
Package ‘HHG’
October 12, 2022

Type Package

Title Heller-Heller-Gorfine Tests of Independence and Equality of
Distributions

Version 2.3.4

Date 2021-05-11

Author Barak Brill & Shachar Kaufman, based in part on an earlier
implementation by Ruth Heller and Yair Heller.

Maintainer Barak Brill <barakbri@mail.tau.ac.il>

Depends R (>= 3.1.0)

Suggests MASS,knitr

Description Heller-Heller-Gorfine tests are a set of powerful statistical
tests of multivariate k-sample homogeneity and indepen-
dence (Heller et. al., 2013, <doi:10.1093/biomet/ass070>). For the univariate
case, the package also offers implementations of the 'MinP DDP' and 'MinP ADP'
tests by Heller et. al. (2016), which are consistent against all continuous alternatives but are
distribution-free, and are thus much faster to apply.

License GPL-3

VignetteBuilder knitr

NeedsCompilation yes

RoxygenNote 5.0.1

Imports Rcpp (>= 0.12.9),rmarkdown

LinkingTo Rcpp

SystemRequirements C++11

URL https://github.com/barakbri/HHG

BugReports https://github.com/barakbri/HHG/issues

Repository CRAN

Date/Publication 2021-05-15 04:40:02 UTC

1

https://doi.org/10.1093/biomet/ass070
https://github.com/barakbri/HHG
https://github.com/barakbri/HHG/issues

2 HHG-package

R topics documented:
HHG-package . 2
Fast.independence.test . 6
Fast.independence.test.nulltable . 10
HHG . 12
hhg.example.datagen . 17
hhg.univariate.ind.combined.test . 18
hhg.univariate.ind.nulltable . 23
hhg.univariate.ind.pvalue . 25
hhg.univariate.ind.stat . 28
hhg.univariate.ks.combined.test . 31
hhg.univariate.ks.nulltable . 36
hhg.univariate.ks.pvalue . 38
hhg.univariate.ks.stat . 41
hhg.univariate.nulltable.from.mstats . 44
nr_bins_equipartition . 48
print.HHG.Test.Result . 49
print.UnivariateObject . 50
print.UnivariateStatistic . 51
Yeast_hughes . 52

Index 53

HHG-package Heller-Heller-Gorfine (HHG) Tests of Independence and Equality of
Distributions

Description

This R package implements the permutation test of independnece between two random vectors of
arbitrary dimensions, and equality of two or more multivariate distributions, introduced in Heller et
al. (2013), as well as the distribution-free tests of independence and equality of distribution between
two univariate random variables introduced in Heller et al. (2016).

Details

Package: HHG
Type: Package
Version: 2.3.3
Date: 2019-05-06
License: GPL-2

The package contains six major functions:

hhg.test - the permutation test for independence of two multivariate (or univariate) vectors.

HHG-package 3

hhg.test.k.sample - the permutation test for equality of a multivariate (or univariate) distribution
across K groups.

hhg.test.2.sample - the permutation test for equality of a multivariate (or univariate) distribution
across 2 groups.

hhg.univariate.ind.combined.test - the distribution-free test for independence of two univari-
ate random variables (due to the computational complexity of this function, for large sample sizes
we recommend the atom based test Fast.independence.test instead).

hhg.univariate.ks.combined.test - the distribution-free test for equality of a univariate distri-
bution across K groups.

Fast.independence.test - the atom based distribution-free test for independence of two uni-
variate random variables, which is computationally efficient for large data sets (recommended for
sample sizes greater than 100).

See vignette('HHG') for additional information.

Author(s)

Barak Brill & Shachar Kaufman, based in part on an earlier implementation of the original HHG test
by Ruth Heller <ruheller@post.tau.ac.il> and Yair Heller <heller.yair@gmail.com>. Maintainer:
Barak Brill <barakbri@mail.tau.ac.il>

References

Heller, R., Heller, Y., and Gorfine, M. (2013). A consistent multivariate test of association based on
ranks of distances. Biometrika, 100(2), 503-510.

Heller, R., Heller, Y., Kaufman S., Brill B, & Gorfine, M. (2016). Consistent Distribution-Free
K-Sample and Independence Tests for Univariate Random Variables, JMLR 17(29):1-54 https:
//www.jmlr.org/papers/volume17/14-441/14-441.pdf

Brill B., Heller Y., and Heller R. (2018) Nonparametric Independence Tests and k-sample Tests
for Large Sample Sizes Using Package HHG, R Journal 10.1 https://journal.r-project.org/
archive/2018/RJ-2018-008/RJ-2018-008.pdf

Brill B. (2016) Scalable Non-Parametric Tests of Independence (master’s thesis). http://primage.
tau.ac.il/libraries/theses/exeng/free/2899741.pdf

Examples

Not run:

Some examples, for more see the vignette('HHG') and specific help pages

#######################################
#1. Univariate Independence Example
#######################################
#For (N<100):

N = 30
data = hhg.example.datagen(N, 'Parabola')
X = data[1,]

https://www.jmlr.org/papers/volume17/14-441/14-441.pdf
https://www.jmlr.org/papers/volume17/14-441/14-441.pdf
https://journal.r-project.org/archive/2018/RJ-2018-008/RJ-2018-008.pdf
https://journal.r-project.org/archive/2018/RJ-2018-008/RJ-2018-008.pdf
http://primage.tau.ac.il/libraries/theses/exeng/free/2899741.pdf
http://primage.tau.ac.il/libraries/theses/exeng/free/2899741.pdf

4 HHG-package

Y = data[2,]
plot(X,Y)

#For (N<100) , Option 1: Perform the ADP combined test
#using partitions sizes up to 4. see documentation for other parameters of the combined test
#(it is recommended to use mmax >= 4, or the default parameter for large data sets)
combined = hhg.univariate.ind.combined.test(X,Y,nr.perm = 200,mmax=4)
combined

#For (N<100) , Option 2: Perform the hhg test:

Compute distance matrices, on which the HHG test will be based
Dx = as.matrix(dist((X), diag = TRUE, upper = TRUE))
Dy = as.matrix(dist((Y), diag = TRUE, upper = TRUE))

hhg = hhg.test(Dx, Dy, nr.perm = 1000)

hhg

#For N>100, Fast.independence.test is the reccomended option:

N_Large = 1000
data_Large = hhg.example.datagen(N_Large, 'W')
X_Large = data_Large[1,]
Y_Large = data_Large[2,]
plot(X_Large,Y_Large)

NullTable_for_N_Large_MXL_tables = Fast.independence.test.nulltable(N_Large, variant = 'ADP-EQP-ML',
nr.atoms = 30,nr.perm=200)

ADP_EQP_ML_Result = Fast.independence.test(X_Large,Y_Large, NullTable_for_N_Large_MXL_tables)

ADP_EQP_ML_Result

#######################################
#2. Univariate K-Sample Example
#######################################

N0=50
N1=50
X = c(c(rnorm(N0/2,-2,0.7),rnorm(N0/2,2,0.7)),c(rnorm(N1/2,-1.5,0.5),rnorm(N1/2,1.5,0.5)))
Y = (c(rep(0,N0),rep(1,N1)))
#plot the two distributions by group index (0 or 1)
plot(Y,X)

#Option 1: Perform the distribution-free test for equality of a univariate distribution
combined.test = hhg.univariate.ks.combined.test(X,Y)
combined.test

HHG-package 5

#Option 2: Perform the permutation test for equality of distributions.

Dx = as.matrix(dist(X, diag = TRUE, upper = TRUE))

hhg = hhg.test.k.sample(Dx, Y, nr.perm = 1000)

hhg

#######################################
#3. Multivariate Independence Example:
#######################################

n=30 #number of samples
dimensions_x=5 #dimension of X matrix
dimensions_y=5 #dimension of Y matrix
X=matrix(rnorm(n*dimensions_x,mean = 0, sd = 1),nrow = n,ncol = dimensions_x) #generate noise
Y=matrix(rnorm(n*dimensions_y,mean =0, sd = 3),nrow = n,ncol = dimensions_y)

Y[,1] = Y[,1] + X[,1] + 4*(X[,1])^2 #add in the relations
Y[,2] = Y[,2] + X[,2] + 4*(X[,2])^2

#compute the distance matrix between observations.
#User may use other distance metrics.
Dx = as.matrix(dist((X)), diag = TRUE, upper = TRUE)
Dy = as.matrix(dist((Y)), diag = TRUE, upper = TRUE)

#run test
hhg = hhg.test(Dx, Dy, nr.perm = 1000)

hhg

#######################################
#4. Multivariate K-Sample Example
#######################################

#multivariate k-sample, with k=3 groups
n=100 #number of samples in each group
x1 = matrix(rnorm(2*n),ncol = 2) #group 1
x2 = matrix(rnorm(2*n),ncol = 2) #group 2
x2[,2] = 1*x2[,1] + x2[,2]
x3 = matrix(rnorm(2*n),ncol = 2) #group 3
x3[,2] = -1*x3[,1] + x3[,2]
x= rbind(x1,x2,x3)
y=c(rep(0,n),rep(1,n),rep(2,n)) #group numbers, starting from 0 to k-1

plot(x[,1],x[,2],col = y+1,xlab = 'first component of X',ylab = 'second component of X',
main = 'Multivariate K-Sample Example with K=3 \n Groups Marked by Different Colors')

6 Fast.independence.test

Dx = as.matrix(dist(x, diag = TRUE, upper = TRUE)) #distance matrix

hhg = hhg.test.k.sample(Dx, y, nr.perm = 1000)

hhg

End(Not run)

Fast.independence.test

Atoms based distribution-free test of independence

Description

Performs the atoms based distribution-free test for independence of two univariate random vari-
ables, which is computationally efficient for large data sets (recommended for sample size greater
than 100).

Usage

Fast.independence.test(X,Y,NullTable=NULL,mmin=2,
mmax=min(10,length(X)), variant='ADP-EQP-ML',nr.atoms = min(40,length(X)),
combining.type='MinP',score.type='LikelihoodRatio',nr.perm=200,
compress=T, compress.p0=0.001, compress.p=0.99, compress.p1=0.000001)

Arguments

X a numeric vector with observed X values.

Y a numeric vector with observed Y values.

NullTable The null table of the statistic, which can be downloaded from the software web-
site or computed by the function Fast.independence.test.nulltable.

mmin The minimum partition size of the ranked observations, default value is 2. Ig-
nored if NullTable is non-null.

mmax The maximum partition size of the ranked observations, default value is the
minimum between 10 and the data size.

variant a character string specifying the partition type, must be one of "ADP-EQP" or
"ADP-EQP-ML" (default). Ignored if NullTable is non-null.

nr.atoms the number of atoms (i.e., possible split points in the data). Ignored if NullTable
is non-null. The default value is the minimum between n and 40.

combining.type a character string specifying the combining type, must be one of "MinP" (de-
fault), "Fisher", or "both".

score.type a character string specifying the score type, must be one of "LikelihoodRatio"
(default), "Pearson", or "both". Ignored if NullTable is non-null.

Fast.independence.test 7

nr.perm The number of permutations for the null distribution. Ignored if NullTable is
non-null.

compress a logical variable indicating whether you want to compress the null tables. If
TRUE, null tables are compressed: The lower compress.p part of the null
statistics is kept at a compress.p0 resolution, while the upper part is kept at
a compress.p1 resolution (which is finer).

compress.p0 Parameter for compression. This is the resolution for the lower compress.p part
of the null distribution.

compress.p Parameter for compression. Part of the null distribution to compress.

compress.p1 Parameter for compression. This is the resolution for the upper value of the null
distribution.

Details

This function is a smart wrapper for the hhg.univariate.ind.combined.test function, with pa-
rameters optimized for a large number of observations. The function first calls hhg.univariate.ind.stat
to compute the vector of test statistics. Test statistics are the sum of log-likelihood scores, for All
Derived Partitions (ADP) of the data (computed as explained in Heller et al. (2014)).

For the 'ADP-EQP-ML' variant, the base test statistics are:

S2X2, S2X3, S3X2, ..., SmmaxXmmax.

For the 'ADP-EQP' varint, only the sum of symmetric tables (same number of cell on both axis) is
considered:

S2X2, S3X3, S4X4, ..., SmmaxXmmax

Other variant are described in hhg.univariate.ind.combined.test. The above varaiants are the
ones to be used for a large number of observations (n>100).

Test functions are capable of handling large datasets by attempting a split only every N/nr.atoms
observations. An atom is a sequence of observations which cannot be split when performing a
partition of the data (i.e. setting nr.atoms, the number of sequences which cannot be split, sets
the number of equidistant partition points). For the above variants, ’EQP’ stands for equipartition
over atoms. Brill (2016) suggests a minimum of 40 atoms, with an increase of up to 60 for alter-
natives which are more difficult to detect (on the expense of computational complexity. Algorithm
complexity is O(nr.atoms^4)). Very few alternatives require over 80 atoms.

The vector of SmXl statistics is then combined according to the method suggested in Heller et al.
(2014). The default combining type in the minimum p-value, so the test statistic is the minimum
p-value over the range of partition sizes m from mmin to mmax, where the p-value for a fixed partition
size m is defined by the aggregation type and score type. The combination is done over the statistics
computed by hhg.univariate.ind.stat. The second type of combination method for statistics,
is via a Fisher type statistic, −Σlog(pm) (with the sum going from mmin to mmax). The returned
result may include the test statistic for the MinP combination, the Fisher combination, or both (see
comb.type).

