Package 'FielDHub'

October 12, 2022

Title A Shiny App for Design of Experiments in Life Sciences

Version 1.2.1

Description A shiny design of experiments (DOE) app that aids in the creation of traditional, un-replicated, augmented and partially-replicated designs applied to agriculture, plant breeding, forestry, animal and biological sciences.

Depends R (>= 3.6.0)

License MIT + file LICENSE

Imports config, golem, shiny (>= 1.6.0), htmltools, DT, shinythemes, turner, dplyr, shinyjqui, numbers, blocksdesign, shinycssloaders, magrittr, ggplot2, plotly, viridis, shinyalert, desplot, shinyjs

Encoding UTF-8

RoxygenNote 7.2.1

Author Didier Murillo [cre, aut], Salvador Gezan [aut], Ana Heilman [ctb], Thomas Walk [ctb], Johan Aparicio [ctb], Matthew Seefeldt [ctb], Richard Horsley [ctb], North Dakota State University [cph]

Maintainer Didier Murillo <didier.murilloflorez@ndsu.edu>

Suggests testthat (>= 3.0.0), spelling, rlang, glue, knitr, rmarkdown

Config/testthat/edition 3

URL https://github.com/DidierMurilloF/FielDHub,

https://didiermurillof.github.io/FielDHub/

BugReports https://github.com/DidierMurilloF/FielDHub/issues

Language en-US

VignetteBuilder knitr

NeedsCompilation no

Repository CRAN Date/Publication 2022-09-20 21:50:15 UTC

R topics documented:

alpha_lattice	2
CRD	4
diagonal_arrangement	6
full_factorial	8
incomplete_blocks	10
latin_square	12
optimized_arrangement	14
partially_replicated	16
plot.FielDHub	18
print.FielDHub	19
print.fieldLayout	20
print.summary.FielDHub	20
RCBD	21
RCBD_augmented	
rectangular_lattice	
row_column	
run_app	
split_families	
split_plot	
split_split_plot	
square_lattice	
strip_plot	
summary.FielDHub	37
	20
	- 39

Index

alpha_lattice Generates an Alpha Design

Description

Randomly generates an alpha design like alpha(0,1) across multiple locations.

Usage

```
alpha_lattice(
  t = NULL,
  k = NULL,
  r = NULL,
  l = 1,
  plotNumber = 101,
  locationNames = NULL,
```

```
seed = NULL,
data = NULL
)
```

Arguments

t	Number of treatments.
k	Size of incomplete blocks (number of units per incomplete block).
r	Number of full blocks (or resolvable replicates) (also number of replicates per treatment).
1	Number of locations. By default $1 = 1$.
plotNumber	Numeric vector with the starting plot number for each location. By default plotNumber = 101.
locationNames	(optional) String with names for each of the 1 locations.
seed	(optional) Real number that specifies the starting seed to obtain reproducible designs.
data	(optional) Data frame with label list of treatments.

Value

A list with two elements.

- infoDesign is a list with information on the design parameters.
- fieldBook is a data frame with the alpha design field book.

Author(s)

Didier Murillo [aut], Salvador Gezan [aut], Ana Heilman [ctb], Thomas Walk [ctb], Johan Aparicio [ctb], Richard Horsley [ctb]

References

Edmondson., R. N. (2021). blocksdesign: Nested and crossed block designs for factorial and unstructured treatment sets. https://CRAN.R-project.org/package=blocksdesign

```
# Example 2: Generates an alpha design with 3 full blocks and 25 treatment.
# Size of IBlocks k = 5.
# In this case, we show how to use the option data.
treatments <- paste("G-", 1:25, sep = "")</pre>
ENTRY <- 1:25
treatment_list <- data.frame(list(ENTRY = ENTRY, TREATMENT = treatments))</pre>
head(treatment_list)
alphalattice2 <- alpha_lattice(t = 25,</pre>
                                k = 5,
                                r = 3,
                                1 = 1,
                                plotNumber = 1001,
                                locationNames = "A",
                                seed = 1945,
                                data = treatment_list)
alphalattice2$infoDesign
head(alphalattice2$fieldBook, 10)
```

CRD

4

Generates a Completely Randomized Design (CRD)

Description

It randomly generates a completely randomized design.

Usage

```
CRD(
   t = NULL,
   reps = NULL,
   plotNumber = 101,
   locationName = NULL,
   seed = NULL,
   data = NULL
)
```

t	An integer number with total number of treatments or a vector of dimension t with labels.
reps	Number of replicates of each treatment.
plotNumber	Starting plot number. By default plotNumber = 101.
locationName	(optional) Name of the location.
seed	(optional) Real number that specifies the starting seed to obtain reproducible designs.
data	(optional) Data frame with the 2 columns with labels of each treatments and its number of replicates.

A list with two elements.

- infoDesign is a list with information on the design parameters.
- fieldBook is a data frame with the CRD field book.

Author(s)

Didier Murillo [aut], Salvador Gezan [aut], Ana Heilman [ctb], Thomas Walk [ctb], Johan Aparicio [ctb], Richard Horsley [ctb]

References

Federer, W. T. (1955). Experimental Design. Theory and Application. New York, USA. The Macmillan Company.

```
# Example 1: Generates a CRD design with 10 treatments and 5 reps each.
crd1 <- CRD(t = 10,
            reps = 5,
            plotNumber = 101,
            seed = 1987,
            locationName = "Fargo")
crd1$infoDesign
head(crd1$fieldBook,10)
# Example 2: Generates a CRD design with 15 treatments and 6 reps each.
Gens <- paste("Wheat", 1:15, sep = "")</pre>
crd2 <- CRD(t = Gens,</pre>
            reps = 6,
            plotNumber = 1001,
            seed = 1654,
            locationName = "Fargo")
crd2$infoDesign
head(crd2$fieldBook,10)
# Example 3: Generates a CRD design with 12 treatments and 4 reps each.
# In this case, we show how to use the option data.
treatments <- paste("ND-", 1:12, sep = "")</pre>
treatment_list <- data.frame(list(TREATMENT = treatments, REP = 4))</pre>
head(treatment_list)
crd3 <- CRD(t = NULL,
            reps = NULL,
            plotNumber = 2001,
            seed = 1655,
            locationName = "Cali",
            data = treatment_list)
crd3$infoDesign
head(crd3$fieldBook,10)
```

diagonal_arrangement Spatial Un-replicated Diagonal Arrangement Design

Description

Randomly generates an spatial un-replicated diagonal arrangement design.

