
Package ‘IMIFA’
December 20, 2022

Type Package

Date 2022-12-19

Title Infinite Mixtures of Infinite Factor Analysers and Related
Models

Version 2.1.10

Description Provides flexible Bayesian estimation of Infinite Mixtures of Infinite Factor Analy-
sers and related models, for nonparametrically clustering high-dimensional data, intro-
duced by Murphy et al. (2020) <doi:10.1214/19-BA1179>. The IMIFA model con-
ducts Bayesian nonparametric model-based clustering with factor analytic covariance struc-
tures without recourse to model selection criteria to choose the number of clusters or cluster-
specific latent factors, mostly via efficient Gibbs updates. Model-specific diagnos-
tic tools are also provided, as well as many options for plotting results, conducting posterior in-
ference on parameters of interest, posterior predictive checking, and quantifying uncertainty.

Depends R (>= 4.0.0)

License GPL (>= 2)

Encoding UTF-8

URL https://cran.r-project.org/package=IMIFA

BugReports https://github.com/Keefe-Murphy/IMIFA

LazyData true

Imports matrixStats (>= 0.53.1), mclust (>= 5.4), mvnfast, Rfast (>=
1.9.8), slam, viridisLite

Suggests gmp (>= 0.5-4), knitr, mcclust, rmarkdown, Rmpfr

RoxygenNote 7.2.3

VignetteBuilder knitr

Collate 'MainFunction.R' 'Diagnostics.R' 'FullConditionals.R'
'Gibbs_FA.R' 'Gibbs_IFA.R' 'Gibbs_IMFA.R' 'Gibbs_IMIFA.R'
'Gibbs_MFA.R' 'Gibbs_MIFA.R' 'Gibbs_OMFA.R' 'Gibbs_OMIFA.R'
'IMIFA.R' 'PlottingFunctions.R' 'SimulateData.R' 'data.R'

NeedsCompilation no

1

https://doi.org/10.1214/19-BA1179
https://cran.r-project.org/package=IMIFA
https://github.com/Keefe-Murphy/IMIFA

2 R topics documented:

Author Keefe Murphy [aut, cre] (<https://orcid.org/0000-0002-7709-3159>),
Cinzia Viroli [ctb] (<https://orcid.org/0000-0002-3278-5266>),
Isobel Claire Gormley [ctb] (<https://orcid.org/0000-0001-7713-681X>)

Maintainer Keefe Murphy <keefe.murphy@mu.ie>

Repository CRAN

Date/Publication 2022-12-20 00:10:02 UTC

R topics documented:
IMIFA-package . 3
bnpControl . 4
coffee . 8
get_IMIFA_results . 9
gumbel_max . 15
G_moments . 17
G_priorDensity . 19
heat_legend . 21
IMIFA_news . 22
is.cols . 23
is.posi_def . 23
Ledermann . 24
ltrgamma . 25
mat2cols . 27
mcmc_IMIFA . 28
mgpControl . 33
MGP_check . 36
mixfaControl . 39
olive . 43
pareto_scale . 44
PGMM_dfree . 45
plot.Results_IMIFA . 46
plot_cols . 50
post_conf_mat . 52
Procrustes . 53
psi_hyper . 55
rDirichlet . 57
scores_MAP . 58
shift_GA . 59
show_digit . 60
show_IMIFA_digit . 61
sim_IMIFA . 63
storeControl . 66
USPSdigits . 67
Zsimilarity . 68

Index 71

https://orcid.org/0000-0002-7709-3159
https://orcid.org/0000-0002-3278-5266
https://orcid.org/0000-0001-7713-681X

IMIFA-package 3

IMIFA-package IMIFA: Infinite Mixtures of Infinite Factor Analysers and Related Mod-
els

Description

A package for Bayesian nonparametric clustering of high-dimensional data sets, providing func-
tions for fitting, diagnostic tools and plotting for Infinite Mixtures of Infinite Factor Analysers and
the full suite of related models introduced by Murphy et al. (2020) <doi:10.1214/19BA1179>. Al-
lows model based clustering with factor analytic covariance structures without recourse to model
selection criteria to choose the number of clusters or cluster-specific latent factors. Model-specific
diagnostic tools are also provided, as well as many options for plotting results, conducting posterior
inference on parameters of interest, posterior predictive checking, and quantifying uncertainty.

Details

• Type: Package

• Package: IMIFA

• Version: 2.1.10

• Date: 2022-12-19 (this version), 2017-02-02 (original release)

• Licence: GPL (>=2)

Usage

The three most important functions in the IMIFA package are: mcmc_IMIFA, for fitting the model,
get_IMIFA_results, for extracting results from objects of the "IMIFA" class generated by mcmc_IMIFA,
and the dedicated plotting function plot.Results_IMIFA, for plotting results pertaining to parame-
ters of inferential interest from objects of class "Results_IMIFA" generated by get_IMIFA_results.

Other functions also exist, e.g. for simulating data from a multivariate mixture of factor analysers,
many functions for soliciting good priors, and many functions related to plotting.

mcmc_IMIFA: This function estimates models in the IMIFA family under the Bayesian paradigm.
Most importantly, one must specify the method in the form of an acronym (e.g. "MIFA" for Mixtures
of Infinite Factor Analysers) and ranges of values for range.G, the number of clusters, and range.Q,
the number(s) of (cluster-specific) latent factors as required by said method.

get_IMIFA_results: Raw simulation objects generated by mcmc_IMIFA() are passed to this func-
tion in order to extract results of interest and conduct further post-processing if necessary.

plot.Results_IMIFA: Results obtained from get_IMIFA_Results are passed to this function with
the type of plot desired specified by plot.meth (e.g. "trace") and the parameter of interest speci-
fied by param (e.g. "loadings").

References

Murphy, K., Viroli, C., and Gormley, I. C. (2020) Infinite mixtures of infinite factor analysers,
Bayesian Analysis, 15(3): 937-963. <doi:10.1214/19-BA1179>.

https://doi.org/10.1214/19-BA1179
https://projecteuclid.org/euclid.ba/1570586978

4 bnpControl

See Also

Further details and examples are given in the associated vignette document:
vignette("IMIFA", package = "IMIFA")

Author(s)

Keefe Murphy [aut, cre], Cinzia Viroli [ctb], Isobel Claire Gormley [ctb]

Maintainer: Keefe Murphy - <<keefe.murphy@mu.ie>>

See Also

Useful links:

• https://cran.r-project.org/package=IMIFA

• Report bugs at https://github.com/Keefe-Murphy/IMIFA

bnpControl Control settings for the Bayesian Nonparametric priors for infinite
mixture models (or shrinkage priors for overfitted mixtures)

Description

Supplies a list of arguments for use in mcmc_IMIFA pertaining to the use of the Bayesian Non-
parametric Pitman-Yor / Dirichlet process priors with the infinite mixture models "IMFA" and
"IMIFA". Certain arguments related to the Dirichlet concentration parameter for the overfitted mix-
tures "OMFA" and "OMIFA" can be supplied in this manner also.

Usage

bnpControl(learn.alpha = TRUE,
alpha.hyper = c(2L, 4L),
discount = 0,
learn.d = TRUE,
d.hyper = c(1L, 1L),
ind.slice = TRUE,
rho = 0.75,
trunc.G = NULL,
kappa = 0.5,
IM.lab.sw = TRUE,
thresh = FALSE,
exchange = FALSE,
zeta = NULL,
tune.zeta = list(...),
...)

https://cran.r-project.org/package=IMIFA
https://github.com/Keefe-Murphy/IMIFA

bnpControl 5

Arguments

learn.alpha For the "IMFA" and "IMIFA" methods: A logical indicating whether the Pitman-
Yor / Dirichlet process concentration parameter is to be learned (defaults to
TRUE), or remain fixed for the duration of the chain. If being learned, a
Ga(a, b) prior is assumed for alpha; updates take place via Gibbs sampling
when discount is zero and via Metropolis-Hastings when discount > 0.
If not being learned, alpha must be supplied.
In the special case of discount < 0, alpha must be supplied as a positive
integer multiple of abs(discount); in this instance, learn.alpha is forced
to TRUE and alpha is updated with the changing number of components as
the positive integer.

For the "OMFA" and "OMIFA" methods: A logical indicating whether the Dirich-
let concentration parameter is to be learned (defaults to TRUE) or remain
fixed for the duration of the chain. If being learned, a Ga(a, b * G) is as-
sumed for alpha, where G is the number of mixture components range.G,
and updates take place via Metropolis-Hastings. If not being learned alpha
must be supplied.

alpha.hyper For the "IMFA" and "IMIFA" methods: A vector of length 2 giving hyperpa-
rameters for the prior on the Pitman-Yor / Dirichlet process concentration
parameter alpha. If isTRUE(learn.alpha), these are shape and rate pa-
rameters of a Gamma distribution. Defaults to Ga(2, 4). Choosing a larger
rate is particularly important, as it encourages clustering. The prior is
shifted to have support on (-discount, Inf) when non-zero discount is
supplied and remains fixed (i.e. learn.d=FALSE) or when learn.d=TRUE.

For the "OMFA" and "OMIFA" methods: A vector of length 2 giving hyperpa-
rameters a and b for the prior on the Dirichlet concentration parameter
alpha. If isTRUE(learn.alpha), these are shape and rate parameters of a
Gamma distribution. Defaults to Ga(2, 4). Note that the supplied rate will
be multiplied by range.G, to encourage clustering, such that the form of
the prior is Ga(a, b * G).

discount The discount parameter used when generalising the Dirichlet process to the
Pitman-Yor process. Defaults to 0, but typically must lie in the interval [0, 1).
If greater than zero, alpha can be supplied greater than -discount. By default,
Metropolis-Hastings steps are invoked for updating this parameter via learn.d.
The special case of discount < 0 is allowed, in which case learn.d=FALSE is
forced and alpha must be supplied as a positive integer multiple of abs(discount).
Fixing discount > 0.5 is discouraged (see learn.alpha).

learn.d Logical indicating whether the discount parameter is to be updated via Metropolis-
Hastings (defaults to TRUE, unless discount is supplied as a negative value).

d.hyper Hyperparameters for the Beta(a,b) prior on the discount parameter. Defaults to
Beta(1,1), i.e. Uniform(0,1).

ind.slice Logical indicating whether the independent slice-efficient sampler is to be em-
ployed (defaults, typically, to TRUE). If FALSE the dependent slice-efficient sam-
pler is employed, whereby the slice sequence ξ1, . . . , ξg is equal to the decreas-
ingly ordered mixing proportions. When thresh &/or exchange are set to TRUE
(see below), this argument is forced to FALSE.

6 bnpControl

rho Parameter controlling the rate of geometric decay for the independent slice-
efficient sampler, s.t. ξ = (1 − ρ)ρg−1. Must lie in the interval [0, 1). Higher
values are associated with better mixing but longer run times. Defaults to 0.75,
but 0.5 is an interesting special case which guarantees that the slice sequence
ξ1, . . . , ξg is equal to the expectation of the decreasingly ordered mixing pro-
portions. Only relevant when ind.slice is TRUE.

trunc.G The maximum number of allowable and storable clusters under the "IMIFA" and
"IMFA" models. The number of active clusters to be sampled at each iteration
is adaptively truncated, with trunc.G as an upper limit for storage reasons. De-
faults to max(min(N-1, 50), range.G)) and must satisfy range.G <= trunc.G
< N. Note that large values of trunc.G may lead to memory capacity issues.

kappa The spike-and-slab prior distribution on the discount hyperparameter is as-
sumed to be a mixture with point-mass at zero and a continuous Beta(a,b) dis-
tribution. kappa gives the weight of the point mass at zero (the ’spike’). Must
lie in the interval [0,1]. Defaults to 0.5. Only relevant when isTRUE(learn.d).
A value of 0 ensures non-zero discount values (i.e. Pitman-Yor) at all times,
and vice versa. Note that kappa will default to exactly 0 if alpha<=0 and
learn.alpha=FALSE.

IM.lab.sw Logical indicating whether the two forced label switching moves are to be im-
plemented (defaults to TRUE) when running one of the infinite mixture mod-
els. Note: when exchange=TRUE (see below), this argument is instead forced to
FALSE.

thresh Logical indicating whether the threshold of Fall and Barat (2014) should be
incorporated into the slice sampler. See the reference for details. This is an
experimental feature (defaults to FALSE) and can work with or without exchange
below. Setting thresh=TRUE is not recommended unless both learn.alpha and
learn.d are FALSE. Setting thresh to TRUE also forces ind.slice to FALSE
(see above).

exchange Logical indicating whether the exchangeable slice sampler of Fall and Barat
(2014) should be used instead. See the reference for details. This argument
can work with or without thresh=TRUE above, though it is also an experimental
argument and thus defaults to FALSE. When TRUE, the arguments ind.slice and
IM.lab.sw (see above) are both forced to FALSE.

zeta For the "IMFA" and "IMIFA" methods: Tuning parameter controlling the ac-
ceptance rate of the random-walk proposal for the Metropolis-Hastings
steps when learn.alpha=TRUE, where 2 * zeta gives the full width of
the uniform proposal distribution. These steps are only invoked when ei-
ther discount is non-zero and fixed or learn.d=TRUE, otherwise alpha is
learned by Gibbs updates. Must be strictly positive (if invoked). Defaults
to 2.

For the "OMFA" and "OMIFA" methods: Tuning parameter controlling the stan-
dard deviation of the log-normal proposal for the Metropolis-Hastings steps
when learn.alpha=TRUE. Must be strictly positive (if invoked). Defaults
to 0.75.

tune.zeta A list with the following named arguments, used for tuning zeta (which is ei-
ther the width of the uniform proposal for the "IMFA" or "IMIFA" methods or

bnpControl 7

the standard deviation of the log-normal proposal for the "OMFA" or "OMIFA"
methods) for alpha, via diminishing Robbins-Monro type adaptation, when the
alpha parameter is learned via Metropolis-Hastings steps:

heat The initial adaptation intensity/step-size, such that larger values lead to
larger updates. Must be strictly greater than zero. Defaults to 1 if not
supplied but other elements of tune.zeta are.

lambda Iteration rescaling parameter which controls the speed at which adap-
tation diminishes, such that lower values cause the contribution of later it-
erations to diminish more slowly. Must lie in the interval (0.5, 1]. Defaults
to 1 if not supplied but other elements of tune.zeta are.

target The target acceptance rate. Must lie in the interval [0, 1]. Defaults
to 0.441, which is optimal for univariate targets, if not supplied but other
elements of tune.zeta are.

start.zeta The iteration at which diminishing adaptation begins. Defaults to
100.

stop.zeta The iteration at which diminishing adaptation is to stop completely.
Defaults to Inf, such that diminishing adaptation is never explicitly made
to stop. Must be greater than start.zeta.

At least one tune.zeta argument must be supplied for diminishing adaptation
to be invoked. tune.zeta arguments are only relevant when learn.alpha is
TRUE (and, for the "IMFA" and "IMIFA" methods, when either of the following
is also true: the discount remains fixed at a non-zero value, or when learn.d
is TRUE and kappa < 1). Since Gibbs steps are invoked for updating alpha
when discount == 0 under the "IMFA" or "IMIFA" methods, adaption occurs
according to a running count of the number of iterations with non-zero sampled
discount values for those methods. As such, when a mix of Gibbs and MH up-
dates are used, this tuning only targets the target acceptance rates for the MH
steps; i.e. acceptances under the Gibbs framework will inflate the acceptance
rate further.
If diminishing adaptation is invoked, the posterior mean zeta will be stored.
Since caution is advised when employing adaptation, note that acceptance rates
of between 10-50% are generally considered adequate.

... Catches unused arguments.

Details

The crucial concentration parameter alpha is documented within the main mcmc_IMIFA function,
and is relevant to all of the "IMIFA", "IMFA", "OMIFA", and "OMFA" methods.

All arguments here are relevant to the "IMFA" and "IMIFA" methods, but the following are also re-
lated to the "OMFA" and "OMIFA" methods, and may behave differently in those instances: learn.alpha,
alpha.hyper, zeta, and tune.zeta.

Value

A named list in which the names are the names of the arguments related to the BNP prior(s) and the
values are the values supplied to the arguments.

8 coffee

Note

Certain supplied arguments will be subject to further checks within mcmc_IMIFA. G_priorDensity
and G_moments can help with soliciting sensible DP/PYP priors.

Under the "IMFA" and "IMIFA" methods, a Pitman-Yor process prior is specified by default. A
Dirichlet process prior can be easily invoked when the discount is fixed at 0 and learn.d=FALSE.
The normalized stable process can also be specified as a prior distribution, as a special case of
the Pitman-Yor process, when alpha remains fixed at 0 and learn.alpha=FALSE (provided the
discount is fixed at a strictly positive value or learn.d=TRUE). The special case of the Pitman-
Yor process with negative discount is also allowed as an experimental feature for which caution
is advised, though learn.d and learn.alpha are forced to FALSE and TRUE, respectively, in this
instance.

Author(s)

Keefe Murphy - <<keefe.murphy@mu.ie>>

References

Murphy, K., Viroli, C., and Gormley, I. C. (2020) Infinite mixtures of infinite factor analysers,
Bayesian Analysis, 15(3): 937-963. <doi:10.1214/19-BA1179>.

Kalli, M., Griffin, J. E. and Walker, S. G. (2011) Slice sampling mixture models, Statistics and
Computing, 21(1): 93-105.

Fall, M. D. and Barat, E. (2014) Gibbs sampling methods for Pitman-Yor mixture models, hal-
00740770v2.

