Package 'HDtest'

October 12, 2022

Type Package Title High Dimensional Hypothesis Testing for Mean Vectors, Covariance Matrices, and White Noise of Vector Time Series Version 2.1 Date 2018-9-10 Author Meng Cao, Tong He, Wen Zhou Maintainer Wen Zhou <riczw@stat.colostate.edu> Description High dimensional testing procedures on mean, covariance and white noises. **Depends** R (>= 3.2.2) Imports checkmate (>= 1.6.0), MASS, stats, mvtnorm, foreach, doParallel, expm, fastclime, clime **License** Apache License (== 2.0) URL http://www.stat.colostate.edu/~riczw/SW.html **Repository** CRAN LazyData TRUE RoxygenNote 6.1.0

NeedsCompilation yes

Date/Publication 2018-09-13 17:00:03 UTC

R topics documented:

CLX	
CQ2	3
equalCovs	4
GO26	
GO54	
oneMean	5
testCov	
testMean	
twoMeans	
wntest	10

Index

CLX

CLX-test for two sample means

Description

Testing the equality of two high dimensional mean vectors using the testing procedure by Cai, Liu and Xia (2014).

Usage

CLX(X, Y, alpha, DNAME)

Arguments

Х	The n x p data matrix from the sample 1
Υ	The n x p data matrix from the sample 2.
alpha	The prescribed level of significance
DNAME	Default input.

Details

Implementing testing procedure proposed by Cai, Liu, and Xia (2014) to test the equality of two sample high dimensional mean vectors under the assumption of sparsity of signals.

Value

Value of testing statistic, p-value, alternative hypothesis, and the name of testing procedure.

Author(s)

Tong He

References

T. Cai, W. Liu, and Y. Xia (2014). Two-sample test of high dimensional means under dependence. J. R. Statist. Soc. B. 76, 349–372

13

CQ2

Description

Testing the equality of two high dimensional mean vectors using the testing procedure by Chen and Qin (2010)

Usage

CQ2(X, Y, DNAME)

Arguments

Х	The n x p data matrix from the sample 1
Υ	The n x p data matrix from the sample 2.
DNAME	Default input.

Details

Implementing testing procedure proposed by Chen and Qin (2010) to test the equality of two sample high dimensional mean vectors under the assumption of sparsity of signals.

Value

res Value of testing statistic, alternative hypothesis, and the name of testing procedure.

Author(s)

Tong He

References

S. Chen and Y. Qin (2010). A two-sample test for high-dimensional data with applications to geneset testing. Ann. Statist. 38, 808-835 equalCovs

Description

Testing the equality of two high dimensional covariance matrices using the testing procedure by Li and Chen (2012).

Usage

equalCovs(X, Y, alpha, DNAME)

Arguments

Х	The n x p data matrix from the sample 1
Y	The n x p data matrix from the sample 2.
alpha	The prescribed level of significance
DNAME	Default input.

Details

Implementing testing procedure proposed by Li and Chen (2012) to test the equality of two sample high dimensional covariance matrices.

Value

Value of testing statistic, p-value, alternative hypothesis, and the name of testing procedure.

Author(s)

Tong He

References

J. Li and S. Chen (2012). Two sample tests for high-dimensional covariance matrices. Ann. Statist. 40, 908–940

G026

GO26

Description

A list of two sample matrices sliced from GO:0016032, it is about viral reproduction

Usage

data(GO26)

Format

A list of two data objects G026\$X and G026\$Y.

G054 G054

Description

A list of two sample matrices sliced from GO:0034080, it is about CenH3-containing nucleosome assembly at centromere.

Usage

data(G054)

Format

A list of two data objects G054\$X and G054\$Y.

oneMean

CZZZ-test for one sample mean vector

Description

Testing the equality of high dimensional mean vector to zero using the method developed in arXiv:1406.1939 [math.ST]

Usage

```
oneMean(X, m = 2500, filter = TRUE, S = NULL, alpha = 0.05, DNAME)
```

Arguments

Х	The nxp data matrix.
m	The number of Monte-Carlo samples in the test, default to be 2500
filter	A logical indicator of the filtering process, defaul to be TRUE
S	Covariance matrix of X , if not presented it will be estimated from the input sample.
alpha	The significant level of the test.
DNAME	Defaul input.

