na_strings	a character vector of string to represent missing values

Value

a tibble containing the data from the raw DSSAT file

Examples

```
# Extract FileA path for sample file
sample_filea <- system.file('extdata','SAMPLE.CRA',package='DSSAT')
filea <- read_filea(sample_filea)</pre>
```

read_filet

Reads time series data from a single DSSAT file T

Description

Reads time series data from a single DSSAT file T

Usage

```
read_filet(file_name, col_types = NULL, col_names = NULL, na_strings = NULL)
```

read_filex 9

Arguments

file_name	a character vector of length one that contains the name of a single DSSAT output file
col_types	One of NULL, a cols() specification, or a string. See $read_fwf$ or vignette("readr") for more details.
col_names	A character vector of column names; primarily helpful for cases where there are no white spaces between column names within the header line
na_strings	a character vector of string to represent missing values

Value

a tibble containing the data from the raw DSSAT file

Examples

```
# Extract FileT path for sample file
sample_filet <- system.file('extdata','SAMPLE.CRT',package='DSSAT')
read_filet(sample_filet)</pre>
```

read_filex

Reads input data from a single DSSAT experiment file (*.*X)

Description

Reads input data from a single DSSAT experiment file (*.*X)

Usage

```
read_filex(
  file_name,
  col_types = NULL,
  col_names = NULL,
  na_strings = NULL,
  store_v_fmt = FALSE
)
```

Arguments

file_name a character vector of length one that contains the name of a single DSSAT output file col_types One of NULL, a cols() specification, or a string. See read_fwf or vignette("readr") for more details.

10 read_output

col_names	A character vector of column names; primarily helpful for cases where there are no white spaces between column names within the header line
na_strings	A character vector containing strings that should be interpreted as missing values
store_v_fmt	a logical value indicating whether or not to store the format for variables being read

Value

a tibble containing the data from the raw DSSAT file

read_output	Reads data from a single DSSAT output file	

Description

Reads data from a single DSSAT output file

Usage

```
read_output(
  file_name,
  col_types = NULL,
  col_names = NULL,
  left_justified = NULL,
  read_only = NULL,
  store_v_fmt = FALSE
)
```

Arguments

file_name	a character vector of length one that contains the name of a single DSSAT output file
col_types	One of NULL, a cols() specification, or a string. See read_fwf or vignette("readr") for more details.
col_names	A character vector of column names; primarily helpful for cases where there are no white spaces between column names within the header line
left_justified	A character vector of column names that should be left justified
read_only	NULL or a character vector of column names that should be read in; If non-NULL only the columns listed will be read in.
store_v_fmt	a logical value indicating whether or not to store the format for variables being read

Value

a tibble containing the data from the raw DSSAT output

read_pest 11

Examples

```
# Extract file path for sample output file path
sample_output <- system.file('extdata', 'SAMPLE.OUT', package='DSSAT')
out <- read_output(sample_output)</pre>
```

read_pest

Reads input data from a single DSSAT pest file (*.PST)

Description

Reads input data from a single DSSAT pest file (*.PST)

Usage

```
read_pest(file_name, col_types = NULL, col_names = NULL)
```

Arguments

file_name a character vector of length one that contains the name of a single DSSAT output file

col_types One of NULL, a cols() specification, or a string. See read_fwf or vignette("readr") for more details.

col_names A character vector of column names; primarily helpful for cases where there are

no white spaces between column names within the header line

Value

a tibble containing the data from the raw DSSAT file

```
\begin{tabular}{ll} read\_soil\_profile & \it Reads~a~single~DSSAT~formatted~soil~profile~from~a~raw~character~vector \\ \end{tabular}
```

Description

Reads a single DSSAT formatted soil profile from a raw character vector

Usage

```
read_soil_profile(
  raw_lines,
  left_justified = NULL,
  col_types = NULL,
  col_names = NULL
)
```

