Package ‘MazamalLocationUtils’

October 12, 2022
Type Package
Version 0.3.8
Title Manage Spatial Metadata for Known Locations
Maintainer Jonathan Callahan <jonathan.s.callahan@gmail.com>

Description Utility functions for discovering and managing metadata
associated with spatially unique ““known locations". Applications include
all fields of environmental monitoring (e.g. air and water quality) where
data are collected at stationary sites.

License GPL-3
URL https://github.com/MazamaScience/MazamalocationUtils

BugReports https://github.com/MazamaScience/MazamaLocationUtils/issues
Depends R (>=3.5)

Imports dplyr, geodist (>= 0.0.7), httr, jsonlite, leaflet, lubridate,
magrittr, methods, MazamaCoreUtils (>= 0.4.10),
MazamaSpatialUtils (>= 0.7), readr, rlang, stringr,
tidygeocoder

Suggests knitr, markdown, testthat (>= 2.1.0), rmarkdown, roxygen2
Encoding UTF-8

VignetteBuilder knitr

LazyData true

RoxygenNote 7.1.2

NeedsCompilation no

Author Jonathan Callahan [aut, cre],
Eli Grosman [ctb],
Oliver Fogelin [ctb]

Repository CRAN
Date/Publication 2022-08-24 23:42:34 UTC

https://github.com/MazamaScience/MazamaLocationUtils
https://github.com/MazamaScience/MazamaLocationUtils/issues

2

R topics documented:

R topics documented:

Index

coreMetadataNames e e e e e e 3
getAPIKeY e e 3
getLocationDataDir e 3
id_monitors_500 e e 4
LocationDataDir e e e e 5
location_createID e 5
location_getCensusBlock L 6
location_getOpenCagelnfo 7
location_getSingleAddress_Photon L oo 8
location_getSingleAddress_TexasAM L o . 10
location_getSingleElevation_USGS 11
location_initialize e e 12
MazamalocationUtils 13
mazama_initialize L e 15
or_monitors_S500 e 16
SetAPIKey o e 16
setLocationDataDir e 17
showAPIKeys e 17
table_addColumn e e 18
table_addCoreMetadata e 19
table_addLocation. e e 20
table_addOpenCagelnfo 21
table_addSingleLocation 23
table_filterByDistance 25
table_findAdjacentDistances 26
table_findAdjacentLocations L L 27
table_getDistanceFromTarget 29
table_getLocationID L 30
table_getNearestDistance L 31
table_getNearestLocation L 32
table_getRecordIndex 33
table_initialize e 34
table_initializeExisting 35
table leaflet e 37
table leafletAdd 38
table _load e 39
table_removeColumn e e 40
table_removeRecord e 41
table_Save e e 42
table_updateColumn L 43
table_updateSingleRecord 45
validateLocationTbl 46
validateMazamaSpatialUtils 46
wa_airfire_meta e e e e e e e e e e e e e 47
wa_monitors_500 e e e e e e e 47

coreMetadataNames 3

coreMetadataNames Names of standard spatial metadata columns

Description
Character string identifiers of the minimum set of fields required for a table to be considered a valid
"known locations" table.

Usage

coreMetadataNames

Format

A vector with 3 elements

Details

coreMetadataNames

getAPIKey Get API key

Description

Returns the API key associated with a web service.

getLocationDataDir Get location data directory

Description

Returns the directory path where known location data tables are located.

Usage

getLocationDataDir ()

Value

Absolute path string.

See Also

LocationDataDir

setLocationDataDir

4 1d_monitors_500

id_monitors_500 Idaho monitor locations dataset

Description

The id_monitor_500 dataset provides a set of known locations associated with Idaho state air
quality monitors. This dataset was generated on 2021-10-19 by running:

library(PWFSLSmoke)
library(MazamalLocationUtils)

mazama_initialize()
setlLocationDataDir("”./data")

monitor <- monitor_loadLatest()
lons <- monitor$meta$longitude
lats <- monitor$meta$latitude

table_initialize() %>%
table_addLocation(

lons, lats,
distanceThreshold = 500,
elevationService = "usgs",
addressService = "photon”
) %>%

table_save("id_monitors_500")

Usage

id_monitors_500

Format

A tibble with 30 rows and 13 columns of data.

See Also

or_monitors_500

wa_monitors_500

LocationDataDir

LocationDataDir Directory for location data

Description

This package maintains an internal directory path which users can set using setLocationDataDir ().
All package functions use this directory whenever known location tables are accessed.

The default setting when the package is loaded is getwd ().

Format

Absolute path string.

See Also

getLocationDataDir

setLocationDataDir

location_createID Create one or more unique locationIDs

Description
A unique locationID is created for each incoming longitude and latitude.

See MazamaCoreUtils: :createlLocationID for details.

Usage
location_createID(longitude = NULL, latitude = NULL)

Arguments
longitude Vector of longitudes in decimal degrees E.
latitude Vector of latitudes in decimal degrees N.
Value

Vector of character locationIDs.

References

https://en.wikipedia.org/wiki/Decimal_degrees
https://www. johndcook.com/blog/2017/01/1@/probability-of-secure-hash-collisions/

https://en.wikipedia.org/wiki/Decimal_degrees
https://www.johndcook.com/blog/2017/01/10/probability-of-secure-hash-collisions/

6 location_getCensusBlock

Examples

library(MazamalLocationUtils)

Wenatchee

lon <- -120.325278

lat <- 47.423333

locationID <- location_createID(lon, lat)
print(locationID)

location_getCensusBlock
Get census block data from the FCC API

Description

The FCC Block API is used get census block, county, and state FIPS associated with the longitude
and latitude. The following list of data is returned:

e stateCode

¢ countyName

* censusBlock

The data from this function should be considered to be the gold standard for state and county. i.e.
this information could and should be used to override information we get elsewhere.

Usage

location_getCensusBlock(
longitude = NULL,
latitude = NULL,
censusYear = 2010,
verbose = TRUE

)
Arguments

longitude Single longitude in decimal degrees E.

latitude Single latitude in decimal degrees N.

censusYear Year the census was taken.

verbose Logical controlling the generation of progress messages.
Value

List of census block/county/state data.

References

https://anypoint.mulesoft.com/exchange/portals/fccdomain/

https://anypoint.mulesoft.com/exchange/portals/fccdomain/

location_getOpenCagelnfo 7

Examples

library(MazamalLocationUtils)

Fail gracefully if any resources are not available
try({

Wenatchee
lon <- -120.325278
lat <- 47.423333

censusList <- location_getCensusBlock(lon, lat)
str(censusList)

}, silent = FALSE)

location_getOpenCagelnfo
Get location information from OpenCage

Description

The OpenCage reverse geocoding service is used to obtain all available information for a specific
location.