If the argument NullTable is supplied with a proper null table (constructed using

Fast.independence.test.nulltable or hhg.univariate.ind.nulltable, for the data sample
size), test parameters are taken from NullTable (mmax, mmin, variant, score.type, nr.atoms
,...). If NullTable is left NULL, a null table is generated by a call to Fast.independence.test.nulltable
using the arguments supplied to this function. Null table is generated with nr.perm repetitions. It is

8 Fast.independence.test

stored in the returned object, under generated_null_table. When testing for multiple hypotheses,
one may generate only one null table (using this function or Fast.independence.test.nulltable),
and use it many times (thus, substantially reducing computation time). Generated null tables hold
the distribution of statistics for both combination types, (comb.type=='MinP' and comb.type=='Fisher').

Null tables may be compressed, using the compress argument. For each of the partition sizes
(i.e. m or mXm), the null distribution is held at a compress.p0 resolution up to the compress.p
percentile. Beyond that value, the distribution is held at a finer resolution defined by compress.p1
(since higher values are attained when a relation exists in the data, this is required for computing
the p-value accurately.)

Value

Returns a UnivariateStatistic class object, with the following entries:

MinP The test statistic when the combining type is "MinP".

MinP.pvalue The p-value when the combining type is "MinP".

MinP.m.chosen The partition size m for which the p-value was the smallest.

Fisher The test statistic when the combining type is "Fisher".

Fisher.pvalue The p-value when the combining type is "Fisher".

m.stats The statistic for each m in the range mmin to mmax.
pvalues.of.single.m

The p-values for each m in the range mmin to mmax.
generated_null_table

The null table object. Null if NullTable is non-null.

stat.type "Independence-Combined"

variant a character string specifying the partition type used in the test, one of "ADP" or
"DDP".

aggregation.type

"sum" or the aggregation type used by NullTable

score.type a character string specifying the score typeused in the test, one of "LikelihoodRatio"
or "Pearson".

mmax The maximum partition size of the ranked observations used for MinP or Fisher
test statistic.

mmin The minimum partition size of the ranked observations used for MinP or Fisher
test statistic.

w.sum The minimum number of observations in a partition, only relevant for type="Independence",
aggregation.type="Sum" and score.type="Pearson".

w.max The minimum number of observations in a partition, only relevant for type="Independence",
aggregation.type="Max" and score.type="Pearson".

nr.atoms The input nr.atoms.

Author(s)

Barak Brill

Fast.independence.test 9

References

Heller, R., Heller, Y., Kaufman S., Brill B, & Gorfine, M. (2016). Consistent Distribution-Free
K-Sample and Independence Tests for Univariate Random Variables, JMLR 17(29):1-54 https:
//www.jmlr.org/papers/volume17/14-441/14-441.pdf

Brill B., Heller Y., and Heller R. (2018) Nonparametric Independence Tests and k-sample Tests
for Large Sample Sizes Using Package HHG, R Journal 10.1 https://journal.r-project.org/
archive/2018/RJ-2018-008/RJ-2018-008.pdf

Brill B. (2016) Scalable Non-Parametric Tests of Independence (master’s thesis) http://primage.
tau.ac.il/libraries/theses/exeng/free/2899741.pdf

Examples

Not run:

N_Large = 1000
data_Large = hhg.example.datagen(N_Large, 'W')
X_Large = data_Large[1,]
Y_Large = data_Large[2,]
plot(X_Large,Y_Large)

NullTable_for_N_Large_MXL_tables = Fast.independence.test.nulltable(N_Large,
variant = 'ADP-EQP-ML', nr.atoms = 30,nr.perm=200)

ADP_EQP_ML_Result = Fast.independence.test(X_Large,Y_Large,
NullTable_for_N_Large_MXL_tables)

ADP_EQP_ML_Result

#the null distribution depends only on the sample size, so the same
#null table can be used for testing different hypotheses with the same sample size.
#For example, for another data set with N_Large sample size:
data_Large = hhg.example.datagen(N_Large, 'Circle')
X_Large = data_Large[1,]
Y_Large = data_Large[2,]
plot(X_Large,Y_Large)

#The MinP combining method p-values may be reported:
ADP_EQP_ML_Result = Fast.independence.test(X_Large,Y_Large,
NullTable_for_N_Large_MXL_tables,

combining.type='MinP')
ADP_EQP_ML_Result

#or both MinP and Fisher combining methods p-values:
ADP_EQP_ML_Result = Fast.independence.test(X_Large,Y_Large,
NullTable_for_N_Large_MXL_tables,

combining.type='Both')
ADP_EQP_ML_Result

https://www.jmlr.org/papers/volume17/14-441/14-441.pdf
https://www.jmlr.org/papers/volume17/14-441/14-441.pdf
https://journal.r-project.org/archive/2018/RJ-2018-008/RJ-2018-008.pdf
https://journal.r-project.org/archive/2018/RJ-2018-008/RJ-2018-008.pdf
http://primage.tau.ac.il/libraries/theses/exeng/free/2899741.pdf
http://primage.tau.ac.il/libraries/theses/exeng/free/2899741.pdf

10 Fast.independence.test.nulltable

End(Not run)

Fast.independence.test.nulltable

Null tables for the atoms based distribution-free test of independence.

Description

Functions for creating null table objects for the atoms based omnibus distribution-free test of inde-
pendence between two univariate random variables.

Usage

Fast.independence.test.nulltable(n,mmin=2,mmax=min(10,n),
variant = 'ADP-EQP-ML',nr.atoms = min(40,n),
score.type='LikelihoodRatio',nr.perm=200,compress=T,
compress.p0=0.001, compress.p=0.99, compress.p1=0.000001)

Arguments

n The sample size

mmin The minimum partition size of the ranked observations, default value is 2.

mmax The maximum partition size of the ranked observations, default value is the
minimum between 10 and the data size.

variant a character string specifying the partition type, must be one of "ADP-EQP",
"ADP-EQP-ML" (default).

nr.atoms the number of atoms (i.e., possible split points in the data). Ignored if NullTable
is non-null. The default value is the minimum between n and 40.

score.type a character string specifying the score type, must be one of "LikelihoodRatio"
(default), "Pearson", or "both".

nr.perm The number of permutations for the null distribution.

compress a logical variable indicating whether you want to compress the null tables. If
TRUE, null tables are compressed: The lower compress.p part of the null
statistics is kept at a compress.p0 resolution, while the upper part is kept at
a compress.p1 resolution (which is finer).

compress.p0 Parameter for compression. This is the resolution for the lower compress.p part
of the null distribution.

compress.p Parameter for compression. Part of the null distribution to compress.

compress.p1 Parameter for compression. This is the resolution for the upper value of the null
distribution.

Fast.independence.test.nulltable 11

Details

In order to compute the null distributions for a test statistic (with a specific aggregation and score
type, and all partition sizes), the only necessary information is the sample size, since the test statistic
is distribution-free. The accuracy of the quantiles of the null distribution depend on the number of
replicates used for constructing the null tables. The necessary accuracy depends on the threshold
used for rejection of the null hypotheses.

This function creates an object for efficiently storing the null distribution of the test statistics. Gen-
erated null tables hold the null distribution of statistics for the two combination types, i.e. for
comb.type value ('MinP' and 'Fisher'), as well as for fixed partition sizes.

Variant types "ADP-EQP" and "ADP-EQP-ML", are the atom-based generalizations of the "ADP" and
"ADP-ML". EQP type variants reduce calculation time by summing over a subset of partitions, where
a split between cells may be performed only every n/nr.atoms observations. This allows for a
complexity of O(nr.atoms^4). These variants are only available for aggregation.type=='sum'
type aggregation.

Null tables may be compressed, using the compress argument. For each of the partition sizes, the
null distribution is held at a compress.p0 resolution up to the compress.p percentile. Beyond that
value, the distribution is held at a finer resolution defined by compress.p1 (since higher values are
attained when a relation exists in the data, this is required for computing the p-value accurately in
the tail of the null distribution).

Value

m.stats If keep.simulation.data= TRUE, m.stats a matrix with nr.replicates rows
and mmax-mmin+1 columns of null test statistics.

univariate.object

A useful format of the null tables for computing p-values efficiently.

Author(s)

Barak Brill.

References

Heller, R., Heller, Y., Kaufman S., Brill B, & Gorfine, M. (2016). Consistent Distribution-Free
K-Sample and Independence Tests for Univariate Random Variables, JMLR 17(29):1-54 https:
//www.jmlr.org/papers/volume17/14-441/14-441.pdf

Brill B., Heller Y., and Heller R. (2018) Nonparametric Independence Tests and k-sample Tests
for Large Sample Sizes Using Package HHG, R Journal 10.1 https://journal.r-project.org/
archive/2018/RJ-2018-008/RJ-2018-008.pdf

Brill B. (2016) Scalable Non-Parametric Tests of Independence (master’s thesis) http://primage.
tau.ac.il/libraries/theses/exeng/free/2899741.pdf

Examples

Not run:

https://www.jmlr.org/papers/volume17/14-441/14-441.pdf
https://www.jmlr.org/papers/volume17/14-441/14-441.pdf
https://journal.r-project.org/archive/2018/RJ-2018-008/RJ-2018-008.pdf
https://journal.r-project.org/archive/2018/RJ-2018-008/RJ-2018-008.pdf
http://primage.tau.ac.il/libraries/theses/exeng/free/2899741.pdf
http://primage.tau.ac.il/libraries/theses/exeng/free/2899741.pdf

12 HHG

N_Large = 1000
data_Large = hhg.example.datagen(N_Large, 'W')
X_Large = data_Large[1,]
Y_Large = data_Large[2,]
plot(X_Large,Y_Large)

NullTable_for_N_Large_MXM_tables = Fast.independence.test.nulltable(N_Large,
variant = 'ADP-EQP', nr.atoms = 30,nr.perm=200)
NullTable_for_N_Large_MXL_tables = Fast.independence.test.nulltable(N_Large,
variant = 'ADP-EQP-ML', nr.atoms = 30,nr.perm=200)

ADP_EQP_Result = Fast.independence.test(X_Large,Y_Large,
NullTable_for_N_Large_MXM_tables)
ADP_EQP_ML_Result = Fast.independence.test(X_Large,Y_Large,
NullTable_for_N_Large_MXL_tables)

ADP_EQP_Result
ADP_EQP_ML_Result

#null distribution depends only on data size (length(X)),
#so same null table can be used many times.
#For example, another data set:
data_Large = hhg.example.datagen(N_Large, 'Circle')
X_Large = data_Large[1,]
Y_Large = data_Large[2,]
plot(X_Large,Y_Large)

#you may use Fisher type scores:
ADP_EQP_Result = Fast.independence.test(X_Large,Y_Large,
NullTable_for_N_Large_MXM_tables, combining.type='Fisher')
#or both MinP and Fisher:
ADP_EQP_ML_Result = Fast.independence.test(X_Large,Y_Large,
NullTable_for_N_Large_MXL_tables, combining.type='Both')

ADP_EQP_Result
ADP_EQP_ML_Result

End(Not run)

HHG Heller-Heller-Gorfine Tests of Independence and Equality of Distribu-
tions

Description

These functions perform Heller-Heller-Gorfine (HHG) tests. Implemented are tests of independence
between two random vectors (x and y) and tests of equality of 2 or more multivariate distributions.

HHG 13

Usage

hhg.test(Dx, Dy, ties = T, w.sum = 0, w.max = 2, nr.perm = 10000,
is.sequential = F, seq.total.nr.tests = 1,
seq.alpha.hyp = NULL, seq.alpha0 = NULL, seq.beta0 = NULL, seq.eps = NULL,
nr.threads = 0, tables.wanted = F, perm.stats.wanted = F)

hhg.test.k.sample(Dx, y, w.sum = 0, w.max = 2, nr.perm = 10000,
is.sequential = F, seq.total.nr.tests = 1,
seq.alpha.hyp = NULL, seq.alpha0 = NULL, seq.beta0 = NULL, seq.eps = NULL,
nr.threads = 0, tables.wanted = F, perm.stats.wanted = F)

hhg.test.2.sample(Dx, y, w.sum = 0, w.max = 2, nr.perm = 10000,
is.sequential = F, seq.total.nr.tests = 1,
seq.alpha.hyp = NULL, seq.alpha0 = NULL, seq.beta0 = NULL, seq.eps = NULL,
nr.threads = 0, tables.wanted = F, perm.stats.wanted = F)

Arguments

Dx a symmetric matrix of doubles, where element [i, j] is a norm-based distance
between the i’th and j’th x samples.

Dy same as Dx, but for distances between y’s (the user may choose any norm when
computing Dx, Dy).

y a numeric or factor vector, whose values or levels are in (0, 1, ..., K - 1), for
performing K-sample tests (including K = 2).

ties a boolean specifying whether ties in Dx and/or Dy exist and are to be properly
handled (requires more computation).

w.sum minimum expected frequency taken into account when computing the sum.chisq
statistic (must be non-negative, contribution of tables having cells with smaller
values will be truncated to zero).

w.max minimum expected frequency taken into account when computing the max.chisq
statistic (must be non-negative, contribution of tables having cells with smaller
values will be truncated to zero).

nr.perm number of permutations from which a p-value is to be estimated (must be non-
negative). Can be specified as zero if only the observed statistics are wanted,
without p-values. The actual number of permutations used may be slightly larger
when using multiple processing cores. A Wald sequential probability ratio test
is optionally implemented, which may push the p-value to 1 and stop permuting
if it becomes clear that it is going to be high. See Details below.

is.sequential boolean flag specifying whether Wald’s sequential test is desired (see Details),
otherwise a simple Monte-Carlo computation of nr.perm permutations is per-
formed. When this argument is TRUE, either seq.total.nr.tests or (seq.alpha.hyp,
seq.alpha0, seq.beta0, seq.eps) must be supplied by the user.

seq.total.nr.tests

the total number of hypotheses in the family of hypotheses simultaneously tested.
When this optional argument is supplied, it is used to derive default values for

14 HHG

the parameters of the Wald sequential test. The default derivation is done as-
suming a nominal 0.05 FDR level, and sets:
seq.alpha.hyp = 0.05 / max(1, log(seq.total.nr.tests)), seq.alpha0 =
0.05, seq.beta0 = min(0.01, 0.05 / seq.total.nr.tests), seq.eps = 0.01.
Alternatively, one can specify their own values for these parameters using the
following arguments.

seq.alpha.hyp the nominal test size for this single test within the multiple testing procedure.

seq.alpha0 the nominal test size for testing the side null hypothesis of p-value > seq.alpha.hyp.

seq.beta0 one minus the power for testing the side null hypothesis of p-value > seq.alpha.hyp.

seq.eps approximation margin around seq.alpha.hyp that defines the p-value regions
for the side null p > seq.alpha.hyp * (1 + seq.eps) and side alternative p <
seq.alpha.hyp * (1 - seq.eps).

nr.threads number of processing cores to use for p-value permutation. If left as zero, will
try to use all available cores.

tables.wanted boolean flag determining whether to output detailed local 2x2 contingency ta-
bles.

perm.stats.wanted

boolean flag determining whether to output statistics values computed for all
permutations (representing null distributions).

