
Package ‘GET’
November 16, 2022

Version 0.3-2

Date 2022-11-16

Title Global Envelopes

Encoding UTF-8

Maintainer Mari Myllymäki <mari.myllymaki@luke.fi>

Imports cluster, ggplot2, gridExtra, parallel, stats, utils,
viridisLite

Suggests crayon, geoR, gstat, sp, fda, fda.usc, locfit, mvtnorm,
patchwork, spatstat.geom, spatstat.explore, spatstat.model,
testthat, R.rsp

Description Implementation of global envelopes for a set of general d-dimensional vectors T
in various applications. A 100(1-alpha)% global envelope is a band bounded by two
vectors such that the probability that T falls outside this envelope in any of the d
points is equal to alpha. Global means that the probability is controlled simultaneously
for all the d elements of the vectors. The global envelopes can be used for graphical
Monte Carlo and permutation tests where the test statistic is a multivariate vector or
function (e.g. goodness-of-fit testing for point patterns and random sets, functional
analysis of variance, functional general linear model, n-sample test of correspondence
of distribution functions), for central regions of functional or multivariate data (e.g.
outlier detection, functional boxplot) and for global confidence and prediction bands
(e.g. confidence band in polynomial regression, Bayesian posterior prediction). See
Myllymäki and Mrkvička (2020) <arXiv:1911.06583>,
Myllymäki et al. (2017) <doi:10.1111/rssb.12172>,
Mrkvička and Myllymäki (2022) <arXiv:2008.10108>,
Mrkvička et al. (2017) <doi:10.1007/s11222-016-9683-9>,
Mrkvička et al. (2020) <doi:10.14736/kyb-2020-3-0432>,
Mrkvička et al. (2021) <doi:10.1007/s11009-019-09756-y>,
Mrkvička et al. (2022) <doi:10.1002/sim.9236>,
Mrkvička et al. (2016) <doi:10.1016/j.spasta.2016.04.005>,
Myllymäki et al. (2021) <doi:10.1016/j.spasta.2020.100436>,
Dai et al. (2022) <doi:10.5772/intechopen.100124>, and
Dvořák and Mrkvička (2022) <doi:10.1007/s00180-021-01134-y>.

License GPL-3

RoxygenNote 7.2.1

1

https://arxiv.org/abs/1911.06583
https://doi.org/10.1111/rssb.12172
https://arxiv.org/abs/2008.10108
https://doi.org/10.1007/s11222-016-9683-9
https://doi.org/10.14736/kyb-2020-3-0432
https://doi.org/10.1007/s11009-019-09756-y
https://doi.org/10.1002/sim.9236
https://doi.org/10.1016/j.spasta.2016.04.005
https://doi.org/10.1016/j.spasta.2020.100436
https://doi.org/10.5772/intechopen.100124
https://doi.org/10.1007/s00180-021-01134-y

2 R topics documented:

VignetteBuilder R.rsp

NeedsCompilation no

Author Mari Myllymäki [aut, cre],
Tomáš Mrkvička [aut],
Jiří Dvořák [ctb],
Pavel Grabarnik [ctb],
Ute Hahn [ctb],
Mikko Kuronen [ctb],
Michael Rost [ctb],
Henri Seijo [ctb]

Depends R (>= 2.10)

Repository CRAN

Date/Publication 2022-11-16 15:40:25 UTC

R topics documented:
GET-package . 3
abide_9002_23 . 8
adult_trees . 9
central_region . 10
cgec . 14
combined_scaled_MAD_envelope_test . 16
create_curve_set . 18
create_image_set . 19
crop_curves . 20
deviation_test . 21
fallen_trees . 23
fBoxplot . 24
fclustering . 25
fdr_envelope . 27
forder . 29
frank.fanova . 31
frank.flm . 33
GDPtax . 36
GET.cdf . 38
GET.composite . 39
GET.contingency . 44
GET.localcor . 46
GET.necdf . 48
GET.qq . 50
GET.spatialF . 52
GET.variogram . 54
global_envelope_test . 55
graph.fanova . 62
graph.flm . 66
imageset3 . 69

GET-package 3

is.curve_set . 71
partial_forder . 71
plot.combined_fboxplot . 72
plot.combined_global_envelope . 73
plot.combined_global_envelope2d . 74
plot.curve_set . 76
plot.curve_set2d . 77
plot.fboxplot . 77
plot.fclust . 78
plot.global_envelope . 79
plot.global_envelope2d . 81
popgrowthmillion . 82
print.combined_fboxplot . 82
print.combined_global_envelope . 83
print.curve_set . 83
print.deviation_test . 84
print.fboxplot . 84
print.fclust . 85
print.fdr_envelope . 85
print.GET_contingency . 86
print.global_envelope . 86
qdir_envelope . 87
rank_envelope . 88
residual . 90
rimov . 91
saplings . 92
subset.curve_set . 94

Index 96

GET-package Global Envelopes

Description

The GET package provides implementation of global envelopes for a set of general d-dimensional
vectors T in various applications. A 100(1-alpha) the probability that T falls outside this envelope in
any of the d points is equal to alpha. Global means that the probability is controlled simultaneously
for all the d elements of the vectors. The global envelopes can be used for central regions of
functional or multivariate data (e.g. outlier detection, functional boxplot), for graphical Monte Carlo
and permutation tests where the test statistic is a multivariate vector or function (e.g. goodness-of-
fit testing for point patterns and random sets, functional ANOVA, functional GLM, n-sample test
of correspondence of distribution functions), and for global confidence and prediction bands (e.g.
confidence band in polynomial regression, Bayesian posterior prediction).

4 GET-package

Details

The GET package provides central regions (i.e. global envelopes) and global envelope tests with
intrinsic graphical interpretation. The central regions can be constructed from (functional) data. The
tests are Monte Carlo or permutation tests, which demand simulations from the tested null model.
The methods are applicable for any multivariate vector data and functional data (after discretiza-
tion).

To get an overview of the package, start R and type library("GET") and vignette("GET").

To get examples of point pattern analysis, start R and type library("GET") and vignette("pointpatterns").

Key functions in GET

• Central regions or global envelopes or confidence bands: central_region. E.g. 50% central
region of growth curves of girls growth.

– First create a curve_set of the growth curves, e.g.
cset <- create_curve_set(list(r = as.numeric(row.names(growth$hgtf)), obs
= growth$hgtf))

– Then calculate 50% central region (see central_region for further arguments)
cr <- central_region(cset, coverage = 0.5)

– Plot the result (see plot.global_envelope for plotting options)
plot(cr)

It is also possible to do combined central regions for several sets of curves provided in a list
for the function, see examples in central_region.

• Global envelope tests: global_envelope_test is the main function. E.g. A test of complete
spatial randomness (CSR) for a point pattern X:
X <- spruces # an example pattern from spatstat

– Use the function envelope of spatstat to create nsim simulations under CSR and to
calculate the functions you want (below K-functions by Kest). Important: use the option
’savefuns=TRUE’ and specify the number of simulations nsim.
env <- envelope(X, nsim=999, savefuns = TRUE, fun = Kest, simulate = expression(runifpoint(ex
= X)))

– Perform the test (see global_envelope_test for further arguments)
res <- global_envelope_test(env)

– Plot the result (see plot.global_envelope for plotting options)
plot(res)

It is also possible to do combined global envelope tests for several sets of curves provided in
a list for the function, see examples in global_envelope_test.

• Functional ordering: central_region and global_envelope_test are based on different
measures for ordering the functions (or vectors) from the most extreme to the least extreme
ones. The core functionality of calculating the measures is in the function forder, which can
be used to obtain different measures for sets of curves. Usually there is no need to call forder
directly.

• Functional boxplots: fBoxplot

• Adjusted global envelope tests for composite null hypotheses

GET-package 5

– GET.composite, see a detailed example in saplings

• One-way functional ANOVA:

– Graphical functional ANOVA tests: graph.fanova
– Global rank envelope based on F-values: frank.fanova

• Functional general linear model (GLM):

– Graphical functional GLM: graph.flm
– Global rank envelope based on F-values: frank.flm
– For large data (not fitting comfortably in memory): partial_forder

• Functional clustering: fclustering

• Functions for performing global envelopes for specific purposes:

– Graphical n sample test of correspondence of distribution functions: GET.necdf
– Permutation-based tests of independence to samples from any bivariate distribution:

* based on cumulative distribution function GET.cdf

* in a 2D contingency table GET.contingency

* based on the smoothed Q-Q plot GET.qq
– Testing global and local dependence of point patterns on covariates: GET.spatialF
– Testing local correlations: GET.localcor
– Variogram and residual variogram with global envelopes: GET.variogram

• Deviation tests (for simple hypothesis): deviation_test (no graphical interpretation)

• Most functions accept the curves provided in a curve_set object. Use create_curve_set
to create a curve_set object from the functions. Other formats to provide the curves to the
above functions are also accepted, see the information on the help pages.

See the help files of the functions for examples.

Workflow for (single hypothesis) tests based on single functions

To perform a test you always first need to obtain the test function T (r) for your data (T1(r)) and
for each simulation (T2(r), . . . , Ts+1(r)) in one way or another. Given the set of the functions
Ti(r), i = 1, . . . , s+ 1, you can perform a test by global_envelope_test.

1) The workflow when using your own programs for simulations:

• (Fit the model and) Create s simulations from the (fitted) null model.

• Calculate the functions T1(r), T2(r), . . . , Ts+1(r).

• Use create_curve_set to create a curve_set object from the functions Ti(r), i = 1, . . . , s+
1.

• Perform the test
res <- global_envelope_test(curve_set)

where curve_set is the ’curve_set’-object you created, and plot the result
plot(res)

2) The workflow utilizing spatstat: start R, type library("GET") and vignette("pointpatterns"),
which explains the workflow and gives many examples of point pattern analysis

6 GET-package

Functions for modifying sets of functions

It is possible to modify the curve set T1(r), T2(r), . . . , Ts+1(r) for the test.

• You can choose the interval of distances [rmin, rmax] by crop_curves.

• For better visualisation, you can take T (r)−T0(r) by residual. Here T0(r) is the expectation
of T (r) under the null hypothesis.

Example data (see references on the help pages of each data set)

• abide_9002_23: see help page

• adult_trees: a point pattern of adult rees

• cgec: centred government expenditure centralization (GEC) ratios (see graph.fanova)

• fallen_trees: a point pattern of fallen trees

• GDPtax: GDP per capita with country groups and other covariates

• imageset3: a simulated set of images

• rimov: water temperature curves in 365 days of the 36 years

• saplings: a point pattern of saplings (see GET.composite)

The data sets are used to show examples of the functions of the library.

Number of functions

If the number of functions is low, the choice of the measure (or type or depth) playes a role, as
explained in vignette("GET") (Section 2.4).

Note that the recommended minimum number of simulations for the rank envelope test (Myllymäki
et al., 2017) based on a single function in spatial statistics is nsim=2499. When the number of
argument values is large, also larger number simulations is needed in order to have a narrow p-
interval. The "erl", "cont", "area", "qdir" and "st" global envelope tests and deviation tests can
be used with a lower number of simulations, although the Monte Carlo error is obviously larger
with a lower number of simulations. For increasing the number of simulations, all the global rank
envelopes approach the same curves.

Mrkvička et al. (2017) discussed the number of simulations for tests based on many functions.

Documentation

Myllymäki and Mrkvička (2020) provides description of the package. The material can also be
found in the corresponding vignette, which is available by starting R and typing library("GET")
and vignette("GET").

In the special case of spatial processes (spatial point processes, random sets), the functions are typi-
cally estimators of summary functions. The package supports the use of the R package spatstat for
generating simulations and calculating estimators of the chosen summary function, but alternatively
these can be done by any other way, thus allowing for any user-specified models/functions. To see
examples of global envelopes for analysing point pattern data, start R, type library("GET") and
vignette("pointpatterns").

Type citation("GET") to get a full list of references.

GET-package 7

Acknowledgements

Mikko Kuronen has made substantial contributions of code. Additional contributions and sugges-
tions from Jiří Dvořák, Pavel Grabarnik, Ute Hahn, Michael Rost and Henri Seijo.

Author(s)

Mari Myllymäki (mari.myllymaki@luke.fi, mari.j.myllymaki@gmail.com) and Tomáš Mrkvička
(mrkvicka.toma@gmail.com)

References

Dai, W., Athanasiadis, S., Mrkvička, T. (2021) A new functional clustering method with combined
dissimilarity sources and graphical interpretation. Intech open, London, UK. DOI: 10.5772/inte-
chopen.100124

Dvořák, J. and Mrkvička, T. (2022). Graphical tests of independence for general distributions.
Computational Statistics 37, 671–699.

Mrkvička, T., Myllymäki, M. and Hahn, U. (2017) Multiple Monte Carlo testing, with applications
in spatial point processes. Statistics & Computing 27(5), 1239-1255. doi: 10.1007/s11222-016-
9683-9

Mrkvička, T., Myllymäki, M., Jilek, M. and Hahn, U. (2020) A one-way ANOVA test for functional
data with graphical interpretation. Kybernetika 56(3), 432-458. doi: 10.14736/kyb-2020-3-0432

Mrkvička, T., Myllymäki, M., Kuronen, M. and Narisetty, N. N. (2022) New methods for multiple
testing in permutation inference for the general linear model. Statistics in Medicine 41(2), 276-297.
doi: 10.1002/sim.9236

Mrkvička, T., Myllymäki, M. False discovery rate envelopes. arXiv:2008.10108 [stat.ME]

Mrkvička, T., Roskovec, T. and Rost, M. (2021) A nonparametric graphical tests of significance in
functional GLM. Methodology and Computing in Applied Probability 23, 593-612. doi: 10.1007/s11009-
019-09756-y

Mrkvička, T., Soubeyrand, S., Myllymäki, M., Grabarnik, P., and Hahn, U. (2016) Monte Carlo
testing in spatial statistics, with applications to spatial residuals. Spatial Statistics 18, Part A, 40-53.
doi: http://dx.doi.org/10.1016/j.spasta.2016.04.005

Myllymäki, M., Grabarnik, P., Seijo, H. and Stoyan. D. (2015) Deviation test construction and
power comparison for marked spatial point patterns. Spatial Statistics 11, 19-34. doi: 10.1016/j.spasta.2014.11.004

Myllymäki, M., Mrkvička, T., Grabarnik, P., Seijo, H. and Hahn, U. (2017) Global envelope tests for
spatial point patterns. Journal of the Royal Statistical Society: Series B (Statistical Methodology)
79, 381-404. doi: 10.1111/rssb.12172

Myllymäki, M. and Mrkvička, T. (2020). GET: Global envelopes in R. arXiv:1911.06583 [stat.ME]

Myllymäki, M., Kuronen, M. and Mrkvička, T. (2020). Testing global and local dependence of point
patterns on covariates in parametric models. Spatial Statistics 42, 100436. doi: 10.1016/j.spasta.2020.100436

8 abide_9002_23

abide_9002_23 Local brain activity at resting state

Description

Imaging measurements for local brain activity at resting state

Usage

data("abide_9002_23")

Format

A list of the curve_set containing the data, coordinates (x,y) where the data have been observed
(third dimension is 23), the discrete factor Group (1=Autism; 2=Control), the discrete factor Sex
(1=Male; 2=Female), and the continuous factor Age.

Details

The data are a small part of ABIDE fALFF data available at ABIDE: http://fcon_1000.projects.nitrc.org/indi/abide/
fALFF: http://fcp-indi.github.io/docs/user/alff.html and distributed under the CC BY-NC-SA 3.0 li-
cense, https://creativecommons.org/licenses/by-nc-sa/3.0/.

The data are fractional Amplitude of Low Frequency Fluctuations (fALFF) (Zou et al. 2008) for
Autism Brain Imaging Data Exchange collected resting state functional magnetic resonance imag-
ing (R-fMRI) datasets (Di Martino et al. 2013). This data set in GET contains only a tiny part of
the whole brain, namely the region 9002 (the right Cerebelum Crus 1) at slice 23 (see Figure 2 in
Mrkvicka et al., 2019) for 514 individuals with the autism spectrum disorder (ASD) and 557 typical
controls (TC) as specified in the given Group variable. Further the sex and age of each subject is
given.

References

Di Martino, A., Yan, C., Li, Q., Denio, E., Castellanos, F., Alaerts, K., Anderson, J., Assaf, M.,
Bookheimer, S., Dapretto, M., et al. (2013) The autism brain imaging data exchange: towards a
large-scale evaluation of the intrinsic brain architecture in autism. Molecular psychiatry.

Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O., Delcroix, N., Ma-
zoyer, B., and Joliot, M. (2002), Automated anatomical labeling of activations in SPM using a
macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage, 15, 273-
289.

Zou, Q.-H., Zhu, C.-Z., Yang, Y., Zuo, X.-N., Long, X.-Y., Cao, Q.-J., Wang, Y.-F., and Zang, Y.-F.
(2008), An improved approach to detection of amplitude of low-frequency fluctuation (ALFF) for
resting-state fMRI: fractional ALFF. Journal of neuroscience methods, 172, 137-141.

Mrkvička, T., Myllymäki, M., Kuronen, M. and Narisetty, N. N. (2022) New methods for multiple
testing in permutation inference for the general linear model. Statistics in Medicine 41(2), 276-297.
doi: 10.1002/sim.9236

adult_trees 9

adult_trees Adult trees data set

Description

Adult trees data set

Usage

data("adult_trees")

Format

A data.frame containing the locations (x- and y-coordinates) of 67 trees in an area of 75 m x 75
m.

Details

A pattern of large trees (height > 25 m) originating from an uneven aged multi-species broadleaf
nonmanaged forest in Kaluzhskie Zaseki, Russia.

The pattern is a sample part of data collected over 10 ha plot as a part of a research program headed
by project leader Prof. O.V. Smirnova.

References

Grabarnik, P. and Chiu, S. N. (2002) Goodness-of-fit test for complete spatial randomness against
mixtures of regular and clustered spatial point processes. Biometrika, 89, 411–421.

van Lieshout, M.-C. (2010) Spatial point process theory. In Handbook of Spatial Statistics (eds. A.
E. Gelfand, P. J. Diggle, M. Fuentes and P. Guttorp), Handbooks of Modern Statistical Methods.
Boca Raton: CRC Press.

See Also

saplings

Examples

if(require("spatstat.geom", quietly=TRUE)) {
data("adult_trees")
adult_trees <- as.ppp(adult_trees, W = square(75))
plot(adult_trees)

}

10 central_region

central_region Central region / Global envelope

Description

Provides central regions or global envelopes or confidence bands

Usage

central_region(
curve_sets,
type = "erl",
coverage = 0.5,
alternative = c("two.sided", "less", "greater"),
probs = c(0.25, 0.75),
quantile.type = 7,
central = "median",
nstep = 2,
...

)

Arguments

curve_sets A curve_set object or a list of curve_set objects.

type The type of the global envelope with current options for ’rank’, ’erl’, ’cont’,
’area’, ’qdir’, ’st’ and ’unscaled’. See details.

coverage A number between 0 and 1. The 100*coverage% central region will be calcu-
lated. A vector of values can also be provided, leading to the corresponding
number of central regions.

alternative A character string specifying the alternative hypothesis. Must be one of the
following: "two.sided" (default), "less" or "greater". The last two options only
available for types 'rank', 'erl', 'cont' and 'area'.

probs A two-element vector containing the lower and upper quantiles for the measure
’q’ or ’qdir’, in that order and on the interval [0, 1]. The default values are 0.025
and 0.975, suggested by Myllymäki et al. (2015, 2017).

quantile.type As type argument of quantile, how to calculate quantiles for ’q’ or ’qdir’.

central Either "mean" or "median". If the curve sets do not contain the component theo
for the theoretical central function, then the central function (used for plotting
only) is calculated either as the mean or median of functions provided in the
curve sets. For ’qdir’, ’st’ and ’unscaled’ only the mean is allowed as an option,
due to their definition.

nstep 1 or 2 for how to contruct a combined global envelope if list of curve sets is
provided. 2 (default) for a two-step combining procedure, 1 for one-step.

... Ignored.

central_region 11

Details

Given a curve_set (see create_curve_set for how to create such an object) or an envelope
object of spatstat or fdata object of fda.usc, the function central_region construcst a central
region, i.e. a global envelope, from the given set of functions (or vectors).

Generally an envelope is a band bounded by the vectors (or functions) Tlow and Thi. A 100(1−α)%
or 100*coverage% global envelope is a set (Tlow, Thi) of envelope vectors such that the probability
that Ti falls outside this envelope in any of the d points of the vector Ti is less or equal to α. The
global envelopes can be constructed based on different measures that order the functions from the
most extreme one to the least extreme one. We use such orderings of the functions for which we are
able to construct global envelopes with intrinsic graphical interpretation.

The type of the global envelope can be chosen with the argument type and the options are given
in the following. Further information about the measures, on which the global envelopes are based,
can be found in Myllymäki and Mrkvička (2020, Section 2.).

• 'rank': The global rank envelope proposed by Myllymäki et al. (2017) based on the extreme
rank defined as the minimum of pointwise ranks.

• 'erl': The global rank envelope based on the extreme rank length (Myllymäki et al.,2017,
Mrkvička et al., 2018). This envelope is constructed as the convex hull of the functions which
have extreme rank length measure that is larger or equal to the critical α level of the extreme
rank length measure.

• 'cont': The global rank envelope based on the continuous rank (Hahn, 2015; Mrkvička et
al., 2019) based on minimum of continuous pointwise ranks. It is contructed as the convex
hull in a similar way as the 'erl' envelope.

• 'area': The global rank envelope based on the area rank (Mrkvička et al., 2019) which is
based on area between continuous pointwise ranks and minimum pointwise ranks for those
argument (r) values for which pointwise ranks achieve the minimum (it is a combination of
erl and cont). It is contructed as the convex hull in a similar way as the 'erl' and 'area'
envelopes.

