
Package ‘LMfilteR’
October 12, 2022

Type Package

Title Filter Methods for Parameter Estimation in Linear and Non Linear
Regression Models

Version 0.1.3

Description We present a method based on filtering algorithms to estimate the parameters of lin-
ear, i.e. the coefficients and the variance of the error term. The proposed algo-
rithms make use of Particle Filters following Ristic, B., Arulampalam, S., Gor-
don, N. (2004, ISBN: 158053631X) resampling methods. Parameters of logistic regression mod-
els are also estimated using an evolutionary particle filter method.

License GPL (>= 2)

Imports MASS (>= 7.3-50), stats (>= 3.5.1)

Depends R (>= 3.6.0)

Encoding UTF-8

LazyData true

BugReports https://github.com/ChrissCod/LMfilteR/issues

RoxygenNote 7.1.1

NeedsCompilation no

Author Christian Llano Robayo [aut, cre],
Nazrul Shaikh [aut]

Maintainer Christian Llano Robayo <cxl985@miami.edu>

Repository CRAN

Date/Publication 2020-10-12 07:40:02 UTC

R topics documented:
EPF_logist_compl . 2
EPF_L_compl . 4
PF_lm . 6
PF_lm_ss . 9

Index 12

1

https://github.com/ChrissCod/LMfilteR/issues

2 EPF_logist_compl

EPF_logist_compl Parameter Estimation Of Logistic Linear Models Using Evolutionary
Particle Filters (EPF) Method

Description

Estimation of the parameters of a logistic regression using a particle filter method that includes two
evolutionary algorithm-based steps. See Details

Usage

EPF_logist_compl(
Data,
Y,
nPart = 1000L,
p_mut = 0.01,
p_cross = 0.5,
thr = 0.5,
lmbd = 3,
count = 10,
initDisPar,
resample_met = syst_rsmpl

)

Arguments

Data, matrix. The matrix containing the independent variables of the linear model

Y numeric. The dependent variable

nPart integer. The number of particles, by default 1000L

p_mut numeric. The mutation probability in EPF, by default 0.01

p_cross numeric. The cross-over probability in EPF, by default 0.5

thr numeric. The threshold after which the estimated Y is classified as 1

lmbd numeric. A number to be added and subtracted from the priors when initDisPar
is not provided, by default 3

count numeric. The number of replications within EPF, by default 10

initDisPar matrix. Values a, b of the uniform distribution (via runif) for each parameter
to be estimated, see more in Details

resample_met function. The resampling method used in EPF, by default syst_rsmpl, see De-
tails

EPF_logist_compl 3

Details

Estimation of the coefficients of a logistic linear regression using the evolutionary particle filter.
EPF includes evolutionary algorithms (mutation and cross-over) within PF-base algorithm to avoid
degeneracy of particles and prevent the curse of dimensionality. In mutation, p_mut * nPart parti-
cles are selected at random from the set of particles obtained in k-1 PF-iteration. This particles will
be replaced by fresh new particles taken from a uniform distribution. In cross-over, a pair of random
particles is selected from the k-1 propagated particles. The pair is combined into one particle (using
the mean) and the result replaces a particle selected at random from the k-1 propagated particles.
This cross-over process is replicated prob_cross * N times on each iteration. EPF_logist_compl
uses all the information to estimate the parameters.

The state-space equations of the logistic regression model are:

(Eq.1)Xk = a0 + a1 ∗X1k−1 + ...+ an ∗Xnk−1

(Eq.2)Yk = 1/(1 + exp(−Xk))

(Eq.3)Zk ∼ Ber(Yk)

where, k = 1, ... , number of observations; a0, ..., an are the parameters to be estimated (coeffi-
cients), and Ber(·) is the Bernoulli distribution.

The priors of the parameters are assumed uniformly distributed. In initDisPar, the number of
rows is the number of independent variables plus one since the constant term of the regression is
also estimated. The first and second column of initDisPar are the corresponding arguments a and
b of the uniform distribution (stats::runif) for each parameter prior. The first row of initDisPar
is the prior guess of the constant term. The following rows are the prior guesses of the coefficients.
If initDisPar is missing, the initial priors are taken using glm() and coeff() plus-minus lmbd as
a reference.