Usage

```
diagonal_arrangement(
  nrows = NULL,
 ncols = NULL,
 lines = NULL,
  checks = NULL,
 planter = "serpentine",
  1 = 1,
  plotNumber = 101,
 kindExpt = "SUDC",
  splitBy = "row",
  seed = NULL,
 blocks = NULL,
  exptName = NULL,
 locationNames = NULL,
 data = NULL
)
```

nrows	Number of rows in the field.
ncols	Number of columns in the field.
lines	Number of genotypes, experimental lines or treatments.
checks	Number of genotypes checks.
planter	Option for serpentine or cartesian plot arrangement. By default planter = 'serpentine'.
1	Number of locations or sites. By default 1 = 1.
plotNumber	Numeric vector with the starting plot number for each location. By default plotNumber = 101.
kindExpt	Type of diagonal design, with single options: Single Un-replicated Diagonal Checks 'SUDC' and Decision Blocks Un-replicated Design with Diagonal Checks 'DBUDC' for multiple experiments. By default kindExpt = 'SUDC'.
splitBy	Option to split the field when kindExpt = 'DBUDC' is selected. By default splitBy = 'row'.
seed	(optional) Real number that specifies the starting seed to obtain reproducible designs.

blocks	Number of experiments or blocks to generate an DBUDC design. If kindExpt = 'DBUDC' and data is null, blocks are mandatory.
exptName	(optional) Name of the experiment.
locationNames	(optional) Names each location.
data	(optional) Data frame with 2 columns: ENTRY NAME .

A list with five elements.

- infoDesign is a list with information on the design parameters.
- layoutRandom is a matrix with the randomization layout.
- plotsNumber is a matrix with the layout plot number.
- data_entry is a data frame with the data input.
- fieldBook is a data frame with field book design. This includes the index (Row, Column).

Author(s)

Didier Murillo [aut], Salvador Gezan [aut], Ana Heilman [ctb], Thomas Walk [ctb], Johan Aparicio [ctb], Richard Horsley [ctb]

References

Clarke, G. P. Y., & Stefanova, K. T. (2011). Optimal design for early-generation plant breeding trials with unreplicated or partially replicated test lines. Australian & New Zealand Journal of Statistics, 53(4), 461–480.

```
# Example 1: Generates a spatial single diagonal arrangement design in one location
# with 270 treatments and 30 check plots for a field with dimensions 15 rows x 20 cols
# in a serpentine arrangement.
spatd <- diagonal_arrangement(</pre>
 nrows = 15,
 ncols = 20,
 lines = 270,
 checks = 4,
 plotNumber = 101,
 kindExpt = "SUDC",
 planter = "serpentine",
 seed = 1987,
 exptName = "20WRY1",
 locationNames = "MINOT"
)
spatd$infoDesign
spatd$layoutRandom
spatd$plotsNumber
head(spatd$fieldBook, 12)
```

```
# Example 2: Generates a spatial decision block diagonal arrangement design in one location
# with 720 treatments allocated in 5 experiments or blocks for a field with dimensions
# 30 rows x 26 cols in a serpentine arrangement. In this case, we show how to set up the data
# option with the entries list.
checks <- 5;expts <- 5
list_checks <- paste("CH", 1:checks, sep = "")</pre>
treatments <- paste("G", 6:725, sep = "")</pre>
treatment_list <- data.frame(list(ENTRY = 1:725, NAME = c(list_checks, treatments)))</pre>
head(treatment_list, 12)
tail(treatment_list, 12)
spatDB <- diagonal_arrangement(</pre>
 nrows = 30,
 ncols = 26,
 checks = 5,
 plotNumber = 1,
 kindExpt = "DBUDC",
 planter = "serpentine",
 splitBy = "row",
 blocks = c(150,155,95,200,120),
 data = treatment_list
)
spatDB$infoDesign
spatDB$layoutRandom
spatDB$plotsNumber
head(spatDB$fieldBook,12)
```

Example 3: Generates a spatial decision block diagonal arrangement design in one location # with 270 treatments allocated in 3 experiments or blocks for a field with dimensions # 20 rows x 15 cols in a serpentine arrangement. Which in turn is an augmented block (3 blocks). spatAB <- diagonal_arrangement(nrows = 20, ncols = 15, lines = 270,</pre>

```
checks = 4,
plotNumber = c(1,1001,2001),
kindExpt = "DBUDC",
planter = "serpentine",
exptName = c("20WRA", "20WRB", "20WRC"),
blocks = c(90, 90, 90),
splitBy = "column")
spatAB$infoDesign
spatAB$layoutRandom
spatAB$layoutRandom
spatAB$plotsNumber
head(spatAB$fieldBook,12)
```

full_factorial Generates a Full Factorial Design

Description

It randomly generates a full factorial design across locations.

8

full_factorial

Usage

```
full_factorial(
  setfactors = NULL,
  reps = NULL,
  l = 1,
  type = 2,
  plotNumber = 101,
  continuous = FALSE,
  planter = "serpentine",
  seed = NULL,
  locationNames = NULL,
  factorLabels = TRUE,
  data = NULL
)
```

Arguments

setfactors	Numeric vector with levels of each factor.
reps	Number of replicates (full blocks).
1	Number of locations. By default $1 = 1$.
type	Option for CRD or RCBD designs. Values are type = 1 (CRD) or type = 2 (RCBD). By default type = 2.
plotNumber	Numeric vector with the starting plot number for each location. By default plotNumber = 101.
continuous	Logical for plot number continuous or not. By default continuous = FALSE.
planter	Option for serpentine or cartesian plot arrangement. By default planter = 'serpentine'.
seed	(optional) Real number that specifies the starting seed to obtain reproducible designs.
locationNames	(optional) Names for each location.
factorLabels	(optional) If TRUE retain the levels labels from the original data set otherwise, numeric labels will be assigned. Default is factorLabels =TRUE.
data	(optional) Data frame with the labels of factors.

Value

A list with two elements.

- infoDesign is a list with information on the design parameters.
- fieldBook is a data frame with the full factorial field book.

Author(s)

Didier Murillo [aut], Salvador Gezan [aut], Ana Heilman [ctb], Thomas Walk [ctb], Johan Aparicio [ctb], Richard Horsley [ctb]

References

Federer, W. T. (1955). Experimental Design. Theory and Application. New York, USA. The Macmillan Company.