• 'qdir': The directional quantile envelope based on the directional quantile maximum abso-
lute deviation (MAD) test (Myllymäki et al., 2017, 2015), which takes into account the un-
equal variances of the test function T(r) for different distances r and is also protected against
asymmetry of distribution of T(r).

• 'st': The studentised envelope based on the studentised MAD measure (Myllymäki et al.,
2017, 2015), which takes into account the unequal variances of the test function T(r) for
different distances r.

• 'unscaled': The unscaled envelope (Ripley, 1981), which leads to envelopes with constant
width. It corresponds to the classical maximum deviation test without scaling. This test suffers
from unequal variance of T(r) over the distances r and from the asymmetry of distribution of
T(r). We recommend to use the other alternatives instead. This unscaled global envelope is
provided for reference.

The values of the chosen measure M are determined for each curve in the curve_set, and based on
the chosen measure, the central region, i.e. the global envelope, is constructed for the given curves.

If a list of (suitable) objects are provided in the argument curve_sets, then by default (nstep = 2)
the two-step combining procedure is used to construct the combined global envelope as described
in Myllymäki and Mrkvička (2020, Section 2.2.). If nstep = 1 and the lengths of the multivariate

12 central_region

vectors in each component of the list are equal, then the one-step combining procedure is used
where the functions are concatenated together into a one long vector (see again Myllymäki and
Mrkvička, 2020, Section 2.2.).

Value

Either an object of class global_envelope and or an combined_global_envelope object. The for-
mer class is obtained when a set of curves is provided, while the latter in the case that curve_sets
is a list of objects. The print and plot function are defined for the returned objects (see examples).

The global_envelope object is essentially a data frame containing columns

• r = the vector of values of the argument r at which the test was made

• lo = the lower envelope based on the simulated functions; in case of a vector of coverage
values, several ’lo’ exist with names paste0("lo.", 100*coverage)

• hi = the upper envelope based on the simulated functions; in case of a vector of coverage
values, several ’lo’ exist with names paste0("hi.", 100*coverage)

• central = If the curve_set (or envelope object) contains a theoretical curve, then this function
is used as the central curve and returned in this component. Otherwise, the central curve is the
mean or median (according to the argument central) of the test functions T_i(r), i=2, ..., s+1.
Used for visualization only.

and potentially additionally

• obs = the data function, if there is only one data function in the given curve_sets. Otherwise
not existing.

(Most often central_region is directly applied to functional data where all curves are observed.)
Additionally, the returned object has some attributes, where

• M = A vector of the values of the chosen measure for all the function. If there is only one
observed function, then M[1] gives the value of the measure for this.

• M_alpha = The critical value of M corresponding to the 100(1-alpha)% global envelope (see
Myllymäki and Mrkvička, 2020, Definition 1.1. IGI).

Further the object has some attributes for printing and plotting purposes, where alternative, type,
ties, alpha correspond to those in the function call and method gives a name for the method.
Attributes of an object res can be obtained using the function attr, e.g. attr(res, "M") for the
values of the ordering measure.

If the given set of curves had the class envelope of spatstat, then the returned global_envelope
object has also the class fv of spatstat, whereby one can utilize also the plotting functions of spat-
stat, see example in plot.global_envelope. However, the envelope objects are most often used
with global_envelope_test and not with central_region. For an fv object, also some further
attributes exists as required by fv of spatstat.
The combined_global_envelope is a list of global_envelope objects, where the components
correspond to the components of curve_sets. The combined_global_envelope object con-
structed with nstep = 2 contains, in addition to some conventional ones (method, alternative,
type, alpha, M, M_alpha, see above), the second level envelope information as the attributes

• level2_ge = The second level envelope on which the envelope construction is based

central_region 13

• level2_curve_set = The second level curve_set from which level2_ge is constructed

In the case that the given curve sets are two-dimensional, i.e., their arguments values are two-
dimensional, then the returned objects have in addition to the class global_envelope or combined_global_envelope,
the class global_envelope2d or combined_global_envelope2d, respectively. This class is as-
signed for plotting purposes: For the 2d envelopes, also the default plots are 2d. Otherwise the 1d
and 2d objects are similar.

References

Mrkvička, T., Myllymäki, M., Jilek, M. and Hahn, U. (2020) A one-way ANOVA test for functional
data with graphical interpretation. Kybernetika 56(3), 432-458. doi: 10.14736/kyb-2020-3-0432

Mrkvička, T., Myllymäki, M., Kuronen, M. and Narisetty, N. N. (2022) New methods for multiple
testing in permutation inference for the general linear model. Statistics in Medicine 41(2), 276-297.
doi: 10.1002/sim.9236

Myllymäki, M., Grabarnik, P., Seijo, H. and Stoyan. D. (2015). Deviation test construction and
power comparison for marked spatial point patterns. Spatial Statistics 11, 19-34. doi: 10.1016/j.spasta.2014.11.004

Myllymäki, M., Mrkvička, T., Grabarnik, P., Seijo, H. and Hahn, U. (2017). Global envelope tests
for spatial point patterns. Journal of the Royal Statistical Society: Series B (Statistical Methodol-
ogy) 79, 381-404. doi: 10.1111/rssb.12172

Myllymäki, M. and Mrkvička, T. (2020). GET: Global envelopes in R. arXiv:1911.06583 [stat.ME]

Ripley, B.D. (1981). Spatial statistics. Wiley, New Jersey.

See Also

forder, global_envelope_test

Examples

A central region of a set of functions
#--
if(requireNamespace("fda", quietly=TRUE)) {

curve_set <- create_curve_set(list(r=as.numeric(row.names(fda::growth$hgtf)),
obs=fda::growth$hgtf))

plot(curve_set) + ggplot2::ylab("height")
cr <- central_region(curve_set, coverage=0.50, type="erl")
plot(cr)

}

Confidence bands for linear or polynomial regression
#--
Simulate regression data according to the cubic model
f(x) = 0.8x - 1.8x^2 + 1.05x^3 for x in [0,1]
par <- c(0,0.8,-1.8,1.05) # Parameters of the true polynomial model
res <- 100 # Resolution
x <- seq(0, 1, by=1/res); x2=x^2; x3=x^3;
f <- par[1] + par[2]*x + par[3]*x^2 + par[4]*x^3 # The true function
d <- f + rnorm(length(x), 0, 0.04) # Data
Plot the true function and data
plot(f, type="l", ylim=range(d))

14 cgec

points(d)

Estimate polynomial regression model
reg <- lm(d ~ x + x2 + x3)
ftheta <- reg$fitted.values
resid0 <- reg$residuals
s0 <- sd(resid0)

Bootstrap regression
B <- 2000 # Number of bootstrap samples

ftheta1 <- array(0, c(B,length(x)))
s1 <- array(0,B)
for(i in 1:B) {

u <- sample(resid0, size=length(resid0), replace=TRUE)
reg1 <- lm((ftheta+u) ~ x + x2 + x3)
ftheta1[i,] <- reg1$fitted.values
s1[i] <- sd(reg1$residuals)

}

Centering and scaling
meanftheta <- apply(ftheta1, 2, mean)
m <- array(0, c(B,length(x)))
for(i in 1:B) { m[i,] <- (ftheta1[i,]-meanftheta)/s1[i] }

Central region computation
boot.cset <- create_curve_set(list(r=1:length(x), obs=ftheta+s0*t(m)))
cr <- central_region(boot.cset, coverage=0.95, type="erl")

Plotting the result
plot(cr) + ggplot2::labs(x=expression(italic(x)), y=expression(italic(f(x)))) +

ggplot2::geom_point(data=data.frame(id=1:length(d), points=d),
ggplot2::aes(x=id, y=points)) + # data points

ggplot2::geom_line(data=data.frame(id=1:length(d), points=f),
ggplot2::aes(x=id, y=points)) # true function

cgec Centred government expenditure centralization ratios

Description

Centred government expenditure centralization (GEC) ratios

Usage

data("cgec")

cgec 15

Format

A list of two components. The first one is the curve_set object containing the observed values of
centred GEC observed in year 1995-2016 for the above countries. The second component group
gives the grouping.

Details

The data includes the government expenditure centralization (GEC) ratio in percent that has been
centred with respect to country average in order to remove the differences in absolute values of
GEC. The GEC ratio is the ratio of central government expenditure to the total general government
expenditure. Data were collected from the Eurostat (2018) database. Only those European countries
were included, where the data were available from 1995 to 2016 without interruption. Finally, 29
countries were classified into three groups in the following way:

• Group 1: Countries joining EC between 1958 and 1986 (Belgium, Denmark, France, Germany
(until 1990 former territory of the FRG), Greece, Ireland, Italy, Luxembourg, Netherlands,
Portugal, Spain, United Kingdom. These countries have long history of European integration,
representing the core of integration process.

• Group 2: Countries joining the EU in 1995 (Austria, Sweden, Finland) and 2004 (Malta,
Cyprus), except CEEC (separate group), plus highly economically integrated non-EU coun-
tries, EFTA members (Norway, Switzerland). Countries in this group have been, or in some
case even still are standing apart from the integration mainstream. Their level of economic
integration is however very high.

• Group 3: Central and Eastern European Countries (CEEC), having similar features in political
end economic history. The process of economic and political integration have been initiated by
political changes in 1990s. CEEC joined the EU in 2004 and 2007 (Bulgaria, Czech Republic,
Estonia, Hungary, Latvia, Lithuania, Poland, Romania, Slovakia, Slovenia, data for Croatia
joining in 2013 are incomplete, therefore not included).

This grouping is used in examples.

References

Eurostat (2018). "Government revenue, expenditure and main aggregates (gov10amain)”. Retrieved
from https://ec.europa.eu/eurostat/data/database(26/10/2018).

Mrkvička, T., Myllymäki, M., Jilek, M. and Hahn, U. (2020) A one-way ANOVA test for functional
data with graphical interpretation. Kybernetika 56 (3), 432-458. doi: 10.14736/kyb-2020-3-0432

See Also

graph.fanova

Examples

data("cgec")
Plot data in groups
for(i in 1:3)

assign(paste0("p", i), plot(subset(cgec$cgec, cgec$group == i)) +
ggplot2::labs(title=paste("Group ", i, sep=""), y="Centred GEC"))

16 combined_scaled_MAD_envelope_test

p3
if(require("patchwork", quietly=TRUE))

p1 + p2 + p3

combined_scaled_MAD_envelope_test

Combined global scaled maximum absolute difference (MAD) enve-
lope tests

Description

Given a list of ’curve_set’ objects (see create_curve_set), a combined global scaled (directional
quantile or studentized) MAD envelope test is performed with the test functions saved in the curve
set objects. Details of this combined test can be found in Mrkvicka et al. (2017). The implemen-
tation of this test is provided here for historical reasons: we recommend now instead the use of
global_envelope_test also for combined tests; these combined tests are there implemented as
described in Myllymäki and Mrkvička (2020).

Usage

combined_scaled_MAD_envelope_test(
curve_sets,
type = c("qdir", "st"),
alpha = 0.05,
probs = c(0.025, 0.975),
central = "mean",
...

)

Arguments

curve_sets A curve_set (see create_curve_set) or an envelope object of spatstat con-
taining a data function and simulated functions. If an envelope object is given,
it must contain the summary functions from the simulated patterns which can
be achieved by setting savefuns = TRUE when calling the envelope function.
Alternatively, a list of curve_set or envelope objects can be given.

type Either "qdir" for the direction quantile envelope test or "st" for the studentized
envelope test.

alpha The significance level. The 100(1-alpha)% global envelope will be calculated.
If a vector of values is provided, the global envelopes are calculated for each
value.

probs A two-element vector containing the lower and upper quantiles for the measure
’q’ or ’qdir’, in that order and on the interval [0, 1]. The default values are 0.025
and 0.975, suggested by Myllymäki et al. (2015, 2017).

combined_scaled_MAD_envelope_test 17

central Either "mean" or "median". If the curve sets do not contain the component theo
for the theoretical central function, then the central function (used for plotting
only) is calculated either as the mean or median of functions provided in the
curve sets. For ’qdir’, ’st’ and ’unscaled’ only the mean is allowed as an option,
due to their definition.

... Additional parameters to be passed to central_region.

References

Mrkvička, T., Myllymäki, M. and Hahn, U. (2017) Multiple Monte Carlo testing, with applications
in spatial point processes. Statistics & Computing 27(5): 1239–1255. DOI: 10.1007/s11222-016-
9683-9

Myllymäki, M. and Mrkvička, T. (2020). GET: Global envelopes in R. arXiv:1911.06583 [stat.ME]

Examples

if(require("spatstat.explore", quietly=TRUE)) {
As an example test CSR of the saplings point pattern from spatstat by means of
L, F, G and J functions.
data("saplings")
X <- as.ppp(saplings, W=square(75))

nsim <- 499 # Number of simulations for the tests

Specify distances for different test functions
n <- 500 # the number of r-values
rmin <- 0; rmax <- 20; rstep <- (rmax-rmin)/n
rminJ <- 0; rmaxJ <- 8; rstepJ <- (rmaxJ-rminJ)/n
r <- seq(0, rmax, by=rstep) # r-distances for Lest
rJ <- seq(0, rmaxJ, by=rstepJ) # r-distances for Fest, Gest, Jest

Perform simulations of CSR and calculate the L-functions
env_L <- envelope(X, nsim=nsim,
simulate=expression(runifpoint(ex=X)),
fun="Lest", correction="translate",
transform=expression(.-r), # Take the L(r)-r function instead of L(r)
r=r, # Specify the distance vector
savefuns=TRUE, # Save the estimated functions
savepatterns=TRUE) # Save the simulated patterns
Take the simulations from the returned object
simulations <- attr(env_L, "simpatterns")
Then calculate the other test functions F, G, J for each simulated pattern
env_F <- envelope(X, nsim=nsim,

simulate=simulations,
fun="Fest", correction="Kaplan", r=rJ,
savefuns=TRUE)

env_G <- envelope(X, nsim=nsim,
simulate=simulations,
fun="Gest", correction="km", r=rJ,
savefuns=TRUE)

18 create_curve_set

env_J <- envelope(X, nsim=nsim,
simulate=simulations,
fun="Jest", correction="none", r=rJ,
savefuns=TRUE)

Crop the curves to the desired r-interval I
curve_set_L <- crop_curves(env_L, r_min=rmin, r_max=rmax)
curve_set_F <- crop_curves(env_F, r_min=rminJ, r_max=rmaxJ)
curve_set_G <- crop_curves(env_G, r_min=rminJ, r_max=rmaxJ)
curve_set_J <- crop_curves(env_J, r_min=rminJ, r_max=rmaxJ)

The combined directional quantile envelope test
res <- combined_scaled_MAD_envelope_test(

curve_sets=list(L=curve_set_L, F=curve_set_F,
G=curve_set_G, J=curve_set_J),

type="qdir")
plot(res)

}

create_curve_set Create a curve_set object

Description

Create a curve_set object out of a list in the right form.

Usage

create_curve_set(curve_set, ...)

Arguments

curve_set A list containing the element obs, and optionally the elements r, sim_m and theo.
See details.

... For expert use only.

Details

The function is used to clump together the functional data in the form that can be handled by
the other GET functions (forder, central_region, global_envelope_test etc.). The function
create_curve_set takes care of checking the content of the data, and saves relevant information of
the curves for global envelope methods to be used in particular for plotting the results with graphical
interpretation.

obs must be either

• a vector containing the data function/vector, or

• a matrix containing the s data functions/vectors, in which case it is assumed that each column
corresponds to a data function/vector.

create_image_set 19

If given, r describes the 1- or 2-dimensional argument values where the functions/vectors have been
observed (or simulated). It must be either

• a vector,

• a data.frame with columns "x", "y", "width" and "height", where the width and height give the
width and height of the pixels placed at x and y, or

• a data.frame with columns "xmin", "xmax", "ymin" and "ymax" giving the corner coordinates
of the pixels where the data have been observed.

If obs is a vector, sim_m must be a matrix containing the simulated functions. Each column is
assumed to correspond to a function, and the number of rows must match the length of obs. If obs
is a matrix, sim_m is ignored.

If obs is a vector, theo can be given and it should then correspond to a theoretical function (e.g.,
under the null hypothesis). If present, its length must match the length of obs.

Value

An object of class curve_set containing the data. If the argument values are two-dimensional, then
the curve_set is additionally a curve_set2d object.

See Also

plot.curve_set, plot.curve_set2d

Examples

1d
cset <- create_curve_set(list(r = 1:10, obs = matrix(runif(10*5), ncol=5)))
plot(cset)
2d
cset <- create_curve_set(list(r = data.frame(x=c(rep(1:3, 3), 4), y=c(rep(1:3, each=3), 1),

width=1, height=1),
obs = matrix(runif(10*5), ncol=5)))

plot(cset)

create_image_set Create a curve set of images

Description

Create a curve set consisting of a set of images, given a list containing the values of the 2d functions
in the right form. Only 2d functions in a rectangular windows are supported; the values are provided
in matrices (arrays). For more general 2d functions see create_curve_set.

Usage

create_image_set(image_set, ...)

20 crop_curves

Arguments

image_set A list containing elements r, obs, sim_m and theo. r, sim_m and theo are op-
tional, obs needs to be provided always. If provided, r must be a list describ-
ing the argument values where the images have been observed (or simulated). It
must consist of the following two or four components: a) "x" and "y" giving the
equally spaced argument values for the x- and y-coordinates (first and second
dimension of the 2d functions) where the data have been observed, b) "x", "y",
"width" and "height", where the width and height give the width and height of
the pixels placed at x and y, or c) "xmin", "xmax", "ymin" and "ymax" giving the
corner coordinates of the pixels where the data have been observed. If not given,
r is set to be a list of values from 1 to the number of first/second dimension of
2d functions in obs. obs must be either a 2d matrix (dimensions matching the
lengths of r vectors) or 3d array containing the observed 2d functions (the third
dimension matching the number of functions). If obs is a 3d array, then sim_m
is ignored. If obs is a 2d array, then sim_m must be a 3d array containing the
simulated images (2d functions) (the third dimension matching the number of
functions). If included, theo corresponds to the theoretical function (e.g., under
the null hypothesis) and its dimensions must either match the dimensions of 2d
functions in obs or it must be a constant.

... Do not use. (For internal use only.)

Value

The given list as a curve_set.

Examples

a <- create_image_set(list(obs=array(runif(4*5*6), c(4,5,6))))
plot(a)
plot(a, idx=1:6)

a <- create_image_set(list(r=list(x=c(10,20,30,40), y=1:5*0.1),
obs=array(runif(4*5*6), c(4,5,6))))

plot(a)

a <- create_image_set(list(r=list(xmin=c(1, 2, 4, 7), xmax=c(2, 4, 7, 11),
ymin=c(1,1.1,2,2.1,3), ymax=c(1.1,2,2.1,3,3.1)),

obs=array(runif(4*5*6), c(4,5,6))))
plot(a)
plot(a, idx=1:5)

crop_curves Crop the curves to a certain interval

Description

Crop the curves to a certain interval

deviation_test 21

Usage

crop_curves(curve_set, r_min = NULL, r_max = NULL)

Arguments

curve_set A curve_set (see create_curve_set) or an envelope object of spatstat. If
an envelope object is given, it must contain the summary functions from the
simulated patterns which can be achieved by setting savefuns = TRUE when
calling the envelope function.

r_min The minimum radius to include.

r_max The maximum radius to include.

Details

The curves can be cropped to a certain interval defined by the arguments r_min and r_max. The
interval should generally be chosen carefully for classical deviation tests.

Value

A curve_set object containing the cropped summary functions and the cropped radius vector.

deviation_test Deviation test

Description

Crop the curve set to the interval of distances [r_min, r_max], calculate residuals, scale the residuals
and perform a deviation test with a chosen deviation measure. The deviation tests are well known
in spatial statistics; in GET they are provided for comparative purposes. Some (maximum type) of
the deviation test have their corresponding envelope tests available, see Myllymäki et al., 2017 (and
’unscaled’, ’st’ and ’qdir’ in global_envelope_test).

Usage

deviation_test(
curve_set,
r_min = NULL,
r_max = NULL,
use_theo = TRUE,
scaling = "qdir",
measure = "max",
savedevs = FALSE

)

22 deviation_test

Arguments

curve_set A residual curve_set object. Can be obtained by using residual().

r_min The minimum radius to include.

r_max The maximum radius to include.

use_theo Whether to use the theoretical summary function or the mean of the functions in
the curve_set.

scaling The name of the scaling to use. Options include ’none’, ’q’, ’qdir’ and ’st’.
’qdir’ is default.

measure The deviation measure to use. Default is ’max’. Must be one of the following:
’max’, ’int’ or ’int2’.

savedevs Logical. Should the global rank values k_i, i=1,...,nsim+1 be returned? Default:
FALSE.

Details

The deviation test is based on a test function T (r) and it works as follows:

1) The test function estimated for the data, T1(r), and for nsim simulations from the null model,
T2(r),, Tnsim+1(r), must be saved in ’curve_set’ and given to the deviation_test function.

2) The deviation_test function then

• Crops the functions to the chosen range of distances [rmin, rmax].

• If the curve_set does not consist of residuals (see residual), then the residuals di(r) =
Ti(r)−T0(r) are calculated, where T0(r) is the expectation of T (r) under the null hypothesis.
If use_theo = TRUE, the theoretical value given in the curve_set$theo is used for as T0(r), if
it is given. Otherwise, T0(r) is estimated by the mean of Tj(r), j = 2, ..., nsim+ 1.

• Scales the residuals. Options are

– ’none’ No scaling. Nothing done.
– ’q’ Quantile scaling.
– ’qdir’ Directional quantile scaling.
– ’st’ Studentised scaling.

See for details Myllymäki et al. (2013).

• Calculates the global deviation measure ui, i = 1, ..., nsim+ 1, see options for ’measure’.