For resample_met, several resampling methods are used following Li, T., Bolic, M., & Djuric, P.
M. (2015). Resampling methods for particle filtering: classification, implementation, and strate-
gies. IEEE Signal processing magazine, 32(3), 70-86. Currently available resampling methods are:
syst_rsmpl - systematic resampling (default), multin_rsmpl - multinomial resampling, strat_rsmpl
- stratified resampling, and simp_rsmpl - simple resampling (similar to PF_lm_ss)

Value

A list with the following elements: smmry: A summary matrix of the estimated parameters; first
column is the GLM estimation, and second column is the EPF estimation. AIC: Akaike information
criteria of the EPF estimation. Yhat: Estimation of the observation Y. sttp: A matrix with the last
iteration parameters-particles. estm: A vector with the final parameter EPF estimation. c_time:
The time in seconds it takes to complete EPF.

Author(s)

Christian Llano Robayo, Nazrul Shaikh.

Examples

Not run:
#Simulating logistic regression model
val_coef <- c(2, -1.25, 2.6, -0.7, -1.8)

4 EPF_L_compl

Data1 <- MASS::mvrnorm(100, mu = rep(0, 4),
Sigma = diag(4),
empirical = TRUE)

Y1 <- colSums(t(cbind(1,Data1))*val_coef)
prb <- 1 / (1 + exp(-Y1))
Y_ <- rbinom(100, size = 1, prob = prb) ##
#Run EPF
Res <- EPF_logist_compl(Data = Data1, Y = Y_)
#Summary EPF estimation
Res$smmry

End(Not run)

EPF_L_compl Parameter Estimation Of Linear Models Using Evolutionary Particle
Filters (EPF) Method

Description

Estimation of the parameters of a linear regression model using a particle filter method that includes
two evolutionary algorithm-based steps. See Details

Usage

EPF_L_compl(
Data,
Y,
nPart = 1000L,
p_mut = 0.01,
p_cross = 0.5,
sigma_l = 1,
lmbd = 3,
count = 10,
initDisPar,
resample_met = syst_rsmpl

)

Arguments

Data matrix. The matrix containing the independent variables of the linear model

Y numeric. The dependent variable

nPart integer. The number of particles, by default 1000L

p_mut numeric. The mutation probability in EPF, by default 0.01

p_cross numeric. The cross-over probability in EPF, by default 0.5

sigma_l The value of the variance in the likelihood normal, 1 by default

lmbd numeric. A number to be added and subtracted from the priors when initDisPar
is not provided, by default 3

EPF_L_compl 5

count numeric. The number of replications within EPF, by default 10

initDisPar matrix. Values a, b of the uniform distribution (via runif) for each parameter
to be estimated, see more in Details

resample_met function. The resampling method used in EPF, by default syst_rsmpl, see De-
tails

Details

Estimation of the coefficients of a linear regression:

Y = β0 + β1 ∗X1 + ...+ βn ∗Xn + ε, (ε ∼ N(0, 1))

using Evolutionary Particle Filter. EPF includes additional steps within PF-base algorithm to avoid
degeneracy of particles and prevent the curse of dimensionality. One step is the inclusion of two
evolutionary algorithm - based processes: mutation and cross-over. In mutation, p_mut * nPart
particles are selected at random from the set of particles obtained in k-1 PF-iteration. This particles
will be replaced by fresh new particles taken from a uniform distribution. In cross-over, a pair
of random particles is selected from the k-1 propagated particles. The pair is combined into one
particle (using the mean function) and the result replaces a particle selected at random from the k-1
propagated particles. This cross-over process is replicated prob_cross * N times on each iteration.
EPF_L_compl uses all the information to estimate the parameters, differs from function EPF_L_MovH
by using movH equals nrows(Data)

Similarly as in PF_lm and PF_lm_ss, the state-space equations of the linear model are:

(Eq.1)Xk = a0 + a1 ∗X1k−1 + ...+ an ∗Xnk−1

(Eq.2)Yk = Xk + ε, ε ∼ N(0, σ)

where, k = 2, ... , number of observations; a0, ..., an are the parameters to be estimated (coeffi-
cients), and σ = 1.

The priors of the parameters are assumed uniformly distributed. initDisPar is a matrix; the num-
ber of rows is the number of independent variables plus one since the constant term of the regression
is also estimated. The first and second column of initDisPar are the corresponding arguments
a and b of the uniform distribution (stats::runif) for each parameter prior. The first row of
initDisPar is the prior guess of the constant term. The following rows are the prior guesses of
the coefficients. If initDisPar is missing, the initial priors are taken using lm() and coeff()
plus-minus lmbd as a reference.