See Also

mcmc_IMIFA, G_priorDensity, G_moments, mixfaControl, mgpControl, storeControl

Examples

bnpctrl <- bnpControl(learn.d=FALSE, ind.slice=FALSE, alpha.hyper=c(3, 3))

data(olive)
sim <- mcmc_IMIFA(olive, "IMIFA", n.iters=5000, BNP=bnpctrl)

Alternatively specify these arguments directly
sim <- mcmc_IMIFA(olive, "IMIFA", n.iters=5000, learn.d=FALSE,
ind.slice=FALSE, alpha.hyper=c(3, 3))

coffee Chemical composition of Arabica and Robusta coffee samples

https://projecteuclid.org/euclid.ba/1570586978

get_IMIFA_results 9

Description

Data on the chemical composition of coffee samples collected from around the world, comprising
43 samples from 29 countries. Each sample is either of the Arabica or Robusta variety. Twelve
of the thirteen chemical constituents reported in the study are given. The omitted variable is total
chlorogenic acid; it is generally the sum of the chlorogenic, neochlorogenic and isochlorogenic acid
values.

Usage

data(coffee)

Format

A data frame with 43 observations and 14 columns. The first two columns contain Variety (ei-
ther Arabica or Robusta) and Country, respectively, while the remaining 12 columns contain the
chemical properties.

References

Streuli, H. (1973). Der heutige Stand der Kaffee-Chemie, Association Scientifique International du
Cafe, 6th International Colloquium on Coffee Chemistry, Bogata, Colombia, pp. 61-72.

Examples

data(coffee, package="IMIFA")
pairs(coffee[,-(1:2)], col=coffee$Variety)

get_IMIFA_results Extract results, conduct posterior inference and compute performance
metrics for MCMC samples of models from the IMIFA family

Description

This function post-processes simulations generated by mcmc_IMIFA for any of the IMIFA family
of models. This includes accounting for label switching, and accounting for rotational invariance
via Procrustean methods. It can be re-ran at little computational cost in order to extract different
models explored by the sampler used for sims, without having to re-run the model itself. New
results objects using different numbers of clusters and different numbers of factors (if visited by the
model in question), or using different model selection criteria (if necessary) can be generated with
ease. Posterior predictive checking of the appropriateness of the fitted model is also facilitated.

Usage

get_IMIFA_results(sims = NULL,
burnin = 0L,
thinning = 1L,
G = NULL,

10 get_IMIFA_results

Q = NULL,
criterion = c("bicm", "aicm", "dic", "bic.mcmc", "aic.mcmc"),
G.meth = c("mode", "median"),
Q.meth = c("mode", "median"),
conf.level = 0.95,
error.metrics = TRUE,
vari.rot = FALSE,
z.avgsim = FALSE,
zlabels = NULL,
nonempty = TRUE,
...)

S3 method for class 'Results_IMIFA'
print(x,

...)

S3 method for class 'Results_IMIFA'
summary(object,

MAP = TRUE,
...)

Arguments

sims An object of class "IMIFA" generated by mcmc_IMIFA.

burnin Optional additional number of iterations to discard. Defaults to 0, corresponding
to no additional burnin. See mixfaControl for the default burnin settings used
previously by mcmc_IMIFA.

thinning Optional interval for extra thinning to be applied. Defaults to 1, corresponding
to no additional thinning. See mixfaControl for the default thinning settings
used previously by mcmc_IMIFA.

G If this argument is not specified, results will be returned with the optimal number
of clusters. If different numbers of clusters were explored in sims for the "MFA"
or "MIFA" methods, supplying an integer value allows pulling out a specific
solution with G clusters, even if the solution is sub-optimal.
Similarly, this allows retrieval of samples corresponding to a solution, if visited,
with G clusters for the "OMFA", "OMIFA", "IMFA" and "IMIFA" methods.

Q If this argument is not specified, results will be returned with the optimal number
of factors. If different numbers of factors were explored in sims for the "FA",
"MFA", "OMFA" or "IMFA" methods, this allows pulling out a specific solution
with Q factors, even if the solution is sub-optimal.
Similarly, this allows retrieval of samples corresponding to a solution, if visited,
with Q factors for the "IFA", "MIFA", "OMIFA" and "IMIFA" methods. Can be
supplied as a scalar or a vector of values for each cluster.

criterion The criterion to use for model selection, where model selection is only required
if more than one model was run under the "FA", "MFA", "MIFA", "OMFA" or
"IMFA" methods when sims was created via mcmc_IMIFA. Defaults to bicm, but

get_IMIFA_results 11

note that these are all calculated; this argument merely indicates which one will
form the basis of the construction of the output.
Note that the first three options here might exhibit bias in favour of zero-factor
models for the finite factor "FA", "MFA", "OMFA" and "IMFA" methods and might
exhibit bias in favour of one-cluster models for the "MFA" and "MIFA" methods.
The aic.mcmc and bic.mcmc criteria will only be returned for finite factor mod-
els.

G.meth If the object in sims arises from the "OMFA", "OMIFA", "IMFA" or "IMIFA" meth-
ods, this argument determines whether the optimal number of clusters is given
by the mode or median of the posterior distribution of G. Defaults to "mode".
Often the mode and median will agree in any case.

Q.meth If the object in sims arises from the "IFA", "MIFA", "OMIFA" or "IMIFA" meth-
ods, this argument determines whether the optimal number of latent factors
is given by the mode or median of the posterior distribution of Q. Defaults to
"mode". Often the mode and median will agree in any case.

conf.level The confidence level to be used throughout for credible intervals for all param-
eters of inferential interest, and error metrics if error.metrics=TRUE. Defaults
to 0.95.

error.metrics A logical activating or deactivating posterior predictive checking: i.e. control-
ling whether metrics quantifying a) the posterior predictive reconstruction error
(PPRE) between bin counts of the data and bin counts of replicate draws from
the posterior distribution & and b) the error between the empirical and estimated
covariance matrices should be computed. These are computed for every valid
retained iteration (see Details). Defaults to TRUE, but can be time-consuming
for models which achieve clustering. These error metrics, and the uncertainty
associated with them, can be visualised via plot.Results_IMIFA. Depending
on what parameters were stored when calling mcmc_IMIFA, potentially not all
error metrics will be available to compute.
The Frobenius norm is used in the computation of the PPRE, by default, but
the type of norm can be changed via the ... construct below. So too can the
breakpoints (dbreaks) used to bin the data and the posterior predictive replicate
data sets. Some caution is advised in the latter case.

vari.rot Logical indicating whether the loadings matrix/matrices template(s) should be
varimax rotated first, prior to the Procrustes rotation steps. Defaults to FALSE.
Not necessary at all for clustering purposes, or inference on the covariance ma-
trix, but useful if interpretable inferences on the loadings matrix/matrices are
desired. Arguments to varimax can be passed via the ... construct, but note
that the argument normalize here defaults to FALSE.

z.avgsim Logical (defaults to FALSE) indicating whether the clustering should also be
summarised with a call to Zsimilarity by the clustering with minimum mean
squared error to the similarity matrix obtained by averaging the stored adjacency
matrices, in addition to the MAP estimate.
Note that the MAP clustering is computed conditional on the estimate of the
number of clusters (whether that be the modal estimate or the estimate according
to criterion) and other parameters are extracted conditional on this estimate of
G: however, in contrast, the number of distinct clusters in the summarised labels

12 get_IMIFA_results

obtained by specifying z.avgsim=TRUE may not necessarily coincide with the
MAP estimate of G, but it may provide a useful alternative summary of the parti-
tions explored during the chain, and the user is free to call get_IMIFA_results
again with the new suggested G value.
Please be warned that this feature requires loading the mcclust package. This is
liable to take considerable time to compute, and may not even be possible if the
number of observations &/or number of stored iterations is large and the result-
ing matrix isn’t sufficiently sparse. When z.avgsim=TRUE, both the summarised
clustering and the similarity matrix are stored: the latter can be visualised as part
of a call to plot.Results_IMIFA.

zlabels For any method that performs clustering, the true labels can be supplied if they
are known in order to compute clustering performance metrics. This also has
the effect of ordering the MAP labels (and thus the ordering of cluster-specific
parameters) to most closely correspond to the true labels if supplied.

nonempty For "MFA" and "MIFA" models ONLY: a logical indicating whether only iter-
ations with non-empty components should be retained. Defaults to TRUE, but
may lead to empty chains - conversely, FALSE may lead to empty components
and related errors.

x, object, MAP, ...

Arguments required for the print.Results_IMIFA and summary.Results_IMIFA
functions: x and object are objects of class "Results_IMIFA" resulting from
a call to get_IMIFA_results. MAP is a logical which governs whether a table
of the MAP classification is printed, while ... gathers additional arguments to
those functions.
Users can also pass the type argument to the norm function when isTRUE(error.metrics)
and the posterior predictive reconstruction error (PPRE) is calculated. By de-
fault the Frobenius norm (type="F") is employed.
Finally, the ... construct also allows arguments to varimax to be passed to
get_IMIFA_results itself, when isTRUE(vari.rot), or arguments to hist
when isTRUE(error.metrics), in order to guide construction of the bins. Ad-
ditionally, by passing the argument dbreaks via the ... construct, the bins can
be specified directly. However, caution is advised in doing so; in particular, the
bins must be constructed on data which has been standardised in the same way
as the data modelled within mcmc_IMIFA.

Details

The function also performs post-hoc corrections for label switching, as well as post-hoc Pro-
crustes rotation of loadings matrices and scores, in order to ensure sensible posterior parameter
estimates, computes error metrics, constructs credible intervals, and generally transforms the raw
sims object into an object of class "Results_IMIFA" in order to prepare the results for plotting via
plot.Results_IMIFA.

For the infinite factor methods, iterations where the maximum number of factors was greater than or
equal to the maximum of the estimated cluster-specific factors are retained for posterior summaries
of the scores, in order to preserve the estimated dimension of the scores matrices. Similarly, these
are also the valid iterations used for the computation of the averages and credible intervals for the
error metrics. For the finite factor models, all retained iterations are used in both instances (i.e. both
for the scores and the error metrics).

get_IMIFA_results 13

In all cases, only iterations with G non-empty components are retained.

Value

An object of class "Results_IMIFA" to be passed to plot.Results_IMIFA for visualising results.
Dedicated print and summary functions also exist for objects of this class. The object, say x, is a
list of lists, the most important components of which are:

Clust Everything pertaining to clustering performance can be found here for all but
the "FA" and "IFA" methods (or models where the estimate number of clusters
is 1), in particular x$Clust$MAP, the MAP summary of the posterior clustering,
the last valid sample of cluster labels x$Clust$last.z, the matrix of posterior
cluster membership probabilities x$Clust$post.prob, and the posterior confu-
sion matrix x$Clust$PCM.
More detail is given if known zlabels are supplied: performance is always
evaluated against the MAP clustering, with additional evaluation against the al-
ternative clustering computed if z.avgsim=TRUE. Posterior summaries of the
mixing proportions, and the concentration/discount parameters, if necessary, are
also included here, as well as the last valid samples of each.

Error Everything pertaining the model fit assessment can be found here, incl. the dis-
tribution of the PPRE values and associated bin counts for the replicate draws, as
well as average error metrics (e.g. MSE, RMSE), and credible intervals quanti-
fying the associated uncertainty, between the empirical and estimated covariance
matrix/matrices, both of which are also included.

GQ.results Everything pertaining to model choice can be found here, incl. posterior sum-
maries for the estimated number of clusters and estimated number of factors, if
applicable to the method employed. Model selection criterion values are also
accessible here.

Means Posterior summaries for the means, after conditioning on G.

Loadings Posterior summaries for the factor loadings matrix/matrices, after conditioning
on G and Q. Posterior mean loadings given by x$Loadings$post.load are given
the loadings class for printing purposes and thus the manner in which they are
displayed can be modified.
The number of iterations retained for posterior summaries of the loadings may
vary for different clusters for the infinite factor methods, corresponding to iter-
ations where the cluster-specific number of factors was greater than or equal to
the modal estimate of the cluster-specific number of factors.

Scores Posterior summaries for the latent factor scores, after conditioning on the max-
imum of the estimated number of cluster-specific factors. Summaries are given
for the single matrix of factor scores. See scores_MAP to decompose these
summaries into sub-matrices according to the MAP partition (for models which
achieve clustering).
For the infinite factor methods, iterations where the maximum number of fac-
tors was greater than or equal to the maximum of the estimated cluster-specific
factors are retained for posterior summaries of the scores, in order to preserve
the estimated dimension of the scores matrices.

Uniquenesses Posterior summaries for the uniquenesses, after conditioning on G.

14 get_IMIFA_results

The objects Means, Loadings, Scores and Uniquenesses (if stored when calling mcmc_IMIFA!)
also contain, as well as the posterior summaries, the entire chain of valid samples of each, as well
as, for convenience, the last valid samples of each (after conditioning on the modal G and Q values,
and accounting for label switching, and rotational invariance via Procrustes rotation).

Note

For the "IMIFA", "IMFA", "OMIFA", and "OMFA" methods, the retained mixing proportions are renor-
malised after conditioning on the modal G. This is especially necessary for the computation of the
error.metrics, just note that the values on which posterior inference are conducted will ever so
slightly differ from the actually sampled values.

Due to the way the offline label-switching correction is performed, different runs of this function
may give very slightly different results in terms of the cluster labellings (and by extension the
parameters, which are permuted in the same way), but only if the chain was run for an extremely
small number of iterations, well below the number required for convergence, and samples of the
cluster labels match poorly across iterations (particularly if the number of clusters suggested by
those sampled labels is high).

Author(s)

Keefe Murphy - <<keefe.murphy@mu.ie>>

References

Murphy, K., Viroli, C., and Gormley, I. C. (2020) Infinite mixtures of infinite factor analysers,
Bayesian Analysis, 15(3): 937-963. <doi:10.1214/19-BA1179>.

See Also

plot.Results_IMIFA, mcmc_IMIFA, Zsimilarity, scores_MAP, sim_IMIFA_model, Procrustes,
varimax, norm

Examples

data(coffee)
data(olive)

Run a MFA model on the coffee data over a range of clusters and factors.
simMFAcoffee <- mcmc_IMIFA(coffee, method="MFA", range.G=2:3, range.Q=0:3, n.iters=1000)

Accept all defaults to extract the optimal model.
resMFAcoffee <- get_IMIFA_results(simMFAcoffee)

Instead let's get results for a 3-cluster model, allowing Q be chosen by aic.mcmc.
resMFAcoffee2 <- get_IMIFA_results(simMFAcoffee, G=3, criterion="aic.mcmc")

Run an IMIFA model on the olive data, accepting all defaults.
simIMIFAolive <- mcmc_IMIFA(olive, method="IMIFA", n.iters=10000)

Extract optimum results
Estimate G & Q by the median of their posterior distributions

https://projecteuclid.org/euclid.ba/1570586978

gumbel_max 15

Construct 90% credible intervals and try to return the similarity matrix.
resIMIFAolive <- get_IMIFA_results(simIMIFAolive, G.meth="median", Q.meth="median",
conf.level=0.9, z.avgsim=TRUE)
summary(resIMIFAolive)

Simulate new data from the above model
newdata <- sim_IMIFA_model(resIMIFAolive)

gumbel_max Simulate Cluster Labels from Unnormalised Log-Probabilities using
the Gumbel-Max Trick

Description

Samples cluster labels for N observations from G clusters efficiently using log-probabilities and
the so-called Gumbel-Max trick, without requiring that the log-probabilities be normalised; thus
redundant computation can be avoided.

Usage

gumbel_max(probs,
slice = FALSE)

Arguments

probs An N x G matrix of unnormalised probabilities on the log scale, where N is he
number of observations that require labels to be sampled and G is the number of
active clusters s.t. sampled labels can take values in 1:G. Typically N > G.

slice A logical indicating whether or not the indicator correction for slice sampling
has been applied to probs. Defaults to FALSE but is TRUE for the "IMIFA" and
"IMFA" methods under mcmc_IMIFA. Details of this correction are given in Mur-
phy et. al. (2020). When set to TRUE, this results in a speed-improvement when
probs contains non-finite values (e.g. -Inf, corresponding to zero on the prob-
ability scale).

Details

Computation takes place on the log scale for stability/underflow reasons (to ensure negligible prob-
abilities won’t cause computational difficulties); in any case, many functions for calculating multi-
variate normal densities already output on the log scale.

Value

A vector of N sampled cluster labels, with the largest label no greater than G.

16 gumbel_max

Note

Though the function is available for standalone use, note that no checks take place, in order to speed
up repeated calls to the function inside mcmc_IMIFA.

If the normalising constant is required for another reason, e.g. to compute the log-likelihood, it can
be calculated by summing the output obtained by calling rowLogSumExps on probs.

Author(s)

Keefe Murphy - <<keefe.murphy@mu.ie>>

References

Murphy, K., Viroli, C., and Gormley, I. C. (2020) Infinite mixtures of infinite factor analysers,
Bayesian Analysis, 15(3): 937-963. <doi:10.1214/19-BA1179>.

Yellott, J. I. Jr. (1977) The relationship between Luce’s choice axiom, Thurstone’s theory of com-
parative judgment, and the double exponential distribution, Journal of Mathematical Psychology,
15(2): 109-144.

See Also

mcmc_IMIFA, rowLogSumExps

Examples

Create weights for 3 components
G <- 3
weights <- seq_len(G)

Call gumbel_max() repeatedly to obtain samples of the labels, zs
iters <- 10000
zs <- replicate(iters, gumbel_max(probs=log(weights)))

Compare answer to the normalised weights
tabulate(zs, nbins=G)/iters
(normalised <- as.numeric(weights/sum(weights)))

Simulate a matrix of Dirichlet weights & the associated vector of N labels
N <- 400
G <- 8
sizes <- seq(from=85, to=15, by=-10)
weights <- matrix(rDirichlet(N * G, alpha=1, nn=sizes), byrow=TRUE, nrow=N, ncol=G)
(zs <- gumbel_max(probs=log(weights)))

https://projecteuclid.org/euclid.ba/1570586978

G_moments 17

G_moments 1st & 2nd Moments of the Pitman-Yor / Dirichlet Processes

Description

Calculate the a priori expected number of clusters (G_expected) or the variance of the number
of clusters (G_variance) under a PYP or DP prior for a sample of size N at given values of the
concentration parameter alpha and optionally also the Pitman-Yor discount parameter. Useful for
soliciting sensible priors (or fixed values) for alpha or discount under the "IMFA" and "IMIFA"
methods for mcmc_IMIFA. Additionally, for a given sample size N and given expected number of
clusters EG, G_calibrate elicits a value for the concentration parameter alpha or the discount
parameter.