– ’max’ is the maximum deviation measure

ui = max
r∈[rmin,rmax]

|w(r)(Ti(r)− T0(r))|

– ’int2’ is the integral deviation measure

ui =

∫ rmax

rmin

(w(r)(Ti(r)− T0(r)))2dr

– ’int’ is the ’absolute’ integral deviation measure

ui =

∫ rmax

rmin

|w(r)(Ti(r)− T0(r))|dr

fallen_trees 23

• Calculates the p-value.

Currently, there is no special way to take care of the same values of Ti(r) occuring possibly for
small distances. Thus, it is preferable to exclude from the test the very small distances r for which
ties occur.

Value

If ’savedevs=FALSE’ (default), the p-value is returned. If ’savedevs=TRUE’, then a list containing
the p-value and calculated deviation measures ui, i = 1, ..., nsim+ 1 (where u1 corresponds to the
data pattern) is returned.

References

Myllymäki, M., Grabarnik, P., Seijo, H. and Stoyan. D. (2015). Deviation test construction and
power comparison for marked spatial point patterns. Spatial Statistics 11: 19-34. doi: 10.1016/j.spasta.2014.11.004

Myllymäki, M., Mrkvička, T., Grabarnik, P., Seijo, H. and Hahn, U. (2017). Global envelope tests
for spatial point patterns. Journal of the Royal Statistical Society: Series B (Statistical Methodol-
ogy), 79: 381–404. doi: 10.1111/rssb.12172

Examples

Testing complete spatial randomness (CSR)
#---
if(require("spatstat.explore", quietly=TRUE)) {

pp <- unmark(spruces)
nsim <- 999

Generate nsim simulations under CSR, calculate L-function for the data and simulations
env <- envelope(pp, fun="Lest", nsim=nsim, savefuns=TRUE, correction="translate")
The deviation test using the integral deviation measure
res <- deviation_test(env, measure='int')
res
or
res <- deviation_test(env, r_min=0, r_max=7, measure='int2')

}

fallen_trees Fallen trees

Description

Fallen trees

Usage

data("fallen_trees")

24 fBoxplot

Format

A list of two data frames, where trees contains the locations (x and y coordinates) and heights
(=marks) of 232 trees in a window with polygonal boundary, and window species the polygonal
window (see examples).

Details

The dataset comprised the locations and heights of 232 trees, which fell during two large wind gusts
(1967 and 1990) in the west of France (Pontailler et al., 1997). The study area was a biological
reserve, which had been preserved for at least four centuries, with little human influence for a long
period (Guinier, 1950). Thus, the forest stand followed almost natural dynamics. It was an uneven-
aged beech stand with a few old oaks.

The data was analysed in Myllymäki et al. (2017, Supplementary material).

References

Guinier, P. (1950) Foresterie et protection de la nature. l’exemple de fontainebleau. Rev Forestière
Fr., II, 703-717.

Pontailler, J.-Y., Faille, A. and Lemée, G. (1997) Storms drive successional dynamics in natural
forests: a case study in fontainebleau forest (france). Forest Ecol. Manag., 98, 1-15.

Myllymäki, M., Mrkvička, T., Grabarnik, P., Seijo, H. and Hahn, U. (2017). Global envelope tests
for spatial point patterns. Journal of the Royal Statistical Society: Series B (Statistical Methodol-
ogy), 79: 381–404. doi: 10.1111/rssb.12172

Examples

data("fallen_trees")
if(require("spatstat.geom", quietly=TRUE)) {

fallen_trees <- as.ppp(fallen_trees$trees, W = owin(poly=fallen_trees$window))
plot(fallen_trees)

}

fBoxplot Functional boxplot

Description

Functional boxplot based on central region computed by a specified measure. The options of the
measures can be found in central_region.

Usage

fBoxplot(curve_sets, factor = 1.5, coverage = 0.5, ...)

fclustering 25

Arguments

curve_sets A curve_set object or a list of curve_set objects.
factor The constant factor to inflate the central region to produce a functional boxplot

and determine fences for outliers. Default is 1.5 as in a classical boxplot.
coverage A number between 0 and 1. The 100*coverage% central region will be calcu-

lated. A vector of values can also be provided, leading to the corresponding
number of central regions.

... Additional parameters to be passed to central_region, which is responsible
for calculating the central region (global envelope) on which the functional box-
plot is based.

Examples

if(requireNamespace("fda", quietly=TRUE)) {
years <- paste(1:18)
curves <- fda::growth[['hgtf']][years,]
Heights
cset1 <- create_curve_set(list(r = as.numeric(years),

obs = curves))
bp <- fBoxplot(cset1, coverage=0.50, type="area", factor=1)
plot(bp)

Considering simultaneously heights and height differences
cset2 <- create_curve_set(list(r = as.numeric(years[-1]),

obs = curves[-1,] - curves[-nrow(curves),]))
csets <- list(Height=cset1, Change=cset2)
res <- fBoxplot(csets, type='area', factor=1.5)
plot(res) + ggplot2::labs(x="Age (years)", y="")

}

fclustering Functional clustering

Description

Functional clustering based on a specified measure. The options of the measures can be found in
central_region.

Usage

fclustering(curve_sets, k, type = c("area", "st", "erl", "cont"), ...)

Arguments

curve_sets A curve_set object or a list of curve_set objects to which the functional clus-
tering is to be applied. If list of curve_set objects is provided, then the joined
functional clustering is applied, which provides an equal weight combination
of curve_set objects, if the curve_set objects contain the same numbers of
elements (same lengths of vector r).

26 fclustering

k The number of clusters.

type The measure which is used to compute the dissimilarity matrix. The preferred
options are "area" and "st", but "erl" and "cont" can be also used with
caution.

... Additional parameters to be passed to central_region, which is responsible
for calculating the central region (global envelope) on which the functional clus-
tering is based.

Details

Functional clustering joins the list of curve_set objects in one curve_set with long functions
and applies on the differences of all functions the specified measure. This provides a dissimilarity
matrix which is used in partitioning around medoids procedure. The resulting clusters can then be
shown by plotting the function respectively for each curve_set. Thus for each curve_set, the
panel with all the medoids is shown followed by all clusters represented by central region, medoid
and all curves belonging to it, when the result object is plotted.

If there are less than three curves in some of the groups, then the central region is not plotted. This
leads to a warning message from ggplot2.

Value

An object having the class fclust, containing

• curve_sets = The set(s) of functions determined for clustering

• k = Number of clusters

• type = Type of clustering method

• triangineq = The proportion of combinations of functions which satisfies the triangular in-
equality. The triangular inequality must hold to ensure the chosen measure forms a metric.
In some weird cases it does not hold for ‘area’ measure, therefore this check is provided to
ensure the data forms metric with the ‘area’ measure. The triangineq must be 1 to ensure the
inequality holds for all functions.

• dis = The joined dissimilarity matrix

• pam = Results of the partitioning around medoids (pam) method applied on the joined func-
tions with the dissimilarity matrix (dis). See pam.

References

Dai, W., Athanasiadis, S., Mrkvička, T. (2021) A new functional clustering method with combined
dissimilarity sources and graphical interpretation. Intech open, London, UK. DOI: 10.5772/inte-
chopen.100124

See Also

central_region, plot.fclust

fdr_envelope 27

Examples

Read raw data from population growth rdata
with countries over million inhabitants
data("popgrowthmillion")

Create centred data
m <- apply(popgrowthmillion, 2, mean) # Country-wise means
cpopgrowthmillion <- popgrowthmillion
for(i in 1:dim(popgrowthmillion)[1]) {

cpopgrowthmillion[i,] <- popgrowthmillion[i,] - m
}

Create scaled data
t2 <- function(v) { sqrt(sum(v^2)) }
s <- apply(cpopgrowthmillion, 2, t2)
spopgrowthmillion <- popgrowthmillion
for(i in 1:dim(popgrowthmillion)[1]) {

spopgrowthmillion[i,] <- cpopgrowthmillion[i,]/s
}

Create curve sets
r <- 1951:2015

cset1 <- create_curve_set(list(r = r, obs = popgrowthmillion))
cset2 <- create_curve_set(list(r = r, obs = spopgrowthmillion))
csets <- list(Raw = cset1, Shape = cset2)

Functional clustering with respect to joined "st" difference measure
and "joined" central regions of each group
res <- fclustering(csets, k=3, type="area")
p <- plot(res, plotstyle = "marginal", coverage = 0.5)
p[[1]] # Central functions
p[[2]] # Groups: central functions and regions
To collect the two figures into one use, e.g., patchwork:
if(require("patchwork", quietly=TRUE)) {

p[[1]] + p[[2]] + plot_layout(widths = c(1, res$k))
}
Silhouette plot of pam
plot(res$pam)

fdr_envelope The FDR envelope

Description

Calculate the FDR envelope based on the ATSE or IATSE algorithm of Mrkvička and Myllymäki
(2022).

28 fdr_envelope

Usage

fdr_envelope(
curve_sets,
alpha = 0.05,
alternative = c("two.sided", "less", "greater"),
algorithm = c("IATSE", "ATSE"),
lower = NULL,
upper = NULL

)

Arguments

curve_sets A curve_set (see create_curve_set) or an envelope object of spatstat con-
taining the observed function and the functions from which the envelope is to be
constructed. Alternatively, a list of appropriate objects can be given.

alpha The significance level. The 100(1-alpha)% global envelope will be calculated.
If a vector of values is provided, the global envelopes are calculated for each
value.

alternative A character string specifying the alternative hypothesis. Must be one of the
following: "two.sided" (default), "less" or "greater". The last two options only
available for types 'rank', 'erl', 'cont' and 'area'.

algorithm Either "IATSE" or "ATSE" standing for the iteratively adaptive two-stage enve-
lope and the adaptive two-stage envelope, respectively, see Mrkvička and Myl-
lymäki (2022).

lower A single number (or a vector of suitable length) giving a lower bound for the
functions. Used only for the extension, see Mrkvička and Myllymäki (2022, p.
6).

upper A single number (or a vector of suitable length) giving an upper bound for the
functions.

References

Mrkvička and Myllymäki (2022). False discovery rate envelopes. arXiv:2008.10108 [stat.ME]

Examples

A GLM example
data(rimov)
nsim <- 1000 # Number of simulations

res <- graph.flm(nsim=nsim,
formula.full = Y~Year,
formula.reduced = Y~1,
typeone = "fdr",
curve_sets = list(Y=rimov),
factors = data.frame(Year = 1979:2014))

plot(res)

forder 29

forder Functional ordering

Description

Calculates different measures for ordering the functions (or vectors) from the most extreme to least
extreme one

Usage

forder(
curve_sets,
measure = "erl",
scaling = "qdir",
alternative = c("two.sided", "less", "greater"),
use_theo = TRUE,
probs = c(0.025, 0.975),
quantile.type = 7

)

Arguments

curve_sets A curve_set object or a list of curve_set objects.

measure The measure to use to order the functions from the most extreme to the least
extreme one. Must be one of the following: ’rank’, ’erl’, ’cont’, ’area’, ’max’,
’int’, ’int2’. Default is ’erl’.

scaling The name of the scaling to use if measure is ’max’, ’int’ or ’int2’. Options
include ’none’, ’q’, ’qdir’ and ’st’, where ’qdir’ is the default.

alternative A character string specifying the alternative hypothesis. Must be one of the
following: "two.sided" (default), "less" or "greater". The last two options only
available for types 'rank', 'erl', 'cont' and 'area'.

use_theo Logical. When calculating the measures ’max’, ’int’, ’int2’, should the theoreti-
cal function from curve_set be used (if ’theo’ provided), see deviation_test.

probs A two-element vector containing the lower and upper quantiles for the measure
’q’ or ’qdir’, in that order and on the interval [0, 1]. The default values are 0.025
and 0.975, suggested by Myllymäki et al. (2015, 2017).

quantile.type As type argument of quantile, how to calculate quantiles for ’q’ or ’qdir’.

Details

Given a curve_set (see create_curve_set for how to create such an object) or an envelope
object of spatstat, which contains curves T1(r), . . . , Ts(r), the functions are ordered from the most
extreme one to the least extreme one by one of the following measures (specified by the argument
measure). Note that 'erl', 'cont' and 'area' were proposed as a refinement to the extreme
ranks 'rank', because the extreme ranks can contain many ties. All of these completely non-
parametric measures are smallest for the most extreme functions and largest for the least extreme

30 forder

ones, whereas the deviation measures ('max', 'int' and 'int2') obtain largest values for the most
extreme functions.

• 'rank': extreme rank (Myllymäki et al., 2017). The extreme rank Ri is defined as the mini-
mum of pointwise ranks of the curve Ti(r), where the pointwise rank is the rank of the value
of the curve for a specific r-value among the corresponding values of the s other curves such
that the lowest ranks correspond to the most extreme values of the curves. How the pointwise
ranks are determined exactly depends on the whether a one-sided (alternative is "less" or
"greater") or the two-sided test (alternative="two.sided") is chosen.

• 'erl': extreme rank length (Myllymäki et al., 2017). Considering the vector of pointwise
ordered ranks Ri of the ith curve, the extreme rank length measure Rerli is equal to

Rerli =
1

s

s∑
j=1

1(Rj” < ”Ri)

where Rj” < ”Ri if and only if there exists n ≤ d such that for the first k, k < n, pointwise
ordered ranks of Rj and Ri are equal and the n’th rank of Rj is smaller than that of Ri. The
scaling by

s

is applied to normalize the ranks following Mrkvička et al. (2019) and Narisetty and Nair
(2016).

• 'cont': continuous rank (Hahn, 2015; Mrkvička et al., 2019) based on minimum of continu-
ous pointwise ranks

• 'area': area rank (Mrkvička et al., 2019) based on area between continuous pointwise ranks
and minimum pointwise ranks for those argument (r) values for which pointwise ranks achieve
the minimum (it is a combination of erl and cont)

• 'max' and 'int' and 'int2': Further options for the measure argument that can be used
together with scaling. See the help in deviation_test for these options of measure and
scaling. These measures are largest for the most extreme functions and smallest for the
least extreme ones. The arguments use_theo and probs are relevant for these measures only
(otherwise ignored).

For details see Myllymäki and Mrkvička et al. (2020, Section 2)

Value

A vector containing one of the above mentioned measures k for each of the functions in the curve
set. If the component obs in the curve set is a vector, then its measure will be the first component
(named ’obs’) in the returned vector.

References

Hahn U (2015). “A note on simultaneous Monte Carlo tests.” Technical report, Centre for Stochastic
Geometry and advanced Bioimaging, Aarhus University.

Mrkvička, T., Myllymäki, M., Jilek, M. and Hahn, U. (2020) A one-way ANOVA test for functional
data with graphical interpretation. Kybernetika 56(3), 432-458. doi: 10.14736/kyb-2020-3-0432

frank.fanova 31

Mrkvička, T., Myllymäki, M., Kuronen, M. and Narisetty, N. N. (2022) New methods for multiple
testing in permutation inference for the general linear model. Statistics in Medicine 41(2), 276-297.
doi: 10.1002/sim.9236

Myllymäki, M., Grabarnik, P., Seijo, H. and Stoyan. D. (2015). Deviation test construction and
power comparison for marked spatial point patterns. Spatial Statistics 11, 19-34. doi: 10.1016/j.spasta.2014.11.004

Myllymäki, M., Mrkvička, T., Grabarnik, P., Seijo, H. and Hahn, U. (2017). Global envelope tests
for spatial point patterns. Journal of the Royal Statistical Society: Series B (Statistical Methodol-
ogy) 79, 381-404. doi: 10.1111/rssb.12172

Narisetty, N. N. and Nair, V. J. (2016) Extremal depth for functional data and applications. Journal
of the American Statistical Association 111, 1705-1714.

See Also

partial_forder

Examples

if(requireNamespace("fda", quietly = TRUE)) {
Consider ordering of the girls in the Berkeley Growth Study data
available from the R package fda, see ?growth, according to their
annual heights or/and changes within years.
First create sets of curves (vectors), for raw heights and
for the differences within the years
years <- paste(1:18)
curves <- fda::growth[['hgtf']][years,]
cset1 <- create_curve_set(list(r = as.numeric(years),

obs = curves))
cset2 <- create_curve_set(list(r = as.numeric(years[-1]),

obs = curves[-1,] - curves[-nrow(curves),]))

Order the girls from most extreme one to the least extreme one, below using the 'area' measure
a) according to their heights
forder(cset1, measure = 'area')
Print the 10 most extreme girl indices
order(forder(cset1, measure = 'area'))[1:10]
b) according to the changes (print indices)
order(forder(cset2, measure = 'area'))[1:10]
c) simultaneously with respect to heights and changes (print indices)
csets <- list(Height = cset1, Change = cset2)
order(forder(csets, measure = 'area'))[1:10]

}

frank.fanova Rank envelope F-test

Description

A one-way functional ANOVA based on the rank envelope applied to F values

32 frank.fanova

Usage

frank.fanova(
nsim,
curve_set,
groups,
typeone = c("fwer", "fdr"),
variances = "equal",
test.equality = c("mean", "var", "cov"),
cov.lag = 1,
savefuns = FALSE,
...

)

Arguments

nsim The number of random permutations.
curve_set The original data (an array of functions) provided as a curve_set object (see

create_curve_set) or a fdata object (see fdata). The curve set should include
the argument values for the functions in the component r, and the observed
functions in the component obs.

groups The original groups (a factor vector representing the assignment to groups).
typeone Character string indicating which type I error rate to control, either the fami-

lywise error rate (’fwer’) or false discovery rate (’fdr’). Further arguments to
the FWER or FDR envelope can be passed in argument GET.args. If ’fwer’,
the type of the envelope can be chosen by specifying the argument type in
GET.args.

variances Either "equal" or "unequal". If "equal", then the traditional F-values are used.
If "unequal", then the corrected F-values are used. The current implementation
uses lm to get the corrected F-values.

test.equality A character with possible values mean (default), var and cov. If mean, the func-
tional ANOVA is performed to compare the means in the groups. If var, then
the equality of variances of the curves in the groups is tested by performing the
graphical functional ANOVA test on the functions

Zij(r) = Tij(r)− T̄j(r).

If cov, then the equality of lag cov.lag covariance is tested by performing the
fANOVA with

Wij(r) =
√
|Vij(r)| · sign(Vij(r)),

where
Vij(r) = (Tij(r)− T̄j(r))((Tij(r + s)− T̄j(r + s))).

See Mrkvicka et al. (2020) for more details.
cov.lag The lag of the covariance for testing the equality of covariances, see test.equality.
savefuns Logical. If TRUE, then the functions from permutations are saved to the attribute

simfuns.
... Additional parameters to be passed to global_envelope_test (if typeone =

"fwer") or fdr_envelope (if typeone = "fdr").

frank.flm 33

Details

The test assumes that there are J groups which contain n1, . . . , nJ functions Tij , i = . . . , J, j =
1, . . . , nj . The functions should be given in the argument x, and the groups in the argument groups.
The test assumes that there exists non random functions µ(r) and µi(r) such that

Tij(r) = µ(r) + µi(r) + eij(r), i = 1, . . . , J, j = 1, . . . , nj

where eij(r) are independent and normally distributed. The test vector is

T = (F (r1), F (r2), . . . , F (rK)),

where F (ri) stands for the F-statistic. The simulations are performed by permuting the test func-
tions. Further details can be found in Mrkvička et al. (2020).

The argument variances="equal" means that equal variances across groups are assumed. The cor-
rection for unequal variances can be done by using the corrected F-statistic (option variances="unequal").

Unfortunately this test is not able to detect which groups are different from each other.

References

Mrkvička, T., Myllymäki, M., Jilek, M. and Hahn, U. (2020) A one-way ANOVA test for functional
data with graphical interpretation. Kybernetika 56 (3), 432-458. doi: 10.14736/kyb-2020-3-0432

See Also

graph.fanova

Examples

data("rimov")
groups <- factor(c(rep(1, times=12), rep(2, times=12), rep(3, times=12)))
res <- frank.fanova(nsim = 2499, curve_set = rimov, groups = groups)

plot(res)

data("imageset3")
res2 <- frank.fanova(nsim = 19, # Increase nsim for serious analysis!

curve_set = imageset3$image_set,
groups = imageset3$Group)

plot(res2)
plot(res2, fixedscales=FALSE)

frank.flm F rank functional GLM

Description

Multiple testing in permutation inference for the general linear model (GLM)

34 frank.flm

Usage

frank.flm(
nsim,
formula.full,
formula.reduced,
typeone = c("fwer", "fdr"),
curve_sets,
factors = NULL,
savefuns = TRUE,
lm.args = NULL,
GET.args = NULL,
mc.cores = 1,
mc.args = NULL,
cl = NULL,
method = c("best", "simple", "mlm", "complex", "lm")

)

Arguments

nsim The number of random permutations.

formula.full The formula specifying the general linear model, see formula in lm.
formula.reduced

The formula of the reduced model with nuisance factors only. This model should
be nested within the full model.

typeone Character string indicating which type I error rate to control, either the fami-
lywise error rate (’fwer’) or false discovery rate (’fdr’). Further arguments to
the FWER or FDR envelope can be passed in argument GET.args. If ’fwer’,
the type of the envelope can be chosen by specifying the argument type in
GET.args.

curve_sets A named list of sets of curves giving the dependent variable (Y), and possibly
additionally factors whose values vary across the argument values of the func-
tions. The dimensions of the elements should match with each other. Note that
factors that are fixed across the functions can be given in the argument factors.
Also fdata objects allowed.

factors A data frame of factors. An alternative way to specify factors when they are
constant for all argument values of the functions. The number of rows of the
data frame should be equal to the number of curves. Each column should specify
the values of a factor.

savefuns Logical or "return". If TRUE, then the functions from permutations are saved to
the attribute simfuns. If "return", then the function returns the permutations in a
curve_set, instead of the result of the envelope test on those; this can be used by
partial_forder.

lm.args A named list of additional arguments to be passed to lm. See details.