12 read_sol

Arguments

raw_lines	a character vector that includes the contents of a single tier of data (including headline, but excluding version stamp and other header information) from a DSSAT output file
$left_justified$	A character vector of column names that should be left justified
col_types	One of NULL, a cols() specification, or a string. See $\texttt{read_fwf}$ or $\texttt{vignette}(\texttt{"readr"})$ for more details.
col_names	A character vector of column names; primarily helpful for cases where there are no white spaces between column names within the header line

Value

a list containing tibbles for each tier of a DSSAT formatted soil profile

Examples

```
sample_sol <- c(</pre>
"*IB00000001 IBSNAT
                        SIC
                                210 DEFAULT - DEEP SILTY CLAY",
"@SITE
             COUNTRY
                             LAT
                                    LONG SCS FAMILY",
" Generic
             Generic
                             -99
                                      -99 Generic",
"@ SCOM SALB SLU1 SLDR SLRO SLNF SLPF SMHB SMPX SMKE",
   -99 0.11
               6.0 0.30
                         85.0 1.00 1.00 IB001 IB001 IB001",
   SLB SLMH SLLL SDUL SSAT SRGF SSKS SBDM SLOC SLCL SLSI SLCF SLNI SLHW SLHB",
                                                                               -99".
       -99 0.228 0.385 0.481 1.000 -99 1.30 1.75
                                                   50.0 45.0
                                                              0.0 0.170
                                                                        6.5
    15
       -99 0.228 0.385 0.481 1.000 -99 1.30 1.75
                                                   50.0 45.0
                                                              0.0 0.170
                                                                         6.5
                                                                               -99"
    30
        -99 0.249 0.406 0.482 0.638 -99 1.30 1.60
                                                   50.0
                                                        45.0
                                                              0.0 0.170
                                                                         6.5
                                                                               -99"
    45
        -99 0.249 0.406 0.465 0.472 -99 1.35 1.45
                                                   50.0 45.0
                                                               0.0 0.140
                                                                         6.5
                                                                               -99"
        -99 0.249 0.406 0.465 0.350 -99 1.35 1.45
                                                   50.0 45.0
                                                                               -99"
    60
                                                               0.0 0.140
                                                                         6.5
    90
        -99 0.308 0.456 0.468 0.223 -99 1.35 1.10 50.0 45.0
                                                              0.0 0.110
                                                                         6.5
                                                                               -99"
                                                                               -99"
       -99 0.207 0.341 0.452 0.122 -99 1.40 0.65 50.0 45.0
   120
                                                              0.0 0.060
                                                                         6.5
   150 -99 0.243 0.365 0.455 0.067 -99 1.40 0.30 50.0 45.0
                                                                         6.5
                                                                               -99".
                                                              0.0 0.030
   180 -99 0.259 0.361 0.457 0.037 -99 1.40 0.10 50.0 45.0
                                                                         6.5
                                                                               -99"
                                                              0.0 0.010
   210 -99 0.259 0.361 0.457 0.020 -99 1.40 0.01 50.0 45.0 0.0 0.000
                                                                         6.5
                                                                               -99")
read_soil_profile(sample_sol)
```

 ${\it read_sol} \qquad {\it Reads soil parameters from a single DSSAT soil parameter file (*.SOL)}$

Description

Reads soil parameters from a single DSSAT soil parameter file (*.SOL)

read_tier 13

Usage

```
read_sol(
   file_name,
   id_soil = NULL,
   left_justified = NULL,
   col_types = NULL,
   col_names = NULL
)
```

Arguments

file_name	a character vector of length one that contains the name of a single DSSAT output file
id_soil	a length-one character vector containing the soil ID code for a single soil profile
$left_justified$	A character vector of column names that should be left justified
col_types	One of NULL, a cols() specification, or a string. See $\texttt{read_fwf}$ or $\texttt{vignette}(\texttt{"readr"})$ for more details.
col_names	A character vector of column names; primarily helpful for cases where there are no white spaces between column names within the header line

Value

a tibble containing the data from the raw DSSAT file

Examples

```
# Extract file path for sample soil file
sample_soi <- system.file('extdata','SAMPLE.SOL',package='DSSAT')
sol <- read_sol(sample_sol)</pre>
```

read_tier Reads and combines data and header information from a single tier of a DSSAT output file