Usage

G_expected(N,
alpha,
discount = 0,
MPFR = TRUE)

G_variance(N,
alpha,
discount = 0,
MPFR = TRUE)

G_calibrate(N,
EG,
alpha = NULL,
discount = 0,
MPFR = TRUE,
...)

Arguments

N The sample size.

alpha The concentration parameter. Must be specified (though not for G_calibrate)
and must be strictly greater than -discount. The case alpha=0 is accommo-
dated. When discount is negative alpha must be a positive integer multiple of
abs(discount). See Details for behaviour for G_calibrate.

discount The discount parameter for the Pitman-Yor process. Must be less than 1, but typ-
ically lies in the interval [0, 1). Defaults to 0 (i.e. the Dirichlet process). When
discount is negative alpha must be a positive integer multiple of abs(discount).
See Details for behaviour for G_calibrate.

MPFR Logical indicating whether the high-precision libraries Rmpfr and gmp are in-
voked, at the expense of run-time. Defaults to TRUE and must be TRUE for
G_expected when alpha=0 or G_variance when discount is non-zero. For

18 G_moments

G_calibrate, it is strongly recommended to use MPFR=TRUE when discount is
non-zero and strictly necessary when alpha=0 is supplied. See Note.

EG The prior expected number of clusters. Must exceed 1 and be less than N.

... Additional arguments passed to uniroot, e.g. maxiter.

Details

All arguments are vectorised. Users can also consult G_priorDensity in order to solicit sensible
priors.

For G_calibrate, only one of alpha or discount can be supplied, and the function elicits a value
for the opposing parameter which achieves the desired expected number of clusters EG for the given
sample size N. By default, a value for alpha subject to discount=0 (i.e. the Dirichlet process) is
elicited. Note that alpha may not be a positive integer multiple of discount as it should be if
discount is negative. See Examples below.

Value

The expected number of clusters under the specified prior conditions (G_expected), or the vari-
ance of the number of clusters (G_variance), or the concentration parameter alpha or discount
parameter achieving a particular expected number of clusters (G_calibrate).

Note

G_variance requires use of the Rmpfr and gmp libraries for non-zero discount values. G_expected
requires these libraries only for the alpha=0 case. These libraries are strongly recommended (but
they are not required) for G_calbirate when discount is non-zero, but they are required when
alpha=0 is supplied. Despite the high precision arithmetic used, the functions can still be unstable
for large N and/or extreme values of alpha and/or discount. See the argument MPFR.

Author(s)

Keefe Murphy - <<keefe.murphy@mu.ie>>

References

De Blasi, P., Favaro, S., Lijoi, A., Mena, R. H., Prunster, I., and Ruggiero, M. (2015) Are Gibbs-
type priors the most natural generalization of the Dirichlet process?, IEEE Transactions on Pattern
Analysis and Machine Intelligence, 37(2): 212-229.

Yamato, H. and Shibuya, M. (2000) Moments of some statistics of Pitman sampling formula, Bul-
letin of Informatics and Cybernetics, 32(1): 1-10.

See Also

G_priorDensity, Rmpfr, uniroot

G_priorDensity 19

Examples

G_expected(N=50, alpha=19.23356, MPFR=FALSE)
G_variance(N=50, alpha=19.23356, MPFR=FALSE)

G_expected(N=50, alpha=c(19.23356, 12.21619, 1),
discount=c(0, 0.25, 0.7300045), MPFR=FALSE)

require("Rmpfr")
G_variance(N=50, alpha=c(19.23356, 12.21619, 1),
discount=c(0, 0.25, 0.7300045), MPFR=c(FALSE, TRUE, TRUE))

Examine the growth rate of the DP
DP <- sapply(c(1, 5, 10), function(i) G_expected(1:200, alpha=i, MPFR=FALSE))
matplot(DP, type="l", xlab="N", ylab="G")

Examine the growth rate of the PYP
PY <- sapply(c(0.25, 0.5, 0.75), function(i) G_expected(1:200, alpha=1, discount=i))
matplot(PY, type="l", xlab="N", ylab="G")

Other special cases of the PYP are also facilitated
G_expected(N=50, alpha=c(27.1401, 0), discount=c(-27.1401/100, 0.8054448))
G_variance(N=50, alpha=c(27.1401, 0), discount=c(-27.1401/100, 0.8054448))

Elicit values for alpha under a DP prior
G_calibrate(N=50, EG=25)

Elicit values for alpha under a PYP prior
require("Rmpfr")
G_calibrate(N=50, EG=25, discount=c(-27.1401/100, 0.25, 0.7300045))

Elicit values for discount under a PYP prior
G_calibrate(N=50, EG=25, alpha=c(12.21619, 1, 0), maxiter=2000)

G_priorDensity Plot Pitman-Yor / Dirichlet Process Priors

Description

Plots the prior distribution of the number of clusters under a Pitman-Yor / Dirichlet process prior,
for a sample of size N at given values of the concentration parameter alpha and optionally also the
discount parameter. Useful for soliciting sensible priors (or fixed values) for alpha or discount
under the "IMFA" and "IMIFA" methods for mcmc_IMIFA.

Usage

G_priorDensity(N,
alpha,
discount = 0,
show.plot = TRUE,
type = "h")

20 G_priorDensity

Arguments

N The sample size.

alpha The concentration parameter. Must be specified and must be strictly greater than
-discount. The case alpha=0 is accommodated. When discount is negative
alpha must be a positive integer multiple of abs(discount).

discount The discount parameter for the Pitman-Yor process. Must be less than 1, but typ-
ically lies in the interval [0, 1). Defaults to 0 (i.e. the Dirichlet process). When
discount is negative alpha must be a positive integer multiple of abs(discount).

show.plot Logical indicating whether the plot should be displayed (default = TRUE).

type The type of plot to be drawn, as per plot. Defaults to "h": histogram-like
vertical lines.

Details

All arguments are vectorised. Users can also consult G_expected, G_variance, and G_calibrate
in order to solicit sensible priors.

Value

A plot of the prior distribution if show.plot is TRUE. Density values are returned invisibly. Note
that the density values may not strictly sum to one in certain cases, as values small enough to be
represented as zero may well be returned.

Note

The actual density values are returned invisibly. Therefore, they can be visualised as desired by the
user even if show.plot is FALSE.

Requires use of the Rmpfr and gmp libraries; may encounter difficulty and slowness for large N,
especially with non-zero discount values. Despite the high precision arithmetic used, the functions
can be unstable for small values of discount.

Author(s)

Keefe Murphy - <<keefe.murphy@mu.ie>>

References

De Blasi, P., Favaro, S., Lijoi, A., Mena, R. H., Prunster, I., and Ruggiero, M. (2015) Are Gibbs-
type priors the most natural generalization of the Dirichlet process?, IEEE Transactions on Pattern
Analysis and Machine Intelligence, 37(2): 212-229.

See Also

G_moments, Rmpfr

heat_legend 21

Examples

Plot Dirichlet process priors for different values of alpha
(DP <- G_priorDensity(N=50, alpha=c(3, 10, 25)))

Non-zero discount requires loading the "Rmpfr" library
require("Rmpfr")

Verify that these alpha/discount values produce Pitman-Yor process priors with the same mean
G_expected(N=50, alpha=c(19.23356, 6.47006, 1), discount=c(0, 0.47002, 0.7300045))

Now plot them to examine tail behaviour as discount increases
alpha <- c(19.23356, 6.47006, 1)
discount <- c(0, 0.47002, 0.7300045)
(PY <- G_priorDensity(N=50, alpha=alpha, discount=discount, type="l"))

#' # Other special cases of the PYP are also facilitated
G_priorDensity(N=50, alpha=c(alpha, 27.1401, 0),
discount=c(discount, -27.1401/100, 0.8054448), type="b")

heat_legend Add a colour key legend to heatmap plots

Description

Using only base graphics, this function appends a colour key legend for heatmaps produced by, for
instance, plot_cols or image.

Usage

heat_legend(data,
cols = NULL,
breaks = NULL,
cex.lab = 1,
...)

Arguments

data Either the data with which the heatmap was created or a vector containing its
minimum and maximum values. Missing values are ignored.

cols The colour palette used when the heatmap was created. By default, the same
viridis default as in mat2cols is used. Will be checked for validity by is.cols.

breaks Optional argument giving the break-points for the axis labels.

cex.lab Magnification of axis annotation, indicating the amount by which plotting text
and symbols should be scaled relative to the default of 1.

... Catches unused arguments.

22 IMIFA_news

Value

Modifies an existing plot by adding a colour key legend.

See Also

image, plot_cols, mat2cols, is.cols

Examples

Generate a matrix and plot it with a legend
data <- matrix(rnorm(50), nrow=10, ncol=5)
cols <- heat.colors(12)[12:1]
par(mar=c(5.1, 4.1, 4.1, 3.1))

plot_cols(mat2cols(data, col=cols))
heat_legend(data, cols); box(lwd=2)

IMIFA_news Show the NEWS file

Description

Show the NEWS file of the IMIFA package.

Usage

IMIFA_news()

Value

The IMIFA NEWS file, provided the session is interactive.

Examples

IMIFA_news()

is.cols 23

is.cols Check for Valid Colours

Description

Checks if the supplied vector contains valid colours.

Usage

is.cols(cols)

Arguments

cols A vector of colours, usually as a character string.

Value

A logical vector of length length(cols) which is TRUE for entries which are valid colours and
FALSE otherwise.

Examples

all(is.cols(1:5))

all(is.cols(heat.colors(30)))

any(!is.cols(c("red", "green", "aquamarine")))

is.posi_def Check Positive-(Semi)definiteness of a matrix

Description

Tests whether all eigenvalues of a symmetric matrix are positive (or strictly non-negative) to check
for positive-definiteness and positive-semidefiniteness, respectively. If the supplied matrix doesn’t
satisfy the test, the nearest matrix which does can optionally be returned.

Usage

is.posi_def(x,
tol = NULL,
semi = FALSE,
make = FALSE)

24 Ledermann

Arguments

x A matrix, assumed to be real and symmetric.

tol Tolerance for singular values and for absolute eigenvalues - only those with
values larger than tol are considered non-zero.
(default: tol = max(dim(x))*max(E)*.Machine$double.eps, where E is the
vector of absolute eigenvalues).

semi Logical switch to test for positive-semidefiniteness when TRUE or positive-definiteness
when FALSE (the default).

make Logical switch to return the nearest matrix which satisfies the test - if the test
has been passed, this is of course just x itself, otherwise the nearest positive-
(semi)definite matrix. Note that for reasons due to finite precision arithmetic,
finding the nearest positive-definite and nearest positive-semidefinite matrices
are effectively equivalent tasks.

Value

If isTRUE(make), a list with two components:

check A logical value indicating whether the matrix satisfies the test.

X.new The nearest matrix which satisfies the test (which may just be the input matrix
itself.)

Otherwise, only the logical value indicating whether the matrix satisfies the test is returned.

Examples

x <- cov(matrix(rnorm(100), nrow=10, ncol=10))
is.posi_def(x) #FALSE
is.posi_def(x, semi=TRUE) #TRUE

Xnew <- is.posi_def(x, semi=FALSE, make=TRUE)$X.new
identical(x, Xnew) #FALSE
identical(x, is.posi_def(x, semi=TRUE, make=TRUE)$X.new) #TRUE

Ledermann Ledermann Bound

Description

Returns the maximum number of latent factors in a factor analysis model for data of dimension
P which actually achieves dimension reduction in terms of the number of covariance parameters.
This Ledermann bound is given by the largest integer smaller than or equal to the solution k of
(M − k)2 ≥M + k.

Usage

Ledermann(P,
isotropic = FALSE)

ltrgamma 25

Arguments

P Integer number of variables in data set. This argument is vectorised.

isotropic Logical indicating whether uniquenesses are constrained to be isotropic, in which
case the bound is simply P − 1. Defaults to FALSE.

Value

The Ledermann bound, a non-negative integer, or a vector of length(P) such bounds.

Examples

Ledermann(c(25, 50, 100))

data(olive)
Ledermann(ncol(olive[,-c(1,2)]))

ltrgamma Left Truncated Gamma Distributions

Description

Functions to draw pseudo-random numbers from, or calculate the expectation of, left-truncated
gamma distributions (see Details below).

Usage

rltrgamma(n,
shape,
rate = 1,
trunc = 1)

exp_ltrgamma(shape,
rate = 1,
trunc = 1,
inverse = FALSE)

Arguments

n Number of observations to generate.

shape Shape parameter for the desired gamma distribution. Must be strictly positive

rate Rate parameter for the desired gamma distribution. Must be strictly positive.

trunc The point of left truncation (corresponding to τ below). Defaults to 1. Must be
non-negative. When inverse is TRUE, this becomes the point of right truncation.

inverse A logical indicating whether to calculate the expectation for a right-truncated
inverse gamma distribution instead of a left-truncated gamma distribution. De-
faults to FALSE.

26 ltrgamma

Details

The left-truncated gamma distribution has PDF:

f(x|α, β) =
βα

(Γ(α)− Γ(α, τβ))
xα−1e−xβ

for 0 ≤ τ ≤ x, and min(τ, β) > 0, where α and β are the shape and rate parameters, respectively,
τ is the cutoff point at which truncation occurs, and Γ(α, τβ) is the upper incomplete gamma
function.

Value

For rltrgamma, a vector of length n giving draws from the left-truncated gamma distribution with
the specified shape and rate parameters, and truncation point trunc.

For exp_ltrgamma, the expected value of a left-truncated (inverse) gamma distribution.

Note

rltrgamma is invoked internally for the "IFA", "MIFA", "OMIFA", and "IMIFA" models to draw
column shrinkage parameters for all but the first loadings column under the MGP prior when
truncated=TRUE (which is not the default) is supplied to mgpControl, at the expense of slightly
longer run times. exp_ltrgamma is used within MGP_check to check the validity of the MGP hyper-
parameters when truncated=TRUE (which is again, not the default). Both functions always assume
trunc=1 for these internal usages.

Note also that no arguments are recycled, i.e. all arguments must be of length 1.

Author(s)

Keefe Murphy - <<keefe.murphy@mu.ie>>

References

Dagpunar, J. S. (1978) Sampling of variates from a truncated gamma distribution, Statistical Com-
putation and Simulation, 8(1): 59-64.

See Also

mgpControl, MGP_check

Examples

Generate left-truncated Ga(3.1, 2.1, 1) variates
rltrgamma(n=10, shape=3.1, rate=2.1)

Calculate the expectation of a Ga(3.1, 2.1, 1) distribution
exp_ltrgamma(shape=3.1, rate=2.1)

Calculate the expectation of an inverse gamma distribution right-truncated at 2
exp_ltrgamma(shape=3.1, rate=2.1, trunc=2, inverse=TRUE)

mat2cols 27

mat2cols Convert a numeric matrix to colours

Description

Converts a matrix to a hex colour code representation for plotting using plot_cols. Used internally
by plot.Results_IMIFA for plotting posterior mean loadings heatmaps.

Usage

mat2cols(mat,
cols = NULL,
compare = FALSE,
byrank = FALSE,
breaks = NULL,
na.col = "#808080FF",
transparency = 1,
...)

Arguments

mat Either a matrix or, when compare is TRUE, a list of matrices.

cols The colour palette to be used. The default palette uses viridis. Will be checked
for validity by is.cols.

compare Logical switch used when desiring comparable colour representations (usually
for comparable heat maps) across multiple matrices. Ensures plots will be cal-
ibrated to a common colour scale so that, for instance, the colour on the heat
map of an entry valued at 0.7 in Matrix A corresponds exactly to the colour of
a similar value in Matrix B. When TRUE, mat must be supplied as a list of ma-
trices, which must have either the same number of rows, or the same number of
columns.

byrank Logical indicating whether to convert the matrix itself or the sample ranks of the
values therein. Defaults to FALSE.

breaks Number of gradations in colour to use. Defaults to length(cols). Alterna-
tively, a vector of breakpoints for use with cut.

na.col Colour to be used to represent missing data. Will be checked for validity by
is.cols.

transparency A factor in [0, 1] modifying the opacity for overplotted lines. Defaults to 1
(i.e. no transparency). Only relevant when cols is not supplied, otherwise the
supplied cols must already be adjusted for transparency.

... Catches unused arguments.

Value

A matrix of hex colour code representations, or a list of such matrices when compare is TRUE.