GET.args A named list of additional arguments to be passed to global_envelope_test.

mc.cores The number of cores to use, i.e. at most how many child processes will be run
simultaneously. Must be at least one, and parallelization requires at least two

frank.flm 35

cores. On a Windows computer mc.cores must be 1 (no parallelization). For
details, see mclapply, for which the argument is passed. Parallelization can be
used in generating simulations and in calculating the second stage tests.

mc.args A named list of additional arguments to be passed to mclapply. Only relevant
if mc.cores is more than 1.

cl Allows parallelization through the use of parLapply (works also in Windows),
see the argument cl there, and examples.

method For advanced use.

Details

The function frank.flm performs a nonparametric test of significance of a covariate in the func-
tional GLM. Similarly as in the graphical functional GLM (graph.flm), the Freedman-Lane al-
gorithm (Freedman and Lane, 1983) is applied to permute the functions (to obtain the simulations
under the null hypothesis of "no effects"); consequently, the test achieves the desired significance
level only approximately. If the reduced model contains only a constant, then the algorithm cor-
responds to simple permutation of raw data. In contrast to the graphical functional GLM, the F
rank functional GLM is based on the F-statistics that are calculated at each argument value of the
functions. The global envelope test is applied to the observed and simulated F-statistics. The test is
able to find if the factor of interest is significant and also which argument values of the functional
domain are responsible for the potential rejection.

The specification of the full and reduced formulas is important. The reduced model should be
nested within the full model. The full model should include in addition to the reduced model the
interesting factors whose effects are under investigation.

There are different versions of the implementation depending on the application.

• If all the covariates are constant across the functions, i.e. they can be provided in the argu-
ment factors, and there are no extra arguments given by the user in lm.args, then a fast
implementation is used to directly compute the F-statistics.

• If all the covariates are constant across the functions, but there are some extra arguments, then
a linear model is fitted separately by least-squares estimation to the data at each argument value
of the functions fitting a multiple linear model by lm. The possible extra arguments passed in
lm.args to lm must be of the form that lm accepts for fitting a multiple linear model. In the
basic case, no extra arguments are needed.

• If some of the covariates vary across the space, i.e. they are provided in the list of curve sets
in the argument curve_sets together with the dependent functions, but there are no extra
arguments given by the user in lm.args, there is a rather fast implementation of the F-value
calculation (which does not use lm).

• If some of the covariates vary across the space and there are user specified extra arguments
given in lm.args, then the implementation fits a linear model at each argument value of the
functions using lm, which can be rather slow. The arguments lm.args are passed to lm for
fitting each linear model.

By default the fastest applicable method is used. This can be changed by setting method argument.
The cases above correspond to "simple", "mlm", "complex" and "lm". Changing the default can be
useful for checking the validity of the implementation.

36 GDPtax

Value

A global_envelope object, which can be printed and plotted directly.

References

Mrkvička, T., Myllymäki, M., Kuronen, M. and Narisetty, N. N. (2022) New methods for multiple
testing in permutation inference for the general linear model. Statistics in Medicine 41(2), 276-297.
doi: 10.1002/sim.9236

Freedman, D., & Lane, D. (1983) A nonstochastic interpretation of reported significance levels.
Journal of Business & Economic Statistics 1(4), 292-298. doi:10.2307/1391660

Examples

data("GDPtax")
factors.df <- data.frame(Group = GDPtax$Group, Tax = GDPtax$Profittax)

nsim <- 999
res.tax_within_group <- frank.flm(nsim = nsim,

formula.full = Y~Group+Tax+Group:Tax,
formula.reduced = Y~Group+Tax,
curve_sets = list(Y=GDPtax$GDP),
factors = factors.df)

plot(res.tax_within_group)

Image set examples
data("abide_9002_23")
iset <- abide_9002_23$curve_set

res.F <- frank.flm(nsim = 19, # Increase nsim for serious analysis!
formula.full = Y ~ Group + Age + Sex,
formula.reduced = Y ~ Age + Sex,
curve_sets = list(Y = iset),
factors = abide_9002_23[['factors']],
GET.args = list(type = "area"))

plot(res.F)

GDPtax GDP per capita with country groups and profit tax

Description

GDP per capita with country groups and profit tax

Usage

data("GDPtax")

GDPtax 37

Format

A list of a three components. The first one (GDP) is a curve_set object with components r and obs
containing the years of observations and the GDP curves, i.e. the observed values of GDP in those
years. Each column of obs contains the GDP for the years for a particular country (seen as column
names). The country grouping is given in the list component Group and the profit tax in Profittax.

Details

The data includes the GDP per capita (current US$) for years 1980-2017 (World Bank national
accounts data, and OECD National Accounts data files). The data have been downloaded from the
webpage https://datamarket.com/data/set/15c9/gdp-per-capita-current-us#!ds=15c9!hd1&display=line,
distributed under the CC-BY 4.0 (https://datacatalog.worldbank.org/public-licenses#cc-by). From
the same webpage the profit tax in 2010 (World Bank, Doing Business Project (http://www.doingbusiness.org/ExploreTopics/PayingTaxes/)
and Total tax rate (were downloaded. Furthermore, different country groups were formed from
countries for which the GDP was available for 1980-2017 and profit tax for 2010:

• Group 1 (Major Advanced Economies (G7)): "Canada", "France", "Germany", "Italy", Japan"

• Group 2 (Euro Area excluding G7): "Austria", "Belgium", "Cyprus", "Finland", "Greece",
"Ireland", "Luxembourg", "Netherlands", "Portugal", "Spain"

• Group 3 (Other Advanced Economies (Advanced Economies excluding G7 and Euro Area)):
"Australia", "Denmark", "Iceland", "Norway", "Sweden", "Switzerland"

• Group 4 (Emerging and Developing Asia): "Bangladesh", "Bhutan", "China", "Fiji", "India",
"Indonesia", "Malaysia", "Nepal", "Philippines", "Thailand", "Vanuatu"

References

World Bank national accounts data, and OECD National Accounts data files. URL: https://data.worldbank.org/indicator/NY.GDP.PCAP.CD
World Bank, Doing Business Project (http://www.doingbusiness.org/ExploreTopics/PayingTaxes/).
URL: https://data.worldbank.org/indicator/IC.TAX.PRFT.CP.ZS

See Also

graph.flm

Examples

data("GDPtax")
Plot data in groups
for(i in 1:4)

assign(paste0("p", i), plot(subset(GDPtax$GDP, GDPtax$Group == i)) +
ggplot2::labs(title=paste("Group ", i, sep=""), y="GDP"))

p4
if(require("patchwork", quietly=TRUE))

p1 + p2 + p3 + p4

38 GET.cdf

GET.cdf Test of independence based on cumulative distribution function

Description

Permutation-based test of independence in a bivariate vector using the empirical joint cumulative
distribution function as the test statistic.

Usage

GET.cdf(X, ngrid = c(20, 20), nsim = 999, seq.x = NULL, seq.y = NULL, ...)

Arguments

X A matrix with n rows and 2 columns. Each row contains one bivariate observa-
tion.

ngrid Vector with two elements, giving the number of grid points to be used in the test
statistic for each of the two marginals. The default is 20 in each marginal.

nsim The number of random permutations used.

seq.x For the first marginal, the values at which the empirical cumulative distribution
function will be evaluated. If NULL (the default), sequence of quantiles will be
used, equidistant in terms of probability.

seq.y For the second marginal, the values at which the empirical cumulative distribu-
tion function will be evaluated. If NULL (the default), sequence of quantiles
will be used, equidistant in terms of probability.

... Additional parameters to be passed to global_envelope_test. In particularly,
alpha specifies the nominal significance level of the test, and type the type of
the global envelope test.

Details

Permutation-based test of independence in a bivariate sample, based on empirical joint cumulative
distribution function computed on a grid of ngrid[1] times ngrid[2] arguments. The grid points
are chosen according to the quantiles of the marginal distributions.

If the observed data are the pairs {(X1, Y1), . . . , (Xn, Yn)}, the permutations are obtained by ran-
domly permuting the values in the second marginal, i.e. {(X1, Yπ(1)), . . . , (Xn, Yπ(n))}.
The test itself is performed using the global envelope test of the chosen version, see the argument
type of global_envelope_test.

References

Dvořák, J. and Mrkvička, T. (2022). Graphical tests of independence for general distributions.
Computational Statistics 37, 671–699.

GET.composite 39

Examples

Generate sample data
data <- matrix(rnorm(n=200), ncol=2) %*% matrix(c(1,1,0,1), ncol=2)
plot(data)

Compute the CDF test and plot the significant regions
res <- GET.cdf(data, ngrid=c(20,15), nsim=1999)

plot(res)

Extract the p-value
attr(res,"p")

GET.composite Adjusted global envelope tests

Description

Adjusted global envelope tests for composite null hypothesis.

Usage

GET.composite(
X,
X.ls = NULL,
nsim = 499,
nsimsub = nsim,
simfun = NULL,
fitfun = NULL,
calcfun = function(X) {

X
},
testfuns = NULL,
...,
type = "erl",
alpha = 0.05,
alternative = c("two.sided", "less", "greater"),
probs = c(0.025, 0.975),
r_min = NULL,
r_max = NULL,
take_residual = FALSE,
save.cons.envelope = savefuns,
savefuns = FALSE,
verbose = TRUE,
MrkvickaEtal2017 = FALSE,
mc.cores = 1L

)

40 GET.composite

Arguments

X An object containing the data in some form. A curve_set (see create_curve_set)
or an envelope object (of the spatstat package), as the curve_sets argument
of global_envelope_test (need to provide X.ls), or a fitted point process
model of spatstat (e.g. object of class ppm or kppm), or a point pattern object of
class ppp of spatstat, or another data object (need to provide simfun, fitfun,
calcfun).

X.ls A list of objects as curve_sets argument of global_envelope_test, giving
the second stage simulations, see details.

nsim The number of simulations to be generated in the primary test. Ignored if X.ls
provided.

nsimsub Number of simulations in each basic test. There will be nsim repetitions of
the basic test, each involving nsimsub simulated realisations. Total number of
simulations will be nsim * (nsimsub + 1).

simfun A function for generating simulations from the null model. If given, this function
is called by replicate(n=nsim, simfun(simfun.arg), simplify=FALSE) to
make nsim simulations. Here simfun.arg is obtained by fitfun(X).

fitfun A function for estimating the parameters of the null model. The function should
return the fitted model in the form that it can be directly passed to simfun as its
argument.

calcfun A function for calculating a summary function from a simulation of the model.
The default is the identity function, i.e. the simulations from the model are func-
tions themselves. The use of calcfun is still experimental. Preferably provide X
and X.ls instead, if X is not a point pattern or fitted point process model object
of spatstat.

testfuns A list of lists of parameters to be passed to the envelope function of spatstat if X
is a point pattern of a fitted point process model of spatstat. A list of parameters
should be provided for each test function that is to be used in the combined test.

... Additional parameters to the envelope function of spatstat in the case where
only one test function is used. In that case, this is an alternative to providing
the parameters in the argument testfuns. If envelope is also used to generate
simulations under the null hypothesis (if simfun not provided), then also recall
to specify how to generate the simulations.

type The type of the global envelope with current options for ’rank’, ’erl’, ’cont’,
’area’, ’qdir’, ’st’ and ’unscaled’. See details.

alpha The significance level. The 100(1-alpha)% global envelope will be calculated.
If a vector of values is provided, the global envelopes are calculated for each
value.

alternative A character string specifying the alternative hypothesis. Must be one of the
following: "two.sided" (default), "less" or "greater". The last two options only
available for types 'rank', 'erl', 'cont' and 'area'.

probs A two-element vector containing the lower and upper quantiles for the measure
’q’ or ’qdir’, in that order and on the interval [0, 1]. The default values are 0.025
and 0.975, suggested by Myllymäki et al. (2015, 2017).

GET.composite 41

r_min The minimum argument value to include in the test.

r_max The maximum argument value to include in the test. in calculating functions by
the envelope function of spatstat.

take_residual Logical. If TRUE (needed for visual reasons only) the mean of the simulated
functions is reduced from the functions in each first and second stage test.

save.cons.envelope

Logical flag indicating whether to save the unadjusted envelope test results.

savefuns Logical flag indicating whether to save all the simulated function values. Similar
to the same argument of the envelope function of spatstat.

verbose Logical flag indicating whether to print progress reports during the simulations.
Similar to the same argument of envelope function of spatstat.

MrkvickaEtal2017

Logical. If TRUE, type is "st" or "qdir" and several test functions are used, then
the combined scaled MAD envelope presented in Mrkvička et al. (2017) is cal-
culated. Otherwise, the two-step procedure described in global_envelope_test
is used for combining the tests. Default to FALSE. The option is kept for histor-
ical reasons.

mc.cores The number of cores to use, i.e. at most how many child processes will be run
simultaneously. Must be at least one, and parallelization requires at least two
cores. On a Windows computer mc.cores must be 1 (no parallelization). For
details, see mclapply, for which the argument is passed. Parallelization can be
used in generating simulations and in calculating the second stage tests.

Details

The specification of X, X.ls, fitfun, simfun is important:

• If X.ls is provided, then the global envelope test is calculated based on functions in these
objects. X should be a curve_set (see create_curve_set) or an envelope object of spatstat
including the observed function and simulations from the tested model. X.ls should be a list
of curve_set or envelope (of R package spatstat) objects, where each component contains
an "observed" function f that has been simulated from the model fitted to the data and the
simulations that have been obtained from the same model that has been fitted to the "observed"
f. The user has the responsibility that the functions have been generated correctly, the test is
done based on these provided simulations. See the examples.

• Otherwise, if simfun and fitfun are provided, X can be general. The function fitfun is used
for fitting the desired model M and the function simfun for simulating from a fitted model M.
These functions should be coupled with each other such that the object returned by fitfun
is directly accepted as the (single) argument in simfun. In the case, that the global envelope
should not be calculated directly for X (X is not a function), calcfun can be used to specify
how to calculate the function from X and from simulations generated by simfun. Special
attention is needed in the correct specification of the functions, see examples.

• Otherwise, X should be either a fitted (point process) model object or a ppp object of the R
package spatstat.

– If X is a fitted (point process) model object of the R package spatstat, then the simula-
tions from this model are generated and summary functions for testing calculated by the

42 GET.composite

envelope function of spatstat. Which summary function to use and how to calculate it,
can be passed to envelope either in ... or testfuns. Unless otherwise specified the de-
fault function of envelope, i.g. the K-function, is used. The argument testfuns should
be used to specify the test functions in the case where one wants to base the test on several
test functions.

– If X is a ppp object of spatstat, then the envelope function is used for simulations and
model fitting and the complete spatial randomness (CSR) is tested (with intensity param-
eter).

For the rank envelope test, the global envelope test is the test described in Myllymäki et al. (2017)
with the adjustment of Baddeley et al. (2017). For other test types, the test (also) uses the two-stage
procedure of Dao and Genton (2014) with the adjustment of Baddeley et al. (2017) as descripbed
in Myllymäki and Mrkvička (2020).

See examples also in saplings.

Value

An object of class global_envelope or combined_global_envelope, which can be printed and
plotted directly. See global_envelope_test.

References

Baddeley, A., Hardegen, A., Lawrence, T., Milne, R. K., Nair, G. and Rakshit, S. (2017). On two-
stage Monte Carlo tests of composite hypotheses. Computational Statistics and Data Analysis 114:
75-87. doi: http://dx.doi.org/10.1016/j.csda.2017.04.003

Dao, N.A. and Genton, M. (2014). A Monte Carlo adjusted goodness-of-fit test for parametric
models describing spatial point patterns. Journal of Graphical and Computational Statistics 23,
497-517.

Mrkvička, T., Myllymäki, M. and Hahn, U. (2017) Multiple Monte Carlo testing, with applications
in spatial point processes. Statistics & Computing 27(5): 1239-1255. DOI: 10.1007/s11222-016-
9683-9

Myllymäki, M., Mrkvička, T., Grabarnik, P., Seijo, H. and Hahn, U. (2017). Global envelope tests
for spatial point patterns. Journal of the Royal Statistical Society: Series B (Statistical Methodol-
ogy), 79: 381-404. doi: 10.1111/rssb.12172

Myllymäki, M. and Mrkvička, T. (2020). GET: Global envelopes in R. arXiv:1911.06583 [stat.ME]

See Also

global_envelope_test, plot.global_envelope, saplings

Examples

Graphical normality test (Myllymaki and Mrkvicka, 2020, Section 3.3.)
#=========================
if(require("fda.usc", quietly=TRUE)) {

data("poblenou")
dat <- poblenou[['nox']][['data']][,'H10']
n <- length(dat)

GET.composite 43

The number of simulations
nsim <- nsimsub <- 199

set.seed(200127)
General setup
#==============
1. Fit the model
mu <- mean(dat)
sigma <- sd(dat)
2. Simulate a sample from the fitted null model and
compute the test vectors for data (obs) and each simulation (sim)
r <- seq(min(dat), max(dat), length=100)
obs <- stats::ecdf(dat)(r)
sim <- sapply(1:nsimsub, function(i) {

x <- rnorm(n, mean = mu, sd = sigma)
stats::ecdf(x)(r)

})
cset <- create_curve_set(list(r = r, obs = obs, sim_m = sim))

3. Simulate another sample from the fitted null model.
4. Fit the null model to each of the patterns,
simulate a sample from the null model,
and compute the test vectors for all.
cset.ls <- list()
for(rep in 1:nsim) {

x <- rnorm(n, mean = mu, sd = sigma)
mu2 <- mean(x)
sigma2 <- sd(x)
obs2 <- stats::ecdf(x)(r)
sim2 <- sapply(1:nsimsub, function(i) {

x2 <- rnorm(n, mean = mu2, sd = sigma2)
stats::ecdf(x2)(r)

})
cset.ls[[rep]] <- create_curve_set(list(r = r, obs = obs2, sim_m = sim2))

}
Perform the adjusted test
res <- GET.composite(X = cset, X.ls = cset.ls, type = 'erl')
plot(res) + ggplot2::labs(x = "NOx", y = "Ecdf")

}

Example of a point pattern data
#================================
Test the fit of a Matern cluster process.

if(require("spatstat.model", quietly=TRUE)) {
data("saplings")
saplings <- as.ppp(saplings, W = square(75))

First choose the r-distances
rmin <- 0.3; rmax <- 10; rstep <- (rmax-rmin)/500
r <- seq(0, rmax, by = rstep)

44 GET.contingency

Number of simulations
nsim <- 19 # Increase nsim for serious analysis!

Option 1: Give the fitted model object to GET.composite
#--
This can be done and is preferable when the model is
a point process model of spatstat.
1. Fit the Matern cluster process to the pattern
(using minimum contrast estimation with the K-function)
M1 <- kppm(saplings~1, clusters = "MatClust", statistic = "K")
summary(M1)
2. Make the adjusted global area rank envelope test using the L(r)-r function
adjenvL <- GET.composite(X = M1, nsim = nsim,

testfuns = list(L =list(fun="Lest", correction="translate",
transform=expression(.-r), r=r)), # passed to envelope

type = "area", r_min = rmin, r_max = rmax)
Plot the test result
plot(adjenvL)

Option 2: Generate the simulations "by yourself"
#---
and provide them as curve_set or envelope objects
Preferable when you want to have a control
on the simulations yourself.
1. Fit the model
M1 <- kppm(saplings~1, clusters = "MatClust", statistic = "K")
2. Generate nsim simulations by the given function using the fitted model
X <- envelope(M1, nsim = nsim, savefuns = TRUE,

fun = "Lest", correction = "translate",
transform = expression(.-r), r = r)

plot(X)
3. Create another set of simulations to be used to estimate
the second-state p-value (as proposed by Baddeley et al., 2017).
simpatterns2 <- simulate(M1, nsim = nsim)
4. Calculate the functions for each pattern
simf <- function(rep) {
Fit the model to the simulated pattern Xsims[[rep]]
sim_fit <- kppm(simpatterns2[[rep]], clusters = "MatClust", statistic = "K")
Generate nsim simulations from the fitted model
envelope(sim_fit, nsim = nsim, savefuns = TRUE,

fun = "Lest", correction = "translate",
transform = expression(.-r), r = r)

}
X.ls <- parallel::mclapply(X = 1:nsim, FUN = simf, mc.cores = 1) # list of envelope objects
5. Perform the adjusted test
res <- GET.composite(X = X, X.ls = X.ls, type = "area",

r_min = rmin, r_max = rmax)
plot(res)

}

GET.contingency Test of independence in a 2D contingency table

GET.contingency 45

Description

Permutation-based test of independence in a 2D contingency table, using the matrix of observed
counts as the test statistic.

Usage

GET.contingency(X, nsim = 999, ...)

Arguments

X A matrix with n rows and 2 columns. Each row contains one bivariate observa-
tion.

nsim The number of random permutations used.

... Additional parameters to be passed to global_envelope_test. In particularly,
alpha specifies the nominal significance level of the test, and type the type of
the global envelope test.

Details

Permutation-based test of independence in a 2D contingency table, using the matrix of observed
counts as the test statistic.

If the observed data are the pairs {(X1, Y1), . . . , (Xn, Yn)}, the permutations are obtained by ran-
domly permuting the values in the second marginal, i.e. {(X1, Yπ(1)), . . . , (Xn, Yπ(n))}.
The test itself is performed using the global envelope test in the chosen version. Text output can be
printed in the console by typing the object name. The cells in which the observed value exceeds
the upper envelope printed in red, and cells in which the observed value is lower than the lower
envelope printed in cyan. Standard output of the global envelope test is also returned and can be
plotted or analyzed accordingly.

References

Dvořák, J. and Mrkvička, T. (2022). Graphical tests of independence for general distributions.
Computational Statistics 37, 671–699.