Description

Reads and combines data and header information from a single tier of a DSSAT output file

14 read_tier

Usage

```
read_tier(
  raw_lines,
  col_types = NULL,
  col_names = NULL,
  na_strings = NULL,
  left_justified = "EXCODE",
  guess_max = 1000,
  store_v_fmt = TRUE,
  read_only = NULL
)
```

Arguments

raw_lines	a character vector that includes the contents of a single tier of data (including headline, but excluding version stamp and other header information) from a DSSAT output file
col_types	One of NULL, a cols() specification, or a string. See $read_fwf$ or $vignette("readr")$ for more details.
col_names	A character vector of column names; primarily helpful for cases where there are no white spaces between column names within the header line
na_strings	a character vector of string to represent missing values
$left_justified$	A character vector of column names that should be left justified
guess_max	An integer indicating the maximum number of lines that should be used to guess the type of a column
store_v_fmt	a logical value indicating whether or not to store the format for variables being read
read_only	NULL or a character vector of column names that should be read in; If non-NULL only the columns listed will be read in.

Value

a tibble containing the data from the raw DSSAT output

read_wth

```
"!
                        Soil evaporation (mm/d) by soil depth (cm):",
" !
                        0-5 5-15 15-23 23-32
                                                  32-41 41-51 51-61
                                                                       61-71",
"@YEAR DOY
          DAS
               SRAA
                       ES1D
                             ES2D
                                   ES3D
                                           ES4D
                                                   ES5D
                                                          ES6D
                                                                ES7D
                                                                       ES8D",
" 2006 001
               7.40
                      0.508 0.175 0.060 0.101
                                                  0.083
                                                         0.110
                                                                0.098
                                                                       0.035",
           1
" 2006 002
            2 8.40
                      0.849 0.263 0.064 0.104
                                                  0.086
                                                         0.113
                                                                0.101
                                                                       0.036",
" 2006 003
            3 13.10
                      1.148 0.549 0.091 0.132
                                                  0.108
                                                         0.144
                                                                0.128
                                                                       0.046")
read_tier(sample_data_tier)
```

read_wth

Reads weather input data from a single DSSAT weather file (*.WTH)

Description

Reads weather input data from a single DSSAT weather file (*.WTH)

Usage

```
read_wth(file_name, col_types = NULL, col_names = NULL)
```

Arguments

file_name	a character vector of length one that contains the name of a single DSSAT output file
col_types	One of NULL, a cols() specification, or a string. See read_fwf or vignette("readr") for more details.
col_names	A character vector of column names; primarily helpful for cases where there are no white spaces between column names within the header line

Value

a tibble containing the data from the raw DSSAT file

```
# Extract file path for sample weather file
sample_wth <- system.file('extdata','SAMPLE.WTH',package='DSSAT')
read_wth(sample_wth)</pre>
```

run_dssat

run_dssat

Writes data from a single DSSAT data tier

Description

Writes data from a single DSSAT data tier

Usage

```
run_dssat(run_mode = "B", file_name = NULL, suppress_output = FALSE)
```

Arguments

run_mode

a length-one character vector that specifies the run mode that should be used for the DSSAT simulation. One of: A - Run all treatments. User specifies fileX on the command line and the model runs all treatments B - Batch mode. User defines fileX and treatment numbers in Batch file C - Command line mode. Use input from the command line. D - Debug mode. Model skips input module and reads temp file from the command line E - Sensitivity analysis. User defines fileX and treatment number in Batch file F - Farm model. Use Batch file to define experiment G - Gencalc. Use Command line to define experiment and treatment I - Interactive mode. Use model interface for exp. & trtno. L - Gene based model (Locus). Use Batch file to define experiment N - Seasonal analysis. Use Batch file to define experiment and treatments Q - Sequence analysis. Use Batch file to define experiment S - Spatial. Use Batch file to define experiment T - Gencalc. Use Batch file to define experiment

file_name

a length-one character vector that specifies the file name to be used for simulation. Usually the name of a batch file or file X.

suppress_output

a logical value indicating whether to suppress DSSAT-CSM output from being printed to the console