Details

The HHG test (Heller et al., 2013) is a powerful nonparametric test for association (or, alternatively,
independence) between two random vectors (say, x and y) of arbitrary dimensions. It is consistent
against virtually any form of dependence, and has been shown to offer significantly more power
than alternative approaches in the face of simple, and, more importantly, complex high-dimensional
dependence. The test relies on norm-based distance metrics in x and (separately) in y. The choice
of metric for either variable is up to the user (e.g. Euclidean, Mahalanobis, Manhattan, or whatever
is appropriate for the data). The general implementation in hhg.test takes the distance matrices
computed on an observed sample, Dx and Dy, and starts form there.

hhg.test.k.sample and hhg.test.2.sample are optimized special cases of the general test, where y is a
partition of samples in x to K or 2 groups, respectively.

When enabled by is.sequential, Wald’s sequential test is implemented as suggested by Fay et
al. (2007) in order to reduce the O(nr.perm * n^2 * log(n)) computational compelxity of the
permutation test to a more managable size. Especially when faced with high multiplicity, say M
simultaneous tests, the necessary number of iterations may be quite large. For example, if it is
desired to control the family-wise error rate (FWER) at level alpha using the Bonferroni correction,
one needs a p-value of alpha / M to establish significance. This seems to suggest that the minimum
number of permutations required is nr.perm = M / alpha. However, if it becomes clear after a
smaller number of permutations that the null cannot be rejected, no additional permutations are
needed, and the p-value can be conservatively estimated as 1. Often, only a handful of hypotheses
in a family are expected to be non-null. In this case the number of permutations for testing all
hypotheses using Wald’s procedure is expected to be much lower than the full M^2 / alpha.

The target significance level of the sequential test is specified in the argument seq.alpha.hyp. It
depends on the number of hypotheses M, and the type of multiplicity correction wanted. For the
Bonferroni correction, the threshold is alpha / M. For the less conservative procedure of Benjamini

HHG 15

& Hochberg (1995), it is M1 * q / M, where q is the desired false discovery rate (FDR), and M1 is
the (unknwon) number of true non-null hypotheses. Although M1 is unknown, the investigator can
sometimes estimate it conservatively (e.g., if at most 0.02 of the hypotheses are expected to be
non-null, set M1 = 0.02 * M).

Value

Four statistics described in the original HHG paper are returned:

sum.chisq - sum of Pearson chi-squared statistics from the 2x2 contingency tables considered.

sum.lr - sum of liklihood ratio ("G statistic") values from the 2x2 tables.

max.chisq - maximum Pearson chi-squared statistic from any of the 2x2 tables.

max.lr - maximum G statistic from any of the 2x2 tables.

If nr.perm > 0, then estimated permutation p-values are returned as:

perm.pval.hhg.sc, perm.pval.hhg.sl, perm.pval.hhg.mc, perm.pval.hhg.ml

In order to give information that may help localize where in the support of the distributions of x and
y there is departure from independence, if tables.wanted is true, the 2x2 tables themselves are
provided in:

extras.hhg.tbls

This is a n^2 by 4 matrix, whose columns are A11, A12, A21, A22 as denoted in the original HHG
paper. Row r of the matrix corresponds to S_ij in the same paper, where i = 1 + floor((r - 1)
/ n), and j = 1 + ((r - 1) %% n). Since S_ij is never computed for i == j, rows (0:(n - 1)) * n
+ (1:n) contain NAs on purpose. The only other case where NAs will occur are for the 2 and K-
sample tests, where only one table is given for any x-tied samples (the other tables at indices with
the same x value are redundant).

Finally, as a means of estimating the null distributions of computed statistics, if perm.stats.wanted
is true, the statistics computed for every permutation of the data performed during testing is out-
putted as:

extras.perm.stats

A data.frame with one variable per statistic and one sample per permutation.

n - The sample size

y - Group sizes for hhg.test.2.sample and hhg.test.k.sample tests.

stat.type - String holding the type of test used: 'hhg.test', 'hhg.test.2.sample' or 'hhg.test.k.sample'

Note

The computational complexity of the test is n^2*log(n), where n is the number of samples. Thus,
when the sample size is large, computing the test for many permutations may take a long time.

P-values are reproducible when setting set.seed(seed_value) before peforming the permutation test
(also when computation is done in multithread). This feature is currently implemented only in
hhg.test and not in hhg.test.k.sample and hhg.test.2.sample.

Author(s)

Shachar Kaufman, based in part on an earlier version by Ruth Heller and Yair Heller.

16 HHG

References

Heller, R., Heller, Y., & Gorfine, M. (2013). A consistent multivariate test of association based on
ranks of distances. Biometrika, 100(2), 503-510.

Fay, M., Kim., H., & Hachey, M. (2007). On using truncated sequential probability ratio test
boundaries for Monte Carlo implementation of hypothesis tests. Journal of Computational and
Graphical Statistics, 16(4), 946-967.

Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: a practical and powerful
approach to multiple testing. Journal of the Royal Statistical Society Series B, 57, 289-300.

Examples

Not run:
1. The test of independence

1.1. A non-null univariate example

Generate some data from the Circle example
n = 50
X = hhg.example.datagen(n, 'Circle')
plot(X[1,], X[2,])

Compute distance matrices, on which the HHG test will be based
Dx = as.matrix(dist((X[1,]), diag = TRUE, upper = TRUE))
Dy = as.matrix(dist((X[2,]), diag = TRUE, upper = TRUE))

Compute HHG statistics, and p-values using 1000 random permutations
set.seed(1) #set the seed for the random permutations
hhg = hhg.test(Dx, Dy, nr.perm = 1000)

Print the statistics and their permutation p-value

hhg

1.2. A null univariate example

n = 50
X = hhg.example.datagen(n, '4indclouds')

Dx = as.matrix(dist((X[1,]), diag = TRUE, upper = TRUE))
Dy = as.matrix(dist((X[2,]), diag = TRUE, upper = TRUE))

set.seed(1) #set the seed for the random permutations
hhg = hhg.test(Dx, Dy, nr.perm = 1000)

hhg

1.3. A multivariate example
library(MASS)

n = 50
p = 5

hhg.example.datagen 17

x = t(mvrnorm(n, rep(0, p), diag(1, p)))
y = log(x ^ 2)
Dx = as.matrix(dist((t(x)), diag = TRUE, upper = TRUE))
Dy = as.matrix(dist((t(y)), diag = TRUE, upper = TRUE))

set.seed(1) #set the seed for the random permutations
hhg = hhg.test(Dx, Dy, nr.perm = 1000)

hhg

2. The k-sample test

n = 50
D = hhg.example.datagen(n, 'FourClassUniv')
Dx = as.matrix(dist(D$x, diag = TRUE, upper = TRUE))

hhg = hhg.test.k.sample(Dx, D$y, nr.perm = 1000)

hhg

End(Not run)

hhg.example.datagen A set of example data generators used to demonstrate the HHG test.

Description

Six examples (Circle, Diamond, Parabola, 2Parabolas, W, 4indclouds) are taken from Newton’s in-
troduction to the discussion of the Energy Test in The Annals of Applied Statistics (2009). These are
simple univariate dependence structures (or independence, in the latter case) used to demonstrate
the tests of independece. The remaining examples (TwoClassUniv, FourClassUniv, TwoClassMul-
tiv) generate data suitable for demonstrating the k-sample test (and in particular, the two-sample
test).

It has been pointed out by Pierre Lafaye de Micheaux (private correspondence) that sampling should
replace equidistant points in the data generation functions of the 2Parabolas, W, and Circle relation-
ships (i.e., use x = runif(n, -1, 1) instead of x = seq(-1, 1, length = n)). The power resulting from this
modification is close to the original power. We did not implement this change in order to preserve
the reproducibility of the results reported in paper " A consistent multivariate test of association
based on ranks of distances", Biometrika (2016) 103 (1): 35-47.

One can see HHG::hhg.example.datagen and HHG:::.datagenW (for example) for the source code
for the data generation procedure.

Usage

hhg.example.datagen(n, example)

18 hhg.univariate.ind.combined.test

Arguments

n The desired sample size

example The choice of example

Value

For example in {Circle, Diamond, Parabola, 2Parabolas, W, and 4indclouds}, a matrix of two rows
is returned, one row per variable. Columns are i.i.d. samples. Given these data, we would like to test
whether the two variables are statistically independent. Except for the 4indclouds case, all examples
in fact have variables that are dependent. When example is one of {TwoClassUniv, FourClassUniv,
TwoClassMultiv}, a list is returned with elements x and y. y is a vector with values either 0 or 1 (for
TwoClassUniv and TwoClassMultiv) or in 0:3 for (for FourClassUniv). x is a real valued random
variable (TwoClassUniv and FourClassUniv) or vector (TwoClassMultiv) which is not independent
of y.

Author(s)

Shachar Kaufman and Ruth Heller

References

Newton, M.A. (2009). Introducing the discussion paper by Szekely and Rizzo. Annals of applied
statistics, 3 (4), 1233-1235.

Examples

X = hhg.example.datagen(50, 'Diamond')
plot(X[1,], X[2,])

X = hhg.example.datagen(50, 'FourClassUniv')
plot(X)

hhg.univariate.ind.combined.test

Distribution-free test of independence

Description

Performs distribution-free tests for independence of two univariate random variables.

Usage

hhg.univariate.ind.combined.test(X,Y=NULL,NullTable=NULL,mmin=2,
mmax=max(floor(sqrt(length(X))/2),2),variant='ADP',aggregation.type='sum',
score.type='LikelihoodRatio', w.sum = 0, w.max = 2 ,combining.type='MinP',
nr.perm=100,nr.atoms = nr_bins_equipartition(length(X)),
compress=F,compress.p0=0.001,compress.p=0.99,compress.p1=0.000001,
keep.simulation.data=T)

hhg.univariate.ind.combined.test 19

Arguments

X a numeric vector with observed X values, or the test statistic as output from
hhg.univariate.ind.stat.

Y a numeric vector with observed Y values. Leave as Null if the input to X is the
test statistic.

NullTable The null table of the statistic, which can be downloaded from the software web-
site or computed by the function hhg.univariate.ind.nulltable.

mmin The minimum partition size of the ranked observations, default value is 2. Ig-
nored if NullTable is non-null.

mmax The maximum partition size of the ranked observations, default value is half
the square root of the number of observations. For a max aggregation.type, this
parameter cannot be more than 2 for the ADP variant and 4 for DDP variant.
Ignored if NullTable is non-null.

variant a character string specifying the partition type, must be one of "ADP" (default)
or "DDP", "ADP-ML", "ADP-EQP", "ADP-EQP-ML". Ignored if NullTable is non-
null.

aggregation.type

a character string specifying the aggregation type, must be one of "sum" (de-
fault), "max", or "both".. Ignored if NullTable is non-null.

score.type a character string specifying the score type, must be one of "LikelihoodRatio"
(default), "Pearson", or "both". Ignored if NullTable is non-null.

w.sum The minimum number of observations in a partition, only relevant for type="Independence",
aggregation.type="Sum" and score.type="Pearson", default value 0. Ig-
nored if NullTable is non-null.

w.max The minimum number of observations in a partition, only relevant for type="Independence",
aggregation.type="Max" and score.type="Pearson", default value 2. Ig-
nored if NullTable is non-null.

combining.type a character string specifying the combining type, must be one of "MinP" (de-
fault), "Fisher", or "both".

nr.perm The number of permutations for the null distribution. Ignored if NullTable is
non-null.

nr.atoms For "ADP-EQP" and "ADP-EQP-ML" type tests, sets the number of possible split
points in the data. Ignored if NullTable is non-null. The default value is the
minimum between n and 60 + 0.5 ∗

√
n.

compress TRUE or FALSE. If enabled, null tables are compressed: The lower compress.p
part of the null statistics is kept at a compress.p0 resolution, while the upper
part is kept at a compress.p1 resolution (which is finer).

compress.p0 Parameter for compression. This is the resolution for the lower compress.p part
of the null distribution.

compress.p Parameter for compression. Part of the null distribution to compress.
compress.p1 Parameter for compression. This is the resolution for the upper value of the null

distribution.
keep.simulation.data

TRUE/FALSE. If TRUE, then in addition to the sorted statistics per column, the
original matrix of size nr.replicates by mmax-mmin+1 is also stored.