Details

Implement the method developed in arXiv:1406.1939 [math.ST] to test whether a high dimensional mean vector is zero or not, which is equivalent to test H_0 : $\mu = \mu_0$ for some prescribed value μ_0 which can be subtracted from the data. The procedure utilizes bootstrap concept and derive the critical values using independent Gaussian vectors whose covariance is estimated using sample covariance matrix.

Value

Value of testing statistics, p-values (the non-studentized statistic and the studentized statistic respectively), alternative hypothesis, and the name of testing procedure.

Author(s)

Tong He

References

J. Chang, W. Zhou and W.-X. Zhou, Simulation-Based Hypothesis Testing of High Dimensional Means Under Covariance Heterogeneity (2014), arXiv:1406.1939.

testCov	Testing the equality of two sample covariance matrices in high dimen-
	sion.

Description

Testing the equality of two sample covariance matrices in high dimension using different methods.

Usage

```
testCov(X, Y, method = "ALL", J = 2500, alpha = 0.05, n.core = 1)
```

testMean

Arguments

Х	the n x p training data, could be a matrix or a data.frame object.
Υ	the n x p training data matrix, could be a matrix or a data.frame object.
method	a string incidating the method for the test. The current available methods are ALL, HD, LC, CLX, Scott.
J	the number of repetition in the test
alpha	the significant level of the test.
n.core	the number of cores to be used in parallel when HD is called.

Value

For any single method, the function returns an htest object.

For method ALL: A list of four htest objects.

HD refers to "Chang, J., Zhou, W., Zhou, W.-X., and Wang, L. (2016). Comparing large covariance matrices under weak conditions on the dependence structure and its application to gene clustering. Biometrics. To appear"#'

CLX refers to "Cai, T. T., Liu, W., and Xia, Y. (2013). Two-sample covariance matrix testing and support recovery in high-dimensional and sparse settings. Journal of the American Statistical Association 108, 265-277."

Sc refers to "Schott, J. R. (2007). A test for the equality of covariance matrices when the dimension is large relative to the sample size. Computational Statistics and Data Analysis 51, 6535-6542."

Author(s)

Tong He

Examples

```
data(G054)
testCov(G054$X, G054$Y, method = "ALL", J = 100)
data(G026)
testCov(G026$X, G026$Y, method = "ALL", J = 100)
```

testMean

Testing the equality of two sample mean vectors in high dimension.

Description

Testing the equality of two sample mean vectors in high dimension using different methods.

Usage

```
testMean(X, Y = NULL, method = "HD", m = 2500, filter = TRUE,
alpha = 0.05, SX = NULL, SY = NULL)
```

Arguments

Х	the n x p training data matrix, could be a matrix or a data.frame object.
Y	the n x p training data matrix, if presented the method will perform a two-sample test of mean, one-sample test otherwise. Could be a matrix or a data.frame object.
method	a string incidating the method for the test. The current available methods are ALL, HD, CQ, CLX.
m	the number of repetition in the test
filter	a logical indicator of the filtering process
alpha	the significant level of the test.
SX	covariance matrix of X, if not presented it will be estimated from the input sample.
SY	covariance matrix of T, if not presented it will be estimated from the input sample.

Value

For method HD, the function returns two htest objects for non-studentized and studentized test respectively.

For method CLX and CQ, the function returns an htest object.

For method ALL: A list of four htest objects.

HD refers to arXiv:1406.1939 [math.ST]

Author(s)

Tong He

Examples

```
data(G054)
testMean(G054$X, m = 100, method = "HD")
testMean(G054$X, G054$Y, m = 100, method = "ALL")
```

twoMeans

CZZZ-test for two sample mean vectors

Description

Testing the equality of two sample high dimensional mean vectors using the method developed in arXiv:1406.1939 [math.ST]

twoMeans

Usage

twoMeans(X, Y, m = 2500, filter = TRUE, SX = NULL, SY = NULL, alpha = 0.05, DNAME)

Arguments

Х	The n x p training data matrix.
Υ	The n x p training data matrix.
m	The number of repetition in the test, default to be 2500
filter	A logical indicator of the filtering process, default to be TRUE
SX	The covariance matrix of X, if not presented it will be estimated from the input sample.
SY	The covariance matrix of T, if not presented it will be estimated from the input sample.
alpha	The significant level of the test.
DNAME	Defaulf input.