28 mcmc_IMIFA

See Also

plot_cols, heat_legend, is.cols, cut

Examples

Generate a colour matrix using mat2cols()
mat <- matrix(rnorm(100), nrow=10, ncol=10)
mat[2,3] <- NA
cols <- heat.colors(12)[12:1]
(matcol <- mat2cols(mat, cols=cols))

Use plot_cols() to visualise the colours matrix
par(mar=c(5.1, 4.1, 4.1, 3.1))
plot_cols(matcol)

Add a legend using heat_legend()
heat_legend(mat, cols=cols); box(lwd=2)

Try comparing heat maps of multiple matrices
mat1 <- cbind(matrix(rnorm(100, sd=c(4,2)), nr=50, nc=2, byrow=TRUE), 0.1)
mat2 <- cbind(matrix(rnorm(150, sd=c(7,5,3)), nr=50, nc=3, byrow=TRUE), 0.1)
mat3 <- cbind(matrix(rnorm(50, sd=1), nr=50, nc=1, byrow=TRUE), 0.1)
mats <- list(mat1, mat2, mat3)
colmats <- mat2cols(mats, cols=cols, compare=TRUE)
par(mfrow=c(2, 3), mar=c(1, 2, 1, 2))

Use common palettes (top row)
plot_cols(colmats[[1]]); heat_legend(range(mats), cols=cols); box(lwd=2)
plot_cols(colmats[[2]]); heat_legend(range(mats), cols=cols); box(lwd=2)
plot_cols(colmats[[3]]); heat_legend(range(mats), cols=cols); box(lwd=2)

Use uncommon palettes (bottom row)
plot_cols(mat2cols(mat1, cols=cols)); heat_legend(range(mat1), cols=cols); box(lwd=2)
plot_cols(mat2cols(mat2, cols=cols)); heat_legend(range(mat2), cols=cols); box(lwd=2)
plot_cols(mat2cols(mat3, cols=cols)); heat_legend(range(mat3), cols=cols); box(lwd=2)

mcmc_IMIFA Adaptive Gibbs Sampler for Nonparametric Model-based Clustering
using models from the IMIFA family

Description

Carries out Gibbs sampling for all models from the IMIFA family, facilitating model-based cluster-
ing with dimensionally reduced factor-analytic covariance structures, with automatic estimation of
the number of clusters and cluster-specific factors as appropriate to the method employed. Factor
analysis with one group (FA/IFA), finite mixtures (MFA/MIFA), overfitted mixtures (OMFA/OMIFA),
infinite factor models which employ the multiplicative gamma process (MGP) shrinkage prior
(IFA/MIFA/OMIFA/IMIFA), and infinite mixtures which employ Pitman-Yor / Dirichlet Process
Mixture Models (IMFA/IMIFA) are all provided.

mcmc_IMIFA 29

Usage

mcmc_IMIFA(dat,
method = c("IMIFA", "IMFA",

"OMIFA", "OMFA",
"MIFA", "MFA",
"IFA", "FA",
"classify"),

range.G = NULL,
range.Q = NULL,
MGP = mgpControl(...),
BNP = bnpControl(...),
mixFA = mixfaControl(...),
alpha = NULL,
storage = storeControl(...),
...)

S3 method for class 'IMIFA'
print(x,

...)

S3 method for class 'IMIFA'
summary(object,

...)

Arguments

dat A matrix or data frame such that rows correspond to observations (N) and columns
correspond to variables (P). Non-numeric variables will be discarded if they are
explicitly coded as factors or ordinal factors; otherwise they will be treated as
though they were continuous. Rows with missing entries will be also be auto-
matically removed.

method An acronym for the type of model to fit where:

"FA" Factor Analysis
"IFA" Infinite Factor Analysis
"MFA" Mixtures of Factor Analysers
"MIFA" Mixtures of Infinite Factor Analysers
"OMFA" Overfitted Mixtures of Factor Analysers
"OMIFA" Overfitted Mixtures of Infinite Factor Analysers
"IMFA" Infinite Mixtures of Factor Analysers
"IMIFA" Infinite Mixtures of Infinite Factor Analysers

In principle, of course, one could overfit the "MFA" or "MIFA" models, but it
is recommend to use the corresponding model options which begin with ‘O’
instead. Note that the "classify" method is not yet implemented.

range.G Depending on the method employed, either the range of values for the number
of clusters, or the conservatively high starting value for the number of clusters.
Defaults to (and must be!) 1 for the "FA" and "IFA" methods. For the "MFA"

30 mcmc_IMIFA

and "MIFA" models this is to be given as a range of candidate models to ex-
plore. For the "OMFA", "OMIFA", "IMFA", and "IMIFA" models, this is the con-
servatively high number of clusters with which the chain is to be initialised (de-
fault = max(25, ceiling(3 * log(N))) for large N, or min(N-1, ceiling(3 *
log(N))) for small N<=50).
For the "OMFA", and "OMIFA" models this upper limit remains fixed for the entire
length of the chain; the upper limit for the for the "IMFA" and "IMIFA" models
can be specified via trunc.G (see bnpControl), which must satisfy range.G <=
trunc.G < N.
If length(range.G) * length(range.Q) is large, consider not storing unnec-
essary parameters (via storeControl), or breaking up the range of models to
be explored into chunks and sending each chunk to get_IMIFA_results sepa-
rately.

range.Q Depending on the method employed, either the range of values for the number
of latent factors or, for methods ending in IFA, the conservatively high starting
value for the number of cluster-specific factors, in which case the default starting
value is round(3 * log(P)).
For methods ending in IFA, different clusters can be modelled using different
numbers of latent factors (incl. zero); for methods not ending in IFA it is possi-
ble to fit zero-factor models, corresponding to simple diagonal covariance struc-
tures. For instance, fitting the "IMFA" model with range.Q=0 corresponds to a
vanilla Pitman-Yor / Dirichlet Process Mixture Model.
If length(range.G) * length(range.Q) is large, consider not storing unnec-
essary parameters (via storeControl), or breaking up the range of models to
be explored into chunks and sending each chunk to get_IMIFA_results.
See Ledermann for bounds on range.Q; this is useful in both the finite factor and
infinite factor settings, as one may wish to ensure the fixed number of factors, or
upper limits on the number of factors, respectively, respects this bound to yield
indentifiable solutions, particularly in low-dimensional settings.

MGP A list of arguments pertaining to the multiplicative gamma process (MGP) shrink-
age prior and adaptive Gibbs sampler (AGS). For use with the infinite factor
models "IFA", "MIFA", "OMIFA", and "IMIFA" only. Defaults are set by a call
to mgpControl, with further checking of validity by MGP_check (though argu-
ments can also be supplied here directly).

BNP A list of arguments pertaining to the Bayesian Nonparametric Pitman-Yor /
Dirichlet process priors, for use with the infinite mixture models "IMFA" and
"IMIFA", or select arguments related to the Dirichlet concentration parameter
for the overfitted mixtures "OMFA" and "OMIFA". Defaults are set by a call to
bnpControl (though arguments can also be supplied here directly).

mixFA A list of arguments pertaining to all other aspects of model fitting, e.g. MCMC
settings, cluster initialisation, and hyperparameters common to every method in
the IMIFA family. Defaults are set by a call to mixfaControl (though arguments
can also be supplied here directly).

alpha Depending on the method employed, either the hyperparameter of the Dirichlet
prior for the cluster mixing proportions, or the Pitman-Yor / Dirichlet process
concentration parameter. Defaults to 1 for the finite mixture models "MFA" and

mcmc_IMIFA 31

"MIFA", and must be a strictly positive scalar. Not relevant for the "FA" and
"IFA" methods.

Under the "IMFA" and "IMIFA" models: alpha defaults to a simulation from
the prior if learn.alpha is TRUE, otherwise alpha must be specified. Must
be positive, unless non-zero discount is supplied or learn.d=TRUE (the
default), in which case it must be greater than -discount. Under certain
conditions, alpha can remain fixed at 0 (see bnpControl). Additionally,
when discount is negative, alpha must be a positive integer multiple of
abs(discount) (default=range.G * abs(discount)).

Under the "OMFA" and "OMIFA" models: alpha defaults to a simulation from
the prior if learn.alpha is TRUE, otherwise alpha defaults to 0.5/range.G.
If supplied, alpha must be positive, and you are supplying the numerator
of alpha/range.G.
If alpha remains fixed (i.e. learn.alpha=FALSE), alpha should be less
than half the dimension (per cluster!) of the free parameters of the small-
est model considered in order to ensure superfluous clusters are emptied
(for "OMFA", this corresponds to the smallest range.Q; for "OMIFA", this
corresponds to a zero-factor model) [see: PGMM_dfree and Rousseau and
Mengersen (2011)].

See bnpControl for further details of specifying alpha or specifying a prior for
alpha under the "IMFA", "IMIFA", "OMFA", or "OMIFA" methods.

storage A vector of named logical indicators governing storage of parameters of interest
for all models in the IMIFA family. Defaults are set by a call to storeControl.
It may be useful not to store certain parameters if memory is an issue.

... An alternative means of passing control parameters directly via the named ar-
guments of mixfaControl, mgpControl, bnpControl, and storeControl. Do
not pass the output from calls to those functions here!

x, object Object of class "IMIFA", for the print.IMIFA and summary.IMIFA functions,
respectively.

Details

Creates a raw object of class "IMIFA" from which the optimal/modal model can be extracted by
get_IMIFA_results. Dedicated print and summary functions exist for objects of class "IMIFA".

Value

A list of lists of lists of class "IMIFA" to be passed to get_IMIFA_results. If the returned object
is x, candidate models are accessible via subsetting, where x is of the following form:

x[[1:length(range.G)]][[1:length(range.Q)]].

However, these objects of class "IMIFA" should rarely if ever be manipulated by hand - use of the
get_IMIFA_results function is strongly advised.

Note

Further control over the specification of advanced function arguments can be obtained with recourse
to the following functions:

32 mcmc_IMIFA

• mgpControl - Supply arguments (with defaults) pertaining to the multiplicative gamma pro-
cess (MGP) shrinkage prior and adaptive Gibbs sampler (AGS). For use with the infinite factor
models "IFA", "MIFA", "OMIFA", and "IMIFA" only.

• bnpControl - Supply arguments (with defaults) pertaining to the Bayesian Nonparametric
Pitman-Yor / Dirichlet process priors, for use with the infinite mixture models "IMFA" and
"IMIFA". Certain arguments related to the Dirichlet concentration parameter for the overfitted
mixtures "OMFA" and "OMIFA" can be supplied in this manner also.

• mixfaControl - Supply arguments (with defaults) pertaining to all other aspects of model
fitting (e.g. MCMC settings, cluster initialisation, and hyperparameters common to every
method in the IMIFA family.

• storeControl - Supply logical indicators governing storage of parameters of interest for all
models in the IMIFA family. It may be useful not to store certain parameters if memory is
an issue (e.g. for large data sets or for a large number of MCMC iterations after burnin and
thinning).

Note however that the named arguments of these functions can also be supplied directly. Parameter
starting values are obtained by simulation from the relevant prior distribution specified in these
control functions, though initial means and mixing proportions are computed empirically.

Author(s)

Keefe Murphy - <<keefe.murphy@mu.ie>>

References

Murphy, K., Viroli, C., and Gormley, I. C. (2020) Infinite mixtures of infinite factor analysers,
Bayesian Analysis, 15(3): 937-963. <doi:10.1214/19-BA1179>.

Bhattacharya, A. and Dunson, D. B. (2011) Sparse Bayesian infinite factor models, Biometrika,
98(2): 291-306.

Kalli, M., Griffin, J. E. and Walker, S. G. (2011) Slice sampling mixture models, Statistics and
Computing, 21(1): 93-105.

Rousseau, J. and Mengersen, K. (2011) Asymptotic Behaviour of the posterior distribution in over-
fitted mixture models, Journal of the Royal Statistical Society: Series B (Statistical Methodology),
73(5): 689-710.

McNicholas, P. D. and Murphy, T. B. (2008) Parsimonious Gaussian mixture models, Statistics and
Computing, 18(3): 285-296.

See Also

get_IMIFA_results, mixfaControl, mgpControl, bnpControl, storeControl, Ledermann

Examples

data(olive)
data(coffee)

Fit an IMIFA model to the olive data. Accept all defaults.
simIMIFA <- mcmc_IMIFA(olive, method="IMIFA")

https://projecteuclid.org/euclid.ba/1570586978

mgpControl 33

summary(simIMIFA)

Fit an IMIFA model assuming a Pitman-Yor prior.
Control the balance between the DP and PY priors using the kappa parameter.
simPY <- mcmc_IMIFA(olive, method="IMIFA", kappa=0.75)
summary(simPY)

Fit a MFA model to the scaled olive data, with isotropic uniquenesses (i.e. MPPCA).
Allow diagonal covariance as a special case where range.Q = 0.
Don't store the scores. Accept all other defaults.
simMFA <- mcmc_IMIFA(olive, method="MFA", n.iters=10000, range.G=3:6, range.Q=0:3,
score.switch=FALSE, centering=FALSE, uni.type="isotropic")

Fit a MIFA model to the centered & scaled coffee data, w/ cluster labels initialised by K-Means.
Note that range.Q doesn't need to be specified. Allow IFA as a special case where range.G=1.
simMIFA <- mcmc_IMIFA(coffee, method="MIFA", n.iters=10000, range.G=1:3, z.init="kmeans")

Fit an IFA model to the centered and pareto scaled olive data.
Note that range.G doesn't need to be specified. We can optionally supply a range.Q starting value.
Enforce additional shrinkage using alpha.d1, alpha.d2, prop, and eps (via mgpControl()).
simIFA <- mcmc_IMIFA(olive, method="IFA", n.iters=10000, range.Q=4, scaling="pareto",
alpha.d1=2.5, alpha.d2=4, prop=0.6, eps=0.12)

Fit an OMIFA model to the centered & scaled coffee data.
Supply a sufficiently small alpha value. Try varying other hyperparameters.
Accept the default value for the starting number of factors,
but supply a value for the starting number of clusters.
Try constraining uniquenesses to be common across both variables and clusters.
simOMIFA <- mcmc_IMIFA(coffee, method="OMIFA", range.G=10, psi.alpha=3,
phi.hyper=c(2, 1), alpha=0.8, uni.type="single")

mgpControl Control settings for the MGP prior and AGS for infinite factor models

Description

Supplies a list of arguments for use in mcmc_IMIFA pertaining to the use of the multiplicative gamma
process (MGP) shrinkage prior and adaptive Gibbs sampler (AGS) for use with the infinite factor
models "IFA", "MIFA", "OMIFA", and "IMIFA".

Usage

mgpControl(alpha.d1 = 2.1,
alpha.d2 = 3.1,
phi.hyper = c(3, 2),
sigma.hyper = c(3, 2),
prop = 0.7,
eps = 0.1,
adapt = TRUE,

34 mgpControl

forceQg = FALSE,
cluster.shrink = TRUE,
truncated = FALSE,
b0 = 0.1,
b1 = 5e-05,
beta.d1 = 1,
beta.d2 = 1,
start.AGS = 2L,
stop.AGS = Inf,
delta0g = FALSE,
...)

Arguments

alpha.d1 Shape hyperparameter of the column shrinkage on the first column of the load-
ings according to the MGP shrinkage prior. Passed to MGP_check to ensure
validity. Defaults to 2.1.

alpha.d2 Shape hyperparameter of the column shrinkage on the subsequent columns of
the loadings according to the MGP shrinkage prior. Passed to MGP_check to
ensure validity. Defaults to 3.1.

phi.hyper A vector of length 2 giving the shape and rate hyperparameters for the gamma
prior on the local shrinkage parameters. Passed to MGP_check to ensure validity.
Defaults to c(3, 2). It is suggested that the rate be <= shape minus 1 to induce
local shrinkage, though the cumulative shrinkage property is unaffected by these
hyperparameters. Excessively small values may lead to critical numerical issues
and should thus be avoided; indeed it is suggested that the shape be >=1.

sigma.hyper A vector of length 2 giving the shape and rate hyperparameters for the gamma
prior on the cluster shrinkage parameters. Passed to MGP_check to ensure valid-
ity. Defaults to c(3, 2). Again, it is suggested that the shape be >= 1. Only rele-
vant for the "IMIFA", "OMIFA", and "MIFA" methods when isTRUE(cluster.shrink).

prop Proportion of loadings elements within the neighbourhood eps of zero necessary
to consider a loadings column redundant. Defaults to floor(0.7 * P)/P, where
P is the number of variables in the data set. However, if the data set is univariate
or bivariate, the default is 0.5 (see Note).

eps Neighbourhood epsilon of zero within which a loadings entry is considered neg-
ligible according to prop. Defaults to 0.1. Must be positive.

adapt A logical value indicating whether adaptation of the number of cluster-specific
factors is to take place when the MGP prior is employed. Defaults to TRUE.
Specifying FALSE and supplying range.Q within mcmc_IMIFA provides a means
to either approximate the infinite factor model with a fixed high truncation level,
or to use the MGP prior in a finite factor context, however this is NOT recom-
mended for the "OMIFA" and "IMIFA" methods.

forceQg A logical indicating whether the upper limit on the number of cluster-specific
factors Q is also cluster-specific. Defaults to FALSE: when TRUE, the number of
factors in each cluster is kept below the number of observations in each cluster,
in addition to the bound defined by range.Q. Only relevant for the "IMIFA",

mgpControl 35

"OMIFA", and "MIFA" methods, and only invoked when adapt is TRUE. May be
useful for low-dimensional data sets for which identifiable solutions are desired.

cluster.shrink A logical value indicating whether to place the prior specified by sigma.hyper
on the cluster shrinkage parameters. Defaults to TRUE. Specifying FALSE is
equivalent to fixing all cluster shrinkage parameters to 1. Only relevant for the
"IMIFA", "OMIFA", and "MIFA" methods. If invoked, the posterior mean cluster
shrinkage factors will be reported.

truncated A logical value indicating whether the version of the MGP prior based on left-
truncated gamma distributions is invoked (see Zhang et al. reference below and
additional relevant documentation in ltrgamma and MGP_check). Defaults to
FALSE. Note that, when TRUE, the expected shrinkage factors for the first load-
ings column are not affected and the conditions needed to pass MGP_check for
the parameters associated with subsequent columns are much less strict. More-
over, more desirable shrinkage properties are easily obtained, at the expense of
slightly longer run times.

b0, b1 Intercept & slope parameters for the exponentially decaying adaptation proba-
bility:
p(iter) = 1/exp(b0 + b1 * (iter - start.AGS)).
Defaults to 0.1 & 0.00005, respectively. Must be non-negative and strictly
positive, respectively, to ensure diminishing adaptation.

beta.d1 Rate hyperparameter of the column shrinkage on the first column of the loadings
according to the MGP shrinkage prior. Passed to MGP_check to ensure validity.
Defaults to 1.

beta.d2 Rate hyperparameter of the column shrinkage on the subsequent columns of the
loadings according to the MGP shrinkage prior. Passed to MGP_check to ensure
validity. Defaults to 1.

start.AGS The iteration at which adaptation under the AGS is to begin. Defaults to burnin
for the "IFA" and "MIFA" methods, defaults to 2 for the "OMIFA" and "IMIFA"
methods, and defaults to 2 for all methods if the data set is univariate or bivariate.
Cannot exceed burnin; thus defaults to the same value as burnin if necessary.

stop.AGS The iteration at which adaptation under the AGS is to stop completely. Defaults
to Inf, such that the AGS is never explicitly forced to stop (thereby overriding
the diminishing adaptation probability after stop.AGS). Must be greater than
start.AGS. The diminishing adaptation probability prior to stop.AGS is still
governed by the arguments b0 and b1.

delta0g Logical indicating whether the alpha.d1 and alpha.d2 hyperparameters can
be cluster-specific. Defaults to FALSE. Only relevant for the "MIFA" method and
only allowed when z.list is supplied within mcmc_IMIFA.