20 hhg.univariate.ind.combined.test

Details

The test statistic and p-value of the recommended independence test between two univariate random
variables in Heller et al. (2014). The default combining type in the minimum p-value, so the test
statistic is the minimum p-value over the range of partition sizes m from mmin to mmax, where
the p-value for a fixed partition size m is defined by the aggregation type and score type. The
combination is done over the statistics computed by hhg.univariate.ind.stat. The second type
of combination method for statistics, is via a Fisher type statistic, −Σlog(pm) (with the sum going
from mmin to mmax). The returned result may include the test statistic for the MinP combination,
the Fisher combination, or both (see comb.type).

If the argument NullTable is supplied with a proper null table (constructed using hhg.univariate.ind.nulltable,
for the data sample size), test parameters are taken from NullTable:

(mmax, mmin, variant,aggregation.type, score.type, nr.atoms ,...).

If NullTable is left NULL, a null table is generated by a call to hhg.univariate.ind.nulltable
using the arguments supplied to this function. Null table is generated with nr.perm repetitions. It is
stored in the returned object, under generated_null_table. When testing for multiple hypotheses,
one may generate only one null table (using this function or hhg.univariate.ind.nulltable),
and use it many times (thus, substantially reducing computation time). Generated null tables hold
the distribution of statistics for both combination types, (comb.type=='MinP' and comb.type=='Fisher').

If X is supplied with a statistic (UnivariateStatistic object, returned by hhg.univariate.ind.stat),
X must have the statistics (by m), required by either NullTable or the user supplied arguments mmin
and mmax. If X has a larger mmax arguemnt than the supplied null table object, m statistics which ex-
ceed the null table’s mmax are not taken into consideration when computing the combined statistic.

Variant types "ADP-EQP" and "ADP-EQP-ML", are the computationally efficient versions of the
"ADP" and "ADP-ML". EQP type variants reduce calculation time by summing over a subset of par-
titions, where a split between cells may be performed only every n/nr.atoms observations. This al-
lows for a complexity of O(nr.atoms^4). These variants are only available for aggregation.type=='sum'
type aggregation.

Null tables may be compressed, using the compress argument. For each of the partition sizes
(i.e. m or mXm), the null distribution is held at a compress.p0 resolution up to the compress.p
percentile. Beyond that value, the distribution is held at a finer resolution defined by compress.p1
(since higher values are attained when a relation exists in the data, this is required for computing
the p-value accurately.)

For large data (n>100), it is recommended to used Fast.independence.test, which is an op-
timized version of the hhg.univariate.ind.stat and hhg.univariate.ind.combined.test
tests.

Value

Returns a UnivariateStatistic class object, with the following entries:

MinP The test statistic when the combining type is "MinP".

MinP.pvalue The p-value when the combining type is "MinP".

MinP.m.chosen The partition size m for which the p-value was the smallest.

Fisher The test statistic when the combining type is "Fisher".

Fisher.pvalue The p-value when the combining type is "Fisher".

hhg.univariate.ind.combined.test 21

m.stats The statistic for each m in the range mmin to mmax.
pvalues.of.single.m

The p-values for each m in the range mmin to mmax.
generated_null_table

The null table object. Null if NullTable is non-null.

stat.type "Independence-Combined"

variant a character string specifying the partition type used in the test, one of "ADP" or
"DDP".

aggregation.type

a character string specifying the aggregation type used in the , one of "sum" or
"max".

score.type a character string specifying the score typeused in the test, one of "LikelihoodRatio"
or "Pearson".

mmax The maximum partition size of the ranked observations used for MinP or Fisher
test statistic.

mmin The minimum partition size of the ranked observations used for MinP or Fisher
test statistic.

w.sum The minimum number of observations in a partition, only relevant for type="Independence",
aggregation.type="Sum" and score.type="Pearson".

w.max The minimum number of observations in a partition, only relevant for type="Independence",
aggregation.type="Max" and score.type="Pearson".

nr.atoms The input nr.atoms.

Author(s)

Barak Brill and Shachar Kaufman.

References

Heller, R., Heller, Y., Kaufman S., Brill B, & Gorfine, M. (2016). Consistent Distribution-Free
K-Sample and Independence Tests for Univariate Random Variables, JMLR 17(29):1-54

Brill B. (2016) Scalable Non-Parametric Tests of Independence (master’s thesis)

http://primage.tau.ac.il/libraries/theses/exeng/free/2899741.pdf

Examples

Not run:

N = 35
data = hhg.example.datagen(N, 'Parabola')
X = data[1,]
Y = data[2,]
plot(X,Y)

#I) Perform MinP & Fisher Tests - without existing null tables.

22 hhg.univariate.ind.combined.test

#Null tables are generated by the test function.
#using partitions sizes up to 5
results = hhg.univariate.ind.combined.test(X,Y,nr.perm = 100,mmax=5)
results

#The null table can then be accessed.
generated.null.table = results$generated_null_table

#II) Perform MinP & Fisher Tests - with existing null tables.

#create null table for aggregation by summation (on ADP), with partitions sizes up to 5:
ADP.null = hhg.univariate.ind.nulltable(N,mmax=5)

#create a null table, using aggregation by summation over DDP partitions,
#with partitions sizes up to 5, over Pearson scores,
#with 1000 bootstrap repetitions.
DDP.null = hhg.univariate.ind.nulltable(N,mmax = 5,variant = 'DDP',
score.type = 'Pearson', nr.replicates = 1000)

MinP.ADP.existing.null.table = hhg.univariate.ind.combined.test(X,Y, NullTable = ADP.null)
#Results
MinP.ADP.existing.null.table

#using the other null table (DDP variant, with pearson scores):
MinP.DDP.existing.null.table = hhg.univariate.ind.combined.test(X,Y, NullTable = DDP.null)

MinP.DDP.existing.null.table

combined test can also be performed by using the test statistic.
ADP.statistic = hhg.univariate.ind.stat(X,Y,mmax=5)
MinP.using.statistic.result = hhg.univariate.ind.combined.test(ADP.statistic,
NullTable = ADP.null)
same result as above (as MinP.ADP.result.using.existing.null.table$MinP.pvalue)
MinP.using.statistic.result$MinP.pvalue

#III) Perform MinP & Fisher Tests - using the efficient variants for large N.

N_Large = 1000
data_Large = hhg.example.datagen(N_Large, 'W')
X_Large = data_Large[1,]
Y_Large = data_Large[2,]
plot(X_Large,Y_Large)

NullTable_for_N_Large_MXM_tables = hhg.univariate.ind.nulltable(N_Large,
variant = 'ADP-EQP',nr.atoms = 30,nr.replicates=200)
NullTable_for_N_Large_MXL_tables = hhg.univariate.ind.nulltable(N_Large,
variant = 'ADP-EQP-ML',nr.atoms = 30,nr.replicates=200)

ADP_EQP_Result = hhg.univariate.ind.combined.test(X_Large,Y_Large,
NullTable_for_N_Large_MXM_tables)
ADP_EQP_ML_Result = hhg.univariate.ind.combined.test(X_Large,Y_Large,

hhg.univariate.ind.nulltable 23

NullTable_for_N_Large_MXL_tables)

ADP_EQP_Result
ADP_EQP_ML_Result

End(Not run)

hhg.univariate.ind.nulltable

Null tables for the distribution-free test of independence

Description

Functions for creating null table objects for the omnibus distribution-free test of independence be-
tween two univariate random variables.

Usage

hhg.univariate.ind.nulltable(size,mmin=2,mmax = max(floor(sqrt(size)/2),2),
variant = 'ADP',aggregation.type = 'sum',score.type='LikelihoodRatio',
w.sum = 0, w.max = 2,nr.replicates=1000,keep.simulation.data=F,
nr.atoms = nr_bins_equipartition(size),
compress=F,compress.p0=0.001,compress.p=0.99,compress.p1=0.000001)

Arguments

size The sample size

mmin The minimum partition size of the ranked observations, default value is 2.

mmax The maximum partition size of the ranked observations, default value is half the
square root of the number of observations.

variant a character string specifying the partition type, must be one of "ADP" (default)
or "DDP", "ADP-ML", "ADP-EQP", "ADP-EQP-ML".

aggregation.type

a character string specifying the aggregation type, must be one of "sum" (de-
fault) or "max".

score.type a character string specifying the score type, must be one of "LikelihoodRatio"
(default) or "Pearson".

w.sum The minimum number of observations in a partition, only relevant for type="Independence",
aggregation.type="Sum" and score.type="Pearson", default value 0.

w.max The minimum number of observations in a partition, only relevant for type="Independence",
aggregation.type="Max" and score.type="Pearson", default value 2.

nr.replicates The number of permutations for the null distribution.

24 hhg.univariate.ind.nulltable

keep.simulation.data

TRUE/FALSE. If TRUE, then in addition to the sorted statistics per column, the
original matrix of size nr.replicates by mmax-mmin+1 is also stored.

nr.atoms For "ADP-EQP" and "ADP-EQP-ML" type tests, sets the number of possible split
points in the data. The default value is the minimum between n and 60+0.5∗

√
n.

compress TRUE or FALSE. If enabled, null tables are compressed: The lower compress.p
part of the null statistics is kept at a compress.p0 resolution, while the upper
part is kept at a compress.p1 resolution (which is finer).

compress.p0 Parameter for compression. This is the resolution for the lower compress.p part
of the null distribution.

compress.p Parameter for compression. Part of the null distribution to compress.

compress.p1 Parameter for compression. This is the resolution for the upper value of the null
distribution.

Details

In order to compute the null distributions for a test statistic (with a specific aggregation and score
type, and all partition sizes), the only necessary information is the sample size (the test statistic is
"distribution free"). The accuracy of the quantiles of the null distribution depend on the number of
replicates used for constructing the null tables. The necessary accuracy depends on the threshold
used for rejection of the null hypotheses.

This function creates an object for efficiently storing the null distribution of the test statistics (by
partition size m). Use the returned object, together with hhg.univariate.ind.pvalue to compute
the P-value for the statistics computed by hhg.univariate.ind.stat

Generated null tables also hold the distribution of statistics for combination types (comb.type=='MinP'
and comb.type=='Fisher'), used by hhg.univariate.ind.combined.test.

Variant types "ADP-EQP" and "ADP-EQP-ML", are the computationally efficient versions of the
"ADP" and "ADP-ML". EQP type variants reduce calculation time by summing over a subset of par-
titions, where a split between cells may be performed only every n/nr.atoms observations. This al-
lows for a complexity of O(nr.atoms^4). These variants are only available for aggregation.type=='sum'
type aggregation.

Null tables may be compressed, using the compress argument. For each of the partition sizes
(i.e. m or mXm), the null distribution is held at a compress.p0 resolution up to the compress.p
percentile. Beyond that value, the distribution is held at a finer resolution defined by compress.p1
(since higher values are attained when a relation exists in the data, this is required for computing
the p-value accurately in the tail of the null disribution.)

For large data (n>100), it is recommended to used Fast.ADP.test, which is an optimized version
of the hhg.univariate.ind.stat and hhg.univariate.ind.combined tests. Null Tables for
Fast.ADP.test can be constructed using Fast.ADP.nulltable.

Value

m.stats If keep.simulation.data= TRUE, m.stats a matrix with nr.replicates rows
and mmax-mmin+1 columns of null test statistics.

univariate.object

A useful format of the null tables for computing p-values efficiently.

hhg.univariate.ind.pvalue 25

Author(s)

Barak Brill and Shachar Kaufman.

References

Heller, R., Heller, Y., Kaufman S., Brill B, & Gorfine, M. (2016). Consistent Distribution-Free
K-Sample and Independence Tests for Univariate Random Variables, JMLR 17(29):1-54 https:
//www.jmlr.org/papers/volume17/14-441/14-441.pdf

Brill B. (2016) Scalable Non-Parametric Tests of Independence (master’s thesis) http://primage.
tau.ac.il/libraries/theses/exeng/free/2899741.pdf

Examples

Not run:
#Testing for independance, sample size = 35
N=35

#null table for aggregation by summation (on ADP):
ADP.null = hhg.univariate.ind.nulltable(N)

#create a null table, using aggregation by summation over DDP partitions,
#with partitions sizes up to 5, over Pearson scores, with 1000 bootstrap repetitions.
DDP.null = hhg.univariate.ind.nulltable(N,mmax = 5,variant = 'DDP',
score.type = 'Pearson', nr.replicates = 1000)

#Create a null table for the ADP-EQP and ADP-EQP-ML variants,
#which are tailored for independece testing, with larger n (n>100):

N_large =200
ADP.EQP.null = hhg.univariate.ind.nulltable(N_large, variant = 'ADP-EQP',nr.atoms = 40)

#Null table for the sum of log likelihood scores over all possible M X L tables:
ADP.EQP.ML.null = hhg.univariate.ind.nulltable(N_large, variant = 'ADP-EQP-ML',

nr.atoms = 30,nr.replicates=200)

End(Not run)

hhg.univariate.ind.pvalue

The p-value computation for the test of independence using a fixed
partition size

Description

The p-value computation for the distribution free test of independence between two univariate ran-
dom variables of Heller et al. (2016) ,using a fixed partition size m.

https://www.jmlr.org/papers/volume17/14-441/14-441.pdf
https://www.jmlr.org/papers/volume17/14-441/14-441.pdf
http://primage.tau.ac.il/libraries/theses/exeng/free/2899741.pdf
http://primage.tau.ac.il/libraries/theses/exeng/free/2899741.pdf

26 hhg.univariate.ind.pvalue

Usage

hhg.univariate.ind.pvalue(statistic, NullTable, m=min(statistic$mmax,4),l=m)

Arguments

statistic The value of the computed statistic by the function hhg.univariate.ind.stat.
The statistic object includes the score type (one of "LikelihoodRatio" or "Pearson"),
and the aggregation type (one of "sum" or "max").