Examples

```
# Example 1: Generates a full factorial with 3 factors each with 2 levels.
# This in an RCBD arrangement with 3 reps.
fullFact1 <- full_factorial(setfactors = c(2,2,2), reps = 3, l = 1, type = 2,</pre>
                             plotNumber = 101,
                             continuous = TRUE,
                             planter = "serpentine",
                             seed = 325,
                             locationNames = "FARGO")
fullFact1$infoDesign
head(fullFact1$fieldBook,10)
# Example 2: Generates a full factorial with 3 factors and each with levels: 2,3,
# and 2, respectively. In this case, we show how to use the option data
FACTORS <- rep(c("A", "B", "C"), c(2,3,2))</pre>
LEVELS <- c("a0", "a1", "b0", "b1", "b2", "c0", "c1")
data_factorial <- data.frame(list(FACTOR = FACTORS, LEVEL = LEVELS))</pre>
print(data_factorial)
# This in an RCBD arrangement with 5 reps in 3 locations.
fullFact2 <- full_factorial(setfactors = NULL, reps = 5, 1 = 3, type = 2,</pre>
                             plotNumber = c(101, 1001, 2001),
                             continuous = FALSE,
                             planter = "serpentine",
                             seed = 326,
                             locationNames = c("Loc1", "Loc2", "Loc3"),
                             data = data_factorial)
fullFact2$infoDesign
head(fullFact2$fieldBook,10)
```

incomplete_blocks Generates a Resolvable Incomplete Block Design

Description

Randomly generates a resolvable incomplete block design (IBD) of characteristics (t, k, r). The randomization can be done across locations.

Usage

incomplete_blocks(
 t = NULL,
 k = NULL,
 r = NULL,

incomplete_blocks

```
l = 1,
plotNumber = 101,
locationNames = NULL,
seed = NULL,
data = NULL
```

Arguments

)

t	Number of treatments.
k	Size of incomplete blocks (number of units per incomplete block).
r	Number of full blocks (or resolvable replicates) (also number of replicates per treatment).
1	Number of locations. By default 1 = 1.
plotNumber	Numeric vector with the starting plot number for each location. By default plotNumber = 101.
locationNames	(optional) Names for each location.
seed	(optional) Real number that specifies the starting seed to obtain reproducible designs.
data	(optional) Data frame with label list of treatments.

Value

A list with two elements.

- infoDesign is a list with information on the design parameters.
- fieldBook is a data frame with the incomplete block design field book.

Author(s)

Didier Murillo [aut], Salvador Gezan [aut], Ana Heilman [ctb], Thomas Walk [ctb], Johan Aparicio [ctb], Richard Horsley [ctb]

References

Edmondson., R. N. (2021). blocksdesign: Nested and crossed block designs for factorial and unstructured treatment sets. https://CRAN.R-project.org/package=blocksdesign

latin_square

Generates a Latin Square Design

Description

Randomly generates a latin square design of up 10 treatments.

Usage

```
latin_square(
  t = NULL,
  reps = 1,
  plotNumber = 101,
  planter = "serpentine",
  seed = NULL,
  locationNames = NULL,
  data = NULL
)
```

Arguments

t	Number of treatments.
reps	Number of full resolvable squares. By default reps = 1.
plotNumber	Starting plot number. By default plotNumber = 101.
planter	Option for serpentine or cartesian arrangement. By default planter = 'serpentine'.
seed	(optional) Real number that specifies the starting seed to obtain reproducible designs.
locationNames	(optional) Name for the location.
data	(optional) Data frame with label list of treatments.

12

latin_square

Value

A list with information on the design parameters.

Data frame with the latin square field book.

A list with two elements.

- infoDesign is a list with information on the design parameters.
- fieldBook is a data frame with the latin square field book.

Author(s)

Didier Murillo [aut], Salvador Gezan [aut], Ana Heilman [ctb], Thomas Walk [ctb], Johan Aparicio [ctb], Thiago de Paula Oliveira[ctb] Richard Horsley [ctb]

References

Federer, W. T. (1955). Experimental Design. Theory and Application. New York, USA. The Macmillan Company.

```
# Example 1: Generates a latin square design with 4 treatments and 2 reps.
latinSq1 <- latin_square(t = 4,</pre>
                          reps = 2,
                          plotNumber = 101,
                          planter = "cartesian",
                          seed = 1980)
print(latinSq1)
summary(latinSq1)
head(latinSq1$fieldBook)
# Example 2: Generates a latin square design with 5 treatments and 3 reps.
latin_data <- data.frame(list(ROW = paste("Period", 1:5, sep = ""),</pre>
                               COLUMN = paste("Cow", 1:5, sep = ""),
                               TREATMENT = paste("Diet", 1:5, sep = "")))
print(latin_data)
latinSq2 <- latin_square(t = NULL,</pre>
                          reps = 3,
                          plotNumber = 101,
                          planter = "cartesian",
                          seed = 1981,
                          data = latin_data)
latinSq2$squares
latinSq2$plotSquares
head(latinSq2$fieldBook)
```

optimized_arrangement Generates an Spatial Un-replicated Optimized Arrangement Design

Description

Randomly generates a spatial un-replicated optimized arrangement design, where the distance between checks is maximized in such a way that each row and column have control plots. Note that design generation needs the dimension of the field (number of rows and columns).

Usage

```
optimized_arrangement(
    nrows = NULL,
    ncols = NULL,
    lines = NULL,
    amountChecks = NULL,
    checks = NULL,
    planter = "serpentine",
    l = 1,
    plotNumber = 101,
    seed = NULL,
    exptName = NULL,
    locationNames = NULL,
    optim = TRUE,
    data = NULL
)
```

nrows	Number of rows in the field.
ncols	Number of columns in the field.
lines	Number of genotypes, experimental lines or treatments.
amountChecks	Integer with the amount total of checks or a numeric vector with the replicates of each check label.
checks	Number of genotypes as checks.
planter	Option for serpentine or cartesian arrangement. By default planter = 'serpentine'.
1	Number of locations. By default $1 = 1$.
plotNumber	Numeric vector with the starting plot number for each location. By default plotNumber = 101.
seed	(optional) Real number that specifies the starting seed to obtain reproducible designs.
exptName	(optional) Name of the experiment.
locationNames	(optional) Name for each location.
optim	By default optim = TRUE.
data	(optional) Data frame with 3 columns: ENTRY NAME REPS.

A list with five elements.

- infoDesign is a list with information on the design parameters.
- layoutRandom is a matrix with the randomization layout.
- plotNumber is a matrix with the layout plot number.
- dataEntry is a data frame with the data input.
- genEntries is a list with the entries for replicated and no replicated part.
- fieldBook is a data frame with field book design. This includes the index (Row, Column).