The data from OpenCage should be considered to be the gold standard for address information
could and should be used to override information we get elsewhere.

Usage

location_getOpenCageInfo(longitude = NULL, latitude = NULL, verbose = FALSE)

Arguments

longitude Single longitude in decimal degrees E.

latitude Single latitude in decimal degrees N.

verbose Logical controlling the generation of progress messages.
Value

Single-row tibble with OpenCage information.

Note

The OpenCage service requires an API key which can be obtained from their web site. This API
key must be set as an environment variable with:

Sys.setenv("OPENCAGE_KEY" = "<your api key>")

The OpenCage "free trial" level allows for 1 request/sec and a maximum of 2500 requests per day.

References

https://opencagedata.com

Examples

library(MazamalLocationUtils)

Fail gracefully if any resources are not available
try({

Sys.setenv("OPENCAGE_KEY"” = "<YOUR_KEY>")
Wenatchee

lon <- -120.325278

lat <- 47.423333

openCageTbl <- location_getOpenCageInfo(lon, lat)
dplyr::glimpse(openCageTbl)

}, silent = FALSE)

location_getSingleAddress_Photon

location_getSingleAddress_Photon

Get address data from the Photon API to OpenStreetMap

Description

The Photon API is used get address data associated with the longitude and latitude. The fol-

lowing list of data is returned:

* houseNumber
e street

* city

* stateCode

* stateName

* zip

e countryCode

* countryName

The function makes an effort to convert both state and country Name into Code with codes de-
faulting to NA. Both Name and Code are returned so that improvements can be made in the conversion

algorithm.

https://opencagedata.com

location_getSingleAddress_Photon

Usage

location_getSingleAddress_Photon(
longitude = NULL,
latitude = NULL,

baseUrl = "https://photon.komoot.io/reverse”,
verbose = TRUE
)
Arguments
longitude Single longitude in decimal degrees E.
latitude Single latitude in decimal degrees N.
baseUrl Base URL for data queries.
verbose Logical controlling the generation of progress messages.
Value

List of address components.

References

https://photon.komoot.io

Examples

library(MazamalLocationUtils)

Fail gracefully if any resources are not available
try({

Set up standard directories and spatial data
spatialDataDir <- tempdir() # typically "~/Data/Spatial”
mazama_initialize(spatialDataDir)

Wenatchee
lon <- -120.325278
lat <- 47.423333

addressList <- location_getSingleAddress_Photon(lon, lat)
str(addressList)

}, silent = FALSE)

https://photon.komoot.io

10 location_getSingleAddress_TexasAM

location_getSingleAddress_TexasAM
Get an address from the Texas A&M reverse geocoding service

Description

Texas A&M APIs are used to determine the address associated with the longitude and latitude.

Usage

location_getSingleAddress_TexasAM(
longitude = NULL,
latitude = NULL,
apiKey = NULL,
verbose = TRUE

)
Arguments
longitude Single longitude in decimal degrees E.
latitude Single latitude in decimal degrees N.
apiKey Texas A&M Geocoding requires an API key. The first 2500 requests are free.
Default: NULL
verbose Logical controlling the generation of progress messages.
Value

Numeric elevation value.

References

https://geoservices. tamu.edu/Services/ReverseGeocoding/WebService/ve4_01/HTTP.aspx

Examples

Not run:
library(MazamalLocationUtils)

Fail gracefully if any resources are not available
try({

Wenatchee

longitude <- -122.47

latitude <- 47.47

apiKey <- YOUR_PERSONAL_API_KEY

location_getSingleAddress_TexasAM(longitude, latitude, apiKey)

https://geoservices.tamu.edu/Services/ReverseGeocoding/WebService/v04_01/HTTP.aspx

location_getSingleElevation_USGS 11

}, silent = FALSE)

End(Not run)

location_getSingleElevation_USGS
Get elevation data from a USGS web service

Description

USGS APIs are used to determine the elevation in meters associated with the longitude and
latitude.

Note: The conversion factor for meters to feet is 3.28084.

Usage

location_getSingleElevation_USGS(
longitude = NULL,
latitude = NULL,
verbose = TRUE

)
Arguments

longitude Single longitude in decimal degrees E.

latitude Single latitude in decimal degrees N.

verbose Logical controlling the generation of progress messages.
Value

Numeric elevation value.

References

https://nationalmap.gov/epqgs/

Examples

library(MazamalLocationUtils)

Fail gracefully if any resources are not available
try({

Wenatchee
lon <- -120.325278
lat <- 47.423333

https://nationalmap.gov/epqs/

12

}, silent = FALSE)

location_getSingleElevation_USGS(lon, lat)

location_initialize

location_initialize

Create known location record with core metadata

Description

Creates a known location record with the following columns of core metadata:

Usage

location_initialize(
longitude = NULL,
latitude = NULL,
stateDataset = "NaturalEarthAdm1",
elevationService = NULL,
addressService = NULL,
verbose = TRUE

locationID
locationName
longitude
latitude
elevation
countryCode
stateCode
countyName
timezone
houseNumber
street

city

zip

Mazamal ocationUtils 13

Arguments
longitude Single longitude in decimal degrees E.
latitude Single latitude in decimal degrees N.

stateDataset Name of spatial dataset to use for determining state
elevationService

Name of the elevation service to use for determining the elevation. Default:
NULL skips this step. Accepted values: "usgs".

addressService Name of the address service to use for determining the street address. Default:
NULL skips this step. Accepted values: "photon".

verbose Logical controlling the generation of progress messages.

Value

Tibble with a single new known location.

Examples

library(MazamalLocationUtils)

Fail gracefully if any resources are not available
try({

Set up standard directories and spatial data
spatialDataDir <- tempdir() # typically "~/Data/Spatial”
mazama_initialize(spatialDataDir)

Wenatchee
lon <- -120.325278
lat <- 47.423333

locationRecord <- location_initialize(lon, lat)
str(locationRecord)

}, silent = FALSE)

MazamalLocationUtils Manage Spatial Metadata for Known Locations

Description

A suite of utility functions for discovering and managing metadata associated with sets of spatially
unique "known locations".

This package is intended to be used in support of data management activities associated with fixed
locations in space. The motivating fields include both air and water quality monitoring where fixed
sensors report at regular time intervals.

14 Mazamal ocationUtils

Details

When working with environmental monitoring time series, one of the first things you have to do
is create unique identifiers for each individual time series. In an ideal world, each environmen-
tal time series would have both a locationID and a devicelID that uniquely identify the spe-
cific instrument making measurements and the physical location where measurements are made.
A unique timeseriesID could be produced as locationID_deviceID. Metadata associated with
each timeseriesID would contain basic information needed for downstream analysis including at
least:

timeseriesID, locationID, devicelD, longitude, latitude,

» Multiple sensors placed at a location could be be grouped by locationID.

