The ReadMethylFile
is a function for reading DNA methylation files and use them as new data for prediction by every model. The input for this function should be either CSV or TSV file format. Please uncomment the following lines and run the function.
# set.seed(1234)
# fac <- ncol(Data1)
# NewData <- sample(data.frame(t(Data1[,-fac])),10)
# NewData <- cbind(rownames(NewData), NewData)
# colnames(NewData)[1] <- "ID"
# write.csv(NewData, "NewData.csv", quote = FALSE, row.names = FALSE)
# methyl <- ReadMethylFile(File = "NewData.csv")
This function has only one argument, the File. While the first column is CpG methylation probs, starting with cg and followed by a number, other columns are samples with methylation values. All columns should be named.
The BoxPlot
function draws a box plot out of the DNA methylation dataset or other data frames.
data <- Data2[1:20,]
data <- cbind(rownames(data), data)
colnames(data)[1] <- "ID"
BoxPlot(File = data, Projname = NULL)
This function has two arguments as follow:
File
A data frame with the first column as ID.Projname
A string to name the plot.The TSNEPlot
function draws a 3D t-SNE plot for DNA methylation dataset using the K-means clustering technique. This function has two arguments File
(any matrices) and NCluster
( number of clusters for K-Means clustering).
data <- data.frame(t(Data2[1:100,]))
data <- cbind(rownames(data), data)
colnames(data)[1] <- "ID"
TSNEPlot(File = data, NCluster = 4)
An R window will appear with a 3D projection of the t-SNE result. The plot object can be saved with the next line of code (uncomment).
# rgl.snapshot('tsne3d.png', fmt = 'png')
Using ReadSNFData
function, one can read files (any matrices with CSV or TSV format) and feed them into the similarity network fusion (SNF) function (from the SNFtools package). Please uncomment the following lines and run the function.
# data(Data2) # Gene expression
# Data2 <- cbind(rownames(Data2), Data2)
# colnames(Data2)[1] <- "ID"
# write.csv(Data2, "Data2.csv", row.names = FALSE)
# Data2 <- ReadSNFData(File = "Data2.csv")
The SimilarityNetworkFusion
is a function to perform SNF function (from SNFtool package) and output clusters.
data(RLabels) # Real labels
data(Data2) # Methylation
data(Data3) # Gene expression
snf <- SimilarityNetworkFusion(Files = list(Data2, Data3),
NNeighbors = 13,
Sigma = 0.75,
NClusters = 4,
CLabels = c("Group4", "SHH", "WNT", "Group3"),
RLabels = RLabels,
Niterations = 60)
snf
#> [1] SHH Group3 Group4 Group4 Group4 SHH SHH Group3 Group4 SHH
#> [11] WNT SHH SHH WNT SHH WNT Group3 Group3 Group3 Group4
#> [21] Group4 Group3 Group3 Group3 Group4 Group4 Group4 Group3 Group3 SHH
#> [31] SHH SHH SHH SHH Group4 Group3 SHH Group4 Group4 Group3
#> [41] Group4 Group4 WNT Group3 Group4 Group4 Group4 Group4 SHH Group4
#> Levels: Group4 SHH WNT Group3
This function has several arguments as follow:
Files
A list of data frames created using the ReadSNFData function or matrices.NNeighbors
The number of nearest neighbors.Sigma
The variance for local model.NClusters
The number of clusters.CLabels
A string vector to name the clusters. Optional.RLabels
The actual label of samples to calculate the Normalized Mutual Information (NMI) score. Optional.Niterations
The number of iterations for the diffusion process.The SupportVectorMachineModel
is a function to train a support vector machine model to classify medulloblastoma subgroups using the DNA methylation dataset (Illumina Infinium HumanMethylation450). Prediction is followed by training if new data is provided.
Model metrics, including accuracy, precision, sensitivity F1-Score, specificity, and AUC_average can be calculated for the test dataset using the ModelMetrics
function, which calculates the average of the above parameters from the result of the ConfusionMatrix
function.