Author(s)

Didier Murillo [aut], Salvador Gezan [aut], Ana Heilman [ctb], Thomas Walk [ctb], Johan Aparicio [ctb], Richard Horsley [ctb]

References

Clarke, G. P. Y., & Stefanova, K. T. (2011). Optimal design for early-generation plant breeding trials with unreplicated or partially replicated test lines. Australian & New Zealand Journal of Statistics, 53(4), 461–480.

```
# Example 1: Generates a spatial unreplicated optimized arrangement design in one location
# with 108 genotypes + 12 check plots (4 checks) for a field with dimension 10 rows x 12 cols.
OptimAd1 <- optimized_arrangement(</pre>
  nrows = 10.
  ncols = 12,
  lines = 108,
  amountChecks = 12,
  checks = 1:4,
  planter = "cartesian",
  plotNumber = 101,
  seed = 14,
  exptName = "20RW1",
  locationNames = "CASSELTON"
 )
OptimAd1$infoDesign
OptimAd1$layoutRandom
OptimAd1$plotNumber
head(OptimAd1$fieldBook,12)
# Example 2: Generates a spatial unreplicated optimized arrangement design in one location
# with 200 genotypes + 20 check plots (4 checks) for a field with dimension 10 rows x 22 cols.
# As example, we set up the data option with the entries list.
checks <- 4
list_checks <- paste("CH", 1:checks, sep = "")</pre>
treatments <- paste("G", 5:204, sep = "")</pre>
REPS <- c(5, 5, 5, 5, rep(1, 200))
treatment_list <- data.frame(list(ENTRY = 1:204, NAME = c(list_checks, treatments), REPS = REPS))</pre>
```

```
head(treatment_list, 12)
tail(treatment_list, 12)
OptimAd2 <- optimized_arrangement(</pre>
  nrows = 10,
  ncols = 22,
  planter = "serpentine",
  plotNumber = 101,
  seed = 120,
  exptName = "20YWA2",
  locationNames = "MINOT",
  data = treatment_list
)
OptimAd2$infoDesign
OptimAd2$layoutRandom
OptimAd2$plotNumber
head(OptimAd2$fieldBook,12)
```

partially_replicated Generates a Spatial Partially Replicated Arrangement Design

Description

Randomly generates a spatial partially replicated design, where the distance between checks is maximized in such a way that each row and column have control plots. Note that design generation needs the dimension of the field (number of rows and columns).

Usage

```
partially_replicated(
    nrows = NULL,
    ncols = NULL,
    repGens = NULL,
    repUnits = NULL,
    planter = "serpentine",
    l = 1,
    plotNumber = 101,
    seed = NULL,
    exptName = NULL,
    locationNames = NULL,
    data = NULL
)
```

Arguments

nrows	Number of rows field.
ncols	Number of columns field.
repGens	Numeric vector with the amount genotypes to replicate.

16

repUnits	Numeric vector with the number of reps of each genotype.
planter	Option for serpentine or cartesian movement. By default planter = 'serpentine'.
1	Number of locations. By default 1 = 1.
plotNumber	Numeric vector with the starting plot number for each location. By default plotNumber = 101.
seed	(optional) Real number that specifies the starting seed to obtain reproducible designs.
exptName	(optional) Name of the experiment.
locationNames	(optional) Name for each location.
data	(optional) Dataframe with 3 columns: ENTRY NAME REPS.

A list with five elements.

- infoDesign is a list with information on the design parameters.
- layoutRandom is a matrix with the randomization layout.
- plotNumber is a matrix with the layout plot number.
- dataEntry is a data frame with the data input.
- genEntries is a list with the entries for replicated and no replicated part.
- fieldBook is a data frame with field book design. This includes the index (Row, Column).

Author(s)

Didier Murillo [aut], Salvador Gezan [aut], Ana Heilman [ctb], Thomas Walk [ctb], Johan Aparicio [ctb], Richard Horsley [ctb]

References

Cullis, S., B. R., & Coombes, N. E. (2006). On the design of early generation variety trials with correlated data. Journal of Agricultural, Biological, and Environmental Statistics, 11, 381–393. https://doi.org/10.1198/108571106X154443

Examples

plotNumber = 101,

seed = 77

```
# Example 1: Generates a spatial optimized partially replicated arrangement design in one
# location with 312 genotypes for a field with dimensions 15 rows x 28 cols.
# Note that there are 250 genotypes unreplicated (only one time), 50 genotypes replicated
# two times, and 10 genotypes replicated three times, and two checks 20 times each one.
SpatpREP1 <- partially_replicated(
    nrows = 15,
    ncols = 28,
    repGens = c(250,50,10,1,1),
    repUnits = c(1,2,3,20,20),
    planter = "cartesian",
```

```
)
SpatpREP1$infoDesign
SpatpREP1$layoutRandom
SpatpREP1$plotNumber
head(SpatpREP1$fieldBook,12)
# Example 2: Generates a spatial optimized partially replicated arrangement design with 492
# genotypes in a field with dimensions 30 rows x 20 cols. Note that there 384 genotypes
# unreplicated (only one time), 108 genotypes replicated two times.
# In this case we don't have check plots.
# As example, we set up the data option with the entries list.
NAME <- paste("G", 1:492, sep = "")
repGens = c(108, 384);repUnits = c(2,1)
REPS <- rep(repUnits, repGens)</pre>
treatment_list <- data.frame(list(ENTRY = 1:492, NAME = NAME, REPS = REPS))</pre>
head(treatment_list, 12)
tail(treatment_list, 12)
SpatpREP2 <- partially_replicated(nrows = 30,</pre>
                                   ncols = 20,
                                   planter = "serpentine",
                                   plotNumber = 101,
                                   seed = 41,
                                   data = treatment_list)
SpatpREP2$infoDesign
SpatpREP2$layoutRandom
SpatpREP2$plotNumber
head(SpatpREP2$fieldBook,10)
```

plot.FielDHub Plot a FielDHub object

Description

Draw a field layout plot for a FielDHub object.

Usage

```
## S3 method for class 'FielDHub'
plot(x, ...)
```

Arguments

х	a object inheriting from class FielDHub
	further arguments passed to utility function plot_layout().
	• layout a integer. Options available depend on the type of design and its characteristics
	• 1 a integer to specify the location to plot.
	 planter it can be serpentine or cartesian.
	 stacked it can be vertical or horizontal stacked layout.

18

- a plot object inheriting from class fieldLayout
- field_book a data frame with the fieldbook that includes the coordinates ROW and COL-UMN.

Author(s)

Didier Murillo [aut]

Examples

```
## Not run:
# Example 1: Plot a RCBD design with 24 treatments and 3 reps.
s <- RCBD(t = 24, reps = 3, plotNumber = 101, seed = 12)
plot(s)
## End(Not run)
```

print.FielDHub *Print a* FielDHub *object*

Description

Prints information about any FielDHub function.