NullTable The null table of the statistic, which can be downloaded from the software
website (http://www.math.tau.ac.il/~ruheller/Software.html) or computed by the
function hhg.univariate.ind.nulltable. See vignette('HHG') for a method
of computing null tables on multiple cores.

m The partition size.

l For "ADP-ML" and "ADP-EQP-ML" test variants, sets the second parameter for
the partition size.

Details

For the test statistic, the function extracts the fraction of observations in the null table that are at
least as large as the test statistic, i.e. the p-value.

For 'DDP' , 'ADP' and 'ADP-EQP' variants, the partition size is described by a single parameter m
(since partition size is mXm). For 'ADP-ML' and 'ADP-EQP-ML' variants, partition sizes of data
are of sizes mXl, allowing for assymetric tables.

Value

The p-value.

Author(s)

Barak Brill and Shachar Kaufman.

References

Heller, R., Heller, Y., Kaufman S., Brill B, & Gorfine, M. (2016). Consistent Distribution-Free
K-Sample and Independence Tests for Univariate Random Variables, JMLR 17(29):1-54 https:
//www.jmlr.org/papers/volume17/14-441/14-441.pdf

Brill B. (2016) Scalable Non-Parametric Tests of Independence (master’s thesis) http://primage.
tau.ac.il/libraries/theses/exeng/free/2899741.pdf

Examples

Not run:
N = 35
data = hhg.example.datagen(N, 'Parabola')
X = data[1,]
Y = data[2,]

https://www.jmlr.org/papers/volume17/14-441/14-441.pdf
https://www.jmlr.org/papers/volume17/14-441/14-441.pdf
http://primage.tau.ac.il/libraries/theses/exeng/free/2899741.pdf
http://primage.tau.ac.il/libraries/theses/exeng/free/2899741.pdf

hhg.univariate.ind.pvalue 27

plot(X,Y)

#I) Computing test statistics , with default parameters:

#statistic:
hhg.univariate.ADP.Likelihood.result = hhg.univariate.ind.stat(X,Y)
hhg.univariate.ADP.Likelihood.result

#null table:
ADP.null = hhg.univariate.ind.nulltable(N)
#pvalue:
hhg.univariate.ind.pvalue(hhg.univariate.ADP.Likelihood.result, ADP.null)

#II) Computing test statistics , with summation over Data Derived Partitions (DDP),
#using Pearson scores, and partition sizes up to 5:

#statistic:
hhg.univariate.DDP.Pearson.result = hhg.univariate.ind.stat(X,Y,variant = 'DDP',

score.type = 'Pearson', mmax = 5)
hhg.univariate.DDP.Pearson.result

#null table:
DDP.null = hhg.univariate.ind.nulltable(N,mmax = 5,variant = 'DDP',

score.type = 'Pearson', nr.replicates = 1000)

#pvalue , for different partition size:
hhg.univariate.ind.pvalue(hhg.univariate.DDP.Pearson.result, DDP.null, m =2)
hhg.univariate.ind.pvalue(hhg.univariate.DDP.Pearson.result, DDP.null, m =5)

#III) computing P-value for the variants used for large N:

N_Large = 1000
data_Large = hhg.example.datagen(N_Large, 'W')
X_Large = data_Large[1,]
Y_Large = data_Large[2,]
plot(X_Large,Y_Large)

NullTable_ADP_EQP = hhg.univariate.ind.nulltable(N_Large, variant = 'ADP-EQP',
nr.atoms = 30,nr.replicates=200)

NullTable_ADP_EQP_ML = hhg.univariate.ind.nulltable(N_Large,
variant = 'ADP-EQP-ML',nr.atoms = 30,nr.replicates=200)

ADP_EQP_result = hhg.univariate.ind.stat(X_Large,Y_Large,variant = 'ADP-EQP',
nr.atoms =30)
ADP_EQP_ML_result = hhg.univariate.ind.stat(X_Large,Y_Large,variant='ADP-EQP-ML',
nr.atoms = 30)

#P-value for the S_(5X5) statistic, the sum over all 5X5 partitions:
hhg.univariate.ind.pvalue(ADP_EQP_result,NullTable_ADP_EQP,m=5)

#P-value for the S_(5X3) statistic, the sum over all 5X3 partitions:

28 hhg.univariate.ind.stat

hhg.univariate.ind.pvalue(ADP_EQP_ML_result,NullTable_ADP_EQP_ML,m=5,l=3)

End(Not run)

hhg.univariate.ind.stat

The independence test statistics for all partition sizes

Description

These statistics are used in the omnibus distribution-free test of independence between two univari-
ate random variables, as described in Heller et al. (2016).

Usage

hhg.univariate.ind.stat(x, y, variant = 'ADP',aggregation.type='sum',
score.type='LikelihoodRatio', mmax = max(floor(sqrt(length(x))/2),2),
mmin =2, w.sum = 0, w.max = 2,nr.atoms = nr_bins_equipartition(length(x)))

Arguments

x a numeric vector with observed X values (tied observations are broken at ran-
dom).

y a numeric vector with observed Y values (tied observations are broken at ran-
dom).

variant a character string specifying the partition type, must be one of "ADP" (default)
or "DDP", "ADP-ML", "ADP-EQP", "ADP-EQP-ML".

aggregation.type

a character string specifying the aggregation type, must be one of "sum" (de-
fault), "max", or "both".

score.type a character string specifying the score type, must be one of "LikelihoodRatio"
(default), "Pearson", or "both".

mmax The partition size of the ranked observations. The default size is half the square
root of the number of observations

mmin The partition size of the ranked observations. The default size is half the square
root of the number of observations

w.sum The minimum number of observations in a partition, only relevant for type="Independence",
aggregation.type="Sum" and score.type="Pearson", default value 0.

w.max The minimum number of observations in a partition, only relevant for type="Independence",
aggregation.type="Max" and score.type="Pearson", default value 2.

nr.atoms For "ADP-EQP" and "ADP-EQP-ML" type tests, sets the number of possible split
points in the data. The default value is the minimum between n and 60+0.5∗

√
n.

hhg.univariate.ind.stat 29

Details

For each partition size m = mmin, . . . ,mmax, the function computes the scores in each of the
partitions (according to score type), and aggregates all scores according to the aggregation type (see
details in Heller et al. , 2014). If the score type is one of "LikelihoodRatio" or "Pearson", and the
aggregation type is one of "sum" or "max", then the computed statistic will be in statistic, oth-
erwise the computed statistics will be in the appropriate subset of sum.chisq, sum.lr, max.chisq,
and max.lr. Note that if the variant is "ADP", all partition sizes are computed together in O(N^4),
so the score computational complexity is O(N^4). For "DDP" and mmax>4,the score computational
complexity is O(N^4)*(mmax-mmin+1).

For the ’sum’ aggregation type (default), The test statistic is the sum of log likelihood (or Pear-
son Chi-square) scores, of all partitions of size mXm of the data, normalized by the number of
partitions and the data size (thus, being an estimator of the Mutual Information). For the ’max’
aggregation type, the test statistic is the maximum log likelihood (or Pearson Chi-square) score
acheived by a partition of data of size m, normalized by the data size. For variant type "ADP-ML",
the statistics calculated include not only the sum over mXm tables (symmetric tables, same number
of cells on each axis), but also assymetric tables (i.e. mXl tables).

Variant types "ADP-EQP" and "ADP-EQP-ML", are the computationally efficient versions of the
"ADP" and "ADP-ML". EQP type variants reduce calculation time by summing over a subset of par-
titions, where a split between cells may be performed only every n/nr.atoms observations. This al-
lows for a complexity of O(nr.atoms^4). These variants are only available for aggregation.type=='sum'
type aggregation.

For large data (n>100), it is recommended to used Fast.independence.test, which is an op-
timized version of the hhg.univariate.ind.stat and hhg.univariate.ind.combined.test
tests.

Value

Returns a UnivariateStatistic class object, with the following entries:

statistic The value of the computed statistic if the score type is one of "LikelihoodRatio"
or "Pearson", and the aggregation type is one of "sum" or "max". One of
sum.chisq, sum.lr, max.chisq, and max.lr.

sum.chisq A vector of size mmax −mmin + 1, where the m −mmin + 1 entry is the
average over all Pearson chi-squared statistics from all the mXm contingency
tables considered, divided by the total number of observations.

sum.lr A vector of size mmax −mmin + 1, where the m −mmin + 1 entry is the
average over all LikelihoodRatio statistics from all the mXm contingency tables
considered, divided by the total number of observations.

max.chisq A vector of size mmax −mmin + 1, where the m −mmin + 1 entry is the
maximum over all Pearson chi-squared statistics from all the mXm contingency
tables considered.

max.lr A vector of size mmax −mmin + 1, where the m −mmin + 1 entry is the
maximum over all Pearson chi-squared statistics from all the mXm contingency
tables considered.

type "Independence"

stat.type "Independence-Stat"

30 hhg.univariate.ind.stat

size The sample size

score.type The input score.type.
aggregation.type

The input aggregation.type.

mmin The input mmin.

mmax The input mmax.

additional A vector with the input w.sum and w.max.

nr.atoms The input nr.atoms.

Author(s)

Barak Brill and Shachar Kaufman.

References

Heller, R., Heller, Y., Kaufman S., Brill B, & Gorfine, M. (2016). Consistent Distribution-Free
K-Sample and Independence Tests for Univariate Random Variables, JMLR 17(29):1-54 https:
//www.jmlr.org/papers/volume17/14-441/14-441.pdf

Brill B. (2016) Scalable Non-Parametric Tests of Independence (master’s thesis) http://primage.
tau.ac.il/libraries/theses/exeng/free/2899741.pdf

Examples

Not run:
N = 35
data = hhg.example.datagen(N, 'Parabola')
X = data[1,]
Y = data[2,]
plot(X,Y)

#I) Computing test statistics , with default parameters(ADP statistic):

hhg.univariate.ADP.Likelihood.result = hhg.univariate.ind.stat(X,Y)

hhg.univariate.ADP.Likelihood.result

#II) Computing test statistics , with summation over Data Derived Partitions (DDP),
#using Pearson scores, and partition sizes up to 5:

hhg.univariate.DDP.Pearson.result = hhg.univariate.ind.stat(X,Y,variant = 'DDP',
score.type = 'Pearson', mmax = 5)

hhg.univariate.DDP.Pearson.result

#III) Computing test statistics, for all M X L tables:
hhg.univariate.ADP.ML.Likelihood.result = hhg.univariate.ind.stat(X,Y,
variant='ADP-ML', mmax = 5)

https://www.jmlr.org/papers/volume17/14-441/14-441.pdf
https://www.jmlr.org/papers/volume17/14-441/14-441.pdf
http://primage.tau.ac.il/libraries/theses/exeng/free/2899741.pdf
http://primage.tau.ac.il/libraries/theses/exeng/free/2899741.pdf

hhg.univariate.ks.combined.test 31

hhg.univariate.ADP.ML.Likelihood.result

#IV) Computing test statistics, using efficient variants (for large data sets):
#Note : for independence testing with n>100, Fast.ADP.test is suggested
#rather than hhg.univariate.ind.stat.

N_Large = 1000
data_Large = hhg.example.datagen(N_Large, 'W')
X_Large = data_Large[1,]
Y_Large = data_Large[2,]
plot(X_Large,Y_Large)

hhg.univariate.ADP.EQP.Likelihood.result = hhg.univariate.ind.stat(X_Large
,Y_Large,variant='ADP-EQP', mmax = 20)

hhg.univariate.ADP.EQP.Likelihood.result

#note how only nr.atoms=76 are used - only 75 possible cell split locations are
#taken into consideration when computing the sum over all possible log likelihood scores.
#this can be changed using the nr.atoms argument:

hhg.univariate.ADP.EQP.Likelihood.result = hhg.univariate.ind.stat(X_Large,Y_Large,
variant='ADP-EQP',mmax = 20, nr.atoms =100)

hhg.univariate.ADP.EQP.Likelihood.result

#V) Computing the efficient sum over all MXL tables:

hhg.univariate.ADP.EQP.ML.Likelihood.result = hhg.univariate.ind.stat(X_Large,Y_Large,
variant='ADP-EQP-ML',mmax = 5)

hhg.univariate.ADP.EQP.ML.Likelihood.result

End(Not run)

hhg.univariate.ks.combined.test

Distribution-free K-sample tests

Description

Performs distribution-free tests for equality of a univariate distribution across K groups.

Usage

hhg.univariate.ks.combined.test(X,Y=NULL,NullTable=NULL,mmin=2,
mmax=ifelse(is.null(Y),4,max(4,round(min(table(Y))/3))), aggregation.type='sum',
score.type='LikelihoodRatio' ,combining.type='MinP',nr.perm=1000,
variant='KSample-Variant', nr.atoms = nr_bins_equipartition(length(X)),
compress=F,compress.p0=0.001,compress.p=0.99,compress.p1=0.000001,keep.simulation.data=T)

32 hhg.univariate.ks.combined.test

Arguments

X A numeric vector of data values (tied observations are broken at random), or the
test statistic as output from hhg.univariate.ks.stat.

Y for k groups, a vector of integers with values 0:(k-1) which specify the group
each observation belongs to. Leave as Null if the input to X is the test statistic.