For resample_met, several resampling methods are used following Li, T., Bolic, M., & Djuric, P.
M. (2015). Resampling methods for particle filtering: classification, implementation, and strate-
gies. IEEE Signal processing magazine, 32(3), 70-86. Currently available resampling methods are:
syst_rsmpl - systematic resampling (default), multin_rsmpl - multinomial resampling, strat_rsmpl
- stratified resampling, and simp_rsmpl - simple resampling (similar to PF_lm_ss)

Value

A list with the following elements: smmry: A summary matrix of the estimated parameters; first
column is the OLS estimation, and second column is the EPF estimation. SSE: The sum of squared
errors of the EPF estimation. Yhat: Estimation of the observation Y. sttp: A matrix with the last
iteration particles. estm: A vector with the final parameter EPF estimation. c_time: The time in
seconds it takes to complete EPF.

6 PF_lm

Author(s)

Christian Llano Robayo, Nazrul Shaikh.

Examples

Not run:
#Example using linear model with 5 variables
#Using rcorrmatrix from cluterGeneration to generate a random correlation matrix
realval_coef <- c(2, -1.25, 2.6, -0.7, -1.8, 0.6)
Data1 <- MASS::mvrnorm(100, mu = rep(0, 5),

Sigma = clusterGeneration::rcorrmatrix(5),
empirical = TRUE)

eps <- stats::rnorm(100) # error term
Y_ <- colSums(t(cbind(1,Data1)) * realval_coef) + eps
#run EPF
Res1 <- EPF_L_compl(Data = Data1, Y = Y_)
#Summary EPF estimation
Res1$smmry

End(Not run)

PF_lm Parameter Estimation Of Linear Regression Using Particle Filters

Description

Estimation of the coefficients of a linear regression based on the particle filters algorithm (PF);
given Data1, the function estimates the coefficients of the regression as the samples (particles) of
coefficients that are more likely to occur. Optional, the standard deviation of the error term can also
be estimated. Synthetic data is generated in case no provided Data1.

Usage

PF_lm(Y, Data1, n = 500L, sigma_l = 1, sigma_est = FALSE, initDisPar, lbd = 2)

Arguments

Y numeric. The response variable
Data1 matrix. The matrix containing the independent variables
n integer. Number of particles, by default 500
sigma_l The value of the variance in the likelihood normal, 1 by default
sigma_est logical. If TRUE takes the last row of initDisPar as prior estimation of the

standard deviation, see more in Details
initDisPar matrix. Values a, b of the uniform distribution (via runif) for each parameter

to be estimated, see more in Details
lbd numeric. A number to be added and substracted from the priors when initDisPar

is not provided

PF_lm 7

Details

Estimation of the coefficients of a linear regression:

Y = β0 + β1 ∗X1 + ...+ βn ∗Xn + ε, (ε ∼ N(0, 1))

using particle filter methods. The implementation follows An, D., Choi, J. H., Kim, N. H. (2013)
adapted for the case of linear models.

The state-space equations are:

(Eq.1)Xk = a0 + a1 ∗X1k−1 + ...+ an ∗Xnk−1

(Eq.2)Yk = Xk + ε, ε ∼ N(0, σ)

where, k = 2, ... , number of observations; a0, ..., an are the parameters to be estimated (coeffi-
cients), and σ = 1.

The priors of the parameters are assumed uniformly distributed. initDisPar is a matrix for which
the number of rows is the number of independent variables plus one when sigma_est = FALSE,
(plus one since we also estimate the constant term of the regression), or plus two when sigma_est
= TRUE (one for the constant term of the regression, and one for the estimation of sigma). The
first and second column of initDisPar are the corresponding arguments a and b of the uniform
distribution (stats::runif) of each parameter prior. The first row of initDisPar is the prior guess
of the constant term. The following rows are the prior guesses of the coefficients. When sigma is
estimated, i.e., if sigma_est = TRUE the last row of initDisPar corresponds to the prior guess
for the standard deviation. If sigma_est = FALSE, then the standard deviation of the likelihood is
sigma_l. If sigma_est = TRUE, the algorithm estimates the standard deviation of ε together with
the coefficients. If initDisPar is missing, the initial priors are taken using lm() and coeff()
plus-minus lbd as a reference.