The prediction result on new data can be accessed through the NewDataPredictionResult
function, which calculates every prediction’s mode across the number of cross-validation folds.
set.seed(1234)
fac <- ncol(Data1)
NewData <- sample(data.frame(t(Data1[,-fac])),10)
NewData <- cbind(rownames(NewData), NewData)
colnames(NewData)[1] <- "ID"
svm <- SupportVectorMachineModel(SplitRatio = 0.8,
CV = 10,
NCores = 1,
NewData = NewData)
ModelMetrics(Model = svm)
#> Accuracy Precision Sensitivity F1_Score Specificity AUC_average
#> Group3 0.988 0.932 0.996 0.963 0.986 0.985
#> SHH 1.000 1.000 1.000 1.000 1.000 0.985
#> WNT 0.995 1.000 0.976 0.988 1.000 0.985
#> Group4 0.993 0.998 0.983 0.990 0.999 0.985
NewDataPredictionResult(Model = svm)
#> Subgroup
#> GSM2261711 Group3
#> X78 WNT
#> GSM2261640 Group4
#> GSM2261575 Group4
#> X135 WNT
#> GSM2262184 Group3
#> GSM2261613 Group3
#> X130 WNT
#> GSM2261922 Group4
#> GSM2261980 Group3
This function has the following arguments:
SplitRatio
Train and test split ratio. A value greater or equal to zero and less than one.CV
The number of folds for cross-validation. It should be greater than one.NCores
The number of cores for parallel computing.NewData
A methylation data for prediction.The KNearestNeighborModel
is a function to train a K nearest neighbor model to classify medulloblastoma subgroups using the DNA methylation dataset.
set.seed(1234)
fac <- ncol(Data1)
NewData <- sample(data.frame(t(Data1[,-fac])),10)
NewData <- cbind(rownames(NewData), NewData)
colnames(NewData)[1] <- "ID"
knn <- KNearestNeighborModel(SplitRatio = 0.8,
CV = 10,
K = 3,
NCores = 1,
NewData = NewData)
ModelMetrics(Model = knn)
#> Accuracy Precision Sensitivity F1_Score Specificity AUC_average
#> Group3 0.993 0.981 0.973 0.977 0.996 0.985
#> SHH 0.999 1.000 0.997 0.999 1.000 0.985
#> WNT 0.999 0.997 1.000 0.999 0.999 0.985
#> Group4 0.993 0.988 0.991 0.990 0.993 0.985
NewDataPredictionResult(Model = knn)
#> Subgroup
#> GSM2261711 Group3
#> X78 WNT
#> GSM2261640 Group4
#> GSM2261575 Group4
#> X135 WNT
#> GSM2262184 Group3
#> GSM2261613 Group3
#> X130 WNT
#> GSM2261922 Group4
#> GSM2261980 Group3
This function has the following arguments:
SplitRatio
Train and test split ratio. A value greater or equal to zero and less than one.CV
The number of folds for cross-validation. It should be greater than one.K
The number of nearest neighbors.NCores
The number of cores for parallel computing.NewData
A methylation data for prediction.The RandomForestModel
is a function to train a random forest model to classify medulloblastoma subgroups using the DNA methylation dataset.
