Package 'EnviroPRA'

October 12, 2022

Type Package
Title Environmental Probabilistic Risk Assessment Tools
Version 1.0
Date 2017-02-22
Author F. Barrio-Parra, with contributions from A. Dominguez-Castillo.
Maintainer Fernando Barrio-Parra <fernando.barrio@upm.es>
Description Methods to perform a Probabilistic Environmental Risk assessment from exposure to toxic substances - i.e. USEPA (1997) <https: //www.epa.gov/risk/guiding-principles-monte-carlo-analysis>-.
License GPL
Imports MASS, kSamples, stats, fitdistrplus, truncdist
NeedsCompilation no
Repository CRAN

Date/Publication 2017-02-23 17:30:51

R topics documented:

nviroPRA-package	 . 2
.D	 . 5
Dboot	 . 6
JR	 . 7
IRboot	 . 8
ondition	 . 9
WIR	 . 9
WIRboot	 . 10
xtr_par	 . 11
it_dist_parameter	 . 12
t_dist_test	 . 13
Π	 . 14
IIdermal	 . 15
IIinhal	 . 16
NH	 . 17

plot_fit_dist	18
random_number_generator	19
RISK	20
RISKdermal	20
RISKInhal	21
sampler	22
sig	23
SIR	23
SIRboot	24
VI	25
VIboot	26
	27

Index

EnviroPRA-package Environmental Probabilistic Risk Assessment Tools

Description

A collection of functions employed in environmental risk assessment to model exposure to a toxicant and predicting health effects, allowing to characterize variability and uncertainty in risk estimations

Details

The DESCRIPTION file:

Package:	EnviroPRA
Type:	Package
Title:	Environmental Probabilistic Risk Assessment Tools
Version:	1.0
Date:	2017-02-22
Author:	F. Barrio-Parra, with contributions from A. Dominguez-Castillo.
Maintainer:	Fernando Barrio-Parra <fernando.barrio@upm.es></fernando.barrio@upm.es>
Description:	Methods to perform a Probabilistic Environmental Risk assessment from exposure to toxic substances - i.e. US
License:	GPL
Imports:	MASS, kSamples, stats, fitdistrplus, truncdist

Index of help topics:

AD	Dermal conctact with chemicals in soil
ADboot	Dermal conctact with chemicals in soil by
	bootstrap
AIR	Inhalation of airborne chemicals
AIRboot	Inhalation of airborne chemicals by bootstrap
DWIR	Chemical intake by Drinking Water
DWIRboot	Chemical intake by Drinking Water by bootstrap

EnviroPRA-package	Environmental Probabilistic Risk Assessment
Fit dist parameter	Deturne adjusted distribution parameters
Fit_dist_parameter	Returns aujusted distribution parameters
HI	Hazard Index
HIdermal	Hazard Index for dermal contact
HIinhal	Hazard Index for inhalation of vapors
INH	Inhalation of resuspended soil particles
RISK	Risk
RISKInhal	Risk for inhalation of vapors
RISKdermal	Risk for dermal contact
SIR	Chemical intake by accidental soil ingestion
SIRboot	Chemical intake by accidental soil ingestion by
	bootstrap
VI	Chemical intake by ingestion of vegetables
VIboot	Chemical intake by ingestion of vegetables by
	bootstrap
condition	p-value significance checking function
extr_par	Extracts the fitted distribution parameters to
	be introduced in other function
fit_dist_test	Summary of Godness-of-fit tests
plot_fit_dist	Graphical representation of data fitting to a
	distribution
<pre>random_number_generator</pre>	
	Random number generator
sampler	Execute sampling with replacement
sig	Significance level cheking function

~~ An overview of how to use the package, including the most important functions ~~

Author(s)

F. Barrio-Parra, with contributions from A. Dominguez-Castillo. Maintainer: Fernando Barrio-Parra <fernando.barrio@upm.es>

Examples

Performs Deterministic Environmental Risk Assessment

Example of dermal contact with a chemical in swiming water

Estimate the dermal absorbed dose during swiming in waters with a carcinogenic chemical # (water concentration of 250 mg/m^3)

DWIR (CW = 250)

For a systemic effect:

DWIR (CW= 250, AT=24*365)

```
# Specifying all the parameters for the carcinogenic case
I = DWIR (CW=250, IR=1.5, EF = 300, ED = 24, BW = 85)
# Chemical Slope factor
SFAs = 1.5
# Dermal Absorption Factor
ABSAs = 3e-02
# Gastrointestinal Absorption Factor
GIAs = 1
# Risk Estimation
RISKdermal (AD = I, SF = SFAs, GI = GIAs)
#### Perform a test to assess the fitness of a theorical distribution to empirical data ####
set.seed(123)
a <- rnorm(n=100, mean =1.5, sd = 0.25)
b <- rnorm(n = 15, mean = 300, sd = 15)
fit_dist_test(a)
fit_dist_test(b)
# Graphical representation of data fitting to a distribution
plot_fit_dist(a, "norm")
plot_fit_dist(b, "norm")
#### Perform a Probabilistic Environmental Risk Assessment ####
Fita <- Fit_dist_parameter(a)</pre>
Fitb <- Fit_dist_parameter(b)</pre>
IRr <-random_number_generator(n = 10000, Fited = Fita,</pre>
                             dist = "norm", a =0.8, b = 2.1)
EFr <-random_number_generator(n = 10000, Fited = Fitb,</pre>
                             dist = "norm", a =250, b = 330)
I = DWIR ( CW=250, IR=IRr, EF = EFr, ED = 24, BW = 85)
# Risk Estimation
```

4

```
Risk <- RISKdermal (AD = I, SF = SFAs, GI = GIAs)
hist (Risk)
quantile (Risk, c (0.05, 0.25, 0.5, 0.75, 0.95))</pre>
```

Dermal conctact with chemicals in soil

Description

Estimates the Absorbed dose [mg/Kg*day] of chemicals through dermal contact with a soil

Usage

AD(CS = 1, SA = 2800, AF = 0.2, ABS = 0.001, EF = 350, ED = 24, BW = 70, AT = 365 * 70)

Arguments

CS	Chemical concentration in soil [mg/Kg]
SA	Skin surface area available for contact [cm ²]
AF	Skin adherence factor [mg/cm^2]
ABS	Absorption factor (Chemical specific) [-]
EF	Exposure frequency [day/yr]
ED	Exposure duration [yr]
BW	Body weight [Kg]
AT	Averaging time [day] (Note that for No carcinogenic effects AT should be equal to 365*ED)

Value

Chemical Absorbed dose [mg/Kg*day]

Author(s)

F. Barrio-Parra

References

US Environmental Protection Agency, 2011. Exposure Factors Handbook: 2011 Edition. U.S. Environmental Protection Agency, EPA/600/R-(September), pp 1466.

ADboot

Examples

```
## Estimated absorbed dose for the estimation of carcinogenic effects using
# the default variables (EPA 2011) for a chemical soil concentration of
# 0.2 mg/Kg
AD( CS=0.2)
# For a systemic effect:
AD( CS=0.2, AT=24*365)
# Specifying all the parameters for the carcinogenic case
AD( CS=0.2, SA=2300, AF=0.25, ABS=0.01, EF=150, ED=10, BW=80)
```

```
ADboot
```

Dermal conctact with chemicals in soil by bootstrap

Description

Dermal conctact with chemicals in soil by bootstrap

Usage

ADboot(n, CS, SA, AF, ABS, EF, ED, BW, AT)

Arguments

n	Output vector length
CS	Chemical concentrtion in soil [mg/Kg]
SA	Skin surface area available for contact [cm ²]
AF	Skin adherence factor [mg/cm ²]
ABS	Absorption factor (Chemical specific) [-]
EF	Exposure frequency [day/yr]
ED	Exposure duration [yr]
BW	Body weight [Kg]
AT	Averaging time [day] (Note that for No carcinogenic effects AT should be equal to 365*ED)

Value

Chemical Absorbed dose [mg/Kg*day]

Author(s)

F. Barrio-Parra

Examples

Carcinogenic effects
c <- rnorm(n= 10, mean = 0.2, sd = 0.05)
b <- rnorm(n= 100, mean = 20, sd = 5)
ADboot (n = 1000, SA=2300, AF=0.25, ABS=0.01,CS = c, BW = b, ED = 10, EF = 250)</pre>

Description

AIR

Estimates the Intake rate by inhalation of airborne chemicals (vapor phase) [mg/Kg*day]

Usage

AIR(CA = 1, IR = 20, ET = 24, EF = 350, ED = 24, BW = 70, AT = 365 * 70)

Arguments

CA	Chemical concentration in air [mg/m ³]
IR	Inhalation Rate [m ³ /hour]
ET	Exposure time [hours/day]
EF	Exposure frequency [day/yr]
ED	Exposure duration [yr]
BW	Body weight [Kg]
AT	Averaging time [day] (Note that for No carcinogenic effects AT should be equal to 365*ED)

Value

Intake rate by inhalation of airborne chemicals (vapor phase) I [mg/Kg*day]

Author(s)

F. Barrio-Parra

References

US Environmental Protection Agency, 2011. Exposure Factors Handbook: 2011 Edition. U.S. Environmental Protection Agency, EPA/600/R-(September), pp 1466.