* An extended timeservers for a mobile sensor would group by devicelID.

* Maps would be created using longitude, latitude.

» Time series would be accessed from a secondary data table with timeseriesID.

Unfortunately, we are rarely supplied with a truly unique and truly spatial locationID. Instead we
often use devicelID or an associated non-spatial identifier as a standin for locationID.

Complications we have seen include:

* GPS-reported longitude and latitude can have jitter in the fourth or fifth decimal place making
it challenging to use them to create a unique locationID.

* Sensors are sometimes repositioned in what the scientist considers the "same location".

* Data for a single sensor goes through different processing pipelines using different identifiers
and is later brought together as two separate timeseries.

» The spatial scale of what constitutes a "single location" depends on the instrumentation and
scientific question being asked.

* Deriving location-based metadata from spatial datasets is computationally intensive unless
saved and identified with a unique locationID.

» Automated searches for spatial metadata occasionally produce incorrect results because of the
non-infinite resolution of spatial datasets.

This package attempts to address all of these issues by maintaining a table of known locations for
which CPU intensive spatial data calculations have already been performed. While requests to add
new locations to the table may take some time, searches for spatial metadata associated with existing
locations are simple lookups.

Working in this manner will solve the problems initially mentioned but also provides further useful
functionality.

* Administrators can correct entries in the collectionName table. (e.g. locations in river bends
that even high resolution spatial datasets mis-assign)

* Additional, non-automatable metadata can be added to collectionName. (e.g. commonly
used location names within a community of practice)

* Different field campaigns can have separate collectionName tables.

e .csv or .rda versions of well populated tables can be downloaded from a URL and used
locally, giving scientists working with known locations instant access to spatial data that oth-
erwise requires special skills, large datasets and lots of compute cycles.

mazama_initialize

15

mazama_initialize

Initialize with MazamaScience standard directories

Description

Convenience function to initialize spatial data. Wraps the following setup lines:

MazamaSpatialUtils::setSpatialDataDir(spatialDataDir)

MazamaSpatialUtils::loadSpatialData("EEZCountries.rda")

MazamaSpatialUtils::loadSpatialData("0SMTimezones.rda")

MazamaSpatialUtils::loadSpatialData("”NaturalEarthAdm1.rda")

MazamaSpatialUtils::loadSpatialData("USCensusCounties.rda")
Usage

mazama_initialize(spatialDataDir = "~/Data/Spatial”)
Arguments

spatialDataDir Directory where spatial datasets are found, Default: "~/Data/Spatial”

Value

No return value.

Examples

library(MazamalLocationUtils)

Fail gracefully if any resources are not available

try({

Set up directory for spatial data
spatialDataDir <- tempdir() # typically "~/Data/Spatial”
MazamaSpatialUtils::setSpatialDataDir(spatialDataDir)

exists("”NaturalEarthAdm1")
mazama_initialize(spatialDataDir)
exists("NaturalEarthAdm1")
class(NaturalEarthAdm1)

}, silent = FALSE)

16 setAPIKey

or_monitors_500 Oregon monitor locations dataset

Description

The or_monitor_500 dataset provides a set of known locations associated with Oregon state air
quality monitors. This dataset was generated on 2021-10-19 by running:

library(PWFSLSmoke)
library(MazamalLocationUtils)

mazama_initialize()
setLocationDataDir("./data")

monitor <- monitor_loadlLatest()
lons <- monitor$meta$longitude
lats <- monitor$meta$latitude

table_initialize() %>%
table_addLocation(

lons, lats,
distanceThreshold = 500,
elevationService = "usgs",
addressService = "photon”
) %>%

table_save("or_monitors_500")

Usage

or_monitors_500

Format

A tibble with 69 rows and 13 columns of data.

See Also

id_monitors_500

wa_monitors_500

setAPIKey Set API key

Description

Sets the API key associated with a web service.

setLocationDataDir 17

setlLocationDataDir Set location data directory

Description

Sets the data directory where known location data tables are located. If the directory does not exist,
it will be created.

Usage

setLocationDataDir(dataDir)

Arguments

dataDir Directory where location tables are stored.

Value

Silently returns previous value of the data directory.

See Also

LocationDataDir

getLocationDataDir

showAPIKeys Show API keys

Description

Prints a list of all currently set API keys.

18 table_addColumn

table_addColumn Add a new column of metadata to a table

Description

A new metadata column is added to the locationTbl. For matching locationID records, the
associated locatioData is inserted. Otherwise, the new column will be initialized with NA.

Usage

table_addColumn(
locationThl = NULL,
columnName = NULL,
locationID = NULL,
locationData = NULL,
verbose = TRUE

)

Arguments
locationTbl Tibble of known locations.
columnName Name to use for the new column.
locationID Vector of locationID strings.

locationData Vector of data to used at matching records.

verbose Logical controlling the generation of progress messages.

Value

Updated tibble of known locations.

See Also

table_removeColumn

table_updateColumn

Examples

library(MazamalLocationUtils)

Starting table
locationTbl <- get(data("wa_monitors_500"))
names(locationThl)

Add an empty column
locationTbl <-
locationTbl %>%
table_addColumn("siteName™)

table_addCoreMetadata 19

names(locationTbl)

table_addCoreMetadata Add missing core metadata columns to a known location table

Description

An existing table will be amended to guarantee that it includes the following core metadata columns.

* locationID

* locationName

* longitude

* latitude

* elevation

¢ countryCode

* stateCode

e countyName

* timezone

* houseNumber

* street

* city

* 7Zip
The longitude and latitude columns are required to exist in the incoming tibble but all others
are optional.
If any of these core metadata columns are found, they will be retained.

The locationID will be generated (anew if already found) from existing longitude and latitude
data.

Other core metadata columns will be filled with NA values of the proper type.

The result is a tibble with all of the core metadata columns. Theses columns must then be filled in
to create a usable "known locations" table.
Usage

table_addCoreMetadata(locationTbl = NULL)

Arguments

locationTbl Tibble of known locations. This input tibble need not be a standardized "known
location" with all required columns. They will be added.

20 table_addLocation

Value

Tibble with the metadata columns required in a "known locations" table.

Note

No check is performed for overlapping locations. The returned tibble has the structure of a "known
locations" table and is a good starting place for investigation. But further work is required to produce
a valid table of "known locations" associated with a specific spatial scale.

table_addLocation Add new known location records to a table

Description

Incoming longitude and latitude values are compared against the incoming locationTbl to see
if they are already within distanceThreshold meters of an existing entry. A new record is created
for each location that is not already found in locationTbl.