NullTable The null table of the statistic, which can be downloaded from the software web-
site or computed by the function hhg.univariate.ks.nulltable.

mmin The minimum partition size of the ranked observations, default value is 2. Ig-
nored if NullTable is non-null.

mmax The maximum partition size of the ranked observations, default value is 1/3 the
number of observations in the smallest group. Ignored if NullTable is non-null.

aggregation.type

a character string specifying the aggregation type, must be one of "sum" (de-
fault), or "max". Ignored if NullTable is non-null or X is the test statistic.

score.type a character string specifying the score type, must be one of "LikelihoodRatio"
(default), or "Pearson". Ignored if NullTable is non-null or X is the test statis-
tic.

combining.type a character string specifying the combining type, must be one of "MinP" (de-
fault), "Fisher", or "both".

nr.perm The number of permutations for the null distribution. Ignored if NullTable is
non-null.

variant Default value is 'KSample-Variant'. Setting the variant to 'KSample-Equipartition'
performs the K-sample tests over partitions of the data where splits between cells
are at least n/nr.atoms apart.

nr.atoms If variant is 'KSample-Equipartition', this is the number of atoms (i.e.,
possible split points in the data). The default value is the minimum between n
and 60 + 0.5 ∗

√
n.

compress a logical variable indicating whether you want to compress the null tables. If
TRUE, the lower compress.p part of the null statistics is kept at a compress.p0
resolution, while the upper part is kept at a compress.p1 resolution (which is
finer).

compress.p0 Parameter for compression. This is the resolution for the lower compress.p part
of the null distribution.

compress.p Parameter for compression. Part of the null distribution to compress.

compress.p1 Parameter for compression. This is the resolution for the upper value of the null
distribution.

keep.simulation.data

a logical variable indicating whether in addition to the sorted statistics per col-
umn, the original matrix of size nr.replicates by mmax-mmin+1 is also stored.Ignored
if NullTable is non-null.

hhg.univariate.ks.combined.test 33

Details

The function outputs test statistics and p-values of the combined omnibus distribution-free test of
equality of distributions among K groups, as described in Heller et al. (2014). The test combines
statistics from a range of partition sizes. The default combining type is the minimum p-value, so
the test statistic is the minimum p-value over the range of partition sizes m from mmin to mmax,
where the p-value for a fixed partition size m is defined by the aggregation type and score type. The
second type of combination method for statistics, is via a Fisher type statistic,−Σlog(pm) (with the
sum going from mmin to mmax). The returned result may include the test statistic for the MinP
combination, the Fisher combination, or both (see comb.type).

If the argument NullTable is supplied with a proper null table (constructed using hhg.univariate.ks.nulltable,
for the K groups sample sizes), then the following test parameters are taken from NullTable: (
mmax, mmin , variant, aggregation.type, score.type, nr.atoms ,...).

If NullTable is left NULL, a null table is generated by a call to hhg.univariate.ks.nulltable us-
ing the arguments supplied to this function. The null table is generated with nr.perm repetitions. It
is stored in the returned object generated_null_table. When testing for multiple hypotheses with
the same group sample sizes, it is computationally efficient to generate only one null table (using
this function or hhg.univariate.ks.nulltable), and use it for all hypotehses testsed. Generated
null tables hold the distribution of statistics for both combination types, (comb.type=='MinP' and
comb.type=='Fisher').

If X is supplied with a statistic (UnivariateStatistic object, returned by hhg.univariate.ks.stat),
X must have the statistics (by m), required by either NullTable or the user supplied arguments mmin
and mmax. If X has a larger mmax argument than the supplied null table object, the statistics which
exceed the null table’s mmax are not taken into consideration when computing the combined statistic.

Variant type "KSample-Equipartition" is the atom based version of the K-sample test. Cal-
culation time is reduced by aggregating over a subset of partitions, where a split between cells
may be performed only every n/nr.atoms observations. Atom based tests are available when
aggregation.type is set to 'sum' or 'max'.

Null tables may be compressed, using the compress argument. For each of the partition sizes, the
null distribution is held at a compress.p0 resolution up to the compress.p percentile. Beyond that
value, the distribution is held at a finer resolution defined by compress.p1 (since higher values are
attained when a relation exists in the data, this is required for computing the p-value accurately in
the tail of the null distribution.)

Value

Returns a UnivariateStatistic class object, with the following entries:

MinP The test statistic when the combining type is "MinP".

MinP.pvalue The p-value when the combining type is "MinP".

MinP.m.chosen The partition size m for which the p-value was the smallest.

Fisher The test statistic when the combining type is "Fisher".

Fisher.pvalue The p-value when the combining type is "Fisher".

m.stats The statistic for each m in the range mmin to mmax.
pvalues.of.single.m

The p-values for each m in the range mmin to mmax.

34 hhg.univariate.ks.combined.test

generated_null_table

The null table object. Null if NullTable is non-null.

stat.type "KSample-Combined"
aggregation.type

a character string specifying the aggregation type used in the , one of "sum" or
"max".

score.type a character string specifying the score typeused in the test, one of "LikelihoodRatio"
or "Pearson".

mmax The maximum partition size of the ranked observations used for MinP or Fisher
test statistic.

mmin The minimum partition size of the ranked observations used for MinP or Fisher
test statistic.

nr.atoms The input nr.atoms.

Author(s)

Barak Brill and Shachar Kaufman.

References

Heller, R., Heller, Y., Kaufman S., Brill B, & Gorfine, M. (2016). Consistent Distribution-Free
K-Sample and Independence Tests for Univariate Random Variables, JMLR 17(29):1-54 https:
//www.jmlr.org/papers/volume17/14-441/14-441.pdf

Brill B. (2016) Scalable Non-Parametric Tests of Independence (master’s thesis) http://primage.
tau.ac.il/libraries/theses/exeng/free/2899741.pdf

Examples

Not run:
#Two groups, each from a different normal mixture:
N0=30
N1=30
X = c(c(rnorm(N0/2,-2,0.7),rnorm(N0/2,2,0.7)),c(rnorm(N1/2,-1.5,0.5),rnorm(N1/2,1.5,0.5)))
Y = (c(rep(0,N0),rep(1,N1)))
plot(Y,X)

#I) Perform MinP & Fisher Tests - without existing null tables.
#Null tables are generated by the test function.

results = hhg.univariate.ks.combined.test(X,Y,nr.perm = 100)
results

#The null table can then be accessed.
generated.null.table = results$generated_null_table

#II)Perform MinP & Fisher Tests - with existing null tables.

https://www.jmlr.org/papers/volume17/14-441/14-441.pdf
https://www.jmlr.org/papers/volume17/14-441/14-441.pdf
http://primage.tau.ac.il/libraries/theses/exeng/free/2899741.pdf
http://primage.tau.ac.il/libraries/theses/exeng/free/2899741.pdf

hhg.univariate.ks.combined.test 35

#null table for aggregation by summation:
sum.nulltable = hhg.univariate.ks.nulltable(c(N0,N1), nr.replicates=1000)

MinP.Sm.existing.null.table = hhg.univariate.ks.combined.test(X,Y,
NullTable = sum.nulltable)

#Results
MinP.Sm.existing.null.table

combined test can also be performed by using the test statistic.
Sm.statistic = hhg.univariate.ks.stat(X,Y)
MinP.using.statistic = hhg.univariate.ks.combined.test(Sm.statistic,
NullTable = sum.nulltable)
same result as above
MinP.using.statistic$MinP.pvalue

#null table for aggregation by maximization:
max.nulltable = hhg.univariate.ks.nulltable(c(N0,N1), aggregation.type = 'max',

score.type='LikelihoodRatio', mmin = 2, mmax = 10, nr.replicates = 100)

#combined test using both "MinP" and "Fisher":
MinPFisher.Mm.result = hhg.univariate.ks.combined.test(X,Y,NullTable = max.nulltable ,

combining.type = 'Both')
MinPFisher.Mm.result

#III) Perform MinP & Fisher Tests for extremly large n

#Two groups, each from a different normal mixture, total sample size is 10^4:
X_Large = c(c(rnorm(2500,-2,0.7),rnorm(2500,2,0.7)),
c(rnorm(2500,-1.5,0.5),rnorm(2500,1.5,0.5)))
Y_Large = (c(rep(0,5000),rep(1,5000)))
plot(Y_Large,X_Large)

N0_large = 5000
N1_large = 5000

Sm.EQP.null.table = hhg.univariate.ks.nulltable(c(N0_large,N1_large), nr.replicates=200,
variant = 'KSample-Equipartition', mmax = 30)
Mm.EQP.null.table = hhg.univariate.ks.nulltable(c(N0_large,N1_large), nr.replicates=200,
aggregation.type='max', variant = 'KSample-Equipartition', mmax = 30)

MinPFisher.Sm.EQP.result = hhg.univariate.ks.combined.test(X_Large, Y_Large,
NullTable = Sm.EQP.null.table ,

combining.type = 'Both')
MinPFisher.Sm.EQP.result

MinPFisher.Mm.EQP.result = hhg.univariate.ks.combined.test(X_Large, Y_Large,
NullTable = Mm.EQP.null.table ,

combining.type = 'Both')
MinPFisher.Mm.EQP.result

36 hhg.univariate.ks.nulltable

End(Not run)

hhg.univariate.ks.nulltable

The K-sample test null tables for all partition sizes

Description

Functions for creating null table objects, for the omnibus distribution-free test of equality of distri-
butions among K groups, as described in Heller et al. (2016). To be used for the p-value computa-
tion, see examples in hhg.univariate.ks.pvalue.

Usage

hhg.univariate.ks.nulltable(group.sizes,mmin=2,
mmax=max(4,round(min(group.sizes)/3)),variant = 'KSample-Variant',
aggregation.type='sum',score.type='LikelihoodRatio',
nr.replicates=1000,keep.simulation.data=F,
nr.atoms = nr_bins_equipartition(sum(group.sizes)),
compress=F,compress.p0=0.001,compress.p=0.99,compress.p1=0.000001)

Arguments

group.sizes the number of observations in each group.

mmin The minimum partition size of the ranked observations, default value is 2.

mmax The maximum partition size of the ranked observations, default value is 1/3 the
number of observations in the smallest group.

variant Default value is 'KSample-Variant'. Setting the variant to 'KSample-Equipartition'
performs the K-sample tests over partitions of the data where splits between cells
are at least n/nr.atoms apart.

aggregation.type

a character string specifying the aggregation type, must be one of "sum" (de-
fault) or "max".

score.type a character string specifying the score type, must be one of "LikelihoodRatio"
(default) or "Pearson".

nr.replicates The number of permutations for the null distribution.
keep.simulation.data

TRUE/FALSE. If TRUE, then in addition to the sorted statistics per column, the
original matrix of size nr.replicates by mmax-mmin+1 is also stored.

hhg.univariate.ks.nulltable 37

nr.atoms For variant=='KSample-Equipartition' type tests, sets the number of pos-
sible split points in the data. The default value is the minimum between n and
60 + 0.5 ∗

√
n.

compress TRUE or FALSE. If enabled, null tables are compressed: The lower compress.p
part of the null statistics is kept at a compress.p0 resolution, while the upper
part is kept at a compress.p1 resolution (which is finer)..

compress.p0 Parameter for compression. This is the resolution for the lower compress.p part
of the null distribution.

compress.p Parameter for compression. Part of the null distribution to compress.

compress.p1 Parameter for compression. This is the resolution for the upper value of the null
distribution.

Details

In order to compute the null distributions for a test statistic (with a specific aggregation and score
type, and all partition sizes), the only necessary information is the group sizes (the test statistic is
"distribution free"). The accuracy of the quantiles of the null distribution depend on the number of
replicates used for constructing the null tables. The necessary accuracy depends on the threshold
used for rejection of the null hypotheses.

This function creates an object for efficiently storing the null distribution of the test statistics (by
partition size m). Use the returned object, together with hhg.univariate.ks.pvalue to compute
the P-value for the statistics computed by hhg.univariate.ks.stat

Generated null tables also hold the distribution of statistics for combination types (comb.type=='MinP'
and comb.type=='Fisher'), used by hhg.univariate.ks.combined.test.

Variant type "KSample-Equipartition" is the computationally efficient version of the K-sample
test. calculation time is reducing by aggregating over a subset of partitions, where a split be-
tween cells may be performed only every n/nr.atoms observations. This allows for a com-
plexity of O(nr.atoms^2) (instead of O(n^2)). Computationly efficient versions are available for
aggregation.type=='sum' and aggregation.type=='max' variants.

Null tables may be compressed, using the compress argument. For each of the partition sizes
(i.e. m or mXm), the null distribution is held at a compress.p0 resolution up to the compress.p
percentile. Beyond that value, the distribution is held at a finer resolution defined by compress.p1
(since higher values are attained when a relation exists in the data, this is required for computing
the p-value accurately.)

Value

m.stats If keep.simulation.data= TRUE, a matrix with nr.replicates rows and mmax-mmin+1
columns of null test statistics.

univariate.object

A useful format of the null tables for computing p-values efficiently.

Author(s)

Barak Brill and Shachar Kaufman.

38 hhg.univariate.ks.pvalue

References

Heller, R., Heller, Y., Kaufman S., Brill B, & Gorfine, M. (2016). Consistent Distribution-Free
K-Sample and Independence Tests for Univariate Random Variables, JMLR 17(29):1-54 https:
//www.jmlr.org/papers/volume17/14-441/14-441.pdf

Brill B. (2016) Scalable Non-Parametric Tests of Independence (master’s thesis) http://primage.
tau.ac.il/libraries/theses/exeng/free/2899741.pdf

Examples

Not run:
#Testing for the difference between two groups, each from a normal mixture:
N0=30
N1=30

#null table for aggregation by summation:
sum.nulltable = hhg.univariate.ks.nulltable(c(N0,N1), nr.replicates=100)
#default nr. of replicates is 1000,
#but may take several seconds. For illustration only, we use 100 replicates,
#but it is highly recommended to use at least 1000 in practice.

#null table for aggregation by maximization:
max.nulltable = hhg.univariate.ks.nulltable(c(N0,N1), aggregation.type = 'max',

score.type='LikelihoodRatio', mmin = 3, mmax = 5, nr.replicates = 100)
#default nr. of replicates is 1000, but may take several seconds. For illustration only,
#we use 100 replicates, but it is highly recommended to use at least 1000 in practice.