Examples

```
## Estimated absorbed dose for the estimation of carcinogenic effects using
# the default variables (EPA 2011) for a chemical air concentration
# of 0.2 mg/m^3
AIR ( CA=0.2)
# For a systemic effect:
AIR ( CA=0.2, AT=24*365)
# Specifying all the parameters for the carcinogenic case
AIR ( CA=0.2, IR=25, ET = 24, EF = 300, ED = 24, BW = 85)
```

```
AIRboot
```

Inhalation of airborne chemicals by bootstrap

Description

Estimates the Intake rate by inhalation of airborne chemicals (vapor phase) [mg/Kg*day]

Usage

AIRboot(n, CA, IR, ET, EF, ED, BW, AT)

Arguments

Output vector length
Chemical concentration in air [mg/m^3]
Inhalation Rate [m ³ /hour]
Exposure time [hours/day]
Exposure frequency [day/yr]
Exposure duration [yr]
Body weight [Kg]
Averaging time [day] (Note that for No carcinogenic effects AT should be equal to 365*ED)

Value

Intake rate by inhalation of airborne chemicals (vapor phase) I [mg/Kg*day]

Author(s)

F. Barrio-Parra

condition

Examples

Carcinogenic effects
c <- rnorm(n= 10, mean = 0.2, sd = 0.05)
b <- rnorm(n= 100, mean = 20, sd = 5)
AIRboot (n = 1000, CA=c, IR=25, ET = 24, EF = 300, ED = 24, BW = b)</pre>

condition

p-value significance checking function

Description

Auxiliar function to check p-value significance

Usage

condition(n)

Arguments n

p-value

Value

Return "Significant" or "Not-significant"

Examples

condition (0.001)

condition (0.1)

DWIR

Chemical intake by Drinking Water

Description

Estimates the chemical Intake rate by Drinking Water [mg/Kg*day]

Usage

DWIR(CW = 1, IRW = 2, EF = 350, ED = 24, BW = 80, AT = 365 * 70)

Arguments

CW	Chemical concentration in water [mg/L]
IRW	Water Ingestion Rate [L/Day]
EF	Exposure frequency [day/yr]
ED	Exposure duration [yr]
BW	Body weight [Kg]
AT	Averaging time [day] (Note that for No carcinogenic effects AT should be equal to 365*ED)

Value

Chemical intake rate by drinking water I [mg/Kg*day]

Author(s)

F. Barrio-Parra

References

US Environmental Protection Agency, 2011. Exposure Factors Handbook: 2011 Edition. U.S. Environmental Protection Agency, EPA/600/R-(September), pp 1466.

Examples

Estimate the dermal absorbed dose during swiming in waters with a carcinogenic chemical # (water concentration of 250 mg/m^3)

DWIR (CW = 250)
For a systemic effect:
DWIR (CW= 250, AT=24*365)
Specifying all the parameters for the carcinogenic case
DWIR (CW=250, IR=1.5, EF = 300, ED = 24, BW = 85)

DWIRboot

Chemical intake by Drinking Water by bootstrap

Description

Estimates the chemical Intake rate by Drinking Water [mg/Kg*day]

Usage

DWIRboot(n, CW, IRW, EF, BW, ED, AT)

extr_par

Arguments

n	Output vector length
CW	Chemical concentration in water [mg/L]
IRW	Water Ingestion Rate [L/Day]
EF	Exposure frequency [day/yr]
BW	Body weight [Kg]
ED	Exposure duration [yr]
AT	Averaging time [day] (Note that for No carcinogenic effects AT should be equal to 365*ED)

Value

Chemical intake rate by drinking water I [mg/Kg*day]

Author(s)