The cumulative density function method is used for resampling.

In case no Data1 is provided, a synthetic data set is generated automatically taking three normal
i.i.d. variables, and the dependent variable is computed as in Y = 2+1.25 ∗X1 +2.6 ∗X2 − 0.7 ∗
X3 + ε

Value

A list with the following elements:

stateP_res: A list of matrices with the PF estimation of the parameters on each observation; the
number of rows is the number of observations in Data1 and the number of columns is n.

Likel: A matrix with the likelihood of each particle obtained on each observation.

CDF: A matrix with the cumulative distribution function for each column of Likel.

summ: A summary matrix with statistics of the estimated parameters.

Author(s)

Christian Llano Robayo, Nazrul Shaikh.

References

An, D., Choi, J. H., Kim, N. H. (2013). Prognostics 101: A tutorial for particle filter-based prognos-
tics algorithm using Matlab. Reliability Engineering & System Safety, 115, DOI: https://doi.org/10.1016/j.ress.2013.02.019

8 PF_lm

Ristic, B., Arulampalam, S., Gordon, N. (2004). Beyond the Kalman filter: particle filters for
tracking applications. Boston, MA: Artech House. ISBN: 158053631X.

West, M., Harrison, J. (1997). Bayesian forecasting and dynamic models (2nd ed.). New York:
Springer. ISBN: 0387947256.

Examples

Not run:
Using default Data1, no sigma estimation
Res <- PF_lm(n=1000L, sigma_est = FALSE)
lapply(Res,class) # Structure of returning list.
###Summary of estimated parameters
Res$summ
par(mfrow=c(2, 2)) #Evolution of the estimated parameters
for (i in 1:4){
plot(apply(Res$stateP_res[[i]],1,mean), main = colnames(Res$summ)[i], col="blue",

xlab = "", ylab = "",type="l")
}

Using default Data1, with sigma estimation
Res2 <- PF_lm(n=1000L, sigma_est = TRUE)
lapply(Res2,class) # Structure of returning list
sumRes2 <- sapply(2:6, function(i)
###Summary of estimated parameters
Res2$summ

par(mfrow=c(2, 3)) #Evolution of the estimated parameters
for (i in 1:5){
plot(apply(Res2$stateP_res[[i]],1,mean), main = colnames(Res2$summ)[i], col="blue",

xlab = "", ylab = "",type="l")
}

Using default Data1, given initDisPar
b0 <- matrix(c(1.9, 2, # Prior of a_0

1, 1.5, # Prior of a_1
2, 3, # Prior of a_2
-1, 0) # Prior of a_3
,ncol = 2, byrow = TRUE)

Res3 <- PF_lm(n=500L, sigma_est = FALSE, initDisPar = b0)
lapply(Res3,class) # Structure of returning list.

###Summary of estimated parameters
Res3$summ
par(mfrow=c(2, 2)) #Evolution of the estimated parameters
for (i in 1:4){
plot(apply(Res3$stateP_res[[i]],1,mean), main = colnames(Res3$summ)[i], col="blue",

xlab = "", ylab = "",type="l")
}

End(Not run)

PF_lm_ss 9

PF_lm_ss Parameter Estimation Of Linear Regression Using Particle Filters
With Simple Sampling

Description

Estimation of the coefficients of a linear regression based on the particle filters algorithm. This
function is similar to PF_lm except for the resampling method which in this case is the simple
sampling. As a result, the user can try higher number of particles.

Usage

PF_lm_ss(
Y,
Data1,
n = 500L,
sigma_l = 1,
sigma_est = FALSE,
initDisPar,
lbd = 2

)

Arguments

Y numeric. The response variable

Data1 matrix. The matrix containing the independent variables

n integer. Number of particles, by default 500

sigma_l The variance of the normal likelihood, 1 by default

sigma_est logical. If TRUE takes the last row of initDisPar as prior estimation of the
standard deviation, see more in Details

initDisPar matrix. Values a, b of the uniform distribution (via runif) for each parameter
to be estimated, see more in Details

lbd numeric. A number to be added and substracted from the priors when initDisPar
is not provided

Details

Estimation of the coefficients of a linear regression:

Y = β0 + β1 ∗X1 + ...+ βn ∗Xn + ε, (ε ∼ N(0, 1))

using particle filter methods. The state-space equations are:

(Eq.1)Xk = a0 + a1 ∗X1k−1 + ...+ an ∗Xnk−1

(Eq.2)Yk = Xk + ε, ε ∼ N(0, σ)

10 PF_lm_ss

where, k = 2, ... , number of observations; a0, ..., an are the parameters to be estimated (coeffi-
cients), and σ = 1.