#null tables for aggregation by summation and maximization, for large data variants:
#make sure to change mmax, such that mmax<= nr.atoms

N0_large = 5000
N1_large = 5000

Sm.EQP.null.table = hhg.univariate.ks.nulltable(c(N0_large,N1_large),
nr.replicates=200, variant = 'KSample-Equipartition', mmax = 30)
Mm.EQP.null.table = hhg.univariate.ks.nulltable(c(N0_large,N1_large),
nr.replicates=200, aggregation.type='max', variant = 'KSample-Equipartition', mmax = 30)

End(Not run)

hhg.univariate.ks.pvalue

The p-value computation for the K-sample problem using a fixed par-
tition size

Description

The p-value computation for the K-sample test of Heller et al. (2016) using a fixed partition size m.

https://www.jmlr.org/papers/volume17/14-441/14-441.pdf
https://www.jmlr.org/papers/volume17/14-441/14-441.pdf
http://primage.tau.ac.il/libraries/theses/exeng/free/2899741.pdf
http://primage.tau.ac.il/libraries/theses/exeng/free/2899741.pdf

hhg.univariate.ks.pvalue 39

Usage

hhg.univariate.ks.pvalue(statistic, NullTable,m)

Arguments

statistic The value of the computed statistic by the function hhg.univariate.ks.stat.
The statistic object includes the score type (one of "LikelihoodRatio" or "Pearson"),
and the aggregation type (one of "sum" or "max").

NullTable The null table of the statistic, which can be downloaded from the software
website (http://www.math.tau.ac.il/~ruheller/Software.html) or computed by the
function
hhg.univariate.ind.nulltable. See vignette('HHG') for a method of com-
puting null tables on multiple cores.

m The partition size.

Details

For the test statistic, the function extracts the fraction of observations in the null table that are at
least as large as the test statistic, i.e. the p-value.

Value

The p-value.

Author(s)

Barak Brill Shachar Kaufman.

References

Heller, R., Heller, Y., Kaufman S., Brill B, & Gorfine, M. (2016). Consistent Distribution-Free
K-Sample and Independence Tests for Univariate Random Variables, JMLR 17(29):1-54 https:
//www.jmlr.org/papers/volume17/14-441/14-441.pdf

Brill B. (2016) Scalable Non-Parametric Tests of Independence (master’s thesis) http://primage.
tau.ac.il/libraries/theses/exeng/free/2899741.pdf

Examples

Not run:

#Two groups, each from a different normal mixture:
N0=30
N1=30
X = c(c(rnorm(N0/2,-2,0.7),rnorm(N0/2,2,0.7)),c(rnorm(N1/2,-1.5,0.5),rnorm(N1/2,1.5,0.5)))
Y = (c(rep(0,N0),rep(1,N1)))
plot(Y,X)

#I)p-value for fixed partition size using the sum aggregation type
hhg.univariate.Sm.Likelihood.result = hhg.univariate.ks.stat(X,Y)

https://www.jmlr.org/papers/volume17/14-441/14-441.pdf
https://www.jmlr.org/papers/volume17/14-441/14-441.pdf
http://primage.tau.ac.il/libraries/theses/exeng/free/2899741.pdf
http://primage.tau.ac.il/libraries/theses/exeng/free/2899741.pdf

40 hhg.univariate.ks.pvalue

hhg.univariate.Sm.Likelihood.result

sum.nulltable = hhg.univariate.ks.nulltable(c(N0,N1), nr.replicates=100)
#default nr. of replicates is 1000, but may take several seconds.
#For illustration only, we use 100 replicates, but it is highly recommended
#to use at least 1000 in practice.

#p-value for m=4 (the default):
hhg.univariate.ks.pvalue(hhg.univariate.Sm.Likelihood.result, sum.nulltable, m=4)

#p-value for m=2:
hhg.univariate.ks.pvalue(hhg.univariate.Sm.Likelihood.result, sum.nulltable, m=2)

#II) p-value for fixed partition size using the max aggregation type

hhg.univariate.Mm.likelihood.result = hhg.univariate.ks.stat(X,Y,aggregation.type = 'max')

hhg.univariate.Mm.likelihood.result

max.nulltable = hhg.univariate.ks.nulltable(c(N0,N1), aggregation.type = 'max',
score.type='LikelihoodRatio', mmin = 3, mmax = 5, nr.replicates = 100)

#default nr. of replicates is 1000, but may take several seconds.
#For illustration only, we use 100 replicates,
#but it is highly recommended to use at least 1000 in practice.

#p-value for m=3:
hhg.univariate.ks.pvalue(hhg.univariate.Mm.likelihood.result, max.nulltable ,m = 3)

#p-value for m=5:
hhg.univariate.ks.pvalue(hhg.univariate.Mm.likelihood.result, max.nulltable,m = 5)

#III) p-value for sum and max aggregation type, using large data variants:

#Two groups, each from a different normal mixture, total sample size is 10^4:
X_Large = c(c(rnorm(2500,-2,0.7),rnorm(2500,2,0.7)),
c(rnorm(2500,-1.5,0.5),rnorm(2500,1.5,0.5)))
Y_Large = (c(rep(0,5000),rep(1,5000)))
plot(Y_Large,X_Large)

for these variants, make sure to change mmax so that mmax<= nr.atoms

hhg.univariate.Sm.EQP.Likelihood.result = hhg.univariate.ks.stat(X_Large,Y_Large,
variant = 'KSample-Equipartition',mmax=30)
hhg.univariate.Mm.EQP.likelihood.result = hhg.univariate.ks.stat(X_Large,Y_Large,
aggregation.type = 'max',variant = 'KSample-Equipartition',mmax=30)

N0_large = 5000
N1_large = 5000

Sm.EQP.null.table = hhg.univariate.ks.nulltable(c(N0_large,N1_large), nr.replicates=200,

hhg.univariate.ks.stat 41

variant = 'KSample-Equipartition', mmax = 30)
Mm.EQP.null.table = hhg.univariate.ks.nulltable(c(N0_large,N1_large), nr.replicates=200,
aggregation.type='max', variant = 'KSample-Equipartition', mmax = 30)

hhg.univariate.ks.pvalue(hhg.univariate.Sm.EQP.Likelihood.result, Sm.EQP.null.table, m=5)
hhg.univariate.ks.pvalue(hhg.univariate.Mm.EQP.likelihood.result, Mm.EQP.null.table, m=5)

End(Not run)

hhg.univariate.ks.stat

The K-sample test statistics for all partition sizes

Description

These statistics are used in the omnibus distribution-free test of equality of distributions among K
groups, as described in Heller et al. (2016).

Usage

hhg.univariate.ks.stat(x, y,variant = 'KSample-Variant',aggregation.type='sum',
score.type='LikelihoodRatio', mmax = max(4,round(min(table(y))/3)),mmin=2,
nr.atoms= nr_bins_equipartition(length(x)))

Arguments

x a numeric vector of data values. Tied observations are broken at random.

y for k groups, a vector of integers with values 0:(k-1) which specify the group
each observation belongs to.

variant Default value is 'KSample-Variant'. Setting the variant to 'KSample-Equipartition'
performs the K-sample tests over partitions of the data where splits between cells
are at least n/nr.atoms apart.

aggregation.type

a character string specifying the aggregation type, must be one of "sum" (de-
fault), "max", or "both".

score.type a character string specifying the score type, must be one of "LikelihoodRatio"
(default), "Pearson", or "both".

mmax The maximum partition size of the ranked observations, default value is 1/3 the
number of observations in the smallest group.

mmin The minimum partition size of the ranked observations, default value is 2.

nr.atoms For variant=='KSample-Equipartition' type tests, sets the number of pos-
sible split points in the data. The default value is the minimum between n and
60 + 0.5 ∗

√
n.

42 hhg.univariate.ks.stat

Details

For each partition size m = mmin, . . . ,mmax, the function computes the scores in each of the
partitions (according to score type), and aggregates all scores according to the aggregation type (see
details in Heller et al. , 2014). If the score type is one of "LikelihoodRatio" or "Pearson", and the
aggregation type is one of "sum" or "max", then the computed statistic will be in statistic, oth-
erwise the computed statistics will be in the appropriate subset of sum.chisq, sum.lr, max.chisq,
and max.lr.

For the ’sum’ aggregation type (default), The test statistic is the sum of log likelihood (or Pearson
Chi-square) scores, of all partitions of size m of the data, normalized by the number of partitions
and the data size (thus, being an estimator of the Mutual Information). For the ’max’ aggregation
type, the test statistic is the maximum log likelihood (or Pearson Chi-square) score acheived by a
partition of data of size m.

Variant type "KSample-Equipartition" is the computationally efficient version of the K-sample
test. calculation time is reducing by aggregating over a subset of partitions, where a split be-
tween cells may be performed only every n/nr.atoms observations. This allows for a com-
plexity of O(nr.atoms^2) (instead of O(n^2)). Computationly efficient versions are available for
aggregation.type=='sum' and aggregation.type=='max' variants.

Value

Returns a UnivariateStatistic class object, with the following entries:

statistic The value of the computed statistic if the score type is one of "LikelihoodRatio"
or "Pearson", and the aggregation type is one of "sum" or "max". One of
sum.chisq, sum.lr, max.chisq, and max.lr.

sum.chisq A vector of size mmax −mmin + 1, where the m −mmin + 1 entry is the
average over all Pearson chi-squared statistics from all the KXm contingency
tables considered, divided by the total number of observations.

sum.lr A vector of size mmax −mmin + 1, where the m −mmin + 1 entry is the
average over all LikelihoodRatio statistics from all the KXm contingency tables
considered, divided by the total number of observations.

max.chisq A vector of size mmax −mmin + 1, where the m −mmin + 1 entry is the
maximum over all Pearson chi-squared statistics from all the KXm contingency
tables considered.

max.lr A vector of size mmax −mmin + 1, where the m −mmin + 1 entry is the
maximum over all Pearson chi-squared statistics from all the KXm contingency
tables considered.

type "KSample".
stat.type "KSample".
size A vector of size K of the ordered group sample sizes.
score.type The input score.type.
aggregation.type

The input aggregation.type.
mmin The input mmin.
mmax The input mmax.
nr.atoms The input nr.atoms.

hhg.univariate.ks.stat 43

Author(s)

Barak Brill and Shachar Kaufman.

References

Heller, R., Heller, Y., Kaufman S., Brill B, & Gorfine, M. (2016). Consistent Distribution-Free
K-Sample and Independence Tests for Univariate Random Variables, JMLR 17(29):1-54

Brill B. (2016) Scalable Non-Parametric Tests of Independence (master’s thesis)

http://primage.tau.ac.il/libraries/theses/exeng/free/2899741.pdf

Examples

#Example of computing the test statisics for data from a two-sample problem:

#Two groups, each from a different normal mixture:
X = c(c(rnorm(25,-2,0.7),rnorm(25,2,0.7)),c(rnorm(25,-1.5,0.5),rnorm(25,1.5,0.5)))
Y = (c(rep(0,50),rep(1,50)))
plot(Y,X)

#I) Computing test statistics , with default parameters:
hhg.univariate.Sm.Likelihood.result = hhg.univariate.ks.stat(X,Y)

hhg.univariate.Sm.Likelihood.result

#II) Computing test statistics , with max aggregation type:
hhg.univariate.Mm.likelihood.result = hhg.univariate.ks.stat(X,Y,aggregation.type = 'max')

hhg.univariate.Mm.likelihood.result

#III) Computing statistics, which are computationaly efficient for large data:

#Two groups, each from a different normal mixture, total sample size is 10^4:
X_Large = c(c(rnorm(2500,-2,0.7),rnorm(2500,2,0.7)),
c(rnorm(2500,-1.5,0.5),rnorm(2500,1.5,0.5)))
Y_Large = (c(rep(0,5000),rep(1,5000)))
plot(Y_Large,X_Large)

for these variants, make sure to change mmax so that mmax<= nr.atoms

hhg.univariate.Sm.EQP.Likelihood.result = hhg.univariate.ks.stat(X_Large,Y_Large,
variant = 'KSample-Equipartition',mmax=30)

hhg.univariate.Sm.EQP.Likelihood.result

hhg.univariate.Mm.EQP.likelihood.result = hhg.univariate.ks.stat(X_Large,Y_Large,
aggregation.type = 'max',variant = 'KSample-Equipartition',mmax=30)

hhg.univariate.Mm.EQP.likelihood.result

44 hhg.univariate.nulltable.from.mstats

hhg.univariate.nulltable.from.mstats

Constructor of Distribution Free Null Table Using Existing Statistics

Description

This function converts null test statistics for different partition sizes into the null table object neces-
sary for the computation of p-values efficiently.

Usage

hhg.univariate.nulltable.from.mstats(m.stats,minm,maxm,type,variant,
size,score.type,aggregation.type, w.sum = 0, w.max = 2,
keep.simulation.data=F,nr.atoms = nr_bins_equipartition(sum(size)),
compress=F,compress.p0=0.001,compress.p=0.99,compress.p1=0.000001)

Arguments

m.stats A matrix with B rows and maxm - minm+1 columns, where each row contains the
test statistics for partition sizes m from minm to maxm for the sample permutation
of the input sample.

minm The minimum partition size of the ranked observations, default value is 2.

maxm The maximum partition size of the ranked observations.

type A character string specifying the test type, must be one of "KSample", "Independence"

variant A character string specifying the partition type for the test of independence, must
be one of "ADP", "DDP", "ADP-ML", "ADP-EQP","ADP-EQP-ML" if type="Independence".
If type="KSample", must be "KSample-Variant" or "KSample-Equipartition".

size The sample size if type="Independence", and a vector of group sizes if type="KSample".

score.type a character string specifying the score type, must be one of "LikelihoodRatio",
or "Pearson".

aggregation.type

a character string specifying the aggregation type, must be one of "sum", or
"max".

w.sum The minimum number of observations in a partition, only relevant for type="Independence",
aggregation.type="Sum" and score.type="Pearson", default value 0.

w.max The minimum number of observations in a partition, only relevant for type="Independence",
aggregation.type="Max" and score.type="Pearson", default value 2.

keep.simulation.data

TRUE/FALSE.

nr.atoms For "ADP-EQP", "ADP-EQP-ML" and "KSample-Equipartition" type tests, sets
the number of possible split points in the data

compress TRUE or FALSE. If enabled, null tables are compressed: The lower compress.p
part of the null statistics is kept at a compress.p0 resolution, while the upper
part is kept at a compress.p1 resolution (which is finer)..

hhg.univariate.nulltable.from.mstats 45

compress.p0 Parameter for compression. This is the resolution for the lower compress.p part
of the null distribution.

compress.p Parameter for compression. Part of the null distribution to compress.

compress.p1 Parameter for compression. This is the resolution for the upper value of the null
distribution.