Value

Invisibly returns NULL

```
## Not run:
    run_dssat()
## End(Not run)
```

write_cul 17

write_cul	Reads parameters from a single DSSAT cultivar parameter file
	(*.CUL)

Description

Reads parameters from a single DSSAT cultivar parameter file (*.CUL)

Usage

```
write_cul(cul, file_name)
```

Arguments

cul a DSSAT_tbl containing the contents of a DSSAT cultivar parameter file file_name a character vector of length one that contains the name of a single DSSAT output

file

Value

a tibble containing the data from the raw DSSAT output

Examples

```
# Extract file path for sample cultivar file path
sample_cul_file <- system.file('extdata','SAMPLE.CUL',package='DSSAT')

# Read sample cultivar file
cul <- read_cul(sample_cul_file)

# Create example cultivar file path
sample_cul_file2 <- paste0(tempdir(),'/SAMPLE.CUL')

# Write out sample cultivar file
write_cul(cul,sample_cul_file2)</pre>
```

 $write_dssbatch$

Constructs and writes a DSSAT simulation batch file

Description

Constructs and writes a DSSAT simulation batch file

18 write_eco

Usage

```
write_dssbatch(x, trtno = 1, rp = 1, sq = 0, op = 0, co = 0, file_name = NULL)
```

Arguments

X	a tibble/data frame or character vector; if a tibble, it should contain all required columns of a DSSAT batch file (FILEX, TRTNO, RP, SQ, OP, CO); if a character vector, it should contain FileX file names
trtno	a numeric vector
rp	a numeric vector
sq	a numeric vector
ор	a numeric vector
со	a numeric vector
file_name	an optional character vector of the intended batch file name

Value

invisibly returns a character vector containing the content of a DSSAT batch file

Examples

Description

Reads parameters from a single DSSAT ecotype parameter file (*.ECO)

write_filea 19

Usage

```
write_eco(eco, file_name)
```

Arguments

eco a DSSAT_tbl containing the contents of a DSSAT ecotype parameter file

file_name a character vector of length one that contains the name of a single DSSAT output

file

Value

a tibble containing the data from the raw DSSAT output

Examples

```
# Extract file path for sample ecotype file path
sample_eco_file <- system.file('extdata','SAMPLE.ECO',package='DSSAT')
# Read sample ecotype file
eco <- read_eco(sample_eco_file)
# Create example ecotype file path
sample_eco_file2 <- paste0(tempdir(),'/SAMPLE.ECO')
# Write out sample ecotype file
write_eco(eco,sample_eco_file2)</pre>
```

write_filea

Writes data to a single DSSAT file A

Description

Writes data to a single DSSAT file A

Usage

```
write_filea(filea, file_name, drop_duplicate_rows = TRUE)
```

Arguments

filea a tibble containing the data to write to a DSSAT file A

file_name a character vector of length one that contains the name of a single DSSAT file

into which 'filea' will be written

drop_duplicate_rows

a logical value indicating whether duplicate rows should be dropped from tier_data

20 write_filet

Examples

```
# Extract FileA path for sample file
sample_filea <- system.file('extdata','SAMPLE.CRA',package='DSSAT')
filea <- read_filea(sample_filea)

# Create example FileA file path
sample_filea2 <- paste0(tempdir(),'/SAMPLE.CRA')

# Write out sample FileA
write_filea(filea,sample_filea2)</pre>
```

write_filet

Writes data to a single DSSAT file T

Description

Writes data to a single DSSAT file T

Usage

```
write_filet(filet, file_name, drop_duplicate_rows = TRUE)
```

Arguments

filet a tibble containing the data to write to a DSSAT file T

file_name a character vector of length one that contains the name of a single DSSAT file

into which 'filet' will be written

drop_duplicate_rows

a logical value indicating whether duplicate rows should be dropped from tier_data

```
# Extract FileT path for sample file
sample_filet <- system.file('extdata','SAMPLE.CRT',package='DSSAT')
filet <- read_filet(sample_filet)

# Create example FileT file path
sample_filet2 <- paste0(tempdir(),'/SAMPLE.CRT')

# Write out sample FileA
write_filet(filet,sample_filet2)</pre>
```

write_filex 21

write_filex Writes data to a single DSSAT FileX

Description

Writes data to a single DSSAT FileX

Usage

```
write_filex(filex, file_name, drop_duplicate_rows = TRUE, force_std_fmt = TRUE)
```