Usage

```
## S3 method for class 'FielDHub'
print(x, n, ...)
```

Arguments

Х	an object inheriting from class
n	a single integer. If positive or zero, size for the resulting object: number of elements for a vector (including lists), rows for a matrix or data frame or lines for a function. If negative, all but the n last/first number of elements of x.
	further arguments passed to head.

Value

an object inheriting from class FielDHub

Author(s)

Thiago de Paula Oliveira, <thiago.paula.oliveira@alumni.usp.br>[aut], Didier Murillo [aut]

Examples

```
# Example 1: Generates a CRD design with 5 treatments and 5 reps each.
crd1 <- CRD(t = 5, reps = 5, plotNumber = 101,
seed = 1985, locationName = "Fargo")
crd1$infoDesign
print(crd1)
```

print.fieldLayout *Print a* fieldLayout *plot object*

Description

Prints a plot object of class fieldLayout.

Usage

S3 method for class 'fieldLayout'
print(x, ...)

Arguments

х	a plot object inheriting from class fieldLayout.
	unused, for extensibility.

Value

a plot object inheriting from class fieldLayout.

Author(s)

Didier Murillo [aut]

print.summary.FielDHub

Print the summary of a FielDHub object

Description

Print summary information on the design parameters, and data frame structure

Usage

```
## S3 method for class 'summary.FielDHub'
print(x, ...)
```

20

RCBD

Arguments

x	an object inheriting from class FielDHub
	Unused, for extensibility

Value

an object inheriting from class FielDHub

Author(s)

Thiago de Paula Oliveira, <thiago.paula.oliveira@alumni.usp.br>[aut], Didier Murillo [aut]

RCBD

Generates a Randomized Complete Block Design (RCBD)

Description

It randomly generates a randomized complete block design (RCBD) across locations.

Usage

```
RCBD(
  t = NULL,
  reps = NULL,
  l = 1,
  plotNumber = 101,
  continuous = FALSE,
  planter = "serpentine",
  seed = NULL,
  locationNames = NULL,
  data = NULL
)
```

t	An integer number with total number of treatments or a vector of dimension t with labels.
reps	Number of replicates (full blocks) of each treatment.
1	Number of locations. By default 1 = 1.
plotNumber	Numeric vector with the starting plot number for each location. By default plotNumber = 101.
continuous	Logical value for plot number continuous or not. By default continuous = FALSE.
planter	Option for serpentine or cartesian arrangement. By default planter = 'serpentine'.

data (optional) Data frame with the labels of treatments.

Value

A list with five elements.

- infoDesign is a list with information on the design parameters.
- layoutRandom is the RCBD layout randomization for each location.
- plotNumber is the plot number layout for each location.
- fieldBook is a data frame with the RCBD field book design.

Author(s)

Didier Murillo [aut], Salvador Gezan [aut], Ana Heilman [ctb], Thomas Walk [ctb], Johan Aparicio [ctb], Richard Horsley [ctb]

References

Federer, W. T. (1955). Experimental Design. Theory and Application. New York, USA. The Macmillan Company.

```
# Example 1: Generates a RCBD design with 3 blocks and 20 treatments across 3 locations.
rcbd1 <- RCBD(t = LETTERS[1:20], reps = 5, 1 = 3,</pre>
              plotNumber = c(101, 1001, 2001),
              continuous = TRUE,
              planter = "serpentine",
              seed = 1020,
              locationNames = c("FARGO", "MINOT", "CASSELTON"))
rcbd1$infoDesign
rcbd1$layoutRandom
rcbd1$plotNumber
head(rcbd1$fieldBook)
# Example 2: Generates a RCBD design with 6 blocks and 18 treatments in one location.
# In this case, we show how to use the option data.
treatments <- paste("ND-", 1:18, sep = "")</pre>
treatment_list <- data.frame(list(TREATMENT = treatments))</pre>
head(treatment_list)
rcbd2 <- RCBD(reps = 6, 1 = 1,
              plotNumber = 101,
              continuous = FALSE,
              planter = "serpentine",
              seed = 13,
              locationNames = "IBAGUE",
              data = treatment_list)
```

rcbd2\$infoDesign rcbd2\$layoutRandom rcbd2\$plotNumber head(rcbd2\$fieldBook)

RCBD_augmented	Generates an Augmented Randomized Complete Block Design (AR-
	CBD)

Description

It randomly generates an augmented randomized complete block design across locations (ARCBD).

Usage

```
RCBD_augmented(
  lines = NULL,
 checks = NULL,
 b = NULL,
  1 = 1,
  planter = "serpentine",
 plotNumber = 101,
 exptName = NULL,
  seed = NULL,
  locationNames = NULL,
  repsExpt = 1,
  random = TRUE,
  data = NULL,
 nrows = NULL,
  ncols = NULL
)
```

lines	Treatments, number of lines for test.
checks	Number of checks per augmented block.
b	Number of augmented blocks.
1	Number of locations. By default $1 = 1$.
planter	Option for serpentine or cartesian arrangement. By default planter = 'serpentine'.
plotNumber	Numeric vector with the starting plot number for each location. By default plotNumber = 101.
exptName	(optional) Name of experiment.
seed	(optional) Real number that specifies the starting seed to obtain reproducible designs.

locationNames	(optional) Name for each location.
repsExpt	(optional) Number of reps of experiment. By default repsExpt = 1.
random	Logical value to randomize treatments or not. By default random = TRUE.
data	(optional) Data frame with the labels of treatments.
nrows	(optional) Number of rows in the field.
ncols	(optional) Number of columns in the field.

A list with five elements.

- infoDesign is a list with information on the design parameters.
- layoutRandom is the ARCBD layout randomization for the first location.
- plotNumber is the plot number layout for the first location.
- exptNames is the experiment names layout.
- data_entry is a data frame with the data input.
- fieldBook is a data frame with the ARCBD field book.

Author(s)

Didier Murillo [aut], Salvador Gezan [aut], Ana Heilman [ctb], Thomas Walk [ctb], Johan Aparicio [ctb], Richard Horsley [ctb]

References

Federer, W. T. (1955). Experimental Design. Theory and Application. New York, USA. The Macmillan Company.

```
# Example 1: Generates an ARCBD with 6 blocks, 3 checks for each, and 50 treatments
# in two locations.
ARCBD1 <- RCBD_augmented(lines = 50, checks = 3, b = 6, 1 = 2,
                         planter = "cartesian",
                         plotNumber = c(1, 1001),
                         seed = 23,
                         locationNames = c("FARGO", "MINOT"))
ARCBD1$infoDesign
ARCBD1$layoutRandom
ARCBD1$exptNames
ARCBD1$plotNumber
head(ARCBD1$fieldBook, 12)
# Example 2: Generates an ARCBD with 17 blocks, 4 checks for each, and 350 treatments
# in 3 locations.
# In this case, we show how to use the option data.
checks <- 4;
list_checks <- paste("CH", 1:checks, sep = "")</pre>
```

rectangular_lattice

rectangular_lattice Generates a Rectangular Lattice Design.