Usage

table_addLocation(
locationThl = NULL,
longitude = NULL,
latitude = NULL,
distanceThreshold = NULL,
stateDataset = "NaturalEarthAdm1”,
elevationService = NULL,
addressService = NULL,
verbose = TRUE

)

Arguments
locationTbl Tibble of known locations.
longitude Vector of longitudes in decimal degrees E.
latitude Vector of latitudes in decimal degrees N.
distanceThreshold

Distance in meters.

stateDataset =~ Name of spatial dataset to use for determining state codes, Default: ’Natu-
ralEarthAdm1’

elevationService
Name of the elevation service to use for determining the elevation. Default:
NULL skips this step. Accepted values: "usgs".

addressService Name of the address service to use for determining the street address. Default:
NULL skips this step. Accepted values: "photon".

verbose Logical controlling the generation of progress messages.

table_addOpenCagelnfo 21

Value

Updated tibble of known locations.

Note

This function is a vectorized version of table_addSinglelLocation().

See Also

table_addSingleLocation
table_removeRecord

table_updateSingleRecord

Examples

library(MazamalLocationUtils)

Fail gracefully if any resources are not available
try({

Set up standard directories and spatial data
spatialDataDir <- tempdir() # typically "~/Data/Spatial”
mazama_initialize(spatialDataDir)
locationThl <- get(data(”"wa_monitors_500"))
Coulee City, WA
lon <- -119.290904
lat <- 47.611942
locationTbl <-

locationTbl %>%

table_addLocation(lon, lat, distanceThreshold = 500)
dplyr::glimpse(locationTbl)

}, silent = FALSE)

table_addOpenCageInfo Add address fields to a known location table

Description

The OpenCage reverse geocoding service is used to update an existing table. Updated columns
include:

* countryCode

22 table_addOpenCagelnfo

* stateCode

e countyName
* timezone

* houseNumber
¢ street

* city

e zip

e address

When replaceExisting = TRUE, all existing address fields are discarded in favor of the OpenCage
versions. To only fill in missing values in locationTbl, use replaceExisting = FALSE.

The OpenCage service returns a large number of fields, some of which may be useful. To add all
OpenCage fields to a location table, use retainOpenCage = TRUE. This will append 78+ fields of

n

information, each each named with a prefix of "opencage_".

Usage

table_addOpenCageInfo(
locationTbhl = NULL,
replaceExisting = FALSE,
retainOpenCage = FALSE,
verbose = FALSE

)
Arguments
locationTbl Tibble of known locations.
replaceExisting
Logical specifying whether to replace existing data with data obtained from
OpenCage.

retainOpenCage Logical specifying whether to retain all fields obtained from OpenCage, each
named with a prefix of opencage_.

verbose Logical controlling the generation of progress messages.

Value
Tibble of "known locations" enhanced with information from the OpenCage reverse geocoding
service.

Note
The OpenCage service requires an API key which can be obtained from their web site. This API

key must be set as an environment variable with:

Sys.setenv("OPENCAGE_KEY" = "<your api key>")

table_addSingleLocation 23

Parameters are set for use at the OpenCage "free trial" level which allows for 1 request/sec and a
maximum of 2500 requests per day.

Because of the 1 request/sec default, it is recommended that table_addOpenCageInfo() only be
used in an interactive session when updating a table with a large number of records.

References

https://opencagedata.com

Examples

library(MazamalLocationUtils)

Fail gracefully if any resources are not available
try({

myTbl <- id_monitors_500[1:3,]
myTbl$countryCode[1] <- NA
myTbl$countryCode[2] <- "WRONG"
myTbl$countyName[3] <- "WRONG"
myTbl$timezone <- NA
dplyr::glimpse(myTbhl)

Sys. setenv("OPENCAGE_KEY" = "<YOUR_KEY>")

table_addOpenCageInfo(myTbl) %>%
dplyr::glimpse()

table_addOpenCageInfo(myTbl, replaceExisting = TRUE) %>%
dplyr::glimpse()

table_addOpenCageInfo(myTbl, replaceExisting = TRUE, retainOpenCage = TRUE) %>%
dplyr::glimpse()

}, silent = FALSE)

table_addSinglelLocation
Add a single new known location record to a table

Description

Incoming longitude and latitude values are compared against the incoming locationTbl to see
if they are already within distanceThreshold meters of an existing entry. A new record is created
for if the location is not already found in locationTbl.

https://opencagedata.com

24 table_addSingleLocation

Usage

table_addSinglelLocation(
locationThl = NULL,
longitude = NULL,
latitude = NULL,
distanceThreshold = NULL,
stateDataset = "NaturalEarthAdm1”,
elevationService = NULL,
addressService = NULL,
verbose = TRUE

)

Arguments
locationTbl Tibble of known locations.
longitude Single longitude in decimal degrees E.
latitude Single latitude in decimal degrees N.
distanceThreshold

Distance in meters.

stateDataset Name of spatial dataset to use for determining state codes, Default: "Natu-
ralEarthAdm1".
elevationService

Name of the elevation service to use for determining the elevation. Default:
NULL. Accepted values: "usgs".

addressService Name of the address service to use for determining the street address. Default:
NULL. Accepted values: "photon".

verbose Logical controlling the generation of progress messages.

Value

Updated tibble of known locations.

See Also

table_addLocation
table_removeRecord

table_updateSingleRecord

Examples

library(MazamalLocationUtils)

Fail gracefully if any resources are not available
try({

Set up standard directories and spatial data

table_filterByDistance 25

spatialDataDir <- tempdir() # typically "~/Data/Spatial”
mazama_initialize(spatialDataDir)

locationTbl <- get(data("wa_monitors_500"))
Coulee City, WA
lon <- -119.290904
lat <- 47.611942
locationTbl <-
locationTbl %>%
table_addSinglelLocation(lon, lat, distanceThreshold = 500)

}, silent = FALSE)

table_filterByDistance
Return known locations near a target location

Description

Returns a tibble of the known locations from locationTbl that are within distanceThreshold
meters of the target location specified by longitude and latitude.

Usage

table_filterByDistance(
locationTbhl = NULL,
longitude = NULL,
latitude = NULL,
distanceThreshold = NULL,

measure = c("geodesic”, "haversine"”, "vincenty”, "cheap")
)
Arguments
locationTbl Tibble of known locations.
longitude Target longitude in decimal degrees E.
latitude Target latitude in decimal degrees N.
distanceThreshold
Distance in meters.
measure One of "haversine" "vincenty", "geodesic", or "cheap" specifying desired method

of geodesic distance calculation.

26

Value

Tibble of known locations.

Note

Only a single target location is allowed.

Examples

library(MazamalLocationUtils)
locationTbl <- get(data("wa_monitors_500"))

Too small a distanceThreshold will not find a match
locationTbl %>%
table_filterByDistance(
longitude = -117.3647,
latitude = 47.6725,
distanceThreshold = 10
) 5%
dplyr::glimpse()

Expanding the distanceThreshold will find several
locationTbl %>%
table_filterByDistance(
longitude = -117.3647,
latitude = 47.6725,
distanceThreshold = 10000
) 5%
dplyr::glimpse()

table_findAdjacentDistances

table_findAdjacentDistances

Find distances between adjacent locations in a known locations table

Description

Calculate distances between all locations within a known locations table and return a tibble with the
row indices and separation distances of those records separated by less than distanceThreshold

meters. Records are returned in order of distance.