Arguments

filex a list of tibbles containing the data to write to a DSSAT file X

file_name a character vector of length one that contains the name of a single DSSAT file

into which 'filet' will be written

drop_duplicate_rows

a logical value indicating whether duplicate rows should be dropped from tier_data

force_std_fmt a logical value indicating whether to override the variable format stored within

the FileX object with standard DSSAT formatting

write_sol Writes soil parameters to a single DSSAT soil parameter file (*.SOL)

Description

Writes soil parameters to a single DSSAT soil parameter file (*.SOL)

Usage

```
write_sol(sol, file_name, title = NULL, append = TRUE, force_std_fmt = TRUE)
```

Arguments

sol a tibble of soil profiles that have been read in by read_sol()

file_name a character vector of length one that contains the name of a single DSSAT output

file

title a length-one character vector that contains the title of the soil file

append TRUE or FALSE indicating whether soil profile should be appended to file_name.

If FALSE, the soil profile will be written to a new file and will overwrite file_name

(if it exists).

force_std_fmt a logical value indicating whether to override the variable format stored within

the FileX object with standard DSSAT formatting

22 write_tier

Value

Invisibly returns NULL

Examples

```
# Extract file path for sample soil file
sample_sol <- system.file('extdata','SAMPLE.SOL',package='DSSAT')

# Read sample soil file
sol <- read_sol(sample_sol)

# Create example soil file path
sample_sol2 <- paste0(tempdir(),'/SAMPLE.SOL')

# Write example soil file
write_sol(sol,sample_sol2)</pre>
```

write_tier

Writes data from a single DSSAT data tier

Description

Writes data from a single DSSAT data tier

Usage

```
write_tier(
   tier_data,
   pad_name = NULL,
   drop_duplicate_rows = FALSE,
   drop_na_rows = TRUE
)
```

Arguments

tier_data a tibble containing the data to write out

pad_name a character vector of column names for which to add leading spaces/trailing

periods

drop_duplicate_rows

a logical value indicating whether duplicate rows should be dropped from tier_data

drop_na_rows a logical value indicating whether rows containing all NA values should be

dropped from tier_data

Value

a character vector

write_wth 23

Examples

```
tier_data <- data.frame(TRNO=1:4,HWAM=rnorm(4,2000,250))
tier_data <- add_v_fmt(tier_data,v_fmt=c(TRNO='%6.0f', HWAM='%6.0f'))
output <- write_tier(tier_data)</pre>
```

write_wth

Writes data to a single DSSAT weather file

Description

Writes data to a single DSSAT weather file

Usage

```
write_wth(wth, file_name, force_std_fmt = TRUE)
```

Arguments

wth a tibble containing the data to write to a DSSAT weather file

file_name a character vector of length one that contains the name of a single DSSAT file

into which 'wth' will be written

force_std_fmt a logical value indicating whether to override the variable format stored within

the 'wth' object with standard DSSAT formatting

Index

```
\mathsf{add\_v\_fmt}, \textcolor{red}{2}
as_DSSAT_tbl, 3
\verb|mutate_cond|, 3
read_cul, 4
\verb"read_dssat", 5
read_dssbatch, 6
read_eco, 7
read_filea, 8
read_filet, 8
read_filex, 9
read_fwf, 4, 5, 7-15
read_output, 10
read_pest, 11
\verb|read_soil_profile|, 11|\\
read_sol, 12
read_tier, 13
read_wth, 15
run_dssat, 16
write_cul, 17
write_dssbatch, 17
write\_eco, \textcolor{red}{18}
write_filea, 19
write\_filet, \textcolor{red}{20}
write_filex, 21
write_sol, 21
write_tier, 22
write_wth, 23
```