Description

It randomly generates a rectangular lattice design across locations.

Usage

```
rectangular_lattice(
  t = NULL,
  k = NULL,
  r = NULL,
  l = 1,
  plotNumber = 101,
  locationNames = NULL,
  seed = NULL,
  data = NULL
)
```

t	Number of treatments.
k	Size of incomplete blocks (number of units per incomplete block).
r	Number of blocks (full resolvable replicates).
1	Number of locations. By default $1 = 1$.
plotNumber	Numeric vector with the starting plot number for each location. By default plotNumber = 101.
locationNames	(optional) Names for each location.
seed	(optional) Real number that specifies the starting seed to obtain reproducible designs.
data	(optional) Data frame with label list of treatments.

A list with two elements.

- infoDesign is a list with information on the design parameters.
- fieldBook is a data frame with the rectangular lattice design field book.

Author(s)

Didier Murillo [aut], Salvador Gezan [aut], Ana Heilman [ctb], Thomas Walk [ctb], Johan Aparicio [ctb], Richard Horsley [ctb]

References

Edmondson., R. N. (2021). blocksdesign: Nested and crossed block designs for factorial and unstructured treatment sets. https://CRAN.R-project.org/package=blocksdesign

Examples

```
# Example 1: Generates a rectangular lattice design with 6 full blocks, 4 units per IBlock (k)
# and 20 treatments in one location.
rectangularLattice1 <- rectangular_lattice(t = 20, k = 4, r = 6, l = 1,</pre>
                                             plotNumber = 101,
                                             locationNames = "FARGO",
                                             seed = 126)
rectangularLattice1$infoDesign
head(rectangularLattice1$fieldBook,12)
# Example 2: Generates a rectangular lattice design with 5 full blocks, 7 units per IBlock (k)
# and 56 treatments across 2 locations.
# In this case, we show how to use the option data.
treatments <- paste("ND-", 1:56, sep = "")</pre>
ENTRY <- 1:56
treatment_list <- data.frame(list(ENTRY = ENTRY, TREATMENT = treatments))</pre>
head(treatment_list)
rectangularLattice2 <- rectangular_lattice(t = 56, k = 7, r = 5, l = 2,</pre>
                                             plotNumber = c(1001, 2001),
                                             locationNames = c("Loc1", "Loc2"),
                                             seed = 127,
                                             data = treatment_list)
rectangularLattice2$infoDesign
head(rectangularLattice2$fieldBook,12)
```

row_column

Generates a Resolvable Row-Column Design (RowColD)

row_column

Description

It randomly generates a resolvable row-column designs (RowColD). Note that design optimization is only done at the level of rows and not columns; hence, design is suboptimal. The randomization can be done across locations.

Usage

```
row_column(
   t = NULL,
   nrows = NULL,
   r = NULL,
   l = 1,
   plotNumber = 101,
   locationNames = NULL,
   seed = NULL,
   data = NULL
)
```

Arguments

t	Number of treatments.
nrows	Number of rows of a full resolvable replicate.
r	Number of blocks (full resolvable replicates).
1	Number of locations. By default 1 = 1.
plotNumber	Numeric vector with the starting plot number for each location. By default plotNumber = 101.
locationNames	(optional) Names for each location.
seed	(optional) Real number that specifies the starting seed to obtain reproducible designs.
data	(optional) Data frame with label list of treatments

Value

A list with four elements.

- infoDesign is a list with information on the design parameters.
- resolvableBlocks a list with the resolvable row columns blocks.
- concurrence is the concurrence matrix.
- fieldBook is a data frame with the row-column field book.

Author(s)

Didier Murillo [aut], Salvador Gezan [aut], Ana Heilman [ctb], Thomas Walk [ctb], Johan Aparicio [ctb], Richard Horsley [ctb]

References

Edmondson., R. N. (2021). blocksdesign: Nested and crossed block designs for factorial and unstructured treatment sets. https://CRAN.R-project.org/package=blocksdesign

Examples

```
# Example 1: Generates a row-column design with 3 full blocks and 36 treatments
# and 6 rows. This for one location.
rowcold1 <- row_column(t = 36, nrows = 6, r = 3, 1 = 1,
                       plotNumber= 101,
                       locationNames = "Loc1",
                       seed = 21)
rowcold1$infoDesign
rowcold1$resolvableBlocks
head(rowcold1$fieldBook,12)
# Example 2: Generates a row-column design with 3 full blocks and 30 treatments
# and 5 rows, for one location.
# In this case, we show how to use the option data.
treatments <- paste("ND-", 1:30, sep = "")</pre>
ENTRY <- 1:30
treatment_list <- data.frame(list(ENTRY = ENTRY, TREATMENT = treatments))</pre>
head(treatment_list)
rowcold2 <- row_column(t = 30, nrows = 5, r = 3, l = 1,
                       plotNumber= c(101,1001),
                       locationNames = c("A", "B"),
                       seed = 15,
                       data = treatment_list)
rowcold2$infoDesign
rowcold2$resolvableBlocks
head(rowcold2$fieldBook,12)
```

run_app

Run the Shiny Application

Description

Run the Shiny Application

Usage

run_app(...)

Arguments

... Unused, for extensibility

split_families

Value

A shiny app object

split_families Split a population of genotypes randomly into several locations.

Description

Split a population of genotypes randomly into several locations, with the aim of having approximatelly the same number of replicates of each genotype, line or treatment per location.

Usage

split_families(1 = NULL, data = NULL)

Arguments

1	Number of locations.
data	Data frame with the entry (ENTRY) and the labels of each treatment (NAME) and number of individuals per family group (FAMILY).

Value

A list with two elements.

- rowsEachlist is a table with a summary of cases.
- data_locations is a data frame with the entries for each location

Author(s)

Didier Murillo [aut], Salvador Gezan [aut], Ana Heilman [ctb], Thomas Walk [ctb], Johan Aparicio [ctb], Richard Horsley [ctb]

```
# Example 1: Split a population of 3000 and 200 families into 8 locations.
# Original dataset is been simulated.
set.seed(77)
N <- 2000; families <- 100
ENTRY <- 1:N
NAME <- paste0("SB-", 1:N)
FAMILY <- vector(mode = "numeric", length = N)
x <- 1:N
for (i in x) { FAMILY[i] <- sample(1:families, size = 1, replace = TRUE) }
gen.list <- data.frame(list(ENTRY = ENTRY, NAME = NAME, FAMILY = FAMILY))
head(gen.list)
# Now we are going to use the split_families() function.
split_population <- split_families(1 = 8, data = gen.list)</pre>
```

```
print(split_population)
summary(split_population)
head(split_population$data_locations,12)
```

split_plot

Generates a Split Plot Design

Description

It randomly generates a split plot design (SPD) across locations.