Details

Implement the method developed in arXiv:1406.1939 [math.ST] to test whether a high dimensional mean vector is zero or not, which is equivalent to test $H_0: \mu_1 = \mu_2$. The procedure utilizes bootstrap concept and derive the critical values using independent Gaussian vectors whose covariance is estimated using sample covariance matrix.

Value

Value of testing statistics, p-values (the non-studentized statistic and the studentized statistic respectively), alternative hypothesis, and the name of testing procedure.

Author(s)

Tong He

References

J. Chang, W. Zhou and W.-X. Zhou, Simulation-Based Hypothesis Testing of High Dimensional Means Under Covariance Heterogeneity (2014), arXiv:1406.1939.

wntest

Description

A variety of methods to test multivariate or high-dimensional white noise, including classical methods such as the multivariate portmanteau tests, Lagrange multiplier test, as well as the new method proposed by Chang, Yao and Zhou (2017) based on maximum cross correlations.

Usage

```
wntest(Y, M, k_max = 10, kk, type = 1, alpha = 0.05, k0 = 10,
delta = 1.5, opt = 1, lambda = 0.01, lambda_search = seq(1e-04,
0.01, length.out = 50), fold = 5, S1 = NULL, cv_opt = NULL)
```

Arguments

Υ	A p by n data matrix with p time series of length n .
М	Number of bootstrap replicates, ex. 2000.
k_max	The largest time lag to be tested for white noise (default is 10).
kk	A vector of time lags using for test (ex. $kk = seq(2, 10, by = 2)$), scalar is allowed and the largest kk must be less than k_max.
type	Tests to be performed: 1 is coded for the newly proposed maximum cross- correlation-based test for high-dimensional white noise by Chang, Yao and Zhou (2017); 2 is coded for the Lagrange multiplier test; 3 is coded for the three portmanteau tests, where results for both χ^2 and normal approximations are re- ported; and 4 is coded for the Tiao-Box likelihoood ratio-based test.
alpha	Level of significance (default is 0.05).
k0	A parameter in time series PCA for pre-transformation (default is 10).
delta	The thresholding parameter in time series PCA for pre-transformation (default is 1.5).
opt	Options for pre-transformation of time series. That is, one considers a transfor- mation matrix $A_{n \times p}$ and corresponding pre-transformed data AY . For parame- ter 'opt', 1 is coded for performing the transformation using package 'fastclime' and user-specific tuning parameter λ for estimating the contempaneous correla- tions; 2 is coded for performing the transformation using the sample covariance; 3 is coded for performing the transformation using package 'clime' with build-in cross validation on the tuning parameter for estimating the contempaneous cor- relations; 4 is coded for performing the transformation using 'fastclime' with cross validation on the tuning parameter for estimating the contempaneous cor- relations; and else do not perform the transformation.
lambda	The tuning parameter used in package 'fastclime', which is required for 'opt=1'. The default value is 0.1.

wntest

lambda_search	The tuning parameters search for package 'fastclime', which is required for 'opt=4' (default is $seq(1e - 4, 1e - 2, length.out = 50)$).
fold	Number of folds used in cross validations (default is 5).
S1	True contempaneous $p \times p$ covariance matrix of the data if it is known in advance. If provided, pre-transformation will use S1 instead of options in 'opt'.
cv_opt	Specify which tuning parameter and the corresponding estimated contempenous correlation (and the precision) matrix to be used for the pre-transformation. For example, 'cv_opt = 2' will choose λ and the estimated contempenous correlation (and the precision) matrix with the second smallest cross validation error (default value is 1, the minimun error).