It is useful when working with new metadata tables to identify adjacent locations early on so that
decisions can be made about the appropriateness of the specified distanceThreshold.

Usage

table_findAdjacentDistances(
locationThl = NULL,
distanceThreshold = NULL,

measure = c("geodesic"”, "haversine"”, "vincenty”, "cheap”)

table_findAdjacentLocations 27

Arguments
locationTbl Tibble of known locations.
distanceThreshold
Distance in meters.
measure One of "haversine" "vincenty", "geodesic", or "cheap" specifying desired method
of geodesic distance calculation.
See geodist: :geodist for details.
Value

Tibble of row indices and distances for those locations separated by less than distanceThreshold
meters.
Note

The measure "cheap” may be used to speed things up depending on the spatial scale being consid-
ered. Distances calculated with measure = "cheap” will vary by a few meters compared with those
calculated using measure = "geodesic”.

Examples

library(MazamalLocationUtils)
meta <- wa_airfire_meta

Any locations closer than 2 km?
table_findAdjacentDistances(meta, distanceThreshold = 2000)

How about 4 km?
table_findAdjacentDistances(meta, distanceThreshold = 4000)

table_findAdjacentLocations
Finds adjacent locations in a known locations table.

Description

Calculate distances between all locations within a known locations table and return a tibble contain-
ing all records that have an adjacent location separated by less than distanceThreshold meters.
The return tibble is ordered by separation distance.

It is useful when working with new metadata tables to identify adjacent locations early on so that
decisions can be made about the appropriateness of the specified distanceThreshold.

28 table_findAdjacentLocations

Usage

table_findAdjacentLocations(
locationTbl = NULL,
distanceThreshold = NULL,

measure = c("geodesic"”, "haversine”, "vincenty", "cheap")
)
Arguments
locationTbl Tibble of known locations.
distanceThreshold
Distance in meters.
measure One of "haversine" "vincenty", "geodesic", or "cheap" specifying desired method
of geodesic distance calculation.
See geodist: :geodist for details.
Value

Tibble of known locations separated by less than distanceThreshold meters.

Note

The measure "cheap” may be used to speed things up depending on the spatial scale being consid-
ered. Distances calculated with measure = "cheap” will vary by a few meters compared with those
calculated using measure = "geodesic”.

Examples
library(MazamalLocationUtils)
meta <- wa_airfire_meta
Any locations closer than 2 km?
meta %>%

table_findAdjacentLocations(distanceThreshold
dplyr::select(siteName, timezone)

2000) %>%

How about 4 km?

meta %>%
table_findAdjacentLocations(distanceThreshold = 4000) %>%
dplyr::select(siteName, timezone)

table_getDistanceFromTarget 29

table_getDistanceFromTarget
Return distances and directions from a target location to known loca-
tions

Description

Returns a tibble with the same number of rows as locationTbl containing the distance and direc-
tion from the target location specified by longitude and latitude to each known location found
in locationTbl.

Usage

table_getDistanceFromTarget(
locationThl = NULL,
longitude = NULL,
latitude = NULL,

measure = c("geodesic”, "haversine"”, "vincenty”, "cheap")
)
Arguments
locationTbl Tibble of known locations.
longitude Target longitude in decimal degrees E.
latitude Target latitude in decimal degrees N.
measure One of "haversine" "vincenty", "geodesic", or "cheap" specifying desired method
of geodesic distance calculation.
Value

Tibble of distances in meters and cardinal directions from a target location.

Note

Only a single target location is allowed.

Examples

library(MazamalLocationUtils)
locationTbl <- get(data("wa_monitors_500"))

locationTbl %>%
table_getDistanceFromTarget(
longitude = -117.3647,
latitude = 47.6725
) 5%
dplyr::glimpse()

30 table_getLocation]D

table_getLocationID Return IDs of known locations

Description

Returns a vector of locationIDs for the known locations that each incoming location will be as-
signed to within the given. If more than one known location exists within the given distanceThreshold,
the closest will be assigned. NA will be returned for each incoming that cannot be assigned to a
known location in locationTbl.

Usage

table_getlLocationID(
locationThl = NULL,
longitude = NULL,
latitude = NULL,
distanceThreshold = NULL,

measure = c("geodesic”, "haversine”, "vincenty”, "cheap”)
)
Arguments
locationTbl Tibble of known locations.
longitude Vector of longitudes in decimal degrees E.
latitude Vector of latitudes in decimal degrees N.
distanceThreshold
Distance in meters.
measure One of "haversine" "vincenty", "geodesic", or "cheap" specifying desired method
of geodesic distance calculation. See ?geodist: :geodist.
Value

Vector of known locationIDs.

Note

The measure "cheap” may be used to speed things up depending on the spatial scale being consid-
ered. Distances calculated with measure = "cheap” will vary by a few meters compared with those
calculated using measure = "geodesic”.

Examples
locationTbl <- get(data("wa_monitors_500"))
Wenatchee

lon <- -120.325278
lat <- 47.423333

table_getNearestDistance 31

Too small a distanceThreshold will not find a match
table_getLocationID(locationTbl, lon, lat, distanceThreshold = 50)

Expanding the distanceThreshold will find one
table_getLocationID(locationTbl, lon, lat, distanceThreshold

5000)

table_getNearestDistance
Return distances to nearest known locations

Description

Returns distances between target locations and the closest location found in locationTbl (if any).
Target locations are specified with longitude and latitude.

For each target location, only a single distance to the closest known location is returned. If no known
location is found within distanceThreshold, the distance associated with that target location will
be NA. The length and order of resulting distances will match the order of the incoming target
locations.

Usage

table_getNearestDistance(
locationThl = NULL,
longitude = NULL,
latitude = NULL,
distanceThreshold = NULL,

measure = c("geodesic”, "haversine”, "vincenty”, "cheap")
)
Arguments
locationTbl Tibble of known locations.
longitude Vector of target longitudes in decimal degrees E.
latitude Vector of target latitudes in decimal degrees N.
distanceThreshold
Distance in meters.
measure One of "haversine" "vincenty", "geodesic", or "cheap" specifying desired method
of geodesic distance calculation.
Value

Vector of closest distances between target locations and known locations.

32 table_getNearestLocation

Use Case

You may have a set of locations of interest for which you want to assess whether any monitoring
locations are nearby. In this case, the locations of interest will provide longitude and latitude
while locationTbl will be the known location table associated with the monitoring locations.