Usage

```
split_plot(
  wp = NULL,
  sp = NULL,
  reps = NULL,
  type = 2,
  l = 1,
  plotNumber = 101,
  seed = NULL,
  locationNames = NULL,
  factorLabels = TRUE,
  data = NULL
)
```

wp	Number of whole plots, as an integer or a vector.
sp	Number of sub plots per whole plot, as an integer or a vector.
reps	Number of blocks (full replicates).
type	Option for CRD or RCBD designs. Values are type = 1 (CRD) or type = 2 (RCBD). By default type = 2.
1	Number of locations. By default $1 = 1$.
plotNumber	Numeric vector with the starting plot number for each location. By default plotNumber = 101.
seed	(optional) Real number that specifies the starting seed to obtain reproducible designs.
locationNames	(optional) Names for each location.
factorLabels	(optional) If TRUE retain the levels labels from the original data set otherwise, numeric labels will be assigned. Default is factorLabels =TRUE.
data	(optional) Data frame with label list of treatments.

A list with two elements.

- infoDesign is a list with information on the design parameters.
- fieldBook is a data frame with the split plot field book.

Author(s)

Didier Murillo [aut], Salvador Gezan [aut], Ana Heilman [ctb], Thomas Walk [ctb], Johan Aparicio [ctb], Richard Horsley [ctb]

References

Federer, W. T. (1955). Experimental Design. Theory and Application. New York, USA. The Macmillan Company.

```
# Example 1: Generates a split plot design SPD with 4 whole plots, 2 sub plots per whole plot,
# and 4 reps in an RCBD arrangement. This in for a single location.
SPDExample1 <- split_plot(wp = 4, sp = 2, reps = 5, l = 1,</pre>
                            plotNumber = 101,
                            seed = 14,
                            type = 2,
                            locationNames = "FARGO")
SPDExample1$infoDesign
SPDExample1$layoutlocations
head(SPDExample1$fieldBook,12)
# Example 2: Generates a split plot design SPD with 5 whole plots
# (4 types of fungicide + one control), 10 sub plots per whole plot (10 bean varieties),
# and 6 reps in an RCBD arrangement. This in 3 locations or sites.
# In this case, we show how to use the option data.
wp <- c("NFung", paste("Fung", 1:4, sep = "")) # Fungicides (5 Whole plots)
sp <- paste("Beans", 1:10, sep = "") # Beans varieties (10 sub plot)</pre>
sp <- paste("Beans", 1:10, sep = "")</pre>
                                                    # Beans varieties (10 sub plots)
split_plot_Data <- data.frame(list(WHOLPLOT = c(wp, rep(NA, 5)), SUBPLOT = sp))</pre>
head(split_plot_Data, 12)
SPDExample2 <- split_plot(reps = 6, 1 = 3,</pre>
                            plotNumber = c(101, 1001, 2001),
                            seed = 23,
                            type = 2,
                            locationNames = c("A", "B", "C"),
                            data = split_plot_Data)
SPDExample2$infoDesign
SPDExample2$layoutlocations
head(SPDExample2$fieldBook,12)
```

split_split_plot Generates a Split Split Plot Design

Description

It randomly generates a split split plot design (SSPD) across locations.

Usage

```
split_split_plot(
  wp = NULL,
  sp = NULL,
  ssp = NULL,
  reps = NULL,
  type = 2,
  l = 1,
  plotNumber = 101,
  seed = NULL,
  locationNames = NULL,
  factorLabels = TRUE,
  data = NULL
)
```

wp	Number of whole plots, as an integer or a vector.
sp	Number of sub plots per whole plot, as an integer or a vector.
ssp	Number of sub-sub plots, as an integer or a vector.
reps	Number of blocks (full replicates).
type	Option for CRD or RCBD designs. Values are type = 1 (CRD) or type = 2 (RCBD). By default type = 2.
1	Number of locations. By default $1 = 1$.
plotNumber	Numeric vector with the starting plot number for each location. By default plotNumber = 101.
seed	(optional) Real number that specifies the starting seed to obtain reproducible designs.
locationNames	(optional) Names for each location.
factorLabels	(optional) If TRUE retain the levels labels from the original data set otherwise, numeric labels will be assigned. Default is factorLabels =TRUE.
data	(optional) Data frame with label list of treatments.

A list with two elements.

- infoDesign is a list with information on the design parameters.
- fieldBook is a data frame with the split split plot field book.

Author(s)

Didier Murillo [aut], Salvador Gezan [aut], Ana Heilman [ctb], Thomas Walk [ctb], Johan Aparicio [ctb], Richard Horsley [ctb]

References

Federer, W. T. (1955). Experimental Design. Theory and Application. New York, USA. The Macmillan Company.

```
# Example 1: Generates a split split plot design SSPD with 5 whole plots, 2 sub-plots,
# 3 sub-sub plots, and 3 reps in an RCBD arrangement. This is for one location.
SSPD1 <- split_split_plot(wp = 4, sp = 2, ssp = 3, reps = 5, l = 1,</pre>
                           plotNumber = 101,
                           seed = 23,
                           type = 2,
                           locationNames = "FARGO")
SSPD1$infoDesign
head(SSPD1$fieldBook,12)
# Example 2: Generates a split split plot design SSPD with 2 whole plost
# (Irrigation, No irrigation), 5 sub plots (4 types of fungicide + one control), and
# 10 sub-sub plots (Ten varieties of beans), and 4 reps in an RCBD arrangement.
# This is for 3 locations. In this case, we show how to use the option data.
wp <- paste("IRR_", c("NO", "Yes"), sep = "") #Irrigation (2 Whole plots)</pre>
sp <- c("NFung", paste("Fung", 1:4, sep = "")) #Fungicides (5 Sub plots)</pre>
ssp <- paste("Beans", 1:10, sep = "") #Beans varieties (10 Sub-sub plots)</pre>
split_split_plot_Data <- data.frame(list(WHOLPLOT = c(wp, rep(NA, 8)),</pre>
                                           SUBPLOT = c(sp, rep(NA, 5)),
                                           SUB_SUBPLOTS = ssp))
head(split_split_plot_Data, 10)
SSPD2 <- split_split_plot(reps = 4, 1 = 3,</pre>
                           plotNumber = c(101, 1001, 2001),
                           seed = 23,
                           type = 2,
                           locationNames = c("A", "B", "C"),
                           data = split_split_plot_Data)
SSPD2$infoDesign
head(SSPD2$fieldBook,12)
```

square_lattice

Description

It randomly generates a square lattice design across locations.