Examples

Generate sample data:
data <- matrix(c(sample(4, size=100, replace=TRUE), sample(2, size=100, replace=TRUE)), ncol=2)
data[,2] <- data[,2] + data[,1]

Observed contingency table (with row names and column names)
table(data[,1], data[,2])

Permutation-based envelope test
res <- GET.contingency(data, nsim=999)

res
plot(res)

46 GET.localcor

Extract the p-value
attr(res,"p")

GET.localcor The test of local correlations

Description

The test of local correlations using Vilodomat et al. (2014) procedure for resamples and the FDR
envelope of Mrkvička and Myllymäki (2022).

Usage

GET.localcor(
data,
Delta,
nsim = 1000,
typeone = c("fdr", "fwer"),
varying.bandwidth = FALSE,
bandwidth.nn = 0.1,
bandwidth.h = 5.281,
maxk = 300,
savefuns = FALSE,
N_s = 1000,
mc.cores = 1L,
mc.args = NULL,
cl = NULL,
notest = FALSE,
...

)

Arguments

data A data.frame where the first two columns correspond to the values of the two
random fields, whose correlations are to be studied, and the third and fourth
columns correspond to the x- and y-coordinates where these random fields have
been observed. In addition, the width and height of the pixels at each (x,y) can
be given in the fifth and sixth column. Warning: no checks for the data input.

Delta A smoothing parameter of the local correlation. According to Vilodomat et al.
(2014): Delta is a set of values for the proportion of neighbors to consider for
the smoothing step. No default. The user may have to experiment with different
values to find one suitable for their data.

nsim The number of resamples.
typeone Character string indicating which type I error rate to control, either the fami-

lywise error rate (’fwer’) or false discovery rate (’fdr’). Further arguments to
the FWER or FDR envelope can be passed in argument GET.args. If ’fwer’,
the type of the envelope can be chosen by specifying the argument type in
GET.args.

GET.localcor 47

varying.bandwidth

Logical, whether to use a varying bandwidth to calculate the local correlations
or not. See Vilodomat et al. (2014).

bandwidth.nn Nearest neighbor component of the smoothing parameter for varying bandwidth
to be passed to the argument nn of the function lp of the locfit package. The
user may have to experiment with different values to find one suitable for their
data. Default set to to 0.1 according to Vilodamat et al. (2014, supporting
information).

bandwidth.h Non-varying bandwidth, to be passed to the argument h of the function lp of
locfit. The user may have to experiment with different values to find one suitable
for their data. Default to 5.281 according to Vilodamat et al. (2014, supporting
information).

maxk See locfit and locfit.raw of locfit. Default here to 300 following Vilodomat
et al. (2014).

savefuns Logical. If TRUE, then the functions from permutations are saved to the attribute
simfuns.

N_s If the number of observations is bigger than N_s, following Vilodomat et al.
(2014) a subsample of size N_s is taken every time when a variogram is calcu-
lated.

mc.cores The number of cores to use, i.e. at most how many child processes will be run
simultaneously. Must be at least one, and parallelization requires at least two
cores. On a Windows computer mc.cores must be 1 (no parallelization). For
details, see mclapply, for which the argument is passed. Parallelization can be
used in generating simulations and in calculating the second stage tests.

mc.args A named list of additional arguments to be passed to mclapply. Only relevant
if mc.cores is more than 1.

cl Allows parallelization through the use of parLapply (works also in Windows),
see the argument cl there, and examples.

notest Logical. FALSE means that the test is done. TRUE allows to calculate only local
correlation for the data, which can be beneficial for choosing the bandwidths
before running the test. If TRUE, then only the observed local correlations will
be returned.

... Additional parameters to be passed to fdr_envelope (if typeone = "fdr") or to
global_envelope_test (if typeone = "fwer").

Details

The code is a modification of the supporting information code of Vilodomat et al. (2014) available
at https://doi.org/10.1111/biom.12139. The modification includes the FDR (or FWER, if specified
by the argument typeone) envelopes for the test of local correlations, i.e. multiple testing correction
and graphical illustration of the test results.

Variograms are calculated using the package geoR and the local correlations using the R package
locfit. These packages should be installed to use GET.localcor.

Currently the data is provided in the format of Vilodomat et al. (2014, Supporting information).
Additionally width and height of area represented by a data point can be provided, see the argument
data. This information is used for plotting purposes when plotting the output by plot().

48 GET.necdf

Examples will be provided in a vignette.

Value

A global envelope object (with possible additional classes), see description of main components in
global_envelope (Value). Additional attributes: p_global contains the Monte Carlo p-value for
the global test of correlation. cor_global and cor_global_sim contain the value of the correlation
for data and permuted data, respectively. If savefuns = TRUE, then permutations contain the
permuted values of the first random field according to Viladomat et al. (2014) procedure, and
cset contains all the local correlations for the data and permuted data in a curve_set object (see
create_curve_set).

References

Viladomat, J., Mazumder, R., McInturff, A., McCauley, D.J. and Hastie, T. (2014). Assessing
the significance of global and local correlations under spatial autocorrelation: A nonparametric
approach. Biometrics 70, 409-418. doi: 10.1111/biom.12139

Mrkvička and Myllymäki (2022). False discovery rate envelopes. arXiv:2008.10108 [stat.ME]

GET.necdf Graphical n sample test of correspondence of distribution functions

Description

Compare the distributions of two (or more) samples.

Usage

GET.necdf(
x,
r = seq(min(unlist((lapply(x, min)))), max(unlist((lapply(x, max)))), length = 100),
contrasts = FALSE,
nsim,
...

)

Arguments

x A list of numeric vectors, one for each sample.

r The sequence of argument values at which the distribution functions are to be
compared. The default is 100 equally spaced values between the minimum and
maximum over all groups.

contrasts Logical. FALSE and TRUE specify the two test functions as described in de-
scription part of this help file.

nsim The number of random permutations.

... Additional parameters to be passed to global_envelope_test (if typeone =
"fwer") or fdr_envelope (if typeone = "fdr").

GET.necdf 49

Details

A global envelope test can be performed to investigate whether the n distribution functions differ
from each other and how do they differ. This test is a generalization of the two-sample Kolmogorov-
Smirnov test with a graphical interpretation. We assume that the observations in the sample i are an
i.i.d. sample from the distribution Fi(r), i = 1, . . . , n, and we want to test the hypothesis

F1(r) = · · · = Fn(r).

If contrasts = FALSE (default), then the test statistic is taken to be

T = (F̂1(r), . . . , F̂n(r))

where F̂i(r) = (F̂i(r1), . . . , F̂i(rk)) is the ecdf of the ith sample evaluated at argument values
r = (r1, . . . , rk). This is our recommended test function for the test. Another possibility is given
by contrasts = TRUE, and then the test statistic is contructed from all pairwise differences,

T = (F̂1(r)− F̂2(r), F̂1(r)− F̂3(r), . . . , F̂n−1(r)− F̂n(r))

The simulations under the null hypothesis that the distributions are the same are obtained by per-
muting the individuals of the groups. The default number of permutation, if nsim is not specified,
is n*1000 - 1 for the case contrasts = FALSE and (n*(n-1)/2)*1000 - 1 for the case contrasts =
TRUE, where n is the length of x.

Examples

if(require(fda, quietly=TRUE)) {
Heights of boys and girls at age 10
f.a <- growth$hgtf["10",] # girls at age 10
m.a <- growth$hgtm["10",] # boys at age 10
Empirical cumulative distribution functions
plot(ecdf(f.a))
plot(ecdf(m.a), col='grey70', add=TRUE)
Create a list of the data
fm.list <- list(Girls=f.a, Boys=m.a)

res_m <- GET.necdf(fm.list)
plot(res_m)
res_c <- GET.necdf(fm.list, contrasts=TRUE)
plot(res_c)

Heights of boys and girls at age 14
f.a <- growth$hgtf["14",] # girls at age 14
m.a <- growth$hgtm["14",] # boys at age 14
Empirical cumulative distribution functions
plot(ecdf(f.a))
plot(ecdf(m.a), col='grey70', add=TRUE)
Create a list of the data
fm.list <- list(Girls=f.a, Boys=m.a)

res_m <- GET.necdf(fm.list)

50 GET.qq

plot(res_m)
res_c <- GET.necdf(fm.list, contrasts=TRUE)
plot(res_c)

}

GET.qq Test of independence based on the smoothed Q-Q plot

Description

Permutation-based test of independence in a bivariate vector using the smoothed Q-Q plot as the
test statistic.

Usage

GET.qq(
X,
ngrid = c(64, 64),
nsim = 999,
sigma = NULL,
atoms.x = NULL,
atoms.y = NULL,
...

)

Arguments

X A matrix with n rows and 2 columns. Each row contains one bivariate observa-
tion.

ngrid Vector with two elements, giving the number of grid points to be used in the test
statistic for each of the two marginals. The default is 64 in each marginal.

nsim The number of random permutations used.

sigma Standard deviation of the smoothing kernel to be used for smoothing the Q-Q
plot when computing the test statistic. If NULL, sensible default value is used
based on the number of observations.

atoms.x Vector specifying atomic values in the first marginal. See Examples.

atoms.y Vector specifying atomic values in the second marginal. See Examples.

... Additional parameters to be passed to global_envelope_test. In particularly,
alpha specifies the nominal significance level of the test, and type the type of
the global envelope test.

GET.qq 51

Details

Permutation-based test of independence in a bivariate sample, based on Q-Q representation and
estimate of the intensity function computed on a regular grid of ngrid[1] times ngrid[2] points.

If the observed data are the pairs {(X1, Y1), . . . , (Xn, Yn)}, the permutations are obtained by ran-
domly permuting the values in the second marginal, i.e. {(X1, Yπ(1)), . . . , (Xn, Yπ(n))}.
The test itself is performed using the global envelope test in the chosen version.

References

Dvořák, J. and Mrkvička, T. (2022). Graphical tests of independence for general distributions.
Computational Statistics 37, 671–699.

Examples

Generate sample data
data <- matrix(rnorm(n=200), ncol=2) %*% matrix(c(1,1,0,1), ncol=2)

plot(data)

Compute the QQ test and plot the significant regions
res <- GET.qq(data, ngrid=c(30,20), nsim=999)

plot(res)
Extract the p-value
attr(res,"p")

With atoms, independent
data <- cbind(rnorm(n=100), sample(4, size=100, replace=TRUE))
plot(data)
res <- GET.qq(data, nsim=999, atoms.y=c(1,2,3,4))

plot(res)

With atoms, dependent
data <- cbind(sort(rnorm(n=100)), sort(sample(4, size=100, replace=TRUE)))
plot(data)
res <- GET.qq(data, nsim=999, atoms.y=c(1,2,3,4))
plot(res)

Atoms in both variables
data <- cbind(rnorm(n=100), rnorm(n=100)) %*% matrix(c(1,1,0,1), ncol=2)
data[,1][data[,1]<=-1] <- -1
data[,2][data[,2]<=-0.5] <- -0.5
plot(data)

Perform the test
res <- GET.qq(data, nsim=999, atoms.x=c(-1), atoms.y=c(-0.5), sigma=NULL)

plot(res)

52 GET.spatialF

GET.spatialF Testing global and local dependence of point patterns on covariates

Description

Compute the spatial F- and S-statistics and perform the one-stage global envelope tests proposed by
Myllymäki et al. (2020).

Usage

GET.spatialF(
X,
formula.full,
formula.reduced,
fitfun,
covariates,
nsim,
bw = spatstat.explore::bw.scott(X),
bw.S = bw,
dimyx = NULL,
...

)

Arguments

X A ppp object of spatstat representing the observed point pattern.
formula.full A formula for the trend of the full model.
formula.reduced

A formula for the trend of the reduced model that is a submodel of the full
model.

fitfun A function of a point pattern, model formula and covariates, giving a fitted
model object that can be used with simulate.

covariates A list of covariates.
nsim The number of simulations.
bw The bandwidth for smoothed residuals.
bw.S The radius for the local S(u)-statistic.
dimyx Pixel array dimensions for smoothed residuals. See as.mask of spatstat.
... Additional arguments to be passed to global_envelope_test.

Value

list with three components

• F = the global envelope test based on the F(u) statistic
• S = the global envelope test based on the S(u) statistic
• coef = the coefficients of the full model given by fitfun

GET.spatialF 53

References

Myllymäki, M., Kuronen, M. and Mrkvička, T. (2020). Testing global and local dependence of point
patterns on covariates in parametric models. Spatial Statistics 42, 100436. doi: 10.1016/j.spasta.2020.100436

Examples

if(require("spatstat.model", quietly=TRUE)) {
Example of tropical rain forest trees
data("bei")

fullmodel <- ~ grad
reducedmodel <- ~ 1
fitppm <- function(X, model, covariates) {
ppm(X, model, covariates=covariates)

}

nsim <- 19 # Increase nsim for serious analysis!
res <- GET.spatialF(bei, fullmodel, reducedmodel, fitppm, bei.extra, nsim)

plot(res$F)
plot(res$S)

Example of forest fires
data("clmfires")
Choose the locations of the lightnings in years 2004-2007:
pp.lightning <- unmark(subset(clmfires, cause == "lightning" &

date >= "2004-01-01" & date < "2008-01-01"))

covariates <- clmfires.extra$clmcov100
covariates$forest <- covariates$landuse == "conifer" | covariates$landuse == "denseforest" |

covariates$landuse == "mixedforest"

fullmodel <- ~ elevation + landuse
reducedmodel <- ~ landuse
nsim <- 19 # Increase nsim for serious analysis!
res <- GET.spatialF(pp.lightning, fullmodel, reducedmodel, fitppm, covariates, nsim)
plot(res$F)
plot(res$S)

Examples of the fitfun functions for clustered and regular processes
fitfun for the log Gaussian Cox Process with exponential covariance function
fitLGCPexp <- function(X, model, covariates) {
kppm(X, model, clusters="LGCP", model="exponential", covariates=covariates)

}
fitfun for the hardcore process with hardcore radius 0.01
fitHardcore <- function(X, model, covariates) {

ppm(X, model, interaction=Hardcore(0.01), covariates=covariates)
}

}

54 GET.variogram

GET.variogram Variogram and residual variogram with global envelopes

Description

The function accompanies the function variogram with global envelopes that are based on per-
mutations of the variable(s) or residuals for which the variogram is calculated. Therefore, one can
inspect the hypothesis of "no spatial autocorrelation" of the variable or the residuals of the fitted
model.

Usage

GET.variogram(
object,
nsim = 999,
data = NULL,
...,
GET.args = NULL,
savefuns = TRUE

)

Arguments

object An object of class gstat or a variogram.formula. In the first case, direct
(residual) variograms are calculated for the variable defined in object. Only one
variable allowed. In the second case, a formula defining the response vector
and (possible) regressors, in case of absence of regressors, use e.g. z~1. See
variogram.

nsim The number of permutations.

data A data frame where the names in formula are to be found. If NULL, the data are
assumed to be found in the object.

... Additional parameters to be passed to variogram.

GET.args A named list of additional arguments to be passed to global_envelope_test.

savefuns Logical. If TRUE, then the functions from permutations are saved to the attribute
simfuns.

Examples

if(require("sp", quietly=TRUE) & require("gstat", quietly=TRUE)) {
Examples from gstat complemented with global envelopes
#---
data("meuse")
coordinates(meuse) <- ~x+y
topsoil zinc concentration, mg kg-1 soil ("ppm")
bubble(meuse, "zinc",

col=c("#00ff0088", "#00ff0088"), main="zinc concentrations (ppm)")

global_envelope_test 55

Variogram can be calculated as follows by the function variogram of the gstat package.
The function variogram takes a formula as its first argument:
log(zinc)~1 means that we assume a constant trend for the variable log(zinc).
lzn.vgm <- variogram(object=log(zinc)~1, data=meuse)
plot(lzn.vgm)
Variogram with global envelopes is as easy:
lzn.vgm.GET <- GET.variogram(object=log(zinc)~1, data=meuse)

plot(lzn.vgm.GET)

Instead of the constant mean, denoted by ~1, a mean function can
be specified, e.g. using ~sqrt(dist) as a predictor variable:
lznr.vgm <- variogram(log(zinc)~sqrt(dist), meuse)
In this case, the variogram of residuals with respect
to a fitted mean function are shown.
plot(lznr.vgm)
The variogram with global envelopes (obtained by permuting the residuals):
lznr.vgm.GET <- GET.variogram(object=log(zinc)~sqrt(dist), data=meuse)

plot(lznr.vgm.GET)

Directional variograms
lzn.dir <- variogram(object=log(zinc)~1, data=meuse, alpha=c(0, 45, 90, 135))
plot(lzn.dir)
with global envelopes
lzn.dir.GET <- GET.variogram(object=log(zinc)~1, data=meuse, alpha=c(0, 45, 90, 135))

plot(lzn.dir.GET)

Use instead gstat objects
g <- gstat(id="ln.zinc", formula=log(zinc)~1, data=meuse)
or: g <- gstat(id="ln.zinc", formula=log(zinc)~sqrt(dist), data=meuse)
The variogram
plot(variogram(g))
The variogram with global envelopes:
g.GET <- GET.variogram(object=g)

plot(g.GET)
}

global_envelope_test Global envelope test

Description

Global envelope test, global envelopes and p-values

Usage

global_envelope_test(

56 global_envelope_test

curve_sets,
type = "erl",
alpha = 0.05,
alternative = c("two.sided", "less", "greater"),
ties = "erl",
probs = c(0.025, 0.975),
quantile.type = 7,
central = "mean",
nstep = 2,
...

)

Arguments

curve_sets A curve_set (see create_curve_set) or an envelope object of spatstat con-
taining a data function and simulated functions. If an envelope object is given,
it must contain the summary functions from the simulated patterns which can
be achieved by setting savefuns = TRUE when calling the envelope function.
Alternatively, a list of curve_set or envelope objects can be given.

type The type of the global envelope with current options for ’rank’, ’erl’, ’cont’,
’area’, ’qdir’, ’st’ and ’unscaled’. See details.

alpha The significance level. The 100(1-alpha)% global envelope will be calculated.
If a vector of values is provided, the global envelopes are calculated for each
value.

alternative A character string specifying the alternative hypothesis. Must be one of the
following: "two.sided" (default), "less" or "greater". The last two options only
available for types 'rank', 'erl', 'cont' and 'area'.

ties The method to obtain a unique p-value when type = 'rank'. Possible values
are ’midrank’, ’random’, ’conservative’, ’liberal’ and ’erl’. For ’conservative’
the resulting p-value will be the highest possible. For ’liberal’ the p-value will
be the lowest possible. For ’random’ the rank of the obs within the tied values
is uniformly sampled so that the resulting p-value is at most the conservative
option and at least the liberal option. For ’midrank’ the mid-rank within the tied
values is taken. For ’erl’ the extreme rank length p-value is calculated. The
default is ’erl’.

probs A two-element vector containing the lower and upper quantiles for the measure
’q’ or ’qdir’, in that order and on the interval [0, 1]. The default values are 0.025
and 0.975, suggested by Myllymäki et al. (2015, 2017).

quantile.type As type argument of quantile, how to calculate quantiles for ’q’ or ’qdir’.
central Either "mean" or "median". If the curve sets do not contain the component theo

for the theoretical central function, then the central function (used for plotting
only) is calculated either as the mean or median of functions provided in the
curve sets. For ’qdir’, ’st’ and ’unscaled’ only the mean is allowed as an option,
due to their definition.

nstep 1 or 2 for how to contruct a combined global envelope if list of curve sets is
provided. 2 (default) for a two-step combining procedure, 1 for one-step.

... Additional parameters to be passed to central_region.

global_envelope_test 57

Details

Given a curve_set (see create_curve_set for how to create such an object) or an envelope
object of spatstat, which contains both the data curve (or function or vector) T1(r) (in the com-
ponent obs) and the simulated curves T2(r), . . . , Ts+1(r) (in the component sim_m), the function
global_envelope_test performs a global envelope test. The functionality of the function is rather
similar to the function central_region, but in addition to ordering the functions from the most ex-
treme one to the least extreme one using different measures and providing the global envelopes with
intrinsic graphical interpretation, p-values are calculated for the test. Thus, while central_region
can be used to construct global envelopes in a general setting, the function global_envelope_test
is devoted to testing as its name suggests.

The function global_envelope_test is the main function for global envelope tests (for simple
hypotheses). Different type of global envelope tests can be performed. We use such ordering of the
functions for which we are able to construct global envelopes with intrinsic graphical interpretation.

• 'rank': the completely non-parametric rank envelope test (Myllymäki et al., 2017) based on
minimum of pointwise ranks

• 'erl': the completely non-parametric rank envelope test based on extreme rank lengths (Myl-
lymäki et al., 2017; Mrkvička et al., 2018) based on number of minimal pointwise ranks

• 'cont': the completely non-parametric rank envelope test based on continuous rank (Hahn,
2015; Mrkvička et al., 2019) based on minimum of continuous pointwise ranks

• 'area': the completely non-parametric rank envelope test based on area rank (Mrkvička et al.,
2019) based on area between continuous pointwise ranks and minimum pointwise ranks for
those argument (r) values for which pointwise ranks achieve the minimum (it is a combination
of erl and cont)

• "qdir", the directional quantile envelope test, protected against unequal variance and asymme-
try of T(r) for different distances r (Myllymäki et al., 2015, 2017)

• "st", the studentised envelope test, protected against unequal variance of T(r) for different
distances r (Myllymäki et al., 2015, 2017)

• "unscaled", the unscaled envelope (providing a baseline) that has a contant width and that
corresponds to the classical maximum deviation test (Ripley, 1981).

The first four types are global rank envelopes. The 'rank' envelope test is a completely non-
parametric test, which provides the 100(1-alpha) T(r) on the chosen interval of distances and asso-
ciated p-values. The other three are modifications of 'rank' to treat the ties in the extreme rank
ordering on which the 'rank' test is based on. The last three envelopes are global scaled maximum
absolute difference (MAD) envelope tests. The unscaled envelope test leads to envelopes with con-
stant width over the distances r. Thus, it suffers from unequal variance of T(r) over the distances
r and from the asymmetry of distribution of T(r). We recommend to use the other global envelope
tests available. The unscaled envelope is provided as a reference.