Details

For a *p*-dimensional weakly stationary time series ε_t with mean zero, denote by $\Sigma(k) = \operatorname{cov}(\varepsilon_{t+k}, \varepsilon_t)$ and $\Gamma(k) = \operatorname{diag}\{\Sigma(0)\}^{-1/2}\Sigma(k)\operatorname{diag}\{\Sigma(0)\}^{-1/2}$, respectively, the autocovariance and the autocorrelation of at lag k. With the available observations $\varepsilon_1, \ldots, \varepsilon_n$, let

$$\widehat{\Gamma}(k) \equiv \{\widehat{\rho}_{ij}(k)\}_{1 \le i,j \le p} = \operatorname{diag}\{\widehat{\Sigma}(0)\}^{-1/2}\widehat{\Sigma}(k)\operatorname{diag}\{\widehat{\Sigma}(0)\}^{-1/2}$$

be the sample autocorrelation matrix at lag k, where $\widehat{\Sigma}(k)$ is the sample autocovariance matrix. Consider the hypothesis testing problem

 $H_0: \{\varepsilon_t\}$ is white noise versus $H_1: \{\varepsilon_t\}$ is not white noise.

To test the above hypothesis of multivariate or high dimensional white noise, we include the traditional portmanteau tests with test statistics: $Q_1 = n \sum_{k=1}^{K} \operatorname{tr}\{\widehat{\Gamma}(k)^T \widehat{\Gamma}(k)\}, Q_2 = n^2 \sum_{k=1}^{K} \operatorname{tr}\{\widehat{\Gamma}(k)^T \widehat{\Gamma}(k)\}/(n-k)$, and $Q_3 = n \sum_{k=1}^{K} \operatorname{tr}\{\widehat{\Gamma}(k)^T \widehat{\Gamma}(k)\} + p^2 K(K+1)/(2n)$. Also, we include the Lagranage multiplier test as well as the Tiao-Box likelihood ratio test. For the portmanteau tests, both χ^2 -approximation and normal approximation are reported.

Since $\Gamma(k) \equiv 0$ for any $k \geq 1$ under H_0 , the newly proposed maximum cross-correlation-based test uses statistic

$$T_n = \max_{1 \le k \le K} T_{n,k},$$

where $T_{n,k} = \max_{1 \le i,j \le p} n^{1/2} |\hat{\rho}_{ij}(k)|$ and $K \ge 1$ is prescribed. Null is rejected whenever $T_n > cv_{\alpha}$, where $cv_{\alpha} > 0$ is the critical value determined by novel bootstrap method proposed by Chang, Yao and Zhou (2017) with no further assumptions on the data structures.

Value

res	Test output: fail to reject (coded as 0) or reject (coded as 1).
p_value	<i>p</i> -values or approximated <i>p</i> -value.
M1	Square root of the estimated contempenous precision matrix if pre-transfermation was applied.

Author(s)

Meng Cao, Wen Zhou

References

Chang, J., Yao, Q. and Zhou, W., 2017. Testing for high-dimensional white noise using maximum cross-correlations. Biometrika, 104(1): 111-127.

Cai, T.T., Liu, W., and Luo, X., 2011. A constrained L1 minimization approach for sparse precision matrix estimation. Journal of the American Statistical Association 106(494): 594-607.

Lutkepohl, H., 2005. New introduction to multiple time series analysis. Springer Science & Business Media.

Examples

```
library(expm)
p = 15
n = 300
S1 = diag(1, p, p)
for(ii in c(1:p)){
for(jj in c(1:p)){
S1[ii, jj] = 0.995^(abs(ii-jj))
}
}
S11 = sqrtm(S1)
X = S11 %*% matrix(rt(n*p, df = 8), ncol = n)
k_max = 10
kk = seq(2, k_max, 2)
M = 500
k0 = 10
delta = 1.5
alpha = 0.05
wntest(X, M, k_max, kk, type = 1, opt = 0)
## Not run:
wntest(X, M, k_max, kk, type = 1, opt = 4, cv_opt = 1)
## End(Not run)
```

Index

* datasets G026, 5 G054, 5 CLX, 2 CQ2, 3 equalCovs, 4 G026, 5 G054, 5 oneMean, 5 testCov, 6 testMean, 7 twoMeans, 8

wntest, 10