Usage

```
square_lattice(
  t = NULL,
  k = NULL,
  r = NULL,
  l = 1,
  plotNumber = 101,
  locationNames = NULL,
  seed = NULL,
  data = NULL
)
```

Arguments

t	Number of treatments.	
k	Size of incomplete blocks (number of units per incomplete block).	
r	Number of blocks (full resolvable replicates).	
1	Number of locations. By default 1 = 1.	
plotNumber	Numeric vector with the starting plot number for each location. By default plotNumber = 101.	
locationNames	(optional) Names for each location.	
seed	(optional) Real number that specifies the starting seed to obtain reproducible designs.	
data	(optional) Data frame with label list of treatments.	

Value

A list with two elements.

- infoDesign is a list with information on the design parameters.
- fieldBook is a data frame with the square lattice design field book.

Author(s)

Didier Murillo [aut], Salvador Gezan [aut], Ana Heilman [ctb], Thomas Walk [ctb], Johan Aparicio [ctb], Richard Horsley [ctb]

strip_plot

References

Edmondson., R. N. (2021). blocksdesign: Nested and crossed block designs for factorial and unstructured treatment sets. https://CRAN.R-project.org/package=blocksdesign

Examples

```
# Example 1: Generates a square lattice design with 5 full blocks, 8 units per IBlock,
# 8 IBlocks for a square number of treatmens of 64 in two locations.
squareLattice1 <- square_lattice(t = 64, k = 8, r = 5, l = 2,
                                  plotNumber = c(1001, 2001),
                                  locationNames = c("FARGO", "MINOT"),
                                  seed = 1986)
squareLattice1$infoDesign
head(squareLattice1$fieldBook,12)
# Example 2: Generates a square lattice design with 3 full blocks, 7 units per IBlock,
# 7 IBlocks for a square number of treatmens of 49 in one location.
# In this case, we show how to use the option data.
treatments <- paste("G", 1:49, sep = "")</pre>
ENTRY <- 1:49
treatment_list <- data.frame(list(ENTRY = ENTRY, TREATMENT = treatments))</pre>
head(treatment_list)
squareLattice2 <- square_lattice(t = 49, k = 7, r = 3, l = 1,</pre>
                                  plotNumber = 1001,
                                  locationNames = "CASSELTON",
                                  seed = 1986.
                                  data = treatment_list)
squareLattice2$infoDesign
head(squareLattice2$fieldBook,12)
```

strip_plot

Strip Plot Design

Description

It randomly generates a strip plot design across locations.

Usage

```
strip_plot(
  Hplots = NULL,
  Vplots = NULL,
  b = 1,
  l = 1,
  plotNumber = NULL,
  planter = "serpentine",
  locationNames = NULL,
  seed = NULL,
```

```
factorLabels = TRUE,
data = NULL
)
```

Arguments

Hplots	Number of horizontal factors, as an integer or a vector.	
Vplots	Number of vertical factors, as an integer or a vector.	
b	Number of blocks (full replicates).	
1	Number of locations. By default $1 = 1$.	
plotNumber	Numeric vector with the starting plot number for each location. By default plotNumber = 101.	
planter	Option for serpentine or cartesian arrangement. By default planter = 'serpentine'.	
locationNames	(optional) Names for each location.	
seed	(optional) Real number that specifies the starting seed to obtain reproducible designs.	
factorLabels	(optional) If TRUE retain the levels labels from the original data set otherwise, numeric labels will be assigned. Default is factorLabels =TRUE.	
data	(optional) data frame with the labels of vertical and hirizontal plots.	

Value

A list with four elements.

- infoDesign is a list with information on the design parameters.
- stripsBlockLoc is a list with the strip blocks for each location.
- plotLayouts is a list with the layout plot numbers for each location.
- fieldBook is a data frame with the strip plot field book.

Author(s)

Didier Murillo [aut], Salvador Gezan [aut], Ana Heilman [ctb], Thomas Walk [ctb], Johan Aparicio [ctb], Richard Horsley [ctb]

References

Federer, W. T. (1955). Experimental Design. Theory and Application. New York, USA. The Macmillan Company.

```
36
```

```
b = 3,
                      1 = 1,
                      plotNumber = 101,
                      planter = "serpentine",
                      locationNames = "A",
                      seed = 333)
strip1$infoDesign
strip1$stripsBlockLoc
strip1$plotLayouts
head(strip1$fieldBook,12)
# Example 2: Generates a strip plot design with 5 vertical strips and 5 horizontal strips,
# with 6 reps across to 3 locations. In this case, we show how to use the option data.
Hplots <- LETTERS[1:5]</pre>
Vplots <- LETTERS[1:4]</pre>
strip_data <- data.frame(list(HPLOTS = Hplots, VPLOTS = c(Vplots, NA)))</pre>
head(strip_data)
strip2 <- strip_plot(Hplots = 5,</pre>
                      Vplots = 5,
                      b = 6,
                      1 = 3,
                      plotNumber = c(101, 1001, 2001),
                      planter = "cartesian",
                      locationNames = c("A", "B", "C"),
                      seed = 222,
                      data = strip_data)
strip2$infoDesign
strip2$stripsBlockLoc
strip2$plotLayouts
head(strip2$fieldBook,12)
```

summary.FielDHub Summary a FielDHub object

Description

Summarise information on the design parameters, and data frame structure

Usage

```
## S3 method for class 'FielDHub'
summary(object, ...)
```

object	an object inheriting from class FielDHub
	Unused, for extensibility

an object inheriting from class summary.FielDHub

Author(s)

Thiago de Paula Oliveira, <thiago.paula.oliveira@alumni.usp.br>

```
# Example 1: Generates a CRD design with 5 treatments and 5 reps each.
crd1 <- CRD(t = 5, reps = 5, plotNumber = 101,
seed = 1985, locationName = "Fargo")
crd1$infoDesign
summary(crd1)
```

Index

alpha_lattice, 2 CRD, 4 diagonal_arrangement, 6full_factorial, 8 head, 19 incomplete_blocks, 10 latin_square, 12 optimized_arrangement, 14 partially_replicated, 16 plot.FielDHub, 18 print.FielDHub, 19 print.fieldLayout, 20 print.summary.FielDHub, 20 RCBD, 21 RCBD_augmented, 23 rectangular_lattice, 25 row_column, 26 run_app, 28 split_families, 29 split_plot, 30 split_split_plot, 32 square_lattice, 34 strip_plot, 35 summary.FielDHub, 37