See Myllymäki and Mrkvička (2020, Section 2.), i.e. vignette("GET"), for more detailed descrip-
tion of the measures and the corresponding envelopes.

See vignette("pointpatterns") for examples of point pattern analyses.

Value

Either an object of class "global_envelope" or "combined_global_envelope", similarly as the objects
returned by central_region.

58 global_envelope_test

The global_envelope is essentially a data frame containing columns

• the values of the argument r at which the test was made, copied from the argument curve_sets
with the corresponding names

• obs = values of the data function, copied from the argument curve_sets (unlike for central
regions, obs always exists for a global envelope test)

• lo = the lower envelope; in case of a vector of alpha values, several ’lo’ exist with names
paste0("lo.", 100*(1-alpha))

• hi = the upper envelope; in case of a vector of alpha values, several ’lo’ exist with names
paste0("hi.", 100*(1-alpha))

• central = a central curve as specified in the argument central.

Moreover, the returned object has the same attributes as the global_envelope object returned by
central_region and in addition

• p = A point estimate for the p-value (default is the mid-rank p-value).

and in the case that type = 'rank' also

• p_interval = The p-value interval [pliberal, pconservative].

• ties = As the argument ties.

The combined_global_envelope is a list of global_envelope objects containing the above men-
tioned columns and which all together form the global envelope. It has the same attributes as
described in central_region, and in addition also the p-value p. The 2d classes are attached as
described in central_region.

Procedure

1) First the curves are ranked from the most extreme one to the least extreme one by a measure that
is specified by the argument type. The options are

• ’rank’: extreme ranks (Myllymäki et al., 2017)

• ’erl’: extreme rank lengths (Myllymäki et al., 2017; Mrkvička et al., 2018)

• ’cont’: continuous ranks (Hahn, 2015; Mrkvička et al., 2019)

• ’area’: area ranks (Mrkvička et al., 2019)

• ’qdir’: the directional quantile maximum absolute deviation (MAD) measure (Myllymäki et
al., 2015, 2017)

• ’st’: the studentized MAD measure (Myllymäki et al., 2015, 2017)

• ’unscaled’: the unscaled MAD measure (Ripley, 1981)

2) Based on the measures used to rank the functions, the 100(1-alpha)% global envelope is provided.
It corresponds to the 100*coverage% central region.

3) P-values: In the case type="rank", based on the extreme ranks ki, i = 1, ..., s+ 1, the p-interval
is calculated. Because the extreme ranks contain ties, there is not just one p-value. The p-interval
is given by the most liberal and the most conservative p-value estimate. Also a single p-value is
calculated. By default this single p-value is the extreme rank length p-value ("erl") as specified by
the argument ties. If the case of other measures, a (single) p-value based on the given ordering of
the functions is calculated and returned in the attribute p.

global_envelope_test 59

Number of simulations

For the global "rank" envelope test, Myllymäki et al. (2017) recommended to use at least 2500
simulations for testing at the significance level alpha = 0.05 for single function tests, based on exper-
iments with summary functions for point processes evaluated approximately at 500 argument val-
ues. In this case, the width of the p-interval associated with the extreme rank measure tended to be
smaller than 0.01. The tests 'erl', 'cont' and 'area', similarly as the MAD deviation/envelope
tests 'qdir', 'st' and 'unscaled', allow in principle a lower number of simulations to be used
than the test based on extreme ranks ('rank'), because no ties occur for these measures. If afford-
able, we recommend in any case some thousands of simulations for all the measures to achieve a
good power and repeatability of the test. If the dimension of the test functions is higher, also the
number of simulations should preferably be higher.

Tests based on several functions

If a list of (suitable) objects are provided in the argument curve_sets, then by default (nstep =
2) the two-step combining procedure is used to perform the combined global test as described in
Myllymäki and Mrkvička (2020). If nstep = 1 and the lengths of the multivariate vectors in each
component of the list are equal, then the one-step combining procedure is used where the functions
are concatenated together into a one long vector.

References

Mrkvička, T., Myllymäki, M. and Hahn, U. (2017). Multiple Monte Carlo testing, with applications
in spatial point processes. Statistics & Computing 27(5), 1239-1255. doi: 10.1007/s11222-016-
9683-9

Mrkvička, T., Myllymäki, M., Jilek, M. and Hahn, U. (2020) A one-way ANOVA test for functional
data with graphical interpretation. Kybernetika 56(3), 432-458. doi: 10.14736/kyb-2020-3-0432

Mrkvička, T., Myllymäki, M., Kuronen, M. and Narisetty, N. N. (2022) New methods for multiple
testing in permutation inference for the general linear model. Statistics in Medicine 41(2), 276-297.
doi: 10.1002/sim.9236

Myllymäki, M., Grabarnik, P., Seijo, H. and Stoyan. D. (2015). Deviation test construction and
power comparison for marked spatial point patterns. Spatial Statistics 11, 19-34. doi: 10.1016/j.spasta.2014.11.004

Myllymäki, M., Mrkvička, T., Grabarnik, P., Seijo, H. and Hahn, U. (2017). Global envelope tests
for spatial point patterns. Journal of the Royal Statistical Society: Series B (Statistical Methodol-
ogy) 79, 381–404. doi: 10.1111/rssb.12172

Myllymäki, M. and Mrkvička, T. (2020). GET: Global envelopes in R. arXiv:1911.06583 [stat.ME]

Ripley, B.D. (1981). Spatial statistics. Wiley, New Jersey.

See Also

plot.global_envelope, central_region, GET.composite

Examples

Goodness-of-fit testing for simple hypothesis
if(require("spatstat.explore", quietly=TRUE)) {

Testing complete spatial randomness (CSR)

60 global_envelope_test

#==
X <- unmark(spruces)

nsim <- 1999 # Number of simulations

Illustration of general workflow for simple hypotheses
#===
First illustrate the general workflow for the test by this example
of CSR test for a point pattern X using the empirical L-function.
Define the argument values at which the functions are evaluated
obs.L <- Lest(X, correction="translate")
r <- obs.L[['r']]
The test function for the data
obs <- obs.L[['trans']] - r
Prepare simulations and calculate test functions for them at same r as 'obs'
sim <- matrix(nrow=length(r), ncol=nsim)
for(i in 1:nsim) {

sim.X <- runifpoint(ex=X) # simulation under CSR
sim[, i] <- Lest(sim.X, correction="translate", r=r)[['trans']] - r

}
Create a curve_set containing argument values, observed and simulated functions
cset <- create_curve_set(list(r=r, obs=obs, sim_m=sim))
Perform the test
res <- global_envelope_test(cset, type="erl")
plot(res) + ggplot2::ylab(expression(italic(hat(L)(r)-r)))

Simple hypothesis for a point pattern utilizing the spatstat package
#===
Generate nsim simulations under CSR, calculate L-function for the data and simulations
env <- envelope(X, fun="Lest", nsim=nsim,

savefuns=TRUE, # save the functions
correction="translate", # edge correction for L
transform=expression(.-r), # centering
simulate=expression(runifpoint(ex=X))) # Simulate CSR

The rank envelope test (ERL)
res <- global_envelope_test(env, type="erl")
Plot the result
plot(res)

Advanced use:
Choose the interval of distances [r_min, r_max] (at the same time create a curve_set from 'env')
cset <- crop_curves(env, r_min=1, r_max=7)
Do the rank envelope test (erl)
res <- global_envelope_test(cset, type="erl")
plot(res) + ggplot2::ylab(expression(italic(L(r)-r)))

A combined global envelope test
#================================
As an example test CSR of the saplings point pattern by means of
L, F, G and J functions.
data(saplings)
X <- as.ppp(saplings, W=square(75))

global_envelope_test 61

nsim <- 499 # Number of simulations

Specify distances for different test functions
n <- 500 # the number of r-values
rmin <- 0; rmax <- 20; rstep <- (rmax-rmin)/n
rminJ <- 0; rmaxJ <- 8; rstepJ <- (rmaxJ-rminJ)/n
r <- seq(0, rmax, by=rstep) # r-distances for Lest
rJ <- seq(0, rmaxJ, by=rstepJ) # r-distances for Fest, Gest, Jest

Perform simulations of CSR and calculate the L-functions
env_L <- envelope(X, nsim=nsim,
simulate=expression(runifpoint(ex=X)),
fun="Lest", correction="translate",
transform=expression(.-r), # Take the L(r)-r function instead of L(r)
r=r, # Specify the distance vector
savefuns=TRUE, # Save the estimated functions
savepatterns=TRUE) # Save the simulated patterns
Take the simulations from the returned object
simulations <- attr(env_L, "simpatterns")
Then calculate the other test functions F, G, J for each simulated pattern
env_F <- envelope(X, nsim=nsim, simulate=simulations,

fun="Fest", correction="Kaplan", r=rJ,
savefuns=TRUE)

env_G <- envelope(X, nsim=nsim, simulate=simulations,
fun="Gest", correction="km", r=rJ,
savefuns=TRUE)

env_J <- envelope(X, nsim=nsim, simulate=simulations,
fun="Jest", correction="none", r=rJ,
savefuns=TRUE)

Crop the curves to the desired r-interval I
curve_set_L <- crop_curves(env_L, r_min=rmin, r_max=rmax)
curve_set_F <- crop_curves(env_F, r_min=rminJ, r_max=rmaxJ)
curve_set_G <- crop_curves(env_G, r_min=rminJ, r_max=rmaxJ)
curve_set_J <- crop_curves(env_J, r_min=rminJ, r_max=rmaxJ)

res <- global_envelope_test(curve_sets=list(L=curve_set_L, F=curve_set_F,
G=curve_set_G, J=curve_set_J))

plot(res)
plot(res, labels=c("L(r)-r", "F(r)", "G(r)", "J(r)"))

}

A test based on a low dimensional random vector
#==
Let us generate some example data.
X <- matrix(c(-1.6,1.6),1,2) # data pattern X=(X_1,X_2)
if(requireNamespace("mvtnorm", quietly=TRUE)) {

Y <- mvtnorm::rmvnorm(200,c(0,0),matrix(c(1,0.5,0.5,1),2,2)) # simulations
plot(Y, xlim=c(min(X[,1],Y[,1]), max(X[,1],Y[,1])), ylim=c(min(X[,2],Y[,2]), max(X[,2],Y[,2])))
points(X, col=2)

62 graph.fanova

Test the null hypothesis is that X is from the distribution of Y's (or if it is an outlier).

Case 1. The test vector is (X_1, X_2)
cset1 <- create_curve_set(list(r=1:2, obs=as.vector(X), sim_m=t(Y)))
res1 <- global_envelope_test(cset1)
plot(res1)

Case 2. The test vector is (X_1, X_2, (X_1-mean(Y_1))*(X_2-mean(Y_2))).
t3 <- function(x, y) { (x[,1]-mean(y[,1]))*(x[,2]-mean(y[,2])) }
cset2 <- create_curve_set(list(r=1:3, obs=c(X[,1],X[,2],t3(X,Y)), sim_m=rbind(t(Y), t3(Y,Y))))
res2 <- global_envelope_test(cset2)
plot(res2)

}

graph.fanova One-way graphical functional ANOVA

Description

One-way ANOVA tests for functional data with graphical interpretation

Usage

graph.fanova(
nsim,
curve_set,
groups,
typeone = c("fwer", "fdr"),
variances = "equal",
contrasts = FALSE,
n.aver = 1L,
mirror = FALSE,
savefuns = FALSE,
test.equality = c("mean", "var", "cov"),
cov.lag = 1,
...

)

Arguments

nsim The number of random permutations.

curve_set The original data (an array of functions) provided as a curve_set object (see
create_curve_set) or a fdata object (see fdata). The curve set should include
the argument values for the functions in the component r, and the observed
functions in the component obs.

groups The original groups (a factor vector representing the assignment to groups).

graph.fanova 63

typeone Character string indicating which type I error rate to control, either the fami-
lywise error rate (’fwer’) or false discovery rate (’fdr’). Further arguments to
the FWER or FDR envelope can be passed in argument GET.args. If ’fwer’,
the type of the envelope can be chosen by specifying the argument type in
GET.args.

variances Either "equal" or "unequal". If "unequal", then correction for unequal variances
as explained in details will be done. Only relevant for the case test.equality
= "means" (default).

contrasts Logical. FALSE and TRUE specify the two test functions as described in de-
scription part of this help file.

n.aver If variances = "unequal", there is a possibility to use variances smoothed by
appying moving average to the estimated sample variances. n.aver determines
how many values on each side do contribute (incl. value itself).

mirror The complement of the argument circular of filter. Another parameter for the
moving average to estimate sample variances (see n.aver).

savefuns Logical. If TRUE, then the functions from permutations are saved to the attribute
simfuns.

test.equality A character with possible values mean (default), var and cov. If mean, the func-
tional ANOVA is performed to compare the means in the groups. If var, then
the equality of variances of the curves in the groups is tested by performing the
graphical functional ANOVA test on the functions

Zij(r) = Tij(r)− T̄j(r).

If cov, then the equality of lag cov.lag covariance is tested by performing the
fANOVA with

Wij(r) =
√
|Vij(r)| · sign(Vij(r)),

where
Vij(r) = (Tij(r)− T̄j(r))((Tij(r + s)− T̄j(r + s))).

See Mrkvicka et al. (2020) for more details.

cov.lag The lag of the covariance for testing the equality of covariances, see test.equality.

... Additional parameters to be passed to global_envelope_test (if typeone =
"fwer") or fdr_envelope (if typeone = "fdr").

Details

This function can be used to perform one-way graphical functional ANOVA tests described in
Mrkvička et al. (2020). Both 1d and 2d functions are allowed in curve sets.

The tests assume that there are J groups which contain n1, . . . , nJ functions Tij , i = . . . , J, j =
1, . . . , nj . The functions should be given in the argument curve_set, and the groups in the argu-
ment groups. The tests assume that Tij , i = 1, ..., nj is an iid sample from a stochastic process
with mean function µj and covariance function γj(s, t) for s,t in R and j = 1,..., J.

To test the hypothesis
H0 : µ1(r) ≡ µ2(r) ≡ · · · ≡ µJ(r),

64 graph.fanova

you can use the test function

T = (T 1(r), T 2(r), . . . , T J(r))

where T i(r) is a vector of mean values of functions in the group j. This test function is used when
contrasts = FALSE (default).

The hypothesis can equivalently be written as

H0 : µi(r)− µj(r) = 0, i = 1, . . . , J − 1, j = 1, . . . , J.

and, alternatively, one can use the test function (vector) taken to consist of the differences of the
group averages,

T′ = (T 1(r)− T 2(r), T 1(r)− T 3(r), . . . , T J−1(r)− T J(r)).

The choice is available with the option contrasts = TRUE. This test corresponds to the post-hoc
test done usually after an ANOVA test is significant, but it can be directed tested by means of the
combined rank test (Mrkvička et al., 2017) with this test vector.

The test as such assumes that the variances are equal across the groups of functions. To deal with
unequal variances, the differences are rescaled as the first step as follows

Sij(r) =
Tij(r)− T (r))√
V ar(Tj(r))

√
V ar(T (r)) + T (r))

where T (r) is the overall sample mean and
√
V ar(T (r)) is the overall sample standard deviation.

This scaling of the test functions can be obtained by giving the argument variances = "unequal".

References

Mrkvička, T., Myllymäki, M., Jilek, M. and Hahn, U. (2020) A one-way ANOVA test for functional
data with graphical interpretation. Kybernetika 56 (3), 432-458. doi: 10.14736/kyb-2020-3-0432

Mrkvička, T., Myllymäki, M., and Hahn, U. (2017). Multiple Monte Carlo testing, with applications
in spatial point processes. Statistics and Computing 27 (5): 1239-1255. doi:10.1007/s11222-016-
9683-9

Myllymäki, M and Mrkvička, T. (2020). GET: Global envelopes in R. arXiv:1911.06583 [stat.ME]

See Also

frank.fanova

Examples

#-- NOx levels example (see for details Myllymaki and Mrkvicka, 2020)
if(require("fda.usc", quietly=TRUE)) {

Prepare data
data("poblenou")
fest <- poblenoudfday.festive; week <- as.integer(poblenoudfday.week)
Type <- vector(length=length(fest))
Type[fest == 1 | week >= 6] <- "Free"
Type[fest == 0 & week %in% 1:4] <- "MonThu"

graph.fanova 65

Type[fest == 0 & week == 5] <- "Fri"
Type <- factor(Type, levels = c("MonThu", "Fri", "Free"))

(log) Data as a curve_set
cset <- create_curve_set(list(r = 0:23,

obs = t(log(poblenou[['nox']][['data']]))))
Graphical functional ANOVA
nsim <- 2999

res.c <- graph.fanova(nsim = nsim, curve_set = cset,
groups = Type, variances = "unequal",
contrasts = TRUE)

plot(res.c) + ggplot2::labs(x = "Hour", y = "Diff.")
}

#-- Centred government expenditure centralization ratios example
This is an example analysis of the centred GEC in Mrkvicka et al.
data("cgec")

Number of simulations
nsim <- 2499 # increase to reduce Monte Carlo error

Test for unequal lag 1 covariances
res.cov1 <- graph.fanova(nsim = nsim, curve_set = cgec$cgec,

groups = cgec$group,
test.equality = "cov", cov.lag = 1)

plot(res.cov1)
Add labels
plot(res.cov1, labels = paste("Group ", 1:3, sep="")) +
ggplot2::xlab(substitute(paste(italic(i), " (", j, ")", sep=""), list(i="r", j="Year")))

Test for equality of variances among groups
res.var <- graph.fanova(nsim = nsim, curve_set = cgec$cgec,

groups = cgec$group,
test.equality = "var")

plot(res.var)

Test for equality of means assuming equality of variances
a) using 'means'
res <- graph.fanova(nsim = nsim, curve_set = cgec$cgec,

groups = cgec$group,
variances = "equal", contrasts = FALSE)

plot(res)
b) using 'contrasts'
res2 <- graph.fanova(nsim = nsim, curve_set = cgec$cgec,

groups = cgec$group,
variances = "equal", contrasts = TRUE)

plot(res2)

Image set examples
data("imageset3")

res <- graph.fanova(nsim = 19, # Increase nsim for serious analysis!

66 graph.flm

curve_set = imageset3$image_set,
groups = imageset3$Group)

plot(res)
Contrasts
res.c <- graph.fanova(nsim = 19, # Increase nsim for serious analysis!

curve_set = imageset3$image_set, groups = imageset3$Group,
contrasts = TRUE)

plot(res.c)

graph.flm Graphical functional GLM

Description

Non-parametric graphical tests of significance in functional general linear model (GLM)

Usage

graph.flm(
nsim,
formula.full,
formula.reduced,
typeone = c("fwer", "fdr"),
curve_sets,
factors = NULL,
contrasts = FALSE,
savefuns = FALSE,
lm.args = NULL,
GET.args = NULL,
mc.cores = 1L,
mc.args = NULL,
cl = NULL,
fast = TRUE

)

Arguments

nsim The number of random permutations.

formula.full The formula specifying the general linear model, see formula in lm.
formula.reduced

The formula of the reduced model with nuisance factors only. This model should
be nested within the full model.

typeone Character string indicating which type I error rate to control, either the fami-
lywise error rate (’fwer’) or false discovery rate (’fdr’). Further arguments to
the FWER or FDR envelope can be passed in argument GET.args. If ’fwer’,
the type of the envelope can be chosen by specifying the argument type in
GET.args.

graph.flm 67

curve_sets A named list of sets of curves giving the dependent variable (Y), and possibly
additionally factors whose values vary across the argument values of the func-
tions. The dimensions of the elements should match with each other. Note that
factors that are fixed across the functions can be given in the argument factors.
Also fdata objects allowed.

factors A data frame of factors. An alternative way to specify factors when they are
constant for all argument values of the functions. The number of rows of the
data frame should be equal to the number of curves. Each column should specify
the values of a factor.

contrasts Logical. FALSE and TRUE specify the two test functions as described in de-
scription part of this help file.

savefuns Logical. If TRUE, then the functions from permutations are saved to the attribute
simfuns.

lm.args A named list of additional arguments to be passed to lm. See details.

GET.args A named list of additional arguments to be passed to global_envelope_test.

mc.cores The number of cores to use, i.e. at most how many child processes will be run
simultaneously. Must be at least one, and parallelization requires at least two
cores. On a Windows computer mc.cores must be 1 (no parallelization). For
details, see mclapply, for which the argument is passed. Parallelization can be
used in generating simulations and in calculating the second stage tests.

mc.args A named list of additional arguments to be passed to mclapply. Only relevant
if mc.cores is more than 1.

cl Allows parallelization through the use of parLapply (works also in Windows),
see the argument cl there, and examples.

fast Logical. See details.

Details

The function graph.flm performs the graphical functional GLM of Mrkvička et al. (2021), de-
scribed also in Section 3.6 of Myllymäki and Mrkvička (2020) (type vignette("GET") in R). This
is a nonparametric graphical test of significance of a covariate in functional GLM. The test is able to
find not only if the factor of interest is significant, but also which functional domain is responsible
for the potential rejection. In the case of functional multi-way main effect ANOVA or functional
main effect ANCOVA models, the test is able to find which groups differ (and where they differ).
In the case of functional factorial ANOVA or functional factorial ANCOVA models, the test is
able to find which combination of levels (which interactions) differ (and where they differ). The
described tests are global envelope tests applied in the context of GLMs. The Freedman-Lane al-
gorithm (Freedman and Lane, 1983) is applied to permute the functions (to obtain the simulations
under the null hypothesis of "no effects"); consequently, the test approximately achieves the desired
significance level.

The specification of the full and reduced formulas is important. The reduced model should be
nested within the full model. The full model should include in addition to the reduced model the
interesting factors whose effects are under investigation. The implementation to find the coefficients
of the interesting factors is based on dummy.coef and the restrictions there apply.