set.seed(1234)
fac <- ncol(Data1)
NewData <- sample(data.frame(t(Data1[,-fac])),10)
NewData <- cbind(rownames(NewData), NewData)
colnames(NewData)[1] <- "ID"
rf <- RandomForestModel(SplitRatio = 0.8,
CV = 10,
NTree = 100,
NCores = 1,
NewData = NewData)
ModelMetrics(Model = rf)
#> Accuracy Precision Sensitivity F1_Score Specificity AUC_average
#> Group3 0.999 1.000 0.996 0.998 1.000 0.998
#> SHH 1.000 1.000 1.000 1.000 1.000 0.998
#> WNT 1.000 1.000 1.000 1.000 1.000 0.998
#> Group4 0.999 0.998 1.000 0.999 0.999 0.998
NewDataPredictionResult(Model = rf)
#> Subgroup
#> GSM2261711 Group3
#> X78 WNT
#> GSM2261640 Group4
#> GSM2261575 Group4
#> X135 WNT
#> GSM2262184 Group3
#> GSM2261613 Group3
#> X130 WNT
#> GSM2261922 Group4
#> GSM2261980 Group3
This function has the following arguments:
SplitRatio
Train and test split ratio. A value greater or equal to zero and less than one.CV
The number of folds for cross-validation. It should be greater than one.NTree
The number of trees to be grown.NCores
The number of cores for parallel computing.NewData
A methylation data for prediction.The XGBoostModel
is a A function to train an XGBoost model to classify medulloblastoma subgroups using the DNA methylation dataset.
set.seed(1234)
fac <- ncol(Data1)
NewData <- sample(data.frame(t(Data1[,-fac])),10)
NewData <- cbind(rownames(NewData), NewData)
colnames(NewData)[1] <- "ID"
xgboost <- XGBoostModel(SplitRatio = 0.8,
CV = 10,
NCores = 1,
NewData = NewData)
#> [1] train-mlogloss:0.390594
#> Will train until train_mlogloss hasn't improved in 10 rounds.
#>
#> [2] train-mlogloss:0.177861
#> [3] train-mlogloss:0.087035
#> [4] train-mlogloss:0.043112
#> [5] train-mlogloss:0.022536
#> [6] train-mlogloss:0.012486
#> [7] train-mlogloss:0.007278
#> [8] train-mlogloss:0.004395
#> [9] train-mlogloss:0.002879
#> [10] train-mlogloss:0.002457
#> [1] train-mlogloss:0.388419
#> Will train until train_mlogloss hasn't improved in 10 rounds.
#>
#> [2] train-mlogloss:0.177664
#> [3] train-mlogloss:0.085746
#> [4] train-mlogloss:0.043333
#> [5] train-mlogloss:0.022637
#> [6] train-mlogloss:0.012444
#> [7] train-mlogloss:0.007140
#> [8] train-mlogloss:0.004413
#> [9] train-mlogloss:0.002823
#> [10] train-mlogloss:0.002431
#> [1] train-mlogloss:0.388072
#> Will train until train_mlogloss hasn't improved in 10 rounds.
#>
#> [2] train-mlogloss:0.176992
#> [3] train-mlogloss:0.085394
#> [4] train-mlogloss:0.043119
#> [5] train-mlogloss:0.022323
#> [6] train-mlogloss:0.012245
#> [7] train-mlogloss:0.006953
#> [8] train-mlogloss:0.004304
#> [9] train-mlogloss:0.002808
#> [10] train-mlogloss:0.002544
#> [1] train-mlogloss:0.386945
#> Will train until train_mlogloss hasn't improved in 10 rounds.
#>
#> [2] train-mlogloss:0.175823
#> [3] train-mlogloss:0.085418
#> [4] train-mlogloss:0.042969
#> [5] train-mlogloss:0.022146
#> [6] train-mlogloss:0.012049
#> [7] train-mlogloss:0.006975
#> [8] train-mlogloss:0.004246
#> [9] train-mlogloss:0.002766
#> [10] train-mlogloss:0.002319
#> [1] train-mlogloss:0.387957
#> Will train until train_mlogloss hasn't improved in 10 rounds.
#>
#> [2] train-mlogloss:0.177210
#> [3] train-mlogloss:0.085601
#> [4] train-mlogloss:0.043317
#> [5] train-mlogloss:0.022903
#> [6] train-mlogloss:0.012530
#> [7] train-mlogloss:0.007282
#> [8] train-mlogloss:0.004478
#> [9] train-mlogloss:0.002934
#> [10] train-mlogloss:0.002514
#> [1] train-mlogloss:0.390082
#> Will train until train_mlogloss hasn't improved in 10 rounds.