... Catches unused arguments.

Value

A named list in which the names are the names of the arguments related to the MGP and AGS and
the values are the values supplied to the arguments.

36 MGP_check

Note

Certain supplied arguments will be subject to further checks by MGP_check to ensure the cumulative
shrinkage property of the MGP prior holds according to the given parameterisation.

The adaptive Gibbs sampler (AGS) monitors the prop of loadings elements within the neighbour-
hood eps of 0 and discards columns or simulates new columns on this basis. However, if at any
stage the number of group-specific latent factors reaches zero, the decision to add columns is instead
based on a simple binary trial with probability 1-prop, as there are no loadings entries to monitor.

Author(s)

Keefe Murphy - <<keefe.murphy@mu.ie>>

References

Murphy, K., Viroli, C., and Gormley, I. C. (2020) Infinite mixtures of infinite factor analysers,
Bayesian Analysis, 15(3): 937-963. <doi:10.1214/19-BA1179>.

Durante, D. (2017). A note on the multiplicative gamma process, Statistics & Probability Letters,
122: 198-204.

Bhattacharya, A. and Dunson, D. B. (2011) Sparse Bayesian infinite factor models, Biometrika,
98(2): 291-306.

Zhang, X., Dunson, D. B., and Carin, L. (2011) Tree-structured infinite sparse factor model. In
Getoor, L. and Scheffer, T. (Eds.), Proceedings of the 28th International Conference on Machine
Learning, ICML’11, Madison, WI, USA, pp. 785-792. Omnipress.

See Also

mcmc_IMIFA, MGP_check, ltrgamma, mixfaControl, bnpControl, storeControl

Examples

mgpctrl <- mgpControl(phi.hyper=c(2.5, 1), eps=1e-02, truncated=TRUE)

data(olive)
sim <- mcmc_IMIFA(olive, "IMIFA", n.iters=5000, MGP=mgpctrl)

Alternatively specify these arguments directly
sim <- mcmc_IMIFA(olive, "IMIFA", n.iters=5000,
phi.hyper=c(2.5, 1), eps=1e-02, truncated=TRUE)

MGP_check Check the validity of Multiplicative Gamma Process (MGP) hyperpa-
rameters

Description

Checks the hyperparameters for the multiplicative gamma process (MGP) shrinkage prior in order
to ensure that the property of cumulative shrinkage (in expectation) holds, i.e. checks whether
growing mass is assigned to small neighbourhoods of zero as the column index increases.

https://projecteuclid.org/euclid.ba/1570586978

MGP_check 37

Usage

MGP_check(ad1,
ad2,
Q = 3L,
phi.shape = NULL,
phi.rate = NULL,
sigma.shape = NULL,
sigma.rate = NULL,
bd1 = 1,
bd2 = 1,
truncated = FALSE,
inverse = TRUE)

Arguments

ad1, ad2 Shape hyperparameters for δ1 and δk∀k ≥ 2, respectively.

Q Number of latent factors. Defaults to 3, which is enough to check if the cumula-
tive shrinkage property holds. Supply Q if the actual a priori expected shrinkage
factors are of interest.

phi.shape, phi.rate

The shape and rate hyperparameters for the gamma prior on the local shrinkage
parameters. Not necessary for checking if the cumulative shrinkage property
holds, but worth supplying both if the actual a priori expected shrinkage fac-
tors are of interest. The default value(s) depends on the value of inverse, but
are chosen in such a way that the local shrinkage has no effect on the expec-
tation unless both are supplied. Cannot be incorporated into the expectation if
phi.shape < 1 and isTRUE(inverse).

sigma.shape, sigma.rate

The shape and rate hyperparameters for the gamma prior on the cluster shrink-
age parameters. Not necessary for checking if the cumulative shrinkage property
holds, but worth supplying both if the actual a priori expected shrinkage factors
are of interest. The default value(s) depends on the value of inverse, but are
chosen in such a way that the cluster shrinkage has no effect on the expecta-
tion unless both are supplied. Cannot be incorporated into the expectation if
sigma.shape < 1 and isTRUE(inverse).

bd1, bd2 Rate hyperparameters for δ1 and δk∀k ≥ 2, respectively. Both default to 1.

truncated A logical value indicating whether the version of the MGP prior based on left-
truncated gamma distributions is invoked (see ltrgamma and the Zhang et al.
reference below). Defaults to FALSE. Note that, when TRUE, the expected shrink-
age factors for the first loadings column are not affected and the conditions
needed to pass this check for the parameters associated with subsequent columns
are much less strict. Moreover, more desirable shrinkage properties are easily
obtained.

inverse Logical indicator for whether the cumulative shrinkage property is assessed
against the induced Inverse Gamma prior, the default, or in terms of the Gamma
prior (which is incorrect). This is always TRUE when used inside mcmc_IMIFA:
the FALSE option exists only for demonstration purposes.

38 MGP_check

Details

This is called inside mcmc_IMIFA for the "IFA", "MIFA", "OMIFA" and "IMIFA" methods. This
function is vectorised with respect to the arguments ad1, ad2, phi.shape, phi.rate, sigma.shape,
sigma.rate, bd1 and bd2.

Value

A list of length 2 containing the following objects:

• expectation - The vector (or list of vectors) of actual expected a priori shrinkage factors.

• valid - A logical (or vector of logicals) indicating whether the cumulative shrinkage property
holds (in expectation).

Note

It is recommended that ad2 be moderately large relative to ad1, even if valid can sometimes be
TRUE when this is not the case (e.g. when truncated=TRUE). Similarly, satisfying this condition is
no guarantee that valid will be TRUE, unless truncated=TRUE. Therefore, a warning is returned if
ad1 <= ad2, regardless of the value taken by valid, when truncated=FALSE (the default).

Author(s)

Keefe Murphy - <<keefe.murphy@mu.ie>>

References

Murphy, K., Viroli, C., and Gormley, I. C. (2020) Infinite mixtures of infinite factor analysers,
Bayesian Analysis, 15(3): 937-963. <doi:10.1214/19-BA1179>.

Durante, D. (2017). A note on the multiplicative gamma process, Statistics & Probability Letters,
122: 198-204.

Bhattacharya, A. and Dunson, D. B. (2011). Sparse Bayesian infinite factor models, Biometrika,
98(2): 291-306.

Zhang, X., Dunson, D. B., and Carin, L. (2011) Tree-structured infinite sparse factor model. In
Getoor, L. and Scheffer, T. (Eds.), Proceedings of the 28th International Conference on Machine
Learning, ICML’11, Madison, WI, USA, pp. 785-792. Omnipress.

See Also

mcmc_IMIFA, ltrgamma

Examples

Check if expected shrinkage under the MGP increases with the column index (WRONG approach!).
MGP_check(ad1=1.5, ad2=1.8, Q=10, phi.shape=3, inverse=FALSE)$valid #TRUE

Check if the induced IG prior on the MGP column shrinkage parameters
is stochastically increasing, thereby inducing cumulative shrinkage (CORRECT approach!).
MGP_check(ad1=1.5, ad2=1.8, Q=10, phi.shape=3, inverse=TRUE)$valid #FALSE

https://projecteuclid.org/euclid.ba/1570586978

mixfaControl 39

Check again with a parameterisation that IS valid and examine the expected shrinkage values
(shrink <- MGP_check(ad1=1.5, ad2=2.8, Q=10, phi.shape=2, phi.rate=0.5, inverse=TRUE))

Check previously invalid parameterisation again using truncated version of the MGP prior
MGP_check(ad1=1.5, ad2=1.8, Q=10, phi.shape=3, truncated=TRUE)$valid #TRUE

mixfaControl Control settings for the IMIFA family of factor analytic mixtures

Description

Supplies a list of arguments for use in mcmc_IMIFA pertaining to ALL methods in the IMIFA family:
e.g. MCMC settings, cluster initialisation, generic hyperparameters for factor-analytic mixtures,
etc.

Usage

mixfaControl(n.iters = 25000L,
burnin = n.iters/5L,
thinning = 2L,
centering = TRUE,
scaling = c("unit", "pareto", "none"),
uni.type = c("unconstrained", "isotropic",

"constrained", "single"),
psi.alpha = 2.5,
psi.beta = NULL,
mu.zero = NULL,
sigma.mu = 1L,
prec.mu = 0.01,
sigma.l = 1L,
z.init = c("hc", "kmeans", "list", "mclust", "priors"),
z.list = NULL,
equal.pro = FALSE,
uni.prior = c("unconstrained", "isotropic"),
mu0g = FALSE,
psi0g = FALSE,
drop0sd = TRUE,
verbose = interactive(),
...)

Arguments

n.iters The number of iterations to run the sampler for. Defaults to 25000.

burnin The number of burn-in iterations for the sampler. Defaults to n.iters/5. Note
that chains can also be burned in later, using get_IMIFA_results.

thinning The thinning interval used in the simulation. Defaults to 2. No thinning corre-
sponds to 1. Note that chains can also be thinned later, using get_IMIFA_results.

40 mixfaControl

centering A logical value indicating whether mean centering should be applied to the data,
defaulting to TRUE.

scaling The scaling to be applied - one of "unit", "none" or "pareto". Defaults to
"unit".

uni.type This argument specifies the type of constraint, if any, to be placed on the unique-
nesses/idiosyncratic variances, i.e. whether a general diagonal matrix or isotropic
diagonal matrix is to be assumed, and in turn whether these matrices are con-
strained to be equal across clusters. The default "unconstrained" corresponds
to factor analysis (and mixtures thereof), whereas "isotropic" corresponds to
probabilistic principal components analysers (and mixtures thereof).
Constraints may be particularly useful when N <= P, though caution is advised
when employing constraints for any of the infinite factor models, especially
"isotropic" and "single", which may lead to overestimation of the number
of clusters &/or factors if this specification is inappropriate. The four options
correspond to the following 4 parsimonious Gaussian mixture models:

"unconstrained" (UUU) - variable-specific and cluster-specific: Ψg = Ψg .
"isotropic" (UUC) - cluster-specific, equal across variables: Ψg = ψIp.
"constrained" (UCU) - variable-specific, equal across clusters: Ψg = Ψ.
"single" (UCC) - single value equal across clusters and variables: Ψg = ψIp.

The first letter U here corresponds to constraints on loadings (not yet imple-
mented), the second letter corresponds to uniquenesses constrained/unconstrained
across clusters, and the third letter corresponds to the isotropic constraint on
the uniquenesses. Of course, only the third letter is of relevance for the single-
cluster "FA" and "IFA" models, such that "unconstrained" and "constrained"
are equivalent for these models, and so too are "isotropic" and "single".

psi.alpha The shape of the inverse gamma prior on the uniquenesses. Defaults to 2.5. Must
be greater than 1 if psi.beta is not supplied. Otherwise be warned that values
less than or equal to 1 may not bound uniquenesses sufficiently far away from 0,
and the algorithm may therefore terminate. Also, excessively small values may
lead to critical numerical issues and should thus be avoided.

psi.beta The scale of the inverse gamma prior on the uniquenesses. Can be either a single
parameter, a vector of variable specific scales, or (if psi0g is TRUE) a matrix of
variable and cluster-specific scales. If this is not supplied, psi_hyper is invoked
to choose sensible values, depending on the value of uni.prior and the data
size and dimension, for the "MFA" and "MIFA" models only, the value of psi0g.
Excessively small values may lead to critical numerical issues and should thus
be avoided.
Note that optional arguments to psi_hyper can be supplied via the ... construct
here.

mu.zero The mean of the prior distribution for the mean parameter. Either a scalar of a
vector of appropriate dimension. Defaults to the sample mean of the data.

sigma.mu The covariance of the prior distribution for the cluster mean parameters. Always
assumed to be a diagonal matrix, and set to the identity matrix by default. Can
also be a scalar by which the identity is multiplied, a vector of appropriate di-
mension; if supplied as a matrix, only the diagonal elements will be extracted.

mixfaControl 41

Specifying sigma.mu=NULL will use the diagonal entries of the sample covari-
ance matrix: for unit-scaled data this is simply the identity again. See prec.mu
for further control over the hypercovariance in the prior for the means.

prec.mu A scalar controlling the degree of flatness of the prior for the cluster means by
scaling sigma.mu (i.e. multiplying every element of sigma.mu by 1/prec.mu).
Lower values lead to a more diffuse prior. Defaults to 0.01, such that the prior
is relatively non-informative by default. Of course, prec.mu=1 nullifies any
effect of this argument. The user can supply a scaled sigma.mu directly, but
this argument is especially useful when specifying sigma.mu=NULL, such that
the diagonal entries of the sample covariance matrix are used.

sigma.l A scalar controlling the diagonal covariance of the prior distribution for the load-
ings. Defaults to 1, i.e. the identity; otherwise a diagonal matrix with non-zero
entries all equal to sigma.l Only relevant for the finite factor methods.

z.init The method used to initialise the cluster labels. Defaults to model-based ag-
glomerative hierarchical clustering via "hc". Other options include "kmeans"
(with 10 random starts, by default), Mclust via "mclust", random initialisa-
tion via "priors", and a user-supplied "list" (z.list). Not relevant for the
"FA" and "IFA" methods. Arguments for the relevant functions can be passed
via the ... construct. For "hc", VVV is used by default, unless the data is high-
dimensional, in which case the default is EII. The option "priors" may lead to
empty components at initialisation, which will return an error.
In any case, unless z.list is explicitly supplied, or verbose is FALSE, the ini-
tial cluster sizes will be printed to the screen to alert users to potentially bad
initialisiations (e.g. heavily imbalanced initial cluster sizes).

z.list A user supplied list of cluster labels. Only relevant if z.init == "z.list".
equal.pro Logical variable indicating whether or not the mixing mixing proportions are to

be equal across clusters in the model (default = FALSE). Only relevant for the
"MFA" and "MIFA" methods.

uni.prior A switch indicating whether uniquenesses scale hyperparameters are to be "unconstrained"
or "isotropic", i.e. variable-specific or not. "uni.prior" must be "isotropic"
if the last letter of uni.type is C, but can take either value otherwise. Defaults to
correspond to the last letter of uni.type if that is supplied and uni.prior is not,
otherwise defaults to "unconstrained" (though "isotropic" is recommended
when N <= P). Only relevant when psi.beta is not supplied and psi_hyper is
therefore invoked (with optional arguments passable via the ... construct).

mu0g Logical indicating whether the mu.zero hyperparameter can be cluster-specific.
Defaults to FALSE. Only relevant for the "MFA" and "MIFA" methods when
z.list is supplied.

psi0g Logical indicating whether the psi.beta hyperparameter(s) can be cluster-specific.
Defaults to FALSE. Only relevant for the "MFA" and "MIFA" methods when
z.list is supplied, and only allowable when uni.type is one of unconstrained
or isotropic.

drop0sd Logical indicating whether to drop variables with no standard deviation (defaults
to TRUE). This is strongly recommended, especially a) when psi.beta is not
supplied &/or sigma.mu=NULL, and either/both are therefore estimated using
the empirical covariance matrix, &/or b) if some form of posterior predictive
checking is subsequently desired when calling get_IMIFA_results.

42 mixfaControl

verbose Logical indicating whether to print output (e.g. run times) and a progress bar to
the screen while the sampler runs. By default is TRUE if the session is interactive,
and FALSE otherwise. If FALSE, warnings and error messages will still be printed
to the screen, but everything else will be suppressed.

... Also catches unused arguments. A number of optional arguments can be also
supplied here:

• The additional psi_hyper argument beta0, especially when N <= P.
• Additional arguments to be passed to hc (modelName & use only), to Mclust

(modelNames, and the arguments for hc with which Mclust is itself ini-
tialised - modelName & use), or to kmeans (iter.max and nstart only),
depending on the value of z.init.

• Additionally, when z.init="mclust", criterion can be passed here (can
be "icl" or "bic", the default) to control how the optimum Mclust model
to initialise with is determined.

Value

A named list in which the names are the names of the arguments and the values are the values of
the arguments.

Note

Users should be careful to note that data are mean-centered (centering=TRUE) and unit-scaled
(scaling="unit") by default when supplying other parameters among the list above, especially
those related in any way to psi.hyper, or to the other control functions mgpControl and bnpControl.

Author(s)

Keefe Murphy - <<keefe.murphy@mu.ie>>

References

Murphy, K., Viroli, C., and Gormley, I. C. (2020) Infinite mixtures of infinite factor analysers,
Bayesian Analysis, 15(3): 937-963. <doi:10.1214/19-BA1179>.