Details

For finding multiple quantiles, the null table object is more efficient than a matrix of a matrix with
B rows and maxm - minm+1 columns, where each row contains the test statistics for partition sizes m
from minm to maxm for the sample permutation of the input sample.

Null tables may be compressed, using the compress argument. For each of the partition sizes
(i.e. m or mXm), the null distribution is held at a compress.p0 resolution up to the compress.p
quantile. Beyond that value, the distribution is held at a finer resolution defined by compress.p1
(since higher values are attained when a relation exists in the data, this is required for computing
the p-value accurately.)

See vignette('HHG') for a section on how to use this function, for computing a null tables using
multiple cores.

Value

m.statsThe input m.stats if keep.simulation.data=TRUE

univariate.objectA useful format of the null tables for computing p-values efficiently..

Author(s)

Barak Brill and Shachar Kaufman.

References

Heller, R., Heller, Y., Kaufman S., Brill B, & Gorfine, M. (2016). Consistent Distribution-Free
K-Sample and Independence Tests for Univariate Random Variables, JMLR 17(29):1-54

Brill B. (2016) Scalable Non-Parametric Tests of Independence (master’s thesis)

http://primage.tau.ac.il/libraries/theses/exeng/free/2899741.pdf

Examples

Not run:

1. Downloading a lookup table from site
download from site http://www.math.tau.ac.il/~ruheller/Software.html
##
#using an already ready null table as object (for use in test functions)
#for example, ADP likelihood ratio statistics, for the independence problem,
#for sample size n=300
load('Object-ADP-n_300.Rdata') #=>null.table

46 hhg.univariate.nulltable.from.mstats

#or using a matrix of statistics generated for the null distribution,
#to create your own table.
load('ADP-nullsim-n_300.Rdata') #=>mat
null.table = hhg.univariate.nulltable.from.mstats(m.stats = mat,minm = 2,

maxm = 5,type = 'Independence', variant = 'ADP',size = 300,
score.type = 'LikelihoodRatio',aggregation.type = 'sum')

2. generating an independence null table using multiple cores,
#and then compiling to object.
##
library(parallel)
library(doParallel)
library(foreach)
library(doRNG)

#generate an independence null table
nr.cores = 4 #this is computer dependent
n = 30 #size of independence problem
nr.reps.per.core = 25
mmax =5
score.type = 'LikelihoodRatio'
aggregation.type = 'sum'
variant = 'ADP'

#generating null table of size 4*25

#single core worker function
generate.null.distribution.statistic =function(){

library(HHG)
null.table = matrix(NA,nrow=nr.reps.per.core,ncol = mmax-1)
for(i in 1:nr.reps.per.core){
#note that the statistic is distribution free (based on ranks),
#so creating a null table (for the null distribution)
#is essentially permuting over the ranks
statistic = hhg.univariate.ind.stat(1:n,sample(1:n),

variant = variant,
aggregation.type = aggregation.type,
score.type = score.type,
mmax = mmax)$statistic

null.table[i,]=statistic
}
rownames(null.table)=NULL
return(null.table)

}

#parallelize over cores
cl = makeCluster(nr.cores)
registerDoParallel(cl)
res = foreach(core = 1:nr.cores, .combine = rbind, .packages = 'HHG',

.export=c('variant','aggregation.type','score.type',
'mmax','nr.reps.per.core','n'), .options.RNG=1234) %dorng%
{ generate.null.distribution.statistic() }

stopCluster(cl)

hhg.univariate.nulltable.from.mstats 47

#the null table:
head(res)

#as object to be used:
null.table = hhg.univariate.nulltable.from.mstats(res,minm=2,

maxm = mmax,type = 'Independence',
variant = variant,size = n,score.type = score.type,
aggregation.type = aggregation.type)

#using the null table, checking for dependence in a linear relation
x=rnorm(n)
y=x+rnorm(n)
ADP.test = hhg.univariate.ind.combined.test(x,y,null.table)
ADP.test$MinP.pvalue #pvalue

3. generating a k-sample null table using multiple cores
and then compiling to object.
##

library(parallel)
library(doParallel)
library(foreach)
library(doRNG)

#generate a k sample null table
nr.cores = 4 #this is computer dependent
n1 = 25 #size of first group
n2 = 25 #size of first group
nr.reps.per.core = 25
mmax =5
score.type = 'LikelihoodRatio'
aggregation.type = 'sum'

#generating null table of size 4*25

#single core worker function
generate.null.distribution.statistic =function(){

library(HHG)
null.table = matrix(NA,nrow=nr.reps.per.core,ncol = mmax-1)
for(i in 1:nr.reps.per.core){
#note that the statistic is distribution free (based on ranks),
#so creating a null table (for the null distribution)
#is essentially permuting over the ranks
statistic = hhg.univariate.ks.stat(1:(n1+n2),sample(c(rep(0,n1),rep(1,n2))),

aggregation.type = aggregation.type,
score.type = score.type,
mmax = mmax)$statistic

null.table[i,]=statistic
}
rownames(null.table)=NULL
return(null.table)

48 nr_bins_equipartition

}

#parallelize over cores
cl = makeCluster(nr.cores)
registerDoParallel(cl)
res = foreach(core = 1:nr.cores, .combine = rbind, .packages = 'HHG',

.export=c('n1','n2','aggregation.type','score.type','mmax',
'nr.reps.per.core'), .options.RNG=1234) %dorng%
{generate.null.distribution.statistic()}

stopCluster(cl)

#the null table:
head(res)

#as object to be used:
null.table = hhg.univariate.nulltable.from.mstats(res,minm=2,

maxm = mmax,type = 'KSample',
variant = 'KSample-Variant',size = c(n1,n2),score.type = score.type,
aggregation.type = aggregation.type)

#using the null table, checking for dependence in a case of two distinct samples
x=1:(n1+n2)
y=c(rep(0,n1),rep(1,n2))
Sm.test = hhg.univariate.ks.combined.test(x,y,null.table)
Sm.test$MinP.pvalue #pvalue

End(Not run)

nr_bins_equipartition Function for selecting the default number of atoms for equipartition

Description

Function selects the default number of atoms by sample size, being min(n,60+0.5*floor(sqrt(n)))

Usage

nr_bins_equipartition(n)

Arguments

n Sample size

Details

Function returns the default number of atoms (bins of sample space partition) for tests performed
over a large number of observations. The default number of atoms is min(n,60+0.5*floor(sqrt(n))).

print.HHG.Test.Result 49

Value

Default number of atoms by sample size.

Author(s)

Barak Brill

Examples

nr_bins_equipartition(100)

print.HHG.Test.Result Print function for result of HHG tests

Description

Print description of for result object of HHG tests

Usage

S3 method for class 'HHG.Test.Result'
print(x, ...)

Arguments

x result of hhg.test, hhg.test.2.sample or
hhg.test.k.sample

... Additional arguments can be sent to function. Currently not supported.

Details

Function prints description of results for the hhg.test, hhg.test.2.sample and hhg.test.k.sample
functions. Displays: test statistics, pvalues (if permutations were performed) and description of
sample size (also displays group sizes and equality of distribution tests).

Value

Does not return value. Only prints description of test statistic and results.

Author(s)

Barak Brill

50 print.UnivariateObject

Examples

#output for independence test
n = 50
X = hhg.example.datagen(n, '4indclouds')

Dx = as.matrix(dist((X[1,]), diag = TRUE, upper = TRUE))
Dy = as.matrix(dist((X[2,]), diag = TRUE, upper = TRUE))

hhg = hhg.test(Dx, Dy, nr.perm = 200)

#output for k-sample test
n = 50
D = hhg.example.datagen(n, 'FourClassUniv')
Dx = as.matrix(dist(D$x, diag = TRUE, upper = TRUE))

hhg = hhg.test.k.sample(Dx, D$y, nr.perm = 200)

print.UnivariateObject

Print function for Univariate Null Table Object

Description

Print description of univariate object.

Usage

S3 method for class 'UnivariateObject'
print(x, ...)

Arguments

x A univariate null table object, of type ’UnivariateObject’

... Additional arguments can be sent to function. Currently not supported.

Details

Function prints description of a null table object, including sample size (for the independence
hhg.univariate statsitics) or group sizes (for hhg.univarate statistics). Also prints statistic type in
terms of variant, aggregation.type and score.type.

Value

Does not return value. Only prints description of null table object.

Author(s)

Barak Brill

print.UnivariateStatistic 51

Examples

#univariate objects are found inside null tables:
nt = hhg.univariate.ks.nulltable(group.sizes = c(20,20), nr.replicates = 200)

print(nt$univariate.object)

print.UnivariateStatistic

Print function for Univariate Statistic Test Object

Description

Print description of univariate statistic result & test object.

Usage

S3 method for class 'UnivariateStatistic'
print(x, ...)

Arguments

x result of hhg.univariate.ind.stat, hhg.univariate.ks.stat,
hhg.univariate.ind.combined.test or hhg.univariate.ks.combined.test

... Additional arguments can be sent to function. Currently not supported.

Details

Function prints description of univariate test statistic and test results. Displays: test statistics,
pvalues (for the combined test function), partition sizes and type of test statistic used in terms
of variant, aggregation.type and score.type.

Value

Does not return value. Only prints description of test statistic and results.

Author(s)

Barak Brill

Examples

#generate statistics and test results, and print them
ind.stat = hhg.univariate.ind.stat(1:20,1:20,variant = 'ADP',

aggregation.type = 'sum',score.type = 'both',mmax = 5)
print(ind.stat)

ks.stat = hhg.univariate.ks.stat(1:50,sample(c(rep(0,25),rep(1,25))),

52 Yeast_hughes

aggregation.type = 'both',score.type = 'both',mmax = 10)
print(ks.stat)

Not run:

ind.combined = hhg.univariate.ind.combined.test(1:20,1:20,
combining.type = 'Both',mmax = 5,nr.perm = 100)

print(ind.combined)

End(Not run)

ks.combined = hhg.univariate.ks.combined.test(1:50,
sample(c(rep(0,25),rep(1,25))),combining.type = 'Both')

print(ks.combined)

Yeast_hughes Yeast gene expression data

Description

The data is a small subset of the full dataset from Hughes et al. (2000).

Usage

data(Yeast_hughes)

Format

A data frame for 10 S. cerevisae (which is a common and well-studied species of Yeast) genes
(stored in rows) and 300 expression observations (stored in columns). The 10 genes are those
positioned 10, 20, 30, 40, 50, 60, 70, 80, 90, and 100 in chromosome I in the original data (see link
below).

Source

Functional Discovery via a Compendium of Expression Profiles. Hughes et al., Cell, 2000.

The full data is publicly available at http://noble.gs.washington.edu/proj/microarray/Rosetta/.

References

Hughes et al.(2000). Functional Discovery via a Compendium of Expression Profiles. Cell, 102(Is-
sue 1), P103-P126.

Examples

data(Yeast_hughes)

http://noble.gs.washington.edu/proj/microarray/Rosetta/

Index

∗ datasets
Yeast_hughes, 52

Fast.independence.test, 3, 6, 20, 29
Fast.independence.test.nulltable, 6–8,

10

HHG, 12
HHG (HHG-package), 2
HHG-package, 2
hhg.example.datagen, 17
hhg.test, 2
hhg.test (HHG), 12
hhg.test.2.sample, 3
hhg.test.k.sample, 3
hhg.univariate.ind.combined.test, 3, 7,

18, 20, 24, 29
hhg.univariate.ind.nulltable, 7, 19, 20,

23, 26, 39
hhg.univariate.ind.pvalue, 24, 25
hhg.univariate.ind.stat, 7, 19, 20, 24, 26,

28, 29
hhg.univariate.ks.combined.test, 3, 31,

37
hhg.univariate.ks.nulltable, 32, 33, 36
hhg.univariate.ks.pvalue, 36, 37, 38
hhg.univariate.ks.stat, 32, 33, 37, 39, 41
hhg.univariate.nulltable.from.mstats,

44

nr_bins_equipartition, 48

print.HHG.Test.Result, 49
print.UnivariateObject, 50
print.UnivariateStatistic, 51

Yeast_hughes, 52

53

	HHG-package
	Fast.independence.test
	Fast.independence.test.nulltable
	HHG
	hhg.example.datagen
	hhg.univariate.ind.combined.test
	hhg.univariate.ind.nulltable
	hhg.univariate.ind.pvalue
	hhg.univariate.ind.stat
	hhg.univariate.ks.combined.test
	hhg.univariate.ks.nulltable
	hhg.univariate.ks.pvalue
	hhg.univariate.ks.stat
	hhg.univariate.nulltable.from.mstats
	nr_bins_equipartition
	print.HHG.Test.Result
	print.UnivariateObject
	print.UnivariateStatistic
	Yeast_hughes
	Index