The resulting vector of distances will tell you the distance, for each target location, to the nearst
monitoring location.

Note

The measure "cheap” may be used to speed things up depending on the spatial scale being consid-
ered. Distances calculated with measure = "cheap” will vary by a few meters compared with those
calculated using measure = "geodesic”.

See geodist: :geodist for details.

Examples
library(MazamalLocationUtils)
locationTbl <- get(data("wa_monitors_500"))
Wenatchee
lon <- -120.325278
lat <- 47.423333

Too small a distanceThreshold will not find a match
table_getNearestDistance(locationTbl, lon, lat, distanceThreshold

50)

Expanding the distanceThreshold will find one
table_getNearestDistance(locationTbl, lon, lat, distanceThreshold = 5000)

table_getNearestLocation
Return known locations

Description

Returns a tibble of the known locations from locationTbl that are closest to the vector of target
locations specified by longitude and latitude. Only a single known location is returned for each
incoming target location. If no known location is found for a particular incoming location, that
record in the tibble will contain all NA.

Usage

table_getNearestlLocation(
locationThl = NULL,
longitude = NULL,

table_getRecordIndex 33

latitude = NULL,
distanceThreshold = NULL

)
Arguments
locationTbl Tibble of known locations.
longitude Vector of longitudes in decimal degrees E.
latitude Vector of latitudes in decimal degrees N.
distanceThreshold
Distance in meters.
Value

Tibble of known locations.
Examples
library(MazamalLocationUtils)
locationTbl <- get(data("wa_monitors_500"))
Wenatchee
lon <- -120.325278

lat <- 47.423333

Too small a distanceThreshold will not find a match
table_getNearestLocation(locationTbl, lon, lat, distanceThreshold

50) %>% str()

Expanding the distanceThreshold will find one
table_getNearestLocation(locationTbl, lon, lat, distanceThreshold = 5000) %>% str()

table_getRecordIndex Return indexes of known location records

Description

Returns a vector of locationTbl row indexes for the locations associated with each locationID.

Usage
table_getRecordIndex(locationThl = NULL, locationID = NULL, verbose = TRUE)

Arguments
locationTbl Tibble of known locations.
locationID Vector of locationID strings.

verbose Logical controlling the generation of progress messages.

34

Value

Vector of locationTbl row indexes.

Examples

library(MazamalLocationUtils)

locationTbl <- get(data("wa_monitors_500"))

Wenatchee

lon <- -120.325278

lat <- 47.423333

Get the locationID first

table_initialize

locationID <- table_getlLocationID(locationTbhl, lon, lat, distanceThreshold = 5000)

Now find the row associated with this ID
recordIndex <- table_getRecordIndex(locationTbl, locationID)

str(locationTbl[recordIndex, 1)

table_initialize

Create an empty known location table

Description

Creates an empty known location tibble with the following columns of core metadata:

locationID
locationName
longitude
latitude
elevation
countryCode
stateCode
countyName
timezone
houseNumber
street

city

zip

table_initializeExisting 35

Usage

table_initialize()

Value

Empty known location tibble with the specified metadata columns.

Examples
library(MazamalLocationUtils)
Create an empty Tbl

emptyThl <- table_initialize()
dplyr::glimpse(emptyThl)

table_initializeExisting
Converts an existing table into a known location table

Description

An existing table may have much of the data that is needed for a known location table. This function
accepts an incoming table and searches for required columns:

* locationID

* locationName
* longitude

* latitude

¢ elevation

* countryCode
 stateCode

e countyName
* timezone

* houseNumber
* street

* city

* zip

The longitude and latitude columns are required but all others are optional.

If any of these optional columns are found, they will be used and the often slow and sometimes
slightly inaccurate steps to generate that information will be skipped for locations that have non-
missing data. Any additional columns of information that are not part of the required core metadata
will be retained.

36 table_initializeExisting

This method skips the assignment of columns like elevation and all address related fields that
require web service requests.

Compared to initializing a brand new table and populating it one record at a time, this is a much
faster way of creating a known location table from a pre-existing table of metadata.

Usage

table_initializeExisting(
locationThl = NULL,
stateDataset = "NaturalEarthAdm1”,
countryCodes = NULL,
distanceThreshold = NULL,

measure = c("geodesic”, "haversine"”, "vincenty”, "cheap"),
verbose = TRUE
)
Arguments
locationTbl Tibble of known locations. This input tibble need not be a standardized "known

location" table with all required columns. Missing columns will be added.

stateDataset = Name of spatial dataset to use for determining state codes, Default: *Natu-
ralEarthAdm1’

countryCodes Vector of country codes used to optimize spatial searching. (See ?MazamaSpa-
tialUtils::getStateCode())

distanceThreshold
Distance in meters.

non "non

measure One of "haversine" "vincenty", "geodesic", or "cheap" specifying desired method
of geodesic distance calculation. See ?geodist: :geodist.

verbose Logical controlling the generation of progress messages.

Value

Known location tibble with the specified metadata columns. Any locations whose circles (as defined
by distanceThreshold) overlap will generate warning messages.

It is incumbent upon the user to address overlapping locations by one of:

1. reduce the distanceThreshold until no overlaps occur

2. assign one of the overlapping locations to the other location

Note

The measure "cheap” may be used to speed things up depending on the spatial scale being consid-
ered. Distances calculated with measure = "cheap” will vary by a few meters compared with those
calculated using measure = "geodesic”.

table_leafilet 37

table_leaflet Leaflet interactive map for known locations

Description

This function creates interactive maps that will be displayed in RStudio’s ’Viewer’ tab. The default
setting of jitter will move locations randomly within an ~50 meter radius so that overlapping
locations can be identified. Set jitter = @ to see precise locations.

Usage

table_leaflet(
locationTbhl = NULL,
maptype = c("terrain”, "roadmap”, "satellite"”, "toner"),
extraVars = NULL,
jitter = 5e-04,

)
Arguments
locationTbl Tibble of known locations.
maptype Optional name of leaflet ProviderTiles to use, e.g. terrain.
extraVars Character vector of addition locationTbl column names to be shown in leaflet
popups.
jitter Amount to use to slightly adjust locations so that multiple monitors at the same
location can be seen. Use zero or NA to see precise locations.
Additional arguments passed to leaflet::addCircleMarker().
Details

The maptype argument is mapped onto leaflet "ProviderTile" names. Current mappings include:

"roadmap" — "OpenStreetMap"
"satellite" — "Esri.WorldImagery"
"terrain” — "Esri.WorldTopoMap"

b=

"toner" — "Stamen.Toner"

If a character string not listed above is provided, it will be used as the underlying map tile if avail-
able. See https://leaflet-extras.github.io/leaflet-providers/ for a list of "provider
tiles" to use as the background map.