McNicholas, P. D. and Murphy, T. B. (2008) Parsimonious Gaussian mixture models, Statistics and
Computing, 18(3): 285-296.

See Also

mcmc_IMIFA, psi_hyper, hc, kmeans, Mclust, mgpControl, bnpControl, storeControl

Examples

mfctrl <- mixfaControl(n.iters=200, prec.mu=1E-03, sigma.mu=NULL,
beta0=1, uni.type="constrained")

data(olive)
sim <- mcmc_IMIFA(olive, "IMIFA", mixFA=mfctrl)

https://projecteuclid.org/euclid.ba/1570586978

olive 43

Alternatively specify these arguments directly
sim <- mcmc_IMIFA(olive, "IMIFA", n.iters=200, prec.mu=1E-03,
sigma.mu=NULL, beta0=1, uni.type="constrained")

olive Fatty acid composition of Italian olive oils

Description

Data on the percentage composition of eight fatty acids found by lipid fraction of 572 Italian olive
oils. The data come from three areas; within each area there are a number of constituent regions, of
which there are 9 in total.

Usage

data(olive)

Format

A data frame with 572 observations and 10 columns. The first columns gives the area (one of
Southern Italy, Sardinia, and Northern Italy), the second gives the region, and the remaining 8
columns give the variables. Southern Italy comprises the North Apulia, Calabria, South Apulia,
and Sicily regions, Sardinia is divided into Inland Sardinia and Coastal Sardinia and Northern Italy
comprises the Umbria, East Liguria, and West Liguria regions.

References

Forina, M., Armanino, C., Lanteri, S. and Tiscornia, E. (1983). Classification of olive oils from
their fatty acid composition, In Martens, H. and Russrum Jr., H. (Eds.), Food Research and Data
Analysis, Applied Science Publishers, London, UK, pp. 189-214.

Forina, M. and Tiscornia, E. (1982). Pattern recognition methods in the prediction of Italian olive
oil origin by their fatty acid content, Annali di Chimica, 72:143-155.

Examples

data(olive, package="IMIFA")
pairs(olive[,-(1:2)], col=olive$area)
region <- as.numeric(olive$region)
pairs(olive[,-(1:2)],

col=ifelse(region < 5, 1, ifelse(region < 7, 2, ifelse(region == 9, 4, 3))))

44 pareto_scale

pareto_scale Pareto Scaling

Description

Pareto scaling of a numeric matrix, with or without centering. Observations are scaled by the
square-root of their column-wise standard deviations.

Usage

pareto_scale(x,
centering = TRUE)

Arguments

x A numeric matrix-like object.

centering A logical vector indicating whether centering is to be applied (default=TRUE).

Value

The Pareto scaled version of the matrix x.

Author(s)

Keefe Murphy - <<keefe.murphy@mu.ie>>

References

van den Berg, R. A., Hoefsloot, H. C. J, Westerhuis, J. A., Smilde, A. K., and van der Werf, M.J.
(2006) Centering, scaling, and transformations: improving the biological information content of
metabolomics data. BMC Genomics, 7(142).

Examples

dat <- pareto_scale(olive[,-c(1,2)])

PGMM_dfree 45

PGMM_dfree Estimate the Number of Free Parameters in Finite Factor Analytic
Mixture Models (PGMM)

Description

Estimates the dimension of the ’free’ parameters in fully finite factor analytic mixture models,
otherwise known as Parsimonious Gaussian Mixture Models (PGMM), typically necessary for the
penalty term of various model selection criteria.

Usage

PGMM_dfree(Q,
P,
G = 1L,
method = c("UUU", "UUC", "UCU", "UCC", "CUU", "CUC",

"CCU", "CCC", "CCUU", "UCUU", "CUCU", "UUCU"),
equal.pro = FALSE)

Arguments

Q The number of latent factors (which can be 0, corresponding to a model with
diagonal covariance). This argument is vectorised.

P The number of variables. Must be a single strictly positive integer.

G The number of clusters. This defaults to 1. Must be a single strictly positive
integer.

method By default, calculation assumes the UUU model with unconstrained loadings and
unconstrained diagonal uniquesseses (i.e. the factor analysis model). The seven
other models detailed in McNicholas and Murphy (2008) are given too (of which
currently the first four are accommodated within mcmc_IMIFA). The first letter
denotes whether loadings are constrained/unconstrained across clusters; the sec-
ond letter denotes the same for the uniquenesses; the final letter denotes whether
uniquenesses are in turn constrained to be isotropic. Finally, the 4 extra 4-letter
models from the EPGMM family (McNicholas and Murphy, 2010), are also in-
cluded.

equal.pro Logical variable indicating whether or not the mixing mixing proportions are
equal across clusters in the model (default = FALSE).

Value

A vector of length length(Q) giving the total number of parameters, including means and mixing
proportions, and not only covariance parameters. Set equal.pro to FALSE and subtract G * P from
the result to determine the number of covariance parameters only.

46 plot.Results_IMIFA

Note

This function is used to calculate the penalty terms for the aic.mcmc and bic.mcmc model selection
criteria implemented in get_IMIFA_results for finite factor models (though mcmc_IMIFA currently
only implements the UUU, UUC, UCU, and UCC covariance structures). The function is vectorised with
respect to the argument Q.

Though the function is available for standalone use, note that no checks take place, in order to speed
up repeated calls to the function inside mcmc_IMIFA.

Author(s)

Keefe Murphy - <<keefe.murphy@mu.ie>>

References

McNicholas, P. D. and Murphy, T. B. (2008) Parsimonious Gaussian mixture models, Statistics and
Computing, 18(3): 285-296.

McNicholas, P. D. and Murphy, T. B. (2010) Model-Based clustering of microarray expression data
via latent Gaussian mixture models, Bioinformatics, 26(21): 2705-2712.

See Also

get_IMIFA_results, mcmc_IMIFA

Examples

(UUU <- PGMM_dfree(Q=0:5, P=50, G=3, method="UUU"))
(CCC <- PGMM_dfree(Q=0:5, P=50, G=3, method="CCC", equal.pro=TRUE))

plot.Results_IMIFA Plotting output and parameters of inferential interest for IMIFA and
related models

Description

Plotting output and parameters of inferential interest for IMIFA and related models

Usage

S3 method for class 'Results_IMIFA'
plot(x,

plot.meth = c("all", "correlation", "density", "errors", "GQ",
"means", "parallel.coords", "trace", "zlabels"),

param = c("means", "scores", "loadings", "uniquenesses",
"pis", "alpha", "discount"),

g = NULL,
mat = TRUE,
zlabels = NULL,

plot.Results_IMIFA 47

heat.map = TRUE,
show.last = FALSE,
palette = NULL,
ind = NULL,
fac = NULL,
by.fac = FALSE,
type = c("h", "n", "p", "l"),
intervals = TRUE,
common = TRUE,
partial = FALSE,
titles = TRUE,
transparency = 0.75,
...)

Arguments

x An object of class "Results_IMIFA" generated by get_IMIFA_results.
plot.meth The type of plot to be produced for the param of interest, where correlation

refers to ACF/PACF plots, means refers to posterior means, density, trace and
parallel.coords are self-explanatory. "all" in this case, the default, refers to
"trace", "density", "means", and "correlation". "parallel.coords" is
only available when param is one of "means", "loadings" or "uniquenesses"
- note that this method applies a small amount of horizontal jitter to avoid over-
plotting.
Special types of plots which don’t require a param are:
"GQ" for plotting the posterior summaries of the numbers of clusters/factors, if

available.
"zlabels" for plotting clustering uncertainties - in four different ways (incl.

the posterior confusion matrix) - if clustering has taken place, with or with-
out the clustering labels being supplied via the zlabels argument. If avail-
able, the average similarity matrix, reordered according to the MAP labels,
is shown as a 5-th plot.

"errors" for conducting posterior predictive checking of the appropriateness
of the fitted model by visualising the posterior predictive reconstruction er-
ror (PPRE) &/or histograms comparing the data to replicate draws from
the posterior distribution &/or error metrics quantifying the difference be-
tween the estimated and empirical covariance matrices. The type of plot(s)
produced depends on how the error.metrics argument was supplied to
get_IMIFA_results and what parameters were stored.

The argument g can be used to cycle through the available plots in each case.
ind can also be used to govern which variable is shown for the 2-nd plot.

param The parameter of interest for any of the following plot.meth options: all,
trace, density, means, correlation. The param must have been stored when
mcmc_IMIFA was initially ran. Includes pis for methods where clustering takes
place, and allows posterior inference on alpha (for the "IMFA", "IMIFA", "OMFA",
and "OMIFA" methods) and discount (for the "IMFA" and "IMIFA" methods).
Otherwise "means", "scores", "loadings", and "uniquenesses" can be plot-
ted.

48 plot.Results_IMIFA

g Optional argument that allows specification of exactly which cluster the plot of
interest is to be produced for. If not supplied, the user will be prompted to cycle
through plots for all clusters. Also functions as an index for which plot to return
when plot.meth is GQ, zlabels, or errors in much the same way.

mat Logical indicating whether a matplot is produced (defaults to TRUE). If given
as FALSE, ind is invoked.

zlabels The true labels can be supplied if they are known. If this is not supplied, the
function uses the labels that were supplied, if any, to get_IMIFA_results. Only
relevant when plot.meth = "zlabels". When explicitly supplied, misclassi-
fied observations are highlighted in the first type of uncertainty plot (otherwise
observations whose uncertainty exceed the inverse of the number of clusters are
highlighted). For the second type of uncertainty plot, when zlabels are explic-
itly supplied, the uncertainty of misclassified observations is marked by vertical
lines on the profile plot.

heat.map A logical which controls plotting posterior mean loadings or posterior mean
scores as a heatmap, or else as something akin to link{plot(..., type="h")}.
Only relevant if param = "loadings" (in which case the default is TRUE) or
param = "scores" (in which case the default is FALSE). Heatmaps are produced
with the aid of mat2cols and plot_cols.

show.last A logical indicator which defaults to FALSE, but when TRUE replaces any in-
stance of the posterior mean with the last valid sample. Only relevant when
param is one of "means" "scores", "loadings", "uniquenesses", or "pis"
and plot.meth is one of "all" or "means". Also relevant for "means", "loadings"
and "uniquenesses" when plot.meth is "parallel.coords". When TRUE,
this has the effect of forcing intervals to be FALSE.

palette An optional colour palette to be supplied if overwriting the default palette set
inside the function by viridis is desired. It makes little sense to a supply a
palette when plot.meth="all" and param is one of "scores" or "loadings".

ind Either a single number indicating which variable to plot when param is one of
means or uniquenesses (or plot.meth="errors"), or which cluster to plot
if param is pis. If scores are plotted, a vector of length two giving which
observation and factor to plot; if loadings are plotted, a vector of length two
giving which variable and factor to plot. Will be recycled to length 2 if neces-
sary. Also governs which two factors are displayed on posterior mean plots of
the "scores" when heat.map is FALSE; otherwise only relevant when mat is
FALSE.

fac Optional argument that provides an alternative way to specify ind[2] when mat
is FALSE and param is one of scores or loadings.

by.fac Optionally allows (mat)plotting of scores and loadings by factor - i.e. obser-
vation(s) (scores) or variable(s) (loadings) for a given factor, respectively, con-
trolled by ind or fac) when set to TRUE. Otherwise all factor(s) are plotted for a
given observation or variable when set to FALSE (the default), again controlled
by ind or fac. Only relevant when param is one of scores or loadings.

type The manner in which the plot is to be drawn, as per the type argument to plot.
intervals Logical indicating whether credible intervals around the posterior mean(s) are

to be plotted when is.element(plot.meth, c("all", "means")). Defaults
to TRUE, but can only be TRUE when show.last is FALSE.

plot.Results_IMIFA 49

common Logical indicating whether plots with plot.meth="means" (or the correspond-
ing plots for plot.meth="all") when param is one of "means", "scores",
"loadings", or "uniquenesses" are calibrated to a common scale based on
the range of the param parameters across all clusters (defaults to TRUE, and only
relevant when there are clusters). Otherwise, the only the range corresponding
to the image being plotted is used to determine the scale.
Note that this affects the "loadings" and "scores" plots regardless of the value
of heat.map. An exception is the "scores" plots when plot.meth="means"
and heat.map is FALSE, in which case common defaults to FALSE.

partial Logical indicating whether plots of type "correlation" use the PACF. The de-
fault, FALSE, ensures the ACF is used. Only relevant when plot.meth = "all",
otherwise both plots are produced when plot.meth = "correlation".

titles Logical indicating whether default plot titles are to be used (TRUE), or suppressed
(FALSE).

transparency A factor in [0, 1] modifying the opacity for overplotted lines. Defaults to 0.75,
unless semi-transparency is not supported. Only relevant when palette is not
supplied, otherwise the supplied palette must already be adjusted for trans-
parency.

... Other arguments typically passed to plot or the breaks argument to mat2cols
and heat_legend when heatmaps are plotted.

Value

The desired plot with appropriate output and summary statistics printed to the console screen.

Note

Supplying the argument zlabels does not have the same effect of reordering the sampled parame-
ters as it does if supplied directly to get_IMIFA_results.

When mat is TRUE and by.fac is FALSE (both defaults), the convention for dealing with overplotting
for trace and density plots when param is either scores or loadings is to plot the last factor first,
such that the first factor appears ’on top’.

Author(s)

Keefe Murphy - <<keefe.murphy@mu.ie>>

References

Murphy, K., Viroli, C., and Gormley, I. C. (2020) Infinite mixtures of infinite factor analysers,
Bayesian Analysis, 15(3): 937-963. <doi:10.1214/19-BA1179>.

See Also

mcmc_IMIFA, get_IMIFA_results, mat2cols, plot_cols

https://projecteuclid.org/euclid.ba/1570586978

50 plot_cols

Examples

See the vignette associated with the package for more graphical examples:
vignette("IMIFA", package = "IMIFA")

data(olive)
simIMIFA <- mcmc_IMIFA(olive, method="IMIFA")
resIMIFA <- get_IMIFA_results(simIMIFA, z.avgsim=TRUE)

Examine the posterior distribution(s) of the number(s) of clusters (G) &/or latent factors (Q)
For the IM(I)FA and OM(I)FA methods, this also plots the trace of the active/non-empty clusters
plot(resIMIFA, plot.meth="GQ")
plot(resIMIFA, plot.meth="GQ", g=2)

Plot clustering uncertainty (and, if available, the similarity matrix)
plot(resIMIFA, plot.meth="zlabels", zlabels=olive$area)

Visualise the posterior predictive reconstruction error
plot(resIMIFA, plot.meth="errors", g=1)

Compare histograms of the data vs. replicate draw from the posterior for the 1st variable
plot(resIMIFA, plot.meth="errors", g=2, ind=1)

Visualise empirical vs. estimated covariance error metrics
plot(resIMIFA, plot.meth="errors", g=3)

Look at the trace, density, posterior mean, and correlation of various parameters of interest
plot(resIMIFA, plot.meth="all", param="means", g=1)
plot(resIMIFA, plot.meth="all", param="means", g=1, ind=2)
plot(resIMIFA, plot.meth="trace", param="scores")
plot(resIMIFA, plot.meth="trace", param="scores", by.fac=TRUE)
plot(resIMIFA, plot.meth="mean", param="loadings", g=1)
plot(resIMIFA, plot.meth="mean", param="loadings", g=1, heat.map=FALSE)
plot(resIMIFA, plot.meth="parallel.coords", param="uniquenesses")
plot(resIMIFA, plot.meth="density", param="pis", intervals=FALSE, partial=TRUE)
plot(resIMIFA, plot.meth="all", param="alpha")
plot(resIMIFA, plot.meth="all", param="discount")

plot_cols Plots a matrix of colours

Description

Plots a matrix of colours as a heat map type image or as points. Intended for joint use with
mat2cols.

Usage

plot_cols(cmat,
na.col = "#808080FF",

plot_cols 51

ptype = c("image", "points"),
border.col = "#808080FF",
dlabels = NULL,
rlabels = FALSE,
clabels = FALSE,
pch = 15,
cex = 3,
label.cex = 0.6,
...)

Arguments

cmat A matrix of valid colours, with missing values coded as NA allowed. Vectors
should be supplied as matrices with 1 row or column, as appropriate.

na.col Colour used for missing NA entries in cmat.

ptype Switch controlling output as either a heat map "image" (the default) or as "points".

border.col Colour of border drawn around the plot.
dlabels, rlabels, clabels

Vector of labels for the diagonals, rows, and columns, respectively.

pch Point type used when ptype="points".

cex Point cex used when ptype="points".

label.cex Govens cex parameter used for labels.

... Further graphical parameters.

Value

Either an "image" or "points" type plot of the supplied colours.

See Also

mat2cols, image, heat_legend, is.cols

Examples

Generate a colour matrix using mat2cols()
mat <- matrix(rnorm(100), nrow=10, ncol=10)
mat[2,3] <- NA
cols <- heat.colors(12)[12:1]
(matcol <- mat2cols(mat, cols=cols))

Use plot_cols() to visualise the colours matrix
par(mar=c(5.1, 4.1, 4.1, 3.1))
plot_cols(matcol)

Add a legend using heat_legend()
heat_legend(mat, cols=cols); box(lwd=2)

Replace colour of exact zero entries:

52 post_conf_mat

Often important to call mat2cols() first (to include 0 in the cuts),
then replace relevant entries with NA for plot_cols(), i.e.
mat[2,3] <- 0
matcol2 <- mat2cols(mat, cols=cols)
plot_cols(replace(matcol2, mat == 0, NA), na.col="blue")
heat_legend(mat, cols=cols); box(lwd=2)

post_conf_mat Posterior Confusion Matrix

Description

For a (N * G) matrix of posterior cluster membership probabilities, this function creates a (G * G)
posterior confusion matrix, whose hk-th entry gives the average probability that observations with
maximum posterior allocation h will be assigned to cluster k.