F. Barrio-Parra

Examples

```
# Carcinogenic effects
c <- rnorm( n= 10, mean = 250, sd = 15 )
b <- rnorm( n= 100, mean = 20, sd = 5 )
DWIRboot (n = 1000, CW=c, IR=1.5, EF = 300, ED = 24, BW = b)</pre>
```

```
extr_par
```

Extracts the fitted distribution parameters to be introduced in other function

Description

Auxiliar function

Usage

extr_par(x, dist)

Arguments

x	List of parameters obtained by the aplication of the Fit_dist_parameter function
dist	Name of the distribution we would like to stract the parameters ("norm", "lnorm", "geom", "exp", "pois", "gamma", "cauchy", "logis", "weibull", "nbinom", "beta", "chisq", "t", "f")

Author(s)

F. Barrio-Parra

Examples

a <- rnorm(n=100, mean =10, sd = 1)
b <- Fit_dist_parameter(a)
extr_par(x = b, dist ="norm")</pre>

Fit_dist_parameter Returns adjusted distribution parameters

Description

Returns the distribution parameters adjusted for by maximum likelihood (mle) for the following distributions: "normal","log-normal","geometric","exponential","Poisson", "cauchy", "logistic" and "weibull"

Usage

```
Fit_dist_parameter(x)
```

Arguments

х

A numeric vector of length at least one containing only finite values (noncensored data)

Value

normal	Fitted Mean and sd for a normal distribution
'log-normal'	Fitted Meanlog and sdlog for a log-normal distribution
geometric	Fitted prob for a geometric distribution
exponential	Fitted rate for a exponential distribution
Poisson	Fitted lambda for a exponential distribution
cauchy	Fitted location and scale for a Cauchy distribution
logistic	Fitted location and scale for a Logistic distribution
weibull	Fitted shape and scale for a weibull distribution

Author(s)

F. Barrio-Parra

12

fit_dist_test

See Also

Function fitdistr in Library (MASS)

Examples

```
a <- rnorm(n=100, mean =10, sd = 1)
b <- Fit_dist_parameter(a)
# Examples of result extraction</pre>
```

b\$normal

b\$weibull

fit_dist_test Summary of Godness-of-fit tests

Description

Returns a data frame with the summary of Fiting distribution tests for the following distributions: "normal", "log-normal", "geometric", "exponential", "Poisson", "cauchy", "logistic" and "weibull".

The considered Godness-of-fit tests are: Bayesian Information Criterium (BIC), Akaike Information Criterium (AIC), Kolmogorov-Smirnov test and Anderson-Darling test.

Usage

fit_dist_test(x)

Arguments

х

A numeric vector of length at least one containing only finite values

Value

Distribution	Name of the tested distribution
BayesianIC	Bayesian Information Criterium (BIC)
AkaikeIC	Akaike Information Criterium (AIC)
Kol-SmirD	The value of the Kolmogorov-Smirnov test statistic
Kol-SmirPvalue	
	The value of the Kolmogorov-Smirnov test p-value
Signigicance KS	
	A column to check the significance of the Kolmogorov-Smirnov test
And-Darl	The value of the nderson-Darling test statistic

14

The value of the Anderson-Darling test p-value
A column to check the significance of the Anderson-Darling test

Author(s)

F. Barrio-Parra

See Also

ad.test library(kSamples), AIC library(stats), BIC library(stats), ks.test library(stats),

Examples

```
set.seed(123)
a <- rnorm(n=100, mean =10, sd = 1)
fit_dist_test(a)
b<- rexp(n = 100,rate = 1)
fit_dist_test(b)</pre>
```

ΗI

Hazard Index

Description

Returns the Hazard Index (non carcinogenic effects)

Usage

HI(I, RFD)

Arguments

I	Intake Rate [mg/Kg*day]
RFD	Reference dose [mg/Kg*day]

Value

Hazard Index [-]

Author(s)

F. Barrio-Parra

HIdermal

Examples

```
# Assessing if there is systemic risk for an adult receptor that drinks water with 1000 ug/L
# of hexaclorobence (Reference Dose (IRIS data base) = 8e-04 [mg/Kg*day]) in a residencial
# scenario (default EPA Maximum Reasonable Exposure parameters)
```

HI (I = DWIR(CW=1, AT=24*365), RFD = 8e-04)

HIdermal

Hazard Index for dermal contact

Description

Returns the Hazard Index for dermal exposure with chemicals (non carcinogenic effects)