The priors of the parameters are assumed uniformly distributed. initDisPar is a matrix for which
the number of rows is the number of independent variables plus one when sigma_est = FALSE,
(plus one since we also estimate the constant term of the regression), or plus two when sigma_est
= TRUE (one for the constant term of the regression, and one for the estimation of sigma). The
first and second column of initDisPar are the corresponding arguments a and b of the uniform
distribution (stats::runif) of each parameter prior. The first row initDisPar is the prior guess
of the constant term. The following rows are the prior guesses of the coefficients. When sigma
is estimated, i.e., if sigma_est = TRUE the last row of initDisPar corresponds to the prior guess
for the standard deviation. If sigma_est = FALSE, then the standard deviation of the likelihood is
sigma_l. If sigma_est = TRUE, the algorithm estimates the standard deviation of ε together with
the coefficients. If initDisPar is missing, the initial priors are taken using lm() and coeff()
plus-minus lbd as a reference.

The resampling method used corresponds to the simple sampling, i.e., we take a sample of n parti-
cles with probability equals the likelihood computed on each iteration. In addition, on each iteration
white noise is added to avoid particles to degenerate.

In case no Data1 is provided, a synthetic data set is generated automatically taking three normal
i.i.d. variables, and the dependent variable is computed as in Y = 2+1.25 ∗X1 +2.6 ∗X2 − 0.7 ∗
X3 + ε

Value

A list containing the following elemnts:

stateP_res: A list of matrices with the PF estimation of the parameters on each observation; the
number of rows is the number of observations in Data1 and the number of columns is n.

Likel: A matrix with the likelihood of each particle obtained on each observation.

Author(s)

Christian Llano Robayo, Nazrul Shaikh.

References

Ristic, B., Arulampalam, S., Gordon, N. (2004). Beyond the Kalman filter: particle filters for
tracking applications. Boston, MA: Artech House. ISBN: 158053631X.

West, M., Harrison, J. (1997). Bayesian forecasting and dynamic models (2nd ed.). New York:
Springer. ISBN: 0387947256.

Examples

Not run:
Using default Data1, no sigma estimation
Res <- PF_lm_ss(n = 10000L, sigma_est = FALSE) #10 times more than in PF_lm
lapply(Res,class) # Structure of returning list.
###Summary of estimated parameters
Res$summ

PF_lm_ss 11

#Evolution of the estimated parameters
par(mfrow=c(2, 2))
for (i in 1:4){
plot(apply(Res$stateP_res[[i]],1,mean), main = colnames(Res$summ)[i], col="blue",

xlab = "", ylab = "",type="l")
}

Using default Data1, with sigma estimation
Res2 <- PF_lm_ss(n = 1000L, sigma_est = TRUE)
lapply(Res2,class) # Structure of returning list
###Summary of the estimated parameters
Res2$summ
#Evolution of the estimated parameters
par(mfrow=c(2, 3))
for (i in 1:5){
plot(apply(Res2$stateP_res[[i]],1,mean), main = colnames(Res2$summ)[i], col="blue",

xlab = "", ylab = "",type="l")
}

Using default Data1, given initDisPar
b0 <- matrix(c(1.9, 2, # Prior of a_0

1, 1.5, # Prior of a_1
2, 3, # Prior of a_2
-1, 0), # Prior of a_3
ncol = 2, byrow = TRUE)

Res3 <- PF_lm_ss(n = 10000L, sigma_est = FALSE, initDisPar = b0)
lapply(Res3,class) # Structure of returning list.
###Summary of the estimated parameters
Res3$summ
#Evolution of the estimated parameters
par(mfrow=c(2, 2))
for (i in 1:4){
plot(apply(Res3$stateP_res[[i]],1,mean), main = colnames(Res3$summ)[i], col="blue",

xlab = "", ylab = "",type="l")
}

End(Not run)

Index

EPF_L_compl, 4
EPF_logist_compl, 2

PF_lm, 6
PF_lm_ss, 9

12

	EPF_logist_compl
	EPF_L_compl
	PF_lm
	PF_lm_ss
	Index