Usage

post_conf_mat(z, scale = TRUE)

Arguments

z A (N * G) matrix of posterior cluster membership probabilities whose (ig)-th en-
try gives the posterior probability that observation i belongs to cluster g. Entries
must be valid probabilities in the interval [0,1]; missing values are not allowed.
Otherwise, a list of such matrices can be supplied, where each matrix in the list
has the same dimensions.

scale A logical indicator whether the PCM should be rescaled by its row sums. When
TRUE (the default), the benchmark matrix for comparison is the identity matrix
of order G, corresponding to a situation with no uncertainty in the clustering.
When FALSE, the row sums give the number of observations in each cluster.

Value

A (G * G) posterior confusion matrix, whose hk-th entry gives the average probability that observa-
tions with maximum posterior allocation h will be assigned to cluster k. When scale=TRUE, the
benchmark matrix for comparison is the identity matrix of order G, corresponding to a situation with
no uncertainty in the clustering.

Author(s)

Keefe Murphy - <<keefe.murphy@mu.ie>>

References

Ranciati, S., Vinciotti, V. and Wit, E., (2017) Identifying overlapping terrorist cells from the No-
ordin Top actor-event network, Annals of Applied Statistics, 14(3): 1516-1534.

Procrustes 53

See Also

get_IMIFA_results

Examples

data(olive)
sim <- mcmc_IMIFA(olive, n.iters=1000)
res <- get_IMIFA_results(sim)
(PCM <- post_conf_mat(res$Clust$post.prob))

par(mar=c(5.1, 4.1, 4.1, 3.1))
PCM <- replace(PCM, PCM == 0, NA)
plot_cols(mat2cols(PCM, col=heat.colors(30, rev=TRUE), na.col=par()$bg)); box(lwd=2)
heat_legend(PCM, cols=heat.colors(30, rev=TRUE))
par(mar=c(5.1, 4.1, 4.1, 2.1))

Procrustes Procrustes Transformation

Description

This function performs a Procrustes transformation on a matrix X to minimize the squared distance
between X and another comparable matrix Xstar.

Usage

Procrustes(X,
Xstar,
translate = FALSE,
dilate = FALSE,
sumsq = FALSE)

Arguments

X The matrix to be transformed.

Xstar The target matrix.

translate Logical value indicating whether X should be translated (defaults to FALSE).

dilate Logical value indicating whether X should be dilated (defaults to FALSE).

sumsq Logical value indicating whether the sum of squared differences between X and
Xstar should be calculated and returned.

54 Procrustes

Details

R, tt, and d are chosen so that:

d×XR + 11t> ≈ X?

X.new is given by:

Xnew = d×XR + 11t>

Value

A list containing:

X.new The matrix that is the Procrustes transformed version of X.

R The rotation matrix.

t The translation vector (if isTRUE(translate)).

d The scaling factor (is isTRUE(dilate)).

ss The sum of squared differences (if isTRUE(sumsq)).

Note

X is padded out with columns containing 0 if it has fewer columns than Xstar.

References

Borg, I. and Groenen, P. J. F. (1997) Modern Multidimensional Scaling. Springer-Verlag, New
York, NY, USA, pp. 340-342.

Examples

Match two matrices, allowing translation and dilation
mat1 <- diag(rnorm(10))
mat2 <- 0.05 * matrix(rnorm(100), 10, 10) + mat1
proc <- Procrustes(X=mat1, Xstar=mat2, translate=TRUE, dilate=TRUE, sumsq=TRUE)

Extract the transformed matrix, rotation matrix, translation vector and scaling factor
mat_new <- proc$X.new
mat_rot <- proc$R
mat_t <- proc$t
mat_d <- proc$d

Compare the sum of squared differences to a Procrustean transformation with rotation only
mat_ss <- proc$ss
mat_ss2 <- Procrustes(X=mat1, Xstar=mat2, sumsq=TRUE)$ss

psi_hyper 55

psi_hyper Find sensible inverse gamma hyperparameters for vari-
ance/uniqueness parameters

Description

Takes an inverse-Gamma shape hyperparameter, and an inverse covariance matrix (or estimate
thereof), and finds data-driven scale hyperparameters in such a way that Heywood problems are
avoided for factor analysis or probabilistic principal components analysis (and mixtures thereof).

Usage

psi_hyper(shape,
dat,
type = c("unconstrained", "isotropic"),
beta0 = 3,
...)

Arguments

shape A positive shape hyperparameter.

dat The data matrix for which the inverse covariance matrix is to be estimated. If
data are to be centered &/or scaled within mcmc_IMIFA, then dat must also be
standardised in the same way.

type A switch indicating whether a single scale (isotropic) or variable-specific
scales (unconstrained) are to be derived. Both options are allowed under mod-
els in mcmc_IMIFA with "constrained" or "unconstrained" uniquenesses, but only
a single scale can be specified for models with "isotropic" or "single" unique-
nesses.

beta0 See Note below. Must be a strictly positive numeric scalar. Defaults to 3, but
is only invoked when explicitly supplied or when the number of observations
N is not greater than the number of variables P (or when inverting the sample
covariance matrix somehow otherwise fails). In some cases, beta0 should not
be so small as to render the estimate of the inverse unstable.

... Catches unused arguments. Advanced users can also supply the sample covari-
ance matrix of dat, if available, through ... via the argument covar.

Details

Constraining uniquenesses to be isotropic provides the link between factor analysis and the prob-
abilistic PCA model. When used in conjunction with mcmc_IMIFA with "isotropic" or "single"
uniquenesses, type must be isotropic, but for "unconstrained" or "constrained" uniquenesses, it’s
possible to specify either a single scale (type="isotropic") or variable-specific scales (type="unconstrained").

Used internally by mcmc_IMIFA when its argument psi_beta is not supplied.

56 psi_hyper

Value

Either a single scale hyperparameter or ncol(dat) variable-specific scale hyperparameters.

Note

When N > P, where N is the number of observations and P is the number of variables, the inverse of
the sample covariance matrix is used by default.

When N <= P, the inverse either does not exist or the estimate thereof is highly unstable. Thus, an

estimate of the form
(
β0 + N

2

) (
β0Ip + 0.5

∑N
i=1 xix

>
i

)−1
is used instead.

For unstandardised data, the estimate is instead constructed using a standardised version of the data,
and the resulting inverse correlation matrix estimate is scaled appropriately by the diagonal entries
of the sample covariance matrix of the original data.

This estimate can also be used in N > P cases by explicitly supplying beta0. It will also be used if
inverting the sample covariance matrix fails in N > P cases.

The optional argument beta0 can be supplied to mcmc_IMIFA via the control function mixfaControl.

Author(s)

Keefe Murphy - <<keefe.murphy@mu.ie>>

References

Murphy, K., Viroli, C., and Gormley, I. C. (2020) Infinite mixtures of infinite factor analysers,
Bayesian Analysis, 15(3): 937-963. <doi:10.1214/19-BA1179>.

Fruwirth-Schnatter, S. and Lopes, H. F. (2010). Parsimonious Bayesian factor analysis when the
number of factors is unknown, Technical Report. The University of Chicago Booth School of
Business.

Fruwirth-Schnatter, S. and Lopes, H. F. (2018). Sparse Bayesian factor analysis when the number
of factors is unknown, to appear. <arXiv:1804.04231>.

Tipping, M. E. and Bishop, C. M. (1999). Probabilistic principal component analysis, Journal of
the Royal Statistical Society: Series B (Statistical Methodology), 61(3): 611-622.

See Also

mcmc_IMIFA, mixfaControl

Examples

data(olive)
olive2 <- olive[,-(1:2)]
shape <- 2.5
(scale1 <- psi_hyper(shape=shape, dat=olive2))

Try again with scaled data
olive_S <- scale(olive2, center=TRUE, scale=TRUE)

Use the inverse of the sample covariance matrix

https://projecteuclid.org/euclid.ba/1570586978
https://arxiv.org/abs/1804.04231

rDirichlet 57

(scale2 <- psi_hyper(shape=shape, dat=olive_S))

Use the estimated inverse covariance matrix
(scale3 <- psi_hyper(shape=shape, dat=olive_S, beta0=3))

In the normalised example, the mean uniquenesses (given by scale/(shape - 1)),
can be interpreted as the prior proportion of the variance that is idiosyncratic
(prop1 <- scale1/(shape - 1))
(prop2 <- scale2/(shape - 1))

rDirichlet Simulate Mixing Proportions from a Dirichlet Distribution

Description

Generates samples from the Dirichlet distribution with parameter alpha efficiently by simulating
Gamma(alpha, 1) random variables and normalising them.

Usage

rDirichlet(G,
alpha,
nn = 0L)

Arguments

G The number of clusters for which weights need to be sampled.

alpha The Dirichlet hyperparameter, either of length 1 or G. When the length of alpha
is 1, this amounts to assuming an exchangeable prior, which doesn’t favour
one component over another. Be warned that this will be recycled if necessary.
Larger values have the effect of making the returned samples more equal.

nn A vector giving the number of observations in each of G clusters so that Dirich-
let posteriors rather than priors can be sampled from. This defaults to 0, i.e.
simulation from the prior. Must be non-negative. Be warned that this will be
recycled if necessary.

Value

A Dirichlet vector of G weights which sum to 1.

Note

Though the function is available for standalone use, note that few checks take place, in order to
speed up repeated calls to the function inside mcmc_IMIFA. In particular, alpha and nn may be
invisibly recycled.

While small values of alpha have the effect of increasingly concentrating the mass onto fewer
components, note that this function may return NaN for excessively small values of alpha, when
nn=0; see the details of rgamma for small shape values.

58 scores_MAP

References

Devroye, L. (1986) Non-Uniform Random Variate Generation, Springer-Verlag, New York, NY,
USA, p. 594.

Examples

(prior <- rDirichlet(G=5, alpha=1))
(posterior <- rDirichlet(G=5, alpha=1, nn=c(20, 41, 32, 8, 12)))
(asymmetric <- rDirichlet(G=5, alpha=c(3,4,5,1,2), nn=c(20, 41, 32, 8, 12)))

scores_MAP Decompose factor scores by cluster

Description

Takes posterior summaries of the overall factor scores matrix and returns lists of sub-matrices cor-
responding to the G-cluster MAP partition.

Usage

scores_MAP(res,
dropQ = FALSE)

Arguments

res An object of class "Results_IMIFA" generated by get_IMIFA_results.
dropQ A logical indicating whether columns of the factor scores matrix should be

dropped such that the number of columns in each sub-matrix corresponds to
the cluster-specific number of factors (if the number of factors is indeed cluster-
specific). When FALSE (the default), the number of columns instead remains
common to all sub-matrices - given by the largest of the cluster-specific num-
bers of latent factors.
Note that this argument is irrelevant (i.e. always FALSE) for the finite factor
methods ("FA", "MFA", "OMFA", and "IMFA").

Details

Under the models in the IMIFA family, there exists only one factor scores matrix. For the finite
factor methods, this has dimensions N * Q.

For the infinite factor methods ("IFA", "MIFA", "OMIFA", and "IMIFA"), the factor scores matrix
has dimensions N * Qmax, where Qmax is the largest of the cluster-specific numbers of latent factors
q1, . . . , qg . Entries of this matrix thus may have been padded out with zero entries, as appropriate,
prior to the Procrustes rotation-based correction applied within get_IMIFA_results (thus now
these entries will be near-zero).

In partitioning rows of the factor scores matrix into the same clusters the corresponding observations
themselves belong to according to the MAP clustering, the number of columns may vary according
to the cluster-specific numbers of latent factors (depending on the value of dropQ and the method
employed).

shift_GA 59

Value

For models which achieve clustering, a list of lists (say x) decomposing the posterior mean scores
(x$post.eta), the associated variance estimates (x$var.eta) and credible intervals (x$ci.eta),
and the last valid sample of the scores (x$last.eta) into lists of length G, corresponding to the
MAP clustering, with varying or common numbers of cluster-specific factors (depending on the
value of dropQ and the method employed).

For models with only one component, or the "FA" and "IFA" methods, scores cannot be decom-
posed, and posterior summaries of the scores will be returned unchanged.

Author(s)

Keefe Murphy - <<keefe.murphy@mu.ie>>

See Also

get_IMIFA_results

Examples

data(coffee)
sim <- mcmc_IMIFA(coffee, n.iters=1000)
res <- get_IMIFA_results(sim)

Examine the single posterior mean scores matrix
res$Scores$post.eta

Decompose into G matrices, common numbers of columns
eta <- scores_MAP(res)
eta$post.eta

Allow the number of columns be cluster-specific
scores_MAP(res, dropQ=TRUE)$post.eta

shift_GA Moment Matching Parameters of Shifted Gamma Distributions

Description

This function takes shape and rate parameters of a Gamma distribution and modifies them to achieve
the same expected value and variance when the left extent of the support of the distribution is shifted
up or down.

Usage

shift_GA(shape,
rate,
shift = 0,
param = c("rate", "scale"))

60 show_digit

Arguments

shape, rate Shape and rate parameters a and b, respectively, of a Gamma(a, b) distribution.
Both must be strictly positive.

shift Modifier, such that the Gamma distribution has support on (shift,∞). Can be
positive or negative, though typically negative and small.

param Switch controlling whether the supplied rate parameter is indeed a rate, or
actually a scale parameter. Also governs whether the output is given in terms
of rate or scale. Defaults to "rate".

Value

A named vector of length 2, containing the modified shape and rate parameters, respectively.

Note

This function is invoked within mcmc_IMIFA when discount is fixed at a non-zero value and
learn.alpha=TRUE.

Author(s)

Keefe Murphy - <<keefe.murphy@mu.ie>>

Examples

Shift a Ga(shape=4, rate=2) distribution to the left by 1;
achieving the same expected value of 2 and variance of 1.
shift_GA(4, 2, -1)

show_digit Show image of grayscale grid

Description

Plots an image of a grayscale grid representation of a digit.

Usage

show_digit(dat,
col = NULL,
...)

Arguments

dat A matrix or data.frame with the same number of rows and columns (or a
vector which can be coerced to such a format), representing a grayscale map of
a single digit.

col The colour scale to be used. Defaults to grey(seq(1, 0, length = ncol(dat))).
... Additional arguments to be passed to mat2cols and/or plot_cols (e.g. na.col)

when dat is a matrix or image when dat is a vector.

show_IMIFA_digit 61

Value

The desired image representation of the digit.

Author(s)

Keefe Murphy - <<keefe.murphy@mu.ie>>

See Also

USPSdigits, show_IMIFA_digit, mat2cols, plot_cols

Examples

data(USPSdigits)

Plot the first digit
show_digit(USPSdigits$train[1,-1])

Visualise the overall mean
show_digit(colMeans(USPSdigits$train[,-1]))

show_IMIFA_digit Plot the posterior mean image

Description

Plots the posterior mean of a given cluster from an "IMIFA"-related model fit to a digit data set in
the form of a square grayscale grid.

Usage

show_IMIFA_digit(res,
G = 1,
what = c("mean", "last"),
dat = NULL,
ind = NULL,
...)

Arguments

res An object of class "Results_IMIFA" generated by get_IMIFA_results.

G The index of the cluster for which the posterior mean digit is to be represented.

what A switch controlling whether the "mean" or "last" valid sample is to be plotted.

dat The full grayscale grid data set (prior to centering and scaling). Necessary when
ind is supplied or if pixels with standard deviation of 0 exist in the data set
(which will have been automatically removed by mcmc_IMIFA).

62 show_IMIFA_digit

ind The index of columns of dat which were discarded prior to fitting the "IMIFA"-
related model via mcmc_IMIFA. Can be a vector of column indices of dat or an
equivalent vector of logicals. The discarded pixels are replaced by the column-
means corresponding to ind among images assigned to the given cluster G.

... Additional arguments to be passed, via show_digit, to mat2cols and/or plot_cols.

Details

This function is a wrapper to show_digit which supplies the posterior mean digit of a given cluster
from a "IMIFA" model.

Value

The desired image representation of the posterior mean digit (or the last valid sample) from the
desired cluster.

Note

Note that both centering and scaling of the original data prior to modelling is accounted for in
reconstructing the means, but dat, if necessary, must be the raw data prior to pre-processing.

Author(s)

Keefe Murphy - <<keefe.murphy@mu.ie>>

See Also

USPSdigits, show_digit, get_IMIFA_results, mcmc_IMIFA, mat2cols, plot_cols

Examples

Load the USPS data and discard peripheral digits
data(USPSdigits)
ylab <- USPSdigits$train[,1]
train <- USPSdigits$train[,-1]
ind <- apply(train, 2, sd) > 0.7
dat <- train[,ind]

Fit an IMIFA model (warning: quite slow!)
sim <- mcmc_IMIFA(dat, n.iters=1000, prec.mu=1e-03, z.init="kmeans",
centering=FALSE, scaling="none")
res <- get_IMIFA_results(sim, zlabels=ylab)

Examine the posterior mean image of the first two clusters
show_IMIFA_digit(res, dat=train, ind=ind)
show_IMIFA_digit(res, dat=train, ind=ind, G=2)

sim_IMIFA 63

sim_IMIFA Simulate Data from a Mixture of Factor Analysers Structure

Description

Functions to simulate data of any size and dimension from a (infinite) mixture of (infinite) factor
analysers parameterisation or fitted object.

Usage

sim_IMIFA_data(N = 300L,
G = 3L,
P = 50L,
Q = rep(floor(log(P)), G),
pis = rep(1/G, G),
mu = NULL,
psi = NULL,
loadings = NULL,
scores = NULL,
nn = NULL,
loc.diff = 2,
non.zero = P,
forceQg = TRUE,
method = c("conditional", "marginal"))

sim_IMIFA_model(res,
method = c("conditional", "marginal"))

Arguments

N, G, P Desired overall number of observations, number of clusters, and number of vari-
ables in the simulated data set. All must be a single integer.