Value

A leaflet "plot" object which, if not assigned, is rendered in Rstudio’s *Viewer’ tab.

https://leaflet-extras.github.io/leaflet-providers/

38 table_leafletAdd

Examples

Not run:
library(MazamalLocationUtils)

A table with all core metadata
table_leaflet(wa_monitors_500)

A table missing some core metadata
table_leaflet(
wa_airfire_meta,
extraVars = c("stateCode”, "countyName"”, "msaName")

)

Customizing the map
table_leaflet(
wa_airfire_meta,

extraVars = c("stateCode”, "countyName”, "msaName"),
radius = 6,

color = "black"”,

weight = 2,

fillColor = "red”,
fillOpacity = 0.3
)

End(Not run)

table_leafletAdd Add to a leaflet interactive map for known locations

Description

This function adds a layer to an interactive map displayed in RStudio’s *Viewer’ tab. The default
setting of jitter will move locations randomly within an ~50 meter radius so that overlapping
locations can be identified. Set jitter = @ to see precise locations.

Usage
table_leafletAdd(
map = NULL,
locationTbhl = NULL,

extraVars = NULL,
jitter = 5e-04,

Arguments

map Leaflet map.

table_load 39

locationTbl Tibble of known locations.

extraVars Character vector of addition locationTbl column names to be shown in leaflet
popups.

jitter Amount to use to slightly adjust locations so that multiple monitors at the same

location can be seen. Use zero or NA to see precise locations.

Additional arguments passed to leaflet: :addCircleMarkers().

Value

A leaflet "plot" object which, if not assigned, is rendered in Rstudio’s ’Viewer’ tab.

table_load Load a known location table

Description

Load a tibble of known locations from the preferred directory.
The known location table must be named either <collectionName>.rdaor<collectionName>.csv.
If both are found, only <collectionName>.rda will be loaded to ensure that columns will have the
proper type assigned.

Usage
table_load(collectionName = NULL)

Arguments

collectionName Character identifier for this table.

Value

Tibble of known locations.

See Also

setlLocationDataDir

Examples

library(MazamalLocationUtils)

Set the directory for saving location tables
setLocationDataDir(tempdir())

Load an example table and check the dimensions
locationTbl <- get(data("wa_monitors_500"))
dim(locationThl)

40 table_removeColumn

Save it as "table_load_example”
table_save(locationThl, "table_load_example”)

Load it and check the dimensions
my_table <- table_load("table_load_example")
dim(my_table)

Check the locationDataDir
list.files(getLocationDataDir(), pattern = "table_load_example")

table_removeColumn Remove a column of metadata in a table

Description

Remove the column matching columnName. This function can be used in pipelines.

Usage

table_removeColumn(locationTbl = NULL, columnName = NULL, verbose = TRUE)

Arguments

locationTbl Tibble of known locations.

columnName Name of the colun to be removed.

verbose Logical controlling the generation of progress messages.
Value

Updated tibble of known locations.

See Also

table_addColumn

table_removeColumn

Examples

library(MazamalLocationUtils)

Starting table
locationTbl <- get(data("wa_monitors_500"))
names(locationThl)

Add a new column
locationTbl <-
locationTbl %>%
table_addColumn("siteName™)

table_removeRecord 41

names(locationTbl)

Now remove it

locationTbl <-
locationTbl %>%
table_removeColumn("siteName")

names(locationTbl)

try({
Cannot remove "core” metadata
locationTbl <-
locationTbl %>%
table_removeColumn(”zip")
}, silent = FALSE)

table_removeRecord Remove location records from a table

Description
Incoming locationID values are compared against the incoming locationTbl and any matches
are removed.

Usage

table_removeRecord(locationTbhl = NULL, locationID = NULL, verbose = TRUE)

Arguments

locationTbl Tibble of known locations.

locationID Vector of locationID strings.

verbose Logical controlling the generation of progress messages.
Value

Updated tibble of known locations.

See Also

table_addLocation
table_addSingleLocation
table_updateSingleRecord

42 table_save

Examples

library(MazamalLocationUtils)

locationTbl <- get(data("wa_monitors_500"))
dim(locationThl)

Wenatchee
lon <- -120.325278
lat <- 47.423333

Get the locationID first
locationID <- table_getlLocationID(locationTbhl, lon, lat, distanceThreshold = 500)

Remove it
locationTbl <- table_removeRecord(locationTbhl, locationID)
dim(locationTbl)

Test
table_getlLocationID(locationTbl, lon, lat, distanceThreshold = 500)

table_save Save a known location table

Description

Save a tibble of known locations to the preferred directory.

Usage

table_save(
locationThl = NULL,
collectionName = NULL,
backup = TRUE,
outputType = c("rda”, "csv")
)

Arguments

locationTbl Tibble of known locations.

collectionName Character identifier for this table.

backup Logical specifying whether to save a backup version of any existing tables shar-
ing collectionName.
outputType Output format. One of "rda" or "csv".
Details

Backup files are saved with "YYYY-mm-ddTHH:MM:SS"

table_updateColumn 43

Value

File path of saved file.

Examples

library(MazamalLocationUtils)

Set the directory for saving location tables
setlLocationDataDir (tempdir())

Load an example table and check the dimensions
locationTbl <- get(data("wa_monitors_500"))
dim(locationTbl)

Save it as "table_save_example”
table_save(locationTbhl, "table_save_example”)

Add a column and save again

locationTbl %>%
table_addColumn(”"my_column”) %>%
table_save("table_save_example")

Check the locationDataDir
list.files(getLocationDataDir(), pattern = "table_save_example")

table_updateColumn Update a column of metadata in a table

Description

Updates records in a location table. Records are identified by locationID and the data found in
locationData is used to replace any existing value in the columnName column. locationID and
locationData must be of the same length. Any NA values in locationID will be ignored.

If columnName is not a named column within locationTbl, a new column will be created.

Usage

table_updateColumn(
locationTbl = NULL,
columnName = NULL,
locationID = NULL,
locationData = NULL,
verbose = TRUE

44 table_updateColumn

Arguments
locationTbl Tibble of known locations.
columnName Name of an existing/new column in locationTbl whose data will be updated/created.
locationID Vector of locationID strings.

locationData Vector of data to be inserted at records identified by locationID.

verbose Logical controlling the generation of progress messages.

Value

Updated tibble of known locations.