The regression coefficients serve as test functions in the graphical functional GLM. For a continuous
interesting factor, the test function is its regression coefficient across the functional domain. For

68 graph.flm

a discrete factor, there are two possibilities that are controlled by the arguments contrasts. If
contrasts = FALSE, then the test statistic is the function/long vector where the coefficients related
to all levels of the factor are joined together. If contrasts = TRUE, then the differences between the
same coefficients are considered instead. Given the coefficients in a specific order that is obtained
through the use of lm and dummy.coef, the differences are taken for couples i and j where i < j and
reducing j from i (e.g. for three groups 1,2,3, the constrasts are 1-2, 1-3, 2-3).

There are different versions of the implementation depending on the application. Given that the
argument fast is TRUE, then

• If all the covariates are constant across the functions, i.e. they can be provided in the argument
factors, then a linear model is fitted separately by least-squares estimation to the data at
each argument value of the functions fitting a multiple linear model by lm. The possible extra
arguments passed in lm.args to lm must be of the form that lm accepts for fitting a multiple
linear model. In the basic case, no extra arguments are needed.

• If some of the covariates vary across the space and there are user specified extra arguments
given in lm.args, then the implementation fits a linear model at each argument value of the
functions using lm, which can be rather slow. The arguments lm.args are passed to lm for
fitting each linear model.

By setting fast = FALSE, it is possible to use the slow version for any case. Usually this is not
desired.

Value

A global_envelope or combined_global_envelope object, which can be printed and plotted
directly.

References

Mrkvička, T., Roskovec, T. and Rost, M. (2021) A nonparametric graphical tests of significance in
functional GLM. Methodology and Computing in Applied Probability 23, 593-612. doi: 10.1007/s11009-
019-09756-y

Myllymäki, M and Mrkvička, T. (2020). GET: Global envelopes in R. arXiv:1911.06583 [stat.ME]

Freedman, D., & Lane, D. (1983) A nonstochastic interpretation of reported significance levels.
Journal of Business & Economic Statistics, 1(4), 292-298. doi:10.2307/1391660

Examples

data("rimov")
res <- graph.flm(nsim=19, # Increase the number of simulations for serious analysis!

formula.full = Y~Year,
formula.reduced = Y~1,
curve_sets = list(Y=rimov), factors = data.frame(Year = 1979:2014))

plot(res)

Test if there is a change in the slope in 1994,
i.e. the full model is T = a + b*year + c*year:group,
res <- graph.flm(nsim = 19, # Increase the number of simulations for serious analysis!

formula.full = Y ~ Year + Year:Group,
formula.reduced = Y ~ Year,

imageset3 69

curve_sets = list(Y=rimov),
factors = data.frame(Year = 1979:2014,

Group = factor(c(rep(1,times=24), rep(2,times=12)),
levels=1:2)),

contrasts = FALSE)
plot(res)

An example of testing the joint effect of a discrete and a continuous variable

nsim <- 999
data("GDPtax")
factors.df <- data.frame(Group = GDPtax$Group, Tax = GDPtax$Profittax)
res.tax_within_group <- graph.flm(nsim = nsim,

formula.full = Y~Group+Tax+Group:Tax,
formula.reduced = Y~Group+Tax,
curve_sets = list(Y=GDPtax$GDP),
factors = factors.df)

plot(res.tax_within_group)

Image data examples

data("abide_9002_23")
iset <- abide_9002_23$curve_set

Testing the discrete factor 'group' with contrasts
(Use contrasts = FALSE for 'means'; and for continuous factors)
res <- graph.flm(nsim = 19, # Increase nsim for serious analysis!

formula.full = Y ~ Group + Sex + Age,
formula.reduced = Y ~ Sex + Age,
curve_sets = list(Y = iset),
factors = abide_9002_23[['factors']],
contrasts = TRUE,
GET.args = list(type = "area"))

plot(res)

imageset3 A simulated set of images

Description

A simulated set of images with a categorical factor (with three levels)

Usage

data("imageset3")

70 imageset3

Format

A list of the image_set containing the simulated images, and the discrete group factor in the list
component Group.

Details

We considered a categorical factor Group obtaining the values 0, 1 or 2 according to the group to
which the image belongs to (10 images in each of the three groups). The images were simulated in
the square window [-1,1]^2 from the general linear model (GLM)

Y (r) = exp(−10 · ||r||) · (1 + 1(g = 2)) + ε(r),

where ||r|| denotes the Euclidean distance of the pixel to the origin, g is the group and the error stems
from an inhomogeneous distribution over I with the normal and bimodal errors in the middle and
periphery of the image:

ε(r) = 1(‖r‖ ≤ 0.5)G(r) + 1(‖r‖ > 0.5)
1

2
G(r)1/5,

where G(r) is a Gaussian random field with the exponential correlation structure with scale param-
eter 0.15 and standard deviation 0.2. Consequently, the first two groups (0,1) have the same mean,
while a bigger bump appears in the third group (2) in the middle of the image.

References

Mrkvička, T., Myllymäki, M., Kuronen, M. and Narisetty, N. N. (2022) New methods for multiple
testing in permutation inference for the general linear model. Statistics in Medicine 41(2), 276-297.
doi: 10.1002/sim.9236

See Also

graph.fanova, frank.fanova

Examples

data("imageset3")
plot(imageset3$image_set, idx=c(1:5, 11:15, 21:25), ncol=5)

Colors can be changed as follows:
plot(imageset3$image_set, idx=c(1:5, 11:15, 21:25), ncol=5) +

ggplot2::scale_fill_gradient(low="black", high="white")

is.curve_set 71

is.curve_set Check class.

Description

Check class.

Usage

is.curve_set(x)

Arguments

x An object to be checked.

partial_forder Functional ordering in parts

Description

If the functional data doesn’t comfortably fit in memory it is possible to compute functional ordering
by splitting the domain of the data (voxels in a brain image), using partial_forder on each part
and finally combining the results with combine_forder.

Usage

partial_forder(
curve_set,
measure = c("erl", "rank", "cont", "area"),
alternative = c("two.sided", "less", "greater")

)

combine_forder(ls)

Arguments

curve_set A curve_set object, usually a part of a larger curve_set.

measure The measure to use to order the functions from the most extreme to the least
extreme one. Must be one of the following: ’rank’, ’erl’, ’cont’, ’area’, ’max’,
’int’, ’int2’. Default is ’erl’.

alternative A character string specifying the alternative hypothesis. Must be one of the
following: "two.sided" (default), "less" or "greater". The last two options only
available for types 'rank', 'erl', 'cont' and 'area'.

ls List of objects returned by partial_forder

72 plot.combined_fboxplot

Value

See forder

See Also

forder

Examples

data("abide_9002_23")
res <- lapply(list(1:100, 101:200, 201:261), function(part) {

set.seed(123) # When using partial_forder, all parts must use the same seed.
fset <- frank.flm(nsim=99, formula.full = Y ~ Group + Sex + Age,

formula.reduced = Y ~ Group + Sex,
curve_sets = list(Y = abide_9002_23$curve_set[part,]),
factors = abide_9002_23$factors, savefuns = "return")

partial_forder(fset, measure="erl")
})
combine_forder(res)

plot.combined_fboxplot

Plot method for the class ’combined_fboxplot’

Description

Plot method for the class ’combined_fboxplot’

Usage

S3 method for class 'combined_fboxplot'
plot(
x,
labels,
scales = "free",
ncol = 2 + 1 * (length(x) == 3),
digits = 3,
outliers = TRUE,
...

)

Arguments

x an ’combined_fboxplot’ object

labels A character vector of suitable length. If dotplot = TRUE (for the level 2 test),
then labels for the tests at x-axis. Otherwise labels for the separate plots.

plot.combined_global_envelope 73

scales See facet_wrap. Use scales = "free" when the scales of the functions in the
global envelope vary. scales = "fixed" is a good choice, when you want the
same y-axis for all components. A sensible default based on r-values exists.

ncol The maximum number of columns for the figures. Default 2 or 3, if the length
of x equals 3. (Relates to the number of curve_sets that have been combined.)

digits The number of digits used for printing the p-value or p-interval in the default
main.

outliers Logical. If TRUE, then the functions outside the functional boxplot are drawn.

... Ignored.

plot.combined_global_envelope

Plot method for the class ’combined_global_envelope’

Description

This function provides plots for combined global envelopes.

Usage

S3 method for class 'combined_global_envelope'
plot(
x,
labels,
scales,
sign.col = "red",
ncol = 2 + 1 * (length(x) == 3),
digits = 3,
level = 1,
...

)

Arguments

x An ’combined_global_envelope’ object

labels A character vector of suitable length. If dotplot = TRUE (for the level 2 test),
then labels for the tests at x-axis. Otherwise labels for the separate plots.

scales See facet_wrap. Use scales = "free" when the scales of the functions in the
global envelope vary. scales = "fixed" is a good choice, when you want the
same y-axis for all components. A sensible default based on r-values exists.

sign.col The color for the observed curve when outside the global envelope (significant
regions). Default to "red". Setting the color to NULL corresponds to no coloring.
If the object contains several envelopes, the coloring is done for the widest one.

ncol The maximum number of columns for the figures. Default 2 or 3, if the length
of x equals 3. (Relates to the number of curve_sets that have been combined.)

74 plot.combined_global_envelope2d

digits The number of digits used for printing the p-value or p-interval in the default
main.

level 1 or 2. In the case of two-step combined tests (with several test functions),
two different plots are available: 1 for plotting the combined global envelopes
(default and most often wanted) or 2 for plotting the second level test result.

... Ignored.

Details

Plotting method for the class ’combined_global_envelope’, i.e. combined envelopes for 1d func-
tions.

See Also

central_region

plot.combined_global_envelope2d

Plotting function for combined 2d global envelopes

Description

If fixedscales is FALSE (or 0) all images will have separate scale. If fixedscales is TRUE (or 1)
each x[[i]] will have a common scale. If fixedscales is 2 all images will have common scale.

If more than one envelope has been calculated (corresponding to several coverage/alpha), only the
largest one is plotted.

Usage

S3 method for class 'combined_global_envelope2d'
plot(
x,
fixedscales = 2,
labels,
what = c("obs", "lo", "hi", "lo.sign", "hi.sign"),
sign.col = "red",
transparency = 155/255,
digits = 3,
...

)

Arguments

x A ’global_envelope’ object for two-dimensional functions

fixedscales 0, 1 or 2. See details.

plot.combined_global_envelope2d 75

labels A character vector of suitable length giving the labels for the separate plots.
Default exists. This parameter allows replacing the default.

what Character vector specifying what information should be plotted for 2d functions.
A combination of: Observed ("obs"), upper envelope ("hi"), lower envelope
("lo"), observed with significantly higher values highlighted ("hi.sign"), ob-
served with significantly lower values highlighted ("lo.sign").

sign.col The color for the observed curve when outside the global envelope (significant
regions). Default to "red". Setting the color to NULL corresponds to no coloring.
If the object contains several envelopes, the coloring is done for the widest one.

transparency A number between 0 and 1 (default 155/255, 60 Similar to alpha of rgb. Used
in plotting the significant regions for 2d functions.

digits The number of digits used for printing the p-value or p-interval in the default
main.

... Ignored.

Examples

data("abide_9002_23")
iset <- subset(abide_9002_23[['curve_set']], 1:50)
factors <- abide_9002_23[['factors']][1:50,]

res <- graph.flm(nsim = 19, # Increase nsim for serious analysis!
formula.full = Y ~ Group + Sex + Age,
formula.reduced = Y ~ Sex + Age,
curve_sets = list(Y=iset), factors = factors,
contrasts = FALSE, GET.args = list(type="area"))

plot(res)
plot(res, what=c("obs", "hi"))

plot(res, what=c("hi", "lo"), fixedscales=1)

plot(res, what=c("obs", "lo", "hi"), fixedscales=FALSE)

if(requireNamespace("gridExtra", quietly=TRUE)) {
Edit style of "fixedscales = 2" plots
plot(res, what=c("obs", "hi")) + ggplot2::theme_minimal()
plot(res, what=c("obs", "hi")) + ggplot2::theme_bw()

Edit style (e.g. theme) of "fixedscales = 1 or 0" plots
gs <- lapply(res, function(x, what) { plot(x, what=what) +

ggplot2::ggtitle("") }, what=c("obs", "hi"))
gridExtra::grid.arrange(grobs=gs, ncol=1, top="My main")

gs <- outer(res, c("obs", "hi"), FUN=Vectorize(function(res, what)
list(plot(res, what=what) + ggplot2::ggtitle("") +

ggplot2::theme(axis.ticks=ggplot2::element_blank(),
axis.text=ggplot2::element_blank(), axis.title=ggplot2::element_blank()))))

gridExtra::grid.arrange(grobs=t(gs))
}

76 plot.curve_set

plot.curve_set Plot method for the class ’curve_set’

Description

Plot method for the class ’curve_set’

Usage

S3 method for class 'curve_set'
plot(x, idx, col_idx, idx_name = "", col = "grey70", ...)

Arguments

x An curve_set object.

idx Indices of functions to highlight with color col_idx. Default to the observed
function, if there is just one. The legend of curves’ colours is shown if indices
are given or x contains one observed function. See examples to remove the
legend if desired.

col_idx A color for the curves to highlight, or a vector of the same length as idx con-
taining the colors for the highlighted functions. Default exists.

idx_name A variable name to be printed with the highlighted functions’ idx. Default to
empty.

col The basic color for the curves (which are not highlighted).

... Ignored.

See Also

create_curve_set

Examples

cset <- create_curve_set(list(r = 1:10, obs = matrix(runif(10*5), ncol=5)))
plot(cset)
Highlight some functions
plot(cset, idx=c(1,3))
plot(cset, idx=c(1,3), col_idx=c("black", "red"))
Change legend
plot(cset, idx=c(1,3), col_idx=c("black", "red"), idx_name="Special functions")
plot(cset, idx=c(1,3)) + ggplot2::theme(legend.position="bottom")
Add labels
plot(cset, idx=c(1,3)) + ggplot2::labs(x="x", y="Value")
and title
plot(cset) + ggplot2::labs(title="Example curves", x="x", y="Value")
A curve_set with one observed function (other simulated)
if(requireNamespace("mvtnorm", quietly=TRUE)) {

cset <- create_curve_set(list(obs = c(-1.6, 1.6),

plot.curve_set2d 77

sim_m = t(mvtnorm::rmvnorm(200, c(0,0), matrix(c(1,0.5,0.5,1), 2, 2)))))
plot(cset)
Remove legend
plot(cset) + ggplot2::theme(legend.position="none")

}

plot.curve_set2d Plot method for the class ’curve_set2d’

Description

Plot method for the class ’curve_set2d’, i.e. two-dimensional functions

Usage

S3 method for class 'curve_set2d'
plot(x, idx = 1, ncol = 2 + 1 * (length(idx) == 3), ...)

Arguments

x An curve_set2d object

idx Indices of 2d functions to plot.

ncol The maximum number of columns for the figures. Default 2 or 3, if the length
of x equals 3. (Relates to the number of curve_sets that have been combined.)

... Ignored.

Examples

data("abide_9002_23")
plot(abide_9002_23$curve_set, idx=c(1, 27))

plot.fboxplot Plot method for the class ’fboxplot’

Description

Plot method for the class ’fboxplot’

Usage

S3 method for class 'fboxplot'
plot(x, digits = 3, outliers = TRUE, ...)

78 plot.fclust

Arguments

x an ’fboxplot’ object

digits The number of digits used for printing the p-value or p-interval in the default
main.

outliers Logical. If TRUE, then the functions outside the functional boxplot are drawn.

... Ignored.

Examples

if(requireNamespace("fda", quietly=TRUE)) {
years <- paste(1:18)
curves <- fda::growth[['hgtf']][years,]
Heights
cset1 <- create_curve_set(list(r = as.numeric(years),

obs = curves))
bp <- fBoxplot(cset1, coverage=0.50, type="area", factor=1)
plot(bp)
plot(bp) + ggplot2::theme(legend.position="bottom")
plot(bp) + ggplot2::theme(legend.position="none")
plot(bp, plot_outliers=FALSE)

}

plot.fclust Plot method for the class ’fclust’

Description

Plot method for the ’fclust’ objects returned by fclustering.

Usage

S3 method for class 'fclust'
plot(x, plotstyle = c("marginal", "joined"), coverage = 0.5, nstep, ncol, ...)

Arguments

x An ’fclust’ object.

plotstyle The resulting central regions of clusters can be plotted by sorting the appro-
priate curve_set only ’marginal’ or by sorting the joined list of curve_set
objects ’joined’. If ’joined’ is used the shown central regions corresponds to
the joined ordering used to cluster the functional data. If ’marginal’ is used the
shown central regions do not correspond to the joined ordering used to cluster
the functional data, but better express the shape of cluster with respect to given
curve_set.

coverage The coverage of central regions to be used to show the clusters.

plot.global_envelope 79

nstep 1 or 2 for how to contruct a combined (joined) global envelope if there are more
than one sets of curves. Default to 1, if the numbers of points where the curves
are observed (r) are the same in each set, and 2 otherwise.

ncol The number of columns in the graphical output, when there is just one set of
curves that has been ordered. If not given, c(1, k+1) is used, which gives all
plots in one row. For more sets of curves, the rows are fixed to correspond to the
sets (one row for each set).

... Ignored.

Details

The clusters are shown respectively for each curve_set. Thus for each curve_set the panel with
all the medoids is shown followed by all clusters represented by central region, medoid and all
curves belonging to it.

For all sources, the function plots the deepest curves for all clusters and the deepest curve of each
cluster together with the desired central region and all the curves of the group.

References

Dai, W., Athanasiadis, S., Mrkvička, T. (2021) A new functional clustering method with combined
dissimilarity sources and graphical interpretation. Intech open, London, UK. DOI: 10.5772/inte-
chopen.100124

plot.global_envelope Plot method for the class ’global_envelope’

Description

Plot method for the class ’global_envelope’

Usage

S3 method for class 'global_envelope'
plot(
x,
dotplot = length(x$r) < 10,
sign.col = "red",
labels = NULL,
digits = 3,
...

)

80 plot.global_envelope

Arguments

x An ’global_envelope’ object

dotplot Logical. If TRUE, then instead of envelopes a dot plot is done. Suitable for
low dimensional test vectors. Default: TRUE if the dimension is less than 10,
FALSE otherwise.

sign.col The color for the observed curve when outside the global envelope (significant
regions). Default to "red". Setting the color to NULL corresponds to no coloring.
If the object contains several envelopes, the coloring is done for the widest one.

labels A character vector of suitable length. If dotplot = TRUE, then labels for the tests
at x-axis.

digits The number of digits used for printing the p-value or p-interval in the default
main.

... Ignored.

See Also

central_region, global_envelope_test

Examples

if(require("spatstat.explore", quietly=TRUE)) {
X <- unmark(spruces)
nsim <- 1999 # Number of simulations

env <- envelope(X, fun="Kest", nsim=nsim,
savefuns=TRUE, # save the functions
correction="translate", # edge correction for K
simulate=expression(runifpoint(ex=X))) # Simulate CSR

res <- global_envelope_test(env, type="erl")

Default plot
plot(res)
Plots can be edited, e.g.
Remove legend
plot(res) + ggplot2::theme(legend.position="none")
Change its position
plot(res) + ggplot2::theme(legend.position="right")
Change the outside color
plot(res, sign.col="#5DC863FF")
plot(res, sign.col=NULL)
Change default title and x- and y-labels
plot(res) + ggplot2::labs(title="95% global envelope", x="x", y="f(x)")

Prior to the plot, you can set your preferred ggplot theme by theme_set
old <- ggplot2::theme_set(ggplot2::theme_bw())
plot(res)

Do other edits, e.g. turn off expansion with the default limits
plot(res) + ggplot2::coord_cartesian(expand=FALSE)

plot.global_envelope2d 81

Go back to the old theme
ggplot2::theme_set(old)

If you are working with the R package spatstat and its envelope-function,
you can obtain global envelope plots in the style of spatstat using plot.fv:
plot.fv(res)

}

plot.global_envelope2d

Plotting function for 2d global envelopes

Description

If more than one envelope has been calculated (corresponding to several coverage/alpha), only the
largest one is plotted.

Usage

S3 method for class 'global_envelope2d'
plot(
x,
fixedscales = TRUE,
what = c("obs", "lo", "hi", "lo.sign", "hi.sign"),
sign.col = "red",
transparency = 155/255,
digits = 3,
...

)

Arguments

x A ’global_envelope’ object for two-dimensional functions
fixedscales Logical. TRUE for the same scales for all images.
what Character vector specifying what information should be plotted for 2d functions.

A combination of: Observed ("obs"), upper envelope ("hi"), lower envelope
("lo"), observed with significantly higher values highlighted ("hi.sign"), ob-
served with significantly lower values highlighted ("lo.sign").

sign.col The color for the observed curve when outside the global envelope (significant
regions). Default to "red". Setting the color to NULL corresponds to no coloring.
If the object contains several envelopes, the coloring is done for the widest one.

transparency A number between 0 and 1 (default 155/255, 60 Similar to alpha of rgb. Used
in plotting the significant regions for 2d functions.

digits The number of digits used for printing the p-value or p-interval in the default
main.

... Ignored.

82 print.combined_fboxplot

popgrowthmillion Population growth

Description

Population growth

Usage

data("popgrowthmillion")

Format

A matrix, where each row corresponds to a year and each column to a country. Column names
correspond to the countries, and row names to the years.

Details

This dataset includes population growth, i.e. population at the end of the year divided by population
at the beginning of the year, in 134 countries in years from 1950 to 2015. The dataset includes only
countries over million inhabitants in 1950. The data were extracted from the supplement of Nagy
et al. (2017) distributed under the GPL-2 license.