Q Desired number of cluster-specific latent factors in the simulated data set. Can
be specified either as a single integer if all clusters are to have the same number
of factors, or a vector of length G. Defaults to floor(log(P)) in each cluster.
Should be less than the associated Ledermann bound and the number of observa-
tions in the corresponding cluster. The argument forceQg can be used to enforce
this upper limit.

pis Mixing proportions of the clusters in the data set if G > 1. Must sum to 1.
Defaults to rep(1/G, G).

mu True values of the mean parameters, either as a single value, a vector of length
G, a vector of length P, or a G * P matrix. If mu is missing, loc.diff is invoked
to simulate distinct means for each cluster by default.

psi True values of uniqueness parameters, either as a single value, a vector of length
G, a vector of length P, or a G * P matrix. As such the user can specify unique-
nesses as a diagonal or isotropic matrix, and further constrain uniquenesses

64 sim_IMIFA

across clusters if desired. If psi is missing, uniquenesses are simulated via
1/rgamma(P, 2, 1) within each cluster by default.

loadings True values of the loadings matrix/matrices. Must be supplied in the form of a
list of numeric matrices when G > 1, otherwise a single matrix. Matrices must
contain P rows and the number of columns must correspond to the values in Q.
If loadings are not supplied, such matrices are populated with standard normal
random variates by default (see non.zero).

scores True values of the latent factor scores, as a N * max(Q) numeric matrix. If
scores are not supplied, such a matrix is populated with standard normal ran-
dom variates by default. Only relevant when method="conditional".

nn An alternative way to specify the size of each cluster, by giving the exact number
of observations in each cluster explicitly. Must sum to N.

loc.diff A parameter to control the closeness of the clusters in terms of the difference in
their location vectors. Only relevant if mu is NOT supplied. Defaults to 2.
More specifically, loc.diff (if invoked) is invoked as follows: means are sim-
ulated with the vector of cluster-specific hypermeans given by:
scale(1:G, center=TRUE, scale=FALSE) * loc.diff.

non.zero Controls the number of non-zero entries in each loadings column (per cluster)
only when loadings is not explicitly supplied. Values must be integers in the
interval [1,P]. Defaults to P. The positions of the zeros are randomised, and
non-zero entries are drawn from a standard normal.
Must be given as a list of length G of vectors of length corresponding to Q when
G>1. Can be given either as such a list or simply a vector of length Q when
G=1. Alternatively, a single integer can be supplied, common across all load-
ings columns across all clusters. In any case, non.zero will be affected by
forceQg=TRUE by default (see below).

forceQg A logical indicating whether the upper limit on the number of cluster-specific
factors Q is enforced. Defaults to TRUE for sim_IMIFA_data, but is always FALSE
for sim_IMIFA_model. Note that when forceQg=TRUE is invoked, non.zero
(see above) is also affected.

method A switch indicating whether the mixture to be simulated from is the condi-
tional distribution of the data given the latent variables (default), or simply the
marginal distribution of the data.

res An object of class "Results_IMIFA" generated by get_IMIFA_results.

Details

sim_IMIFA_model is a simple wrapper to sim_IMIFA_data which uses the estimated parameters
of a fitted IMIFA related model, as generated by get_IMIFA_results. The necessary parameters
must have been originally stored via storeControl in the creation of res.

Value

Invisibly returns a data.frame with N observations (rows) of P variables (columns). The true values
of the parameters which generated these data are also stored as attributes.

sim_IMIFA 65

Note

N, G, P & Q will NOT be inferred from the supplied parameters pis, mu, psi, loadings, scores &
nn - rather, the parameters’ length/dimensions must adhere to the supplied values of N, G, P & Q.

Missing values are not allowed in any of pis, mu, psi, loadings, scores & nn.

Author(s)

Keefe Murphy - <<keefe.murphy@mu.ie>>

References

Murphy, K., Viroli, C., and Gormley, I. C. (2020) Infinite mixtures of infinite factor analysers,
Bayesian Analysis, 15(3): 937-963. <doi:10.1214/19-BA1179>.

See Also

mcmc_IMIFA for fitting an IMIFA related model to the simulated data set.

get_IMIFA_results for generating input for sim_IMIFA_model.

Ledermann for details on the upper-bound for Q. Note that this function accounts for isotropic
uniquenesses, if psi is supplied in that manner, in computing this bound.

Examples

Simulate 100 observations from 3 balanced clusters with cluster-specific numbers of latent factors
Specify isotropic uniquenesses within each cluster
Supply cluster means directly
sim_data <- sim_IMIFA_data(N=100, G=3, P=20, Q=c(2, 2, 5), psi=1:3,

mu=matrix(rnorm(60, -2 + 1:3, 1), nrow=20, ncol=3, byrow=TRUE))
names(attributes(sim_data))
labels <- attr(sim_data, "Labels")

Visualise the data in two-dimensions
plot(cmdscale(dist(sim_data), k=2), col=labels)

Examine the overlap with a pairs plot of 5 randomly chosen variables
pairs(sim_data[,sample(1:20, 5)], col=labels)

Fit a MIFA model to this data
tmp <- mcmc_IMIFA(sim_data, method="MIFA", range.G=3, n.iters=5000)

Simulate from this model
res <- get_IMIFA_results(tmp, zlabels=labels)
sim_mod <- sim_IMIFA_model(res)

https://projecteuclid.org/euclid.ba/1570586978

66 storeControl

storeControl Set storage values for use with the IMIFA family of models

Description

Supplies a list of values for logical switches indicating whether parameters of interest (means,
scores, loadings, uniquenesses, and mixing proportions) should be stored when running models
from the IMIFA family via mcmc_IMIFA. It may be useful not to store certain parameters if memory
is an issue.

Usage

storeControl(mu.switch = TRUE,
score.switch = TRUE,
load.switch = TRUE,
psi.switch = TRUE,
pi.switch = TRUE,
update.mu = mu.switch,
...)

Arguments

mu.switch Logical indicating whether the means are to be stored (defaults to TRUE).

score.switch Logical indicating whether the factor scores are to be stored.
As the array containing each sampled scores matrix tends to be amongst the
largest objects to be stored, this defaults to FALSE inside mcmc_IMIFA when
length(range.G) * length(range.Q) > 10, otherwise the default is TRUE. For
the "MIFA", "OMIFA", and "IMIFA" methods, setting this switch to FALSE also
offers a slight speed-up.
Unlike other parameters, the scores need not be stored for posterior predictive
checking (see Note below).

load.switch Logical indicating whether the factor loadings are to be stored (defaults to TRUE).

psi.switch Logical indicating whether the uniquenesses are to be stored (defaults to TRUE).

pi.switch Logical indicating whether the mixing proportions are to be stored (defaults to
TRUE).

update.mu Logical indicating whether the means should be updated. Only relevant for
the "FA" and "IFA" methods when centering=TRUE in mixfaControl, other-
wise means are always updated. Setting update.mu=FALSE forces mu.switch to
FALSE, but mu.switch=FALSE can still be used in conjunction with update.mu=TRUE.

... Catches unused arguments.

Details

storeControl is provided for assigning values for IMIFA models within mcmc_IMIFA. It may be
useful not to store certain parameters if memory is an issue (e.g. for large data sets or for a large
number of MCMC iterations after burnin and thinning).

USPSdigits 67

Value

A named vector in which the names are the names of the storage switches and the values are logicals
indicating whether that parameter is to be stored. The list also contains as an attribute a logical for
each switch indicating whether it was actually supplied (TRUE) or the default was accepted (FALSE).

Note

Posterior inference and plotting won’t be possible for parameters not stored.

Non-storage of parameters will almost surely prohibit the computation of posterior predictive check-
ing error metrics within get_IMIFA_results also. In particular, if such error metrics are desired,
psi.switch must be TRUE for all but the "FA" and "IFA" models, mu.switch must be TRUE ex-
cept in situations where update.mu=FALSE is allowed, load.switch must be TRUE for all but the
entirely zero-factor models, and pi.switch must be TRUE for models with clustering structure and
unequal mixing proportions for all but the PPRE metric. score.switch=TRUE is not required for
any posterior predictive checking.

Finally, if loadings are not stored but scores are, caution is advised when examining posterior scores
as Procrustes rotation will not occur within get_IMIFA_results.

Author(s)

Keefe Murphy - <<keefe.murphy@mu.ie>>

See Also

mcmc_IMIFA, get_IMIFA_results, mixfaControl, mgpControl, bnpControl

Examples

stctrl <- storeControl(score.switch=FALSE)

data(olive)
sim <- mcmc_IMIFA(olive, "IMIFA", n.iters=5000, storage=stctrl)

Alternatively specify these arguments directly
sim <- mcmc_IMIFA(olive, "IMIFA", n.iters=5000, score.switch=FALSE)

USPSdigits USPS handwritten digits

Description

Training and test sets for the United States Postal Service (USPS) handwritten digits data, with 8-bit
16x16 grayscale grid representations of image scans of the digits "0" through "9".

Usage

data(USPSdigits)

68 Zsimilarity

Format

A list of length 2 with the following elements, each one a data.frame:

train The training set of 7,291 digits.

test The test set of 2,007 digits.

Each data.frame contains the known digit labels in its first column.

The remaining 256 columns give the concatenation of the 16x16 grid.

Pixels are scaled such that [-1,1] corresponds to [white,black].

References

Hastie, T., Tibshirani, R., and Friedman, J. (2001). The Elements of Statistical Learning (Second
edition). Springer Series in Statistics. New York, NY, USA: Springer.

See Also

show_digit, show_IMIFA_digit

Examples

Load the data and record the labels
data(USPSdigits, package="IMIFA")
ylab <- USPSdigits$train[,1]
train <- USPSdigits$train[,-1]

Examine the effect of discarding peripheral pixels
SDs <- apply(train, 2, sd)
ind <- SDs > 0.7
dat <- train[,ind]

hist(SDs, breaks=200, xlim=c(0, 1))
rect(0.7, 0, 1, 12, col=2, density=25)

show_digit(ind) # retained pixels are shown in black

Zsimilarity Summarise MCMC samples of clustering labels with a similarity ma-
trix and find the ’average’ clustering

Description

This function takes a Monte Carlo sample of cluster labels, computes an average similarity matrix
and returns the clustering with minimum mean squared error to this average. The mcclust package
must be loaded.

Usage

Zsimilarity(zs)

Zsimilarity 69

Arguments

zs A matrix containing samples of clustering labels where the columns correspond
to the number of observations (N) and the rows correspond to the number of
iterations (M).

Details

This function takes a Monte Carlo sample of cluster labels, converts them to adjacency matrices,
and computes a similarity matrix as an average of the adjacency matrices. The dimension of the
similarity matrix is invariant to label switching and the number of clusters in each sample, desirable
features when summarising partitions of Bayesian nonparametric models such as IMIFA. As a sum-
mary of the posterior clustering, the clustering with minimum mean squared error to this ’average’
clustering is reported.

A heatmap of z.sim may provide a useful visualisation, if appropriately ordered. The user is also
invited to perform hierarchical clustering using hclust after first converting this similarity matrix
to a distance matrix - "complete" linkage is recommended. Alternatively, hc could be used.

Value

A list containing three elements:

z.avg The ’average’ clustering, with minimum squared distance to z.sim.

z.sim The N x N similarity matrix, in a sparse format (see simple_triplet_matrix).

MSE.z A vector of length M recording the MSEs between each clustering and the ’av-
erage’ clustering.

Note

The mcclust package must be loaded.

This is liable to take quite some time to run, especially if the number of observations &/or number
of iterations is large. Depending on how distinct the clusters are, z.sim may be stored better in a
non-sparse format. This function can optionally be called inside get_IMIFA_results.

Author(s)

Keefe Murphy - <<keefe.murphy@mu.ie>>

References

Carmona, C., Nieto-barajas, L. and Canale, A. (2018) Model based approach for household cluster-
ing with mixed scale variables. Advances in Data Analysis and Classification, 13(2): 559-583.

See Also

get_IMIFA_results, simple_triplet_matrix, hclust, hc, comp.psm, cltoSim

70 Zsimilarity

Examples

Run a IMIFA model and extract the sampled cluster labels
data(olive)
sim <- mcmc_IMIFA(olive, method="IMIFA", n.iters=5000)
zs <- sim[[1]][[1]]$z.store

Get the similarity matrix and visualise it
zsimil <- Zsimilarity(zs)
z.sim <- as.matrix(zsimil$z.sim)
z.col <- mat2cols(z.sim, cols=heat.colors(30, rev=TRUE))
z.col[z.sim == 0] <- NA
plot_cols(z.col, na.col=par()$bg); box(lwd=2)

Extract the clustering with minimum squared distance to this
'average' and evaluate its performance against the true labels
table(zsimil$z.avg, olive$area)

Perform hierarchical clustering on the distance matrix
Hcl <- hclust(as.dist(1 - z.sim), method="complete")
plot(Hcl)
table(cutree(Hcl, k=3), olive$area)

Index

∗ IMIFA
get_IMIFA_results, 9
mcmc_IMIFA, 28

∗ control
bnpControl, 4
MGP_check, 36
mgpControl, 33
mixfaControl, 39
storeControl, 66

∗ datasets
coffee, 8
olive, 43
USPSdigits, 67

∗ main
get_IMIFA_results, 9
mcmc_IMIFA, 28
plot.Results_IMIFA, 46

∗ package
IMIFA-package, 3

∗ plotting
G_priorDensity, 19
heat_legend, 21
mat2cols, 27
plot.Results_IMIFA, 46
plot_cols, 50
show_digit, 60
show_IMIFA_digit, 61

∗ utility
G_moments, 17
gumbel_max, 15
IMIFA_news, 22
is.cols, 23
is.posi_def, 23
Ledermann, 24
ltrgamma, 25
pareto_scale, 44
PGMM_dfree, 45
post_conf_mat, 52
Procrustes, 53

psi_hyper, 55
rDirichlet, 57
scores_MAP, 58
shift_GA, 59
sim_IMIFA, 63
Zsimilarity, 68

bnpControl, 4, 30–32, 36, 42, 67

cltoSim, 69
coffee, 8
comp.psm, 69
cut, 27, 28

exp_ltrgamma (ltrgamma), 25

G_calibrate, 20
G_calibrate (G_moments), 17
G_expected, 20
G_expected (G_moments), 17
G_moments, 8, 17, 20
G_priorDensity, 8, 18, 19
G_variance, 20
G_variance (G_moments), 17
get_IMIFA_results, 3, 9, 12, 30–32, 39, 41,

46–49, 58, 59, 61, 62, 64, 65, 67, 69
gumbel_max, 15

hc, 41, 42, 69
hclust, 69
heat_legend, 21, 28, 49, 51
hist, 12

image, 21, 22, 51, 60
IMIFA (IMIFA-package), 3
IMIFA-package, 3
IMIFA_news, 22
is.cols, 21, 22, 23, 27, 28, 51
is.posi_def, 23

kmeans, 41, 42

71

72 INDEX

Ledermann, 24, 30, 32, 63, 65
loadings, 13
ltrgamma, 25, 35–38

mat2cols, 21, 22, 27, 48, 49, 51, 60–62
matplot, 48
mcclust, 12, 68, 69
Mclust, 41, 42
mcmc_IMIFA, 3, 4, 7–12, 14–17, 19, 28, 33–39,

42, 45–47, 49, 55–57, 60–62, 65–67
MGP_check, 26, 30, 34–36, 36
mgpControl, 8, 26, 30–32, 33, 42, 67
mixfaControl, 8, 10, 30–32, 36, 39, 56, 66, 67

norm, 11, 12, 14

olive, 43

pareto_scale, 44
PGMM_dfree, 31, 45
plot, 20, 48, 49
plot.Results_IMIFA, 3, 11–14, 27, 46
plot_cols, 21, 22, 27, 28, 48, 49, 50, 60–62
post_conf_mat, 52
print.IMIFA (mcmc_IMIFA), 28
print.Results_IMIFA

(get_IMIFA_results), 9
Procrustes, 14, 53
psi_hyper, 40–42, 55

rDirichlet, 57
rltrgamma (ltrgamma), 25
Rmpfr, 17, 18, 20
rowLogSumExps, 16

scores_MAP, 13, 14, 58
shift_GA, 59
show_digit, 60, 62, 68
show_IMIFA_digit, 61, 61, 68
sim_IMIFA, 63
sim_IMIFA_data (sim_IMIFA), 63
sim_IMIFA_model, 14
sim_IMIFA_model (sim_IMIFA), 63
simple_triplet_matrix, 69
storeControl, 8, 30–32, 36, 42, 64, 66, 66
summary.IMIFA (mcmc_IMIFA), 28
summary.Results_IMIFA

(get_IMIFA_results), 9

uniroot, 18

USPSdigits, 61, 62, 67

varimax, 11, 12, 14
viridis, 21, 27, 48

Zsimilarity, 11, 14, 68

	IMIFA-package
	bnpControl
	coffee
	get_IMIFA_results
	gumbel_max
	G_moments
	G_priorDensity
	heat_legend
	IMIFA_news
	is.cols
	is.posi_def
	Ledermann
	ltrgamma
	mat2cols
	mcmc_IMIFA
	mgpControl
	MGP_check
	mixfaControl
	olive
	pareto_scale
	PGMM_dfree
	plot.Results_IMIFA
	plot_cols
	post_conf_mat
	Procrustes
	psi_hyper
	rDirichlet
	scores_MAP
	shift_GA
	show_digit
	show_IMIFA_digit
	sim_IMIFA
	storeControl
	USPSdigits
	Zsimilarity
	Index