Usage

HIdermal(AD, RFD, GI)

Arguments

AD	Absorbed dose [mg/Kg*day]
RFD	Reference dose [mg/Kg*day]
GI	Gastrointestinal Absorption factor (chemical specific) [-]

Value

Hazard Index [-]

Author(s)

F. Barrio-Parra

See Also

AD EnviroPRA

Examples

```
# Assess if there is non-carcinogenic risk for an dadult thorug dermal
# contact exposed to a soil that contains 45 mg/Kg of As in a residencial
# scenario (default EPA Maximum Reasonable Exposure parameters)
RfDAs = 3e-04
```

Dermal Absorption Factor

HIinhal

```
ABSAs = 3e-02

# Gastrointestinal Absorption Factor

GIAs = 1

I = AD (CS = 45,ABS = ABSAs, AT= 24*365)

HIdermal (AD = I, RFD = RfDAs, GI = GIAs)
```

HIinhal

Hazard Index for inhalation of vapors

Description

Returns the Hazard Index (systemic effects) for inhalation of vapors

Usage

HIinhal(INH, RFC)

Arguments

INH	Inhalated dose (mg/m ³)
RFC	Reference concentration (mg/m^3)

Value

Hazard Index (non carcinogenic effects) [-]

Author(s)

F. Barrio-Parra

See Also

AIR EnviroPRA

Examples

Assess if there is systemic risk for the exposure of an adult # (Reasonable Maximum Exposure) to a Toluene air concentration of 2 mg/ m^3 HIinhal (INH = AIR (CA = 2, AT = 365*24), RFC = 5)

16

Description

Estimates the Intake rate of chemicals by inhalation of resuspended soil particles [mg/Kg*day]

Usage

INH(C = 10, EF = 350, ED = 24, PEF = 1.36⁹, AT = 365 * ED)

Arguments

С	Concentration of chemicals in soil(mg/kg)
EF	Exposure frequency (day/year)
ED	Exposure duration (years)
PEF	Particle emision factor meaning resuspended particles(m^3/kg)
AT	Averaging time [day] (Note that for No carcinogenic effects AT should be equal to 365*ED)

Value

Chemical intake rate by inhalation of soil particles I [mg/Kg*day]

Author(s)

F. Barrio-Parra

References

US Environmental Protection Agency, 2011. Exposure Factors Handbook: 2011 Edition. U.S. Environmental Protection Agency, EPA/600/R-(September), pp 1466.

Examples

Estimated dose for the estimation of carcinogenic effects due to the # inhalation of soil particles that contains 45 mg/Kg of As in a residencial # scenario (default EPA Maximum Reasonable Exposure parameters) INH(C= 45, AT = 365*70) # For non-carcinogenic effects: INH(C= 45)

plot_fit_dist

Description

A function to help assessing the distribution that best fit a data vector

Usage

```
plot_fit_dist(x, dist)
```

Arguments

x	A numeric vector of length at least one containing only finite values (values must be ≥ 0)
dist	Character vector indicating the distribution to be ploted:"norm", "lnorm", "geom", "exp", "pois", "cauchy", "logis", "weibull"

Value

Returns: Empirical and theoretical density plots, Empirical and theoretical CDFs, Q-Q plot, P-P plot

Author(s)

F. Barrio-Parra

See Also

plotdist from Library (fitdstrplus)

Examples

```
set.seed(123)
a <- rnorm(n = 100, mean = 10, sd = 1)
plot_fit_dist(a, "norm")</pre>
```

random_number_generator

Random number generator

Description

Return a vector of n random numbers following a truncated distribution (dist) in agreement with a fitted parameters "Fited"

Usage

random_number_generator(n, Fited, dist, a, b)

Arguments

The number of desired generated numbers
A list contaning the parameters obtained by application of Fit_dist_parameter
Character vector indicating the distribution to be applied:"norm", "lnorm", "geom", "exp", "pois", "cauchy", "logis", "weibull"
Truncation Lower limit
Truncation Upper limit

Value

A vector of n random numbers

Author(s)

F. Barrio-Parra

See Also

Fit_dist_parameter

Examples

RISK

Description

Returns the Risk estimation (carcinogenic effects)

Usage

RISK(I, SF)

Arguments

I	Intake Rate [mg/Kg*day]
SF	Slope Factor [(mg/Kg*day)^-1] (chemical specific)

Value

Risk [-]

Author(s)