References

Nagy, S., I. Gijbels, and D. Hlubinka (2017). Depth-based recognition of shape outlying functions.
Journal of Computational and Graphical Statistics 26 (4), 883-893.

print.combined_fboxplot

Print method for the class ’combined_fboxplot’

Description

Print method for the class ’combined_fboxplot’

Usage

S3 method for class 'combined_fboxplot'
print(x, ...)

Arguments

x an ’combined_fboxplot’ object

... Ignored.

print.combined_global_envelope 83

print.combined_global_envelope

Print method for the class ’combined_global_envelope’

Description

Print method for the class ’combined_global_envelope’

Usage

S3 method for class 'combined_global_envelope'
print(x, ...)

Arguments

x A ’combined_global_envelope’ object

... Ignored.

print.curve_set Print method for the class ’curve_set’

Description

Print method for the class ’curve_set’

Usage

S3 method for class 'curve_set'
print(x, ...)

Arguments

x an ’curve_set’ object

... Passed to str.

84 print.fboxplot

print.deviation_test Print method for the class ’deviation_test’

Description

Print method for the class ’deviation_test’

Usage

S3 method for class 'deviation_test'
print(x, ...)

Arguments

x an ’deviation_test’ object

... Ignored.

print.fboxplot Print method for the class ’fboxplot’

Description

Print method for the class ’fboxplot’

Usage

S3 method for class 'fboxplot'
print(x, ...)

Arguments

x an ’fboxplot’ object

... Ignored.

print.fclust 85

print.fclust Print method for the class ’fclust’

Description

Print method for the ’fclust’ objects returned by fclustering.

Usage

S3 method for class 'fclust'
print(x, ...)

Arguments

x A object of class ’fclust’.

... Ignored.

print.fdr_envelope Print method for the class ’fdr_envelope’

Description

Print method for the class ’fdr_envelope’

Usage

S3 method for class 'fdr_envelope'
print(x, ...)

Arguments

x An ’fdr_envelope’ object

... Ignored.

86 print.global_envelope

print.GET_contingency Print method for the class ’GET_contingency’

Description

Print method for the class ’GET_contingency’

Usage

S3 method for class 'GET_contingency'
print(x, ...)

Arguments

x A ’GET_contingency’ object

... Ignored.

print.global_envelope Print method for the class ’global_envelope’

Description

Print method for the class ’global_envelope’

Usage

S3 method for class 'global_envelope'
print(x, ...)

Arguments

x A ’global_envelope’ object.

... Ignored.

qdir_envelope 87

qdir_envelope Global scaled maximum absolute difference (MAD) envelope tests

Description

Performs the global scaled MAD envelope tests, either directional quantile or studentised, or the un-
scaled MAD envelope test. These tests correspond to calling the function global_envelope_test
with type="qdir", type = "st" and type="unscaled", respectively. The functions qdir_envelope,
st_envelope and unscaled_envelope have been kept for historical reasons; preferably use global_envelope_test
with the suitable type argument.

Usage

qdir_envelope(curve_set, ...)

st_envelope(curve_set, ...)

unscaled_envelope(curve_set, ...)

Arguments

curve_set A curve_set (see create_curve_set) or an envelope object of spatstat. If
an envelope object is given, it must contain the summary functions from the
simulated patterns which can be achieved by setting savefuns = TRUE when
calling the function of spatstat.

... Additional parameters to be passed to global_envelope_test.

Details

The directional quantile envelope test (Myllymäki et al., 2015, 2017) takes into account the unequal
variances of the test function T(r) for different distances r and is also protected against asymmetry
of T(r).

The studentised envelope test (Myllymäki et al., 2015, 2017) takes into account the unequal vari-
ances of the test function T(r) for different distances r.

The unscaled envelope test (Ripley, 1981) corresponds to the classical maximum deviation test
without scaling, and leads to envelopes with constant width over the distances r. Thus, it suffers
from unequal variance of T(r) over the distances r and from the asymmetry of distribution of T(r).
We recommend to use the other global envelope tests available, see global_envelope_test for
full list of alternatives.

Value

An object of class global_envelope of combined_global_envelope which can be printed and
plotted directly. See global_envelope_test for more details.

88 rank_envelope

References

Myllymäki, M., Grabarnik, P., Seijo, H. and Stoyan. D. (2015). Deviation test construction and
power comparison for marked spatial point patterns. Spatial Statistics 11: 19-34. doi: 10.1016/j.spasta.2014.11.004

Myllymäki, M., Mrkvička, T., Grabarnik, P., Seijo, H. and Hahn, U. (2017). Global envelope tests
for spatial point patterns. Journal of the Royal Statistical Society: Series B (Statistical Methodol-
ogy), 79: 381–404. doi: 10.1111/rssb.12172

Ripley, B.D. (1981). Spatial statistics. Wiley, New Jersey.

See Also

global_envelope_test

Examples

See more examples in ?global_envelope_test
Testing complete spatial randomness (CSR)
#---
if(require("spatstat.explore", quietly=TRUE)) {

X <- spruces
nsim <- 999 # Number of simulations

Test for complete spatial randomness (CSR)
Generate nsim simulations under CSR, calculate centred L-function for the data and simulations
env <- envelope(X, fun="Lest", nsim=nsim, savefuns=TRUE,

correction="translate", transform=expression(.-r),
simulate=expression(runifpoint(ex=X)))

res_qdir <- qdir_envelope(env) # The directional quantile envelope test
plot(res_qdir)

Advanced use:
Create a curve set, choosing the interval of distances [r_min, r_max]
curve_set <- crop_curves(env, r_min=1, r_max=8)
The directional quantile envelope test
res_qdir <- qdir_envelope(curve_set); plot(res_qdir)
The studentised envelope test
res_st <- st_envelope(curve_set); plot(res_st)
The unscaled envelope test
res_unscaled <- unscaled_envelope(curve_set); plot(res_unscaled)

}

rank_envelope The rank envelope test

Description

The rank envelope test, p-values and global envelopes. The test corresponds to the global envelope
test that can be carriet out by global_envelope_test by specifying the type for which the options
"rank", "erl", "cont" and "area" are available. The last three are modifications of the first one

rank_envelope 89

to treat the ties in the extreme rank ordering used in "rank". This function is kept for historical
reasons.

Usage

rank_envelope(curve_set, type = "rank", ...)

Arguments

curve_set A curve_set (see create_curve_set) or an envelope object of spatstat. If
an envelope object is given, it must contain the summary functions from the
simulated patterns which can be achieved by setting savefuns = TRUE when
calling the function of spatstat.

type The type of the global envelope with current options for "rank", "erl", "cont"
and "area". If "rank", the global rank envelope accompanied by the p-interval
is given (Myllymäki et al., 2017). If "erl", the global rank envelope based on
extreme rank lengths accompanied by the extreme rank length p-value is given
(Myllymäki et al., 2017, Mrkvička et al., 2018). See details and additional sec-
tions thereafter.

... Additional parameters to be passed to global_envelope_test.

Details

The "rank" envelope test is a completely non-parametric test, which provides the 100(1-alpha)%
global envelope for the chosen test function T(r) on the chosen interval of distances and associated
p-values. The other three types are solutions to break the ties in the extreme ranks on which the
"rank" envelope test is based on.

Note: The method to break ties for the global type = "rank" envelope (Myllymäki et al., 2017)
can be done by the argument ties with default to ties = "erl" corresponding to the extreme rank
length breaking of ties. In this case the global envelope corresponds to the extreme rank measure.
If instead choosing type to be "erl", "cont" or "area", then the global envelope corresponds to
these measures.

Value

An object of class global_envelope of combined_global_envelope which can be printed and
plotted directly. See global_envelope_test for more details.

Number of simulations

The global "erl", "cont", "area" envelope tests allow in principle a lower number of simulations
to be used than the global "rank" test based on extreme ranks. However, if feasible, we recommend
some thousands of simulations in any case to achieve a good power and repeatability of the test.
For the global "rank" envelope test, Myllymäki et al. (2017) recommended to use at least 2500
simulations for testing at the significance level alpha = 0.05 for single function tests, experimented
with summary functions for point processes.

90 residual

References

Myllymäki, M., Mrkvička, T., Grabarnik, P., Seijo, H. and Hahn, U. (2017). Global envelope tests
for spatial point patterns. Journal of the Royal Statistical Society: Series B (Statistical Methodol-
ogy), 79: 381–404. doi: 10.1111/rssb.12172

Mrkvička, T., Myllymäki, M. and Hahn, U. (2017). Multiple Monte Carlo testing, with applications
in spatial point processes. Statistics & Computing 27 (5): 1239-1255. doi: 10.1007/s11222-016-
9683-9

Mrkvička, T., Myllymäki, M., Jilek, M. and Hahn, U. (2020) A one-way ANOVA test for functional
data with graphical interpretation. Kybernetika 56 (3), 432-458. doi: 10.14736/kyb-2020-3-0432

See Also

global_envelope_test

Examples

See ?global_envelope_test for more examples

Testing complete spatial randomness (CSR)
#---
if(require("spatstat.explore", quietly=TRUE)) {

X <- unmark(spruces)
nsim <- 2499 # Number of simulations

Generate nsim simulations under CSR, calculate centred L-function for the data and simulations
env <- envelope(X, fun="Lest", nsim=nsim, savefuns=TRUE,

correction="translate", transform=expression(.-r),
simulate=expression(runifpoint(ex=X)))

The rank envelope test
res <- rank_envelope(env)
Plot the result.
plot(res)

Advanced use:
Choose the interval of distances [r_min, r_max] (at the same time create a curve_set from 'env')
curve_set <- crop_curves(env, r_min=1, r_max=7)
Do the rank envelope test
res <- rank_envelope(curve_set); plot(res)

}

residual Residual form of the functions

Description

Subtract the theoretical function S_H_0 or the mean of the functions in the curve set. If the
curve_set object contains already residuals T_i(r) - T_0(r), use_theo ignored and the same ob-
ject returned.

rimov 91

Usage

residual(curve_set, use_theo = TRUE)

Arguments

curve_set A curve_set (see create_curve_set) or an envelope object of spatstat. If
an envelope object is given, it must contain the summary functions from the
simulated patterns which can be achieved by setting savefuns = TRUE when
calling the envelope function.

use_theo Whether to use the theoretical summary function or the mean of the functions in
the curve_set.

Details

The mean of the functions in the curve_set is the mean of all functions. If use_theo = TRUE, but
the component theo does not exist in the curve_set, the mean of the functions is used silently.

Value

A curve set object containing residual summary functions. theo is no longer included.

rimov Year temperature curves

Description

Year temperature curves

Usage

data("rimov")

Format

A curve_set object with water temperatures in 365 days of the 36 years. The component curve_set[['r']]
is a vector of days (from 1 to 365), whereas curve_set[['obs']] contains the water temperatures
such that each column gives year temperatures in a year.

Details

The water temperature data sampled at the water level of Rimov reservoir in Czech republic every
day for the 36 years between 1979 and 2014.

References

Mrkvička, T., Myllymäki, M., Jilek, M. and Hahn, U. (2020) A one-way ANOVA test for functional
data with graphical interpretation. Kybernetika 56 (3), 432-458. doi: 10.14736/kyb-2020-3-0432

92 saplings

See Also

graph.fanova

Examples

data("rimov")
groups <- factor(c(rep(1, times=12), rep(2, times=12), rep(3, times=12)))
for(i in 1:3)

assign(paste0("p", i), plot(subset(rimov, groups==i)) +
ggplot2::labs(title=paste("Group ", i, sep=""), y="Temperature"))

p3
if(require("patchwork", quietly=TRUE))

p1 + p2 + p3
See example analysis in ?graph.fanova

saplings Saplings data set

Description

Saplings data set

Usage

data("saplings")

Format

A data.frame containing the locations (x- and y-coordinates) of 123 trees in an area of 75 m x 75
m.

Details

A pattern of small trees (height <= 15 m) originating from an uneven aged multi-species broadleaf
nonmanaged forest in Kaluzhskie Zaseki, Russia.

The pattern is a sample part of data collected over 10 ha plot as a part of a research program headed
by project leader Prof. O.V. Smirnova.

References

Grabarnik, P. and Chiu, S. N. (2002) Goodness-of-fit test for complete spatial randomness against
mixtures of regular and clustered spatial point processes. Biometrika, 89, 411–421.

van Lieshout, M.-C. (2010) Spatial point process theory. In Handbook of Spatial Statistics (eds. A.
E. Gelfand, P. J. Diggle, M. Fuentes and P. Guttorp), Handbooks of Modern Statistical Methods.
Boca Raton: CRC Press.

Myllymäki, M., Mrkvička, T., Grabarnik, P., Seijo, H. and Hahn, U. (2017). Global envelope tests
for spatial point patterns. Journal of the Royal Statistical Society: Series B (Statistical Methodol-
ogy), 79: 381-404. doi: 10.1111/rssb.12172

saplings 93

See Also

adult_trees

Examples

This is an example analysis of the saplings data set
#===
Example of Myllymaki et al. (2017, Supplement S4).
if(require("spatstat.explore", quietly=TRUE)) {

data("saplings")
saplings <- as.ppp(saplings, W=square(75))

First choose the r-distances for L (r) and J (rJ) functions, respectively.
nr <- 500
rmin <- 0.3; rminJ <- 0.3
rmax <- 10; rmaxJ <- 6
rstep <- (rmax-rmin)/nr; rstepJ <- (rmaxJ-rminJ)/nr
r <- seq(0, rmax, by=rstep)
rJ <- seq(0, rmaxJ, by=rstepJ)

#-- CSR test --# (a simple hypothesis)
#--------------#
First, a CSR test using the L(r)-r function:
Note: CSR is simulated by fixing the number of points and generating nsim simulations
from the binomial process, i.e. we deal with a simple hypothesis.
nsim <- 999 # Number of simulations

env <- envelope(saplings, nsim=nsim,
simulate=expression(runifpoint(ex=saplings)), # Simulate CSR

fun="Lest", correction="translate", # T(r) = estimator of L with translational edge correction
transform=expression(.-r), # Take the L(r)-r function instead of L(r)
r=r, # Specify the distance vector
savefuns=TRUE) # Save the estimated functions
Crop the curves to the interval of distances [rmin, rmax]
(at the same time create a curve_set from 'env')
curve_set <- crop_curves(env, r_min=rmin, r_max=rmax)
Perform a global envelope test
res <- global_envelope_test(curve_set, type="erl") # type="rank" and larger nsim was used in S4.
Plot the result.
plot(res) + ggplot2::ylab(expression(italic(hat(L)(r)-r)))

-> The CSR hypothesis is clearly rejected and the rank envelope indicates clear
clustering of saplings. Next we explore the Matern cluster process as a null model.

}

if(require("spatstat.model", quietly=TRUE)) {
#-- Testing the Matern cluster process --# (a composite hypothesis)
#--#
Fit the Matern cluster process to the pattern (using minimum contrast estimation with the pair
correction function)
fitted_model <- kppm(saplings~1, clusters="MatClust", statistic="pcf")
summary(fitted_model)

94 subset.curve_set

nsim <- 19 # 19 just for experimenting with the code!!
#nsim <- 499 # 499 is ok for type = 'qdir' (takes > 1 h)

Make the adjusted directional quantile global envelope test using the L(r)-r function
(For the rank envelope test, choose type = "rank" instead and increase nsim.)
adjenvL <- GET.composite(X=fitted_model,

fun="Lest", correction="translate",
transform=expression(.-r), r=r,
type="qdir", nsim=nsim, nsimsub=nsim,
r_min=rmin, r_max=rmax)

Plot the test result
plot(adjenvL) + ggplot2::ylab(expression(italic(L(r)-r)))

From the test with the L(r)-r function, it appears that the Matern cluster model would be
a reasonable model for the saplings pattern.
To further explore the goodness-of-fit of the Matern cluster process, test the
model with the J function:
This takes quite some time if nsim is reasonably large.
adjenvJ <- GET.composite(X=fitted_model,

fun="Jest", correction="none", r=rJ,
type="qdir", nsim=nsim, nsimsub=nsim,
r_min=rminJ, r_max=rmaxJ)

Plot the test result
plot(adjenvJ) + ggplot2::ylab(expression(italic(J(r))))
-> the Matern cluster process not adequate for the saplings data

Test with the two test functions jointly
adjenvLJ <- GET.composite(X=fitted_model,

testfuns=list(L=list(fun="Lest", correction="translate",
transform=expression(.-r), r=r),

J=list(fun="Jest", correction="none", r=rJ)),
type="erl", nsim=nsim, nsimsub=nsim,
r_min=c(rmin, rminJ), r_max=c(rmax, rmaxJ),
save.cons.envelope=TRUE)

plot(adjenvLJ)
}

subset.curve_set Subsetting curve sets

Description

Return subsets of curve sets which meet conditions.

Usage

S3 method for class 'curve_set'
subset(x, subset, ...)

subset.curve_set 95

Arguments

x A curve_set object.

subset A logical expression indicating curves to keep.

... Ignored.

Examples

if(require("fda.usc", quietly=TRUE)) {
Prepare data
data("poblenou")
Free <- poblenoudfday.festive == 1 |

as.integer(poblenoudfday.week) >= 6
MonThu <- poblenoudfday.festive == 0 & poblenoudfday.week %in% 1:4
Friday <- poblenoudfday.festive == 0 & poblenoudfday.week == 5

Data as a curve_set
cset <- create_curve_set(list(r=0:23,

obs=t(poblenou[['nox']][['data']])))
plot(subset(cset, MonThu))
plot(subset(cset, Friday))
plot(subset(cset, Free))

}

Index

∗ datasets
abide_9002_23, 8
adult_trees, 9
cgec, 14
fallen_trees, 23
GDPtax, 36
imageset3, 69
popgrowthmillion, 82
rimov, 91
saplings, 92

∗ spatial
adult_trees, 9
fallen_trees, 23
saplings, 92

abide_9002_23, 6, 8
adult_trees, 6, 9, 93
attr, 12

central_region, 4, 10, 17, 18, 24–26, 56–59,
74, 80

cgec, 6, 14
combine_forder (partial_forder), 71
combined_scaled_MAD_envelope_test, 16
create_curve_set, 5, 11, 16, 18, 19, 21, 28,

29, 32, 40, 41, 48, 56, 57, 62, 76, 87,
89, 91

create_image_set, 19
crop_curves, 6, 20

deviation_test, 5, 21, 29, 30
dg.global_envelope_test

(GET.composite), 39
dummy.coef, 67, 68

facet_wrap, 73
fallen_trees, 6, 23
fBoxplot, 4, 24
fclustering, 5, 25, 78, 85
fdata, 32, 34, 62, 67

fdr_envelope, 27, 32, 47, 48, 63
filter, 63
forder, 4, 13, 18, 29, 72
frank.fanova, 5, 31, 64, 70
frank.flm, 5, 33

GDPtax, 6, 36
GET (GET-package), 3
GET-package, 3
GET.cdf, 5, 38
GET.composite, 5, 6, 39, 59
GET.contingency, 5, 44
GET.localcor, 5, 46
GET.necdf, 5, 48
GET.qq, 5, 50
GET.spatialF, 5, 52
GET.variogram, 5, 54
global_envelope, 48
global_envelope (central_region), 10
global_envelope_test, 4, 5, 12, 13, 16, 18,

21, 32, 34, 38, 40–42, 45, 47, 48, 50,
52, 54, 55, 57, 63, 67, 80, 87–90

graph.fanova, 5, 6, 15, 62, 70
graph.flm, 5, 35, 37, 66
growth, 4

imageset3, 6, 69
is.curve_set, 71

list, 24
lm, 32, 34, 35, 66–68

mclapply, 35, 41, 47, 67

pam, 26
parLapply, 35, 47, 67
partial_forder, 5, 31, 34, 71
plot.combined_fboxplot, 72
plot.combined_global_envelope, 73
plot.combined_global_envelope2d, 74
plot.curve_set, 19, 76

96

INDEX 97

plot.curve_set2d, 19, 77
plot.fboxplot, 77
plot.fclust, 26, 78
plot.global_envelope, 4, 12, 42, 59, 79
plot.global_envelope2d, 81
popgrowthmillion, 82
print.combined_fboxplot, 82
print.combined_global_envelope, 83
print.curve_set, 83
print.deviation_test, 84
print.fboxplot, 84
print.fclust, 85
print.fdr_envelope, 85
print.GET_contingency, 86
print.global_envelope, 86

qdir_envelope, 87
quantile, 10, 29, 56

rank_envelope, 88
residual, 6, 22, 90
rgb, 75, 81
rimov, 6, 91

saplings, 5, 6, 9, 42, 92
simulate, 52
st_envelope (qdir_envelope), 87
str, 83
subset.curve_set, 94

unscaled_envelope (qdir_envelope), 87

variogram, 54

	GET-package
	abide_9002_23
	adult_trees
	central_region
	cgec
	combined_scaled_MAD_envelope_test
	create_curve_set
	create_image_set
	crop_curves
	deviation_test
	fallen_trees
	fBoxplot
	fclustering
	fdr_envelope
	forder
	frank.fanova
	frank.flm
	GDPtax
	GET.cdf
	GET.composite
	GET.contingency
	GET.localcor
	GET.necdf
	GET.qq
	GET.spatialF
	GET.variogram
	global_envelope_test
	graph.fanova
	graph.flm
	imageset3
	is.curve_set
	partial_forder
	plot.combined_fboxplot
	plot.combined_global_envelope
	plot.combined_global_envelope2d
	plot.curve_set
	plot.curve_set2d
	plot.fboxplot
	plot.fclust
	plot.global_envelope
	plot.global_envelope2d
	popgrowthmillion
	print.combined_fboxplot
	print.combined_global_envelope
	print.curve_set
	print.deviation_test
	print.fboxplot
	print.fclust
	print.fdr_envelope
	print.GET_contingency
	print.global_envelope
	qdir_envelope
	rank_envelope
	residual
	rimov
	saplings
	subset.curve_set
	Index