#>
#> [2] train-mlogloss:0.177320
#> [3] train-mlogloss:0.085780
#> [4] train-mlogloss:0.043300
#> [5] train-mlogloss:0.022592
#> [6] train-mlogloss:0.012513
#> [7] train-mlogloss:0.007264
#> [8] train-mlogloss:0.004434
#> [9] train-mlogloss:0.002923
#> [10] train-mlogloss:0.002552
#> [1] train-mlogloss:0.391327
#> Will train until train_mlogloss hasn't improved in 10 rounds.
#>
#> [2] train-mlogloss:0.178571
#> [3] train-mlogloss:0.086584
#> [4] train-mlogloss:0.043455
#> [5] train-mlogloss:0.022545
#> [6] train-mlogloss:0.012333
#> [7] train-mlogloss:0.007139
#> [8] train-mlogloss:0.004347
#> [9] train-mlogloss:0.002808
#> [10] train-mlogloss:0.002392
#> [1] train-mlogloss:0.387270
#> Will train until train_mlogloss hasn't improved in 10 rounds.
#>
#> [2] train-mlogloss:0.176343
#> [3] train-mlogloss:0.085785
#> [4] train-mlogloss:0.042867
#> [5] train-mlogloss:0.022099
#> [6] train-mlogloss:0.011727
#> [7] train-mlogloss:0.006694
#> [8] train-mlogloss:0.003969
#> [9] train-mlogloss:0.002619
#> [10] train-mlogloss:0.002393
#> [1] train-mlogloss:0.385785
#> Will train until train_mlogloss hasn't improved in 10 rounds.
#>
#> [2] train-mlogloss:0.175053
#> [3] train-mlogloss:0.084670
#> [4] train-mlogloss:0.042764
#> [5] train-mlogloss:0.022229
#> [6] train-mlogloss:0.011936
#> [7] train-mlogloss:0.006921
#> [8] train-mlogloss:0.004281
#> [9] train-mlogloss:0.002846
#> [10] train-mlogloss:0.002425
#> [1] train-mlogloss:0.388743
#> Will train until train_mlogloss hasn't improved in 10 rounds.
#>
#> [2] train-mlogloss:0.176686
#> [3] train-mlogloss:0.086097
#> [4] train-mlogloss:0.043017
#> [5] train-mlogloss:0.022624
#> [6] train-mlogloss:0.012143
#> [7] train-mlogloss:0.007023
#> [8] train-mlogloss:0.004200
#> [9] train-mlogloss:0.002729
#> [10] train-mlogloss:0.002506
ModelMetrics(Model = xgboost)
#> Accuracy Precision Sensitivity F1_Score Specificity AUC_average
#> Group3 0.979 0.896 0.981 0.936 0.978 0.968
#> Group4 0.993 0.990 0.991 0.991 0.994 0.968
#> SHH 0.998 1.000 0.990 0.995 1.000 0.968
#> WNT 0.983 0.992 0.934 0.962 0.998 0.968
NewDataPredictionResult(Model = xgboost)
#> Subgroup
#> GSM2261711 Group3
#> X78 WNT
#> GSM2261640 Group4
#> GSM2261575 Group4
#> X135 WNT
#> GSM2262184 Group3
#> GSM2261613 Group3
#> X130 WNT
#> GSM2261922 Group4
#> GSM2261980 Group3
This function has the following arguments:
SplitRatio
Train and test split ratio. A value greater or equal to zero and less than one.CV
The number of folds for cross-validation. It should be greater than one.NCores
The number of cores for parallel computing.NewData
A methylation data for prediction.The LinearDiscriminantAnalysisModel
is a function to train a linear discriminant analysis model to classify medulloblastoma subgroups using the DNA methylation dataset.