F. Barrio-Parra

Examples

Assessing if there is carcinogenic risk for an adult receptor that drinks water with 1000 ug/L # of hexaclorobence (Oral Slope Factor (IRIS data base) = 1.6 [mg/Kg*day]^-1) in a residencial # scenario (default EPA Maximum Reasonable Exposure parameters)

RISK (I = DWIR(CW=1), SF = 1.6)

Description

Returns the Risk for dermal exposure with chemicals (carcinogenic effects)

Usage

RISKdermal(AD, SF, GI)

RISKInhal

Arguments

AD	Absorbed dose [mg/Kg*day]
SF	Slope Factor [(mg/Kg*day)^-1] (chemical specific)
GI	Gastrointestinal Absorption factor (chemical specific) [-]

Value

Risk [-]

Author(s)

F. Barrio-Parra

See Also

AD EnviroPRA

Examples

```
# Assess if there is carcinogenic risk for an dadult thorug dermal
# contact exposed to a soil that contains 45 mg/Kg of As in a residencial
# scenario (default EPA Maximum Reasonable Exposure parameters)
SFAs = 1.5
# Dermal Absorption Factor
ABSAs = 3e-02
# Gastrointestinal Absorption Factor
GIAs = 1
I = AD (CS = 45,ABS = ABSAs)
RISKdermal (AD = I, SF = SFAs, GI = GIAs)
```

RISKInhal Risk for inhalation of vapors

Description

Returns the risk (carcinogenic effects) for inhalation of vapors

Usage

RISKInhal(URi, I)

sampler

Arguments

URi	Inhalation Unit risk [(ug/m^3)^-1]
I	Inhalated dose (mg/m ³)

Value

Risk [-]

Examples

Assess if there is cancer risk for the exposure of an adult # (Reasonable Maximum Exposure) to a benzene air concentration of 2 mg/ m^3

RISKInhal (I = AIR (CA = 2), URi = 7.8e-06)

sampler

Execute sampling with replacement

Description

Auxiliar function

Usage

sampler(n, a)

Arguments

n	Number of sampling iterations
а	data vector

Value

Resampled vector of length n

Author(s)

F. Barrio-Parra

Examples

a <- rnorm (n = 20, mean = 0, sd = 1)

b <- sampler (n = 100, a = a)</pre>

Description

Function that return if the p-value allows to accept H0 in a Kolmogorov Smirnov or Anderson Darling test

Usage

sig(n)

Arguments n

p-value

Value

Text string ("Significant"" / "Not Significant"")

Examples

sig (0.001)

sig (0.1)

SIR

Chemical intake by accidental soil ingestion

Description

Estimates the chemical Intake rate by accidental soil ingestion [mg/Kg*day]

Usage

SIR(CS = 1, IR = 100, FI = 1, EF = 350, ED = 24, BW = 80, AT = 365 * 70)

Arguments

CS	Chemical concentration in soil [mg/Kg]
IR	Soil Ingestion Rate [mg/Day]
FI	Fraction ingested from contaminated source [-]
EF	Exposure frequency [day/yr]
ED	Exposure duration [yr]
BW	Body weight [Kg]
AT	Averaging time [day] (Note that for No carcinogenic effects AT should be equal to 365*ED)

23

sig

SIRboot

Value

Chemical intake rate by soil ingestion I [mg/Kg*day]

Author(s)

F. Barrio-Parra

References

US Environmental Protection Agency, 2011. Exposure Factors Handbook: 2011 Edition. U.S. Environmental Protection Agency, EPA/600/R-(September), pp 1466.

Examples

```
# Ingestion rate for a children weighing 20 Kg who ingest 200 mg
# of soil every day, 250 days per year during 10 years. 95-UCL of
# Arsenic in soil is 25 mg/Kg
# Carcinogenic effects
SIR ( CS = 25, BW = 20, IR = 200, ED = 10, EF = 250)
# Systemic effects
SIR ( CS = 25, BW = 20, IR = 200, ED = 10, EF = 250, AT = 365*10)
```

SIRboot

Chemical intake by accidental soil ingestion by bootstrap

Description

Estimates the chemical Intake rate by accidental soil ingestion [mg/Kg*day]

Usage

SIRboot(n, CS, IR, FI, EF, ED, BW, AT)