See Also

table_addColumn

table_removeColumn

Examples

library(MazamalLocationUtils)

locationTbl <- get(data("wa_monitors_500"))
wa <- get(data("wa_airfire_meta"))

We will merge some metadata from wa into locationTbl

Record indices for wa
wa_indices <- seq(5,65,5)
wa_sub <- wa[wa_indices,]

locationID <-
table_getLocationID(
locationTbl,
wa_sub$longitude,
wa_sub$latitude,
distanceThreshold = 500
)

locationData <- wa_sub$siteName

locationTbl <-
table_updateColumn(locationTbhl, "siteName”, locationID, locationData)

Look at the data we attempted to merge
wa$siteName[wa_indices]

And two columns from the updated locationTbl
locationTbl_indices <- table_getRecordIndex(locationTbl, locationID)
locationTbl[locationTbl_indices, c("city”, "siteName")]

table_updateSingleRecord 45

table_updateSingleRecord
Update a single known location record in a table

Description

Information in the locationList is used to replace existing information found in locationTbl.
This function can be used for small tweaks to an existing locationTbl. Wholesale replacement of
records should be performed with table_removeRecord() followed by table_addLocation().

Usage

table_updateSingleRecord(
locationTbl = NULL,
locationList = NULL,
verbose = TRUE

Arguments

locationTbl Tibble of known locations.

locationList List containing locationID and one or more named columns whose values are
to be replaced.

verbose Logical controlling the generation of progress messages.

Value

Updated tibble of known locations.

See Also

table_addLocation
table_addSingleLocation

table_removeRecord

Examples

library(MazamalLocationUtils)
locationTbl <- get(data("wa_monitors_500"))
Wenatchee
wenatcheeRecord <-
locationTbl %>%
dplyr::filter(city == "Wenatchee")

str(wenatcheeRecord)

46 validateMazamaSpatialUtils

wenatcheeID <- wenatcheeRecord$locationID

locationTbl <- table_updateSingleRecord(
locationThbl,
locationList = list(
locationID = wenatcheelD,
locationName = "Wenatchee-Fifth St”
)
)

Look at the new record

locationTbl %>%
dplyr::filter(city == "Wenatchee") %>%
str()

validatelLocationTbl Validate a location table

Description

Ensures that the incoming table has numeric longitude and latitude columns.

Usage

validatelLocationTbl(locationTbl = NULL, locationOnly = TRUE)

Arguments

locationTbl Tibble of known locations.

locationOnly Logical specifying whether to check for all standard columns.

Value

Invisibly returns TRUE if no error message has been generated.

validateMazamaSpatialUtils
Validate proper setup of MazamaSpatialUtils

Description

The MazamaSpatialUtils package mus be properly installed and initialized before using functions
from the MazamaLocationUtils package. This function tests for this.

wa_airfire_meta 47

Usage

validateMazamaSpatialUtils()

Value

Invisibly returns TRUE if no error message has been generated.

wa_airfire_meta Washington monitor metadata dataset

Description

The wa_pwfsl_meta dataset provides a set of Washington state air quality monitor metadata used
by the USFS AirFire group. This dataset was generated on 2021-10-19 by running:

library(PWFSLSmoke)

wa_airfire_meta <-
monitor_loadLatest()
monitor_subset(stateCodes = "WA") %>%

monitor_extractMeta()

save(wa_airfire_meta, file = "data/wa_airfire_meta.rda")

Usage

wa_airfire_meta

Format

A tibble with 73 rows and 19 columns of data.

wa_monitors_500 Wshington monitor locations dataset

Description

The wa_monitor_500 dataset provides a set of known locations associated with Washington state
air quality monitors. This dataset was generated on 2021-10-19 by running:

library(PWFSLSmoke)
library(MazamalLocationUtils)

mazama_initialize()
setlLocationDataDir("./data")

48 wa_monitors_500

monitor <- monitor_loadLatest()
lons <- monitor$meta$longitude
lats <- monitor$meta$latitude

table_initialize() %>%
table_addLocation(

lons, lats,

distanceThreshold = 500,

elevationService = "usgs”,

addressService = "photon”
) %>%

table_save("wa_monitors_500")

Usage

wa_monitors_500

Format

A tibble with 72 rows and 13 columns of data.

See Also

id_monitors_500

or_monitors_500

Index

+ datasets
coreMetadataNames, 3
id_monitors_500, 4
or_monitors_500, 16
wa_airfire_meta, 47
wa_monitors_500, 47

* environment
getlocationDataDir, 3
LocationDataDir, 5
setLocationDataDir, 17

coreMetadataNames, 3
createlLocationID, 5

geodist, 27, 28, 32
getAPIKey, 3
getLocationDataDir, 3, 5, 17

id_monitors_500, 4, 16, 48

location_createlD, 5
location_getCensusBlock, 6
location_getOpenCagelnfo, 7
location_getSingleAddress_Photon, 8
location_getSingleAddress_TexasAM, 10
location_getSingleElevation_USGS, 11
location_initialize, 12
LocationDataDir, 3,5, 17

mazama_initialize, 15
MazamalocationUtils, 13

or_monitors_500, 4, 16, 48

setAPIKey, 16
setlLocationDataDir, 3, 5, 17, 39
showAPIKeys, 17

table_addColumn, 18, 40, 44
table_addCoreMetadata, 19
table_addLocation, 20, 24, 41, 45

49

table_addOpenCagelnfo, 21
table_addSinglelocation, 21, 23, 41,45
table_filterByDistance, 25
table_findAdjacentDistances, 26
table_findAdjacentLocations, 27
table_getDistanceFromTarget, 29
table_getlLocationID, 30
table_getNearestDistance, 31
table_getNearestLocation, 32
table_getRecordIndex, 33
table_initialize, 34
table_initializeExisting, 35
table_leaflet, 37
table_leafletAdd, 38

table_load, 39
table_removeColumn, I8, 40, 40, 44
table_removeRecord, 21, 24, 41, 45
table_save, 42
table_updateColumn, I8, 43
table_updateSingleRecord, 21, 24, 41, 45

validatelLocationTbl, 46
validateMazamaSpatialUtils, 46

wa_airfire_meta, 47
wa_monitors_500, 4, 16, 47

	coreMetadataNames
	getAPIKey
	getLocationDataDir
	id_monitors_500
	LocationDataDir
	location_createID
	location_getCensusBlock
	location_getOpenCageInfo
	location_getSingleAddress_Photon
	location_getSingleAddress_TexasAM
	location_getSingleElevation_USGS
	location_initialize
	MazamaLocationUtils
	mazama_initialize
	or_monitors_500
	setAPIKey
	setLocationDataDir
	showAPIKeys
	table_addColumn
	table_addCoreMetadata
	table_addLocation
	table_addOpenCageInfo
	table_addSingleLocation
	table_filterByDistance
	table_findAdjacentDistances
	table_findAdjacentLocations
	table_getDistanceFromTarget
	table_getLocationID
	table_getNearestDistance
	table_getNearestLocation
	table_getRecordIndex
	table_initialize
	table_initializeExisting
	table_leaflet
	table_leafletAdd
	table_load
	table_removeColumn
	table_removeRecord
	table_save
	table_updateColumn
	table_updateSingleRecord
	validateLocationTbl
	validateMazamaSpatialUtils
	wa_airfire_meta
	wa_monitors_500
	Index