set.seed(1234)
fac <- ncol(Data1)
NewData <- sample(data.frame(t(Data1[,-fac])),10)
NewData <- cbind(rownames(NewData), NewData)
colnames(NewData)[1] <- "ID"
lda <- LinearDiscriminantAnalysisModel(SplitRatio = 0.8,
CV = 10,
NCores = 1,
NewData = NewData)
ModelMetrics(Model = lda)
#> Accuracy Precision Sensitivity F1_Score Specificity AUC_average
#> Group3 0.941 0.778 0.889 0.828 0.951 0.91
#> SHH 0.994 0.991 0.985 0.988 0.997 0.91
#> WNT 0.993 0.986 0.981 0.984 0.996 0.91
#> Group4 0.945 0.949 0.893 0.920 0.973 0.91
NewDataPredictionResult(Model = lda)
#> Subgroup
#> GSM2261711 Group3
#> X78 WNT
#> GSM2261640 Group4
#> GSM2261575 Group4
#> X135 WNT
#> GSM2262184 Group3
#> GSM2261613 Group3
#> X130 WNT
#> GSM2261922 Group4
#> GSM2261980 Group3
This function has the following arguments:
SplitRatio
Train and test split ratio. A value greater or equal to zero and less than one.CV
The number of folds for cross-validation. It should be greater than one.NCores
The number of cores for parallel computing.NewData
A methylation data for prediction.The NaiveBayesModel
is a function to train a Naive Bayes model to classify medulloblastoma subgroups using the DNA methylation dataset.
set.seed(1234)
fac <- ncol(Data1)
NewData <- sample(data.frame(t(Data1[,-fac])),10)
NewData <- cbind(rownames(NewData), NewData)
colnames(NewData)[1] <- "ID"
nb <- NaiveBayesModel(SplitRatio = 0.8,
CV = 10,
Threshold = 0.8,
NCores = 1,
NewData = NewData)
ModelMetrics(Model = nb)
#> Accuracy Precision Sensitivity F1_Score Specificity AUC_average
#> Group3 0.974 0.859 1.000 0.924 0.969 0.971
#> SHH 1.000 1.000 1.000 1.000 1.000 0.971
#> WNT 0.984 1.000 0.928 0.963 1.000 0.971
#> Group4 0.990 1.000 0.972 0.986 1.000 0.971
NewDataPredictionResult(Model = nb)
#> Subgroup
#> GSM2261711 Group3
#> X78 WNT
#> GSM2261640 Group4
#> GSM2261575 Group4
#> X135 WNT
#> GSM2262184 Group3
#> GSM2261613 Group3
#> X130 WNT
#> GSM2261922 Group4
#> GSM2261980 Group3
This function has the following arguments:
SplitRatio
Train and test split ratio. A value greater or equal to zero and less than one.CV
The number of folds for cross-validation. It should be greater than one.Threshold
The threshold for deciding class probability. A value greater or equal to zero and less than one.NCores
The number of cores for parallel computing.NewData
A methylation data for prediction.The NeuralNetworkModel
is a function to train an artificial neural network model to classify medulloblastoma subgroups using the DNA methylation dataset. Please uncomment the following lines and run the function. If it is the first time you run this function, set the InstallTensorFlow parameter to TRUE. It will automatically install the Python and TensorFlow library (version 2.10-cpu) in a virtual environment. Then set the parameter to FALSE.
# set.seed(1234)
# fac <- ncol(Data1)
# NewData <- sample(data.frame(t(Data1[,-fac])),10)
# NewData <- cbind(rownames(NewData), NewData)
# colnames(NewData)[1] <- "ID"
# ann <- NeuralNetworkModel(Epochs = 100,
# NewData = NewData,
# InstallTensorFlow = TRUE)
# ModelMetrics(Model = ann)
# NewDataPredictionResult(Model = ann)
This function has the following arguments:
Epochs
The number of epochs.NewData
A methylation data from ReadMethylFile function.InstallTensorFlow
Logical. Running this function for the first time, you need to install TensorFlow library (V 2.10-cpu). Default is TRUE.