Arguments

n	Output vector length
CS	Chemical concentrtion in soil [mg/Kg]
IR	Soil Ingestion Rate [mg/Day]
FI	Fraction ingested from contaminated source [-]
EF	Exposure frequency [day/yr]
ED	Exposure duration [yr]
BW	Body weight [Kg]
AT	Averaging time [day] (Note that for No carcinogenic effects AT should be equal to 365*ED)

Value

Chemical intake rate by soil ingestion I [mg/Kg*day]

Examples

```
# Carcinogenic effects
c <- rnorm( n= 10, mean = 22, sd = 2 )
b <- rnorm( n= 100, mean = 20, sd = 5 )
SIRboot (n = 1000, CS = c, BW = b, IR = 200, ED = 10, EF = 250)</pre>
```

VI

Chemical intake by ingestion of vegetables

Description

Estimates the chemical Intake rate by ingestion of contaminated fruits and vegetables [mg/Kg*day]

Usage

VI(CF = 1, IR = 210, FI = 1, EF = 350, ED = 24, BW = 80, AT = 365 * 70)

Arguments

CF	Chemical concentration in food [mg/Kg]
IR	Vegetables Ingestion Rate [g / Kg * Day]
FI	Fraction ingested from contaminated source [-]
EF	Exposure frequency [day/yr]
ED	Exposure duration [yr]
BW	Body weight (kg)
AT	Averaging time [day] (For No carcinogenic effects $AT = 365 * ED$)

Value

Chemical intake rate by vegetable ingestion I [mg/Kg*day]

Author(s)

F. Barrio-Parra

References

US Environmental Protection Agency, 2011. Exposure Factors Handbook: 2011 Edition. U.S. Environmental Protection Agency, EPA/600/R-(September), pp 1466.

Examples

Assess the chemical intake by an adult that eats lettuce with a concentration of 2 mg/ Kg
in a maximum reasonable exposure scenario for non- carcinogenic effects

VI (CF = 2, AT = 365*24)

VIboot

Chemical intake by ingestion of vegetables by bootstrap

Description

Estimates the chemical Intake rate by ingestion of contaminated fruits and vegetables [mg/Kg*day]

Usage

VIboot(n, CF, IR, FI, EF, ED, BW, AT)

Arguments

n	Output vector length
CF	Chemical concentrtion in food [mg/Kg]
IR	Vegetables Ingestion Rate [g / Kg * Day]
FI	Fraction ingested from contaminated source [-]
EF	Exposure frequency [day/yr]
ED	Exposure duration [yr]
BW	Body Weight [Kg]
AT	Averaging time [day] (For No carcinogenic effects $AT = 365 * ED$)

Value

A vector of Chemical intake rate by vegetable ingestion I [mg/Kg*day]

Examples

Assess the chemical intake by an adult that eats lettuce with a concentration of 2 mg/ Kg of a # chemical with non- carcinogenic effects in a maximum reasonable exposure scenario # Figure out 10 data of Chemical concentration following a normal distribution (mean = 2, sd= 2) # and 100 Body weight data that follow a normal distribution (mean = 70, sd = 15) c <- rnorm(n= 10, mean = 2, sd = 2) b <- rnorm(n= 100, mean = 70, sd = 5) VIboot (n = 1000, CF = c, BW = b, AT = 365*24)

26

Index

* graphs plot_fit_dist, 18 * mehtods AD, 5 * methods AIR.7 AIRboot, 8 condition, 9 DWIR, 9 DWIRboot, 10 extr_par, 11 $Fit_dist_parameter, 12$ fit_dist_test, 13 HI, 14 HIdermal, 15 HIinhal, 16 INH, 17 random_number_generator, 19 RISK, 20 RISKdermal, 20 RISKInhal, 21 sampler, 22 sig, 23 SIR, 23 SIRboot, 24 VI, 25 VIboot, 26 * package EnviroPRA-package, 2 AD, 5 ADboot, 6 AIR, 7 AIRboot, 8 condition, 9 DWIR, 9 DWIRboot, 10 EnviroPRA (EnviroPRA-package), 2

EnviroPRA-package, 2 extr_par, 11 Fit_dist_parameter, 12 fit_dist_test, 13 HI, 14 HIdermal, 15 HIinhal, 16 INH, 17 plot_fit_dist, 18 random_number_generator, 19 RISK, 20 RISKdermal, 20 RISKInhal, 21 sampler, 22 sig, 23 SIR, 23 SIRboot, 24 VI, 25 VIboot, 26