
Package ‘OpenCL’
October 12, 2022

Version 0.2-2

Title Interface allowing R to use OpenCL

Author Simon Ur-
banek <Simon.Urbanek@r-project.org>, Aaron Puchert <aaronpuchert@alice-dsl.net>

Maintainer Simon Urbanek <Simon.Urbanek@r-project.org>

Depends R (>= 2.0.0)

Description This package provides an interface to OpenCL, allowing R to leverage comput-
ing power of GPUs and other HPC accelerator devices.

License BSD_3_clause + file LICENSE

SystemRequirements OpenCL library

URL http://www.rforge.net/OpenCL/

NeedsCompilation yes

Repository CRAN

Date/Publication 2021-07-24 10:07:22 UTC

R topics documented:

clBuffer . 2
oclContext . 3
oclDevices . 4
oclInfo . 5
oclPlatforms . 6
oclRun . 7
oclSimpleKernel . 8

Index 10

1

http://www.rforge.net/OpenCL/

2 clBuffer

clBuffer Create and handle OpenCL buffers

Description

OpenCL buffers are just like numeric or integer vectors that reside on the GPU and can directly be
accessed by kernels. Both non-scalar arguments to oclRun and its return type are OpenCL buffers.

Just like vectors in R, OpenCL buffers have a mode, which is (as of now) one of "double" or
"numeric" (corresponds to double in OpenCL C), "single" (float) or "integer" (int).

The constructor clBuffer takes a context as created by oclContext, a length and a mode argument.

The conversion function as.clBuffer creates an OpenCL buffer of the same length and mode as
the argument and copies the data. Conversely, as.double (= as.numeric) and as.integer read a
buffer and coerce the result as vector the appropriate mode.

With is.clBuffer one can check if an object is an OpenCL buffer.

The methods length.clBuffer and print.clBuffer retrieve the length and print the contents,
respectively.

Basic access to the data is available via [...]. As of now, only an empty selection is supported
(which selects all elements), i.e. you can only select buf[].

Usage

clBuffer(context, length, mode = c("numeric", "single", "double", "integer"))
as.clBuffer(vector, context)
is.clBuffer(any)
S3 method for class 'clBuffer'
as.double(x, ...)
S3 method for class 'clBuffer'
as.integer(x, ...)
S3 method for class 'clBuffer'
print(x, ...)
S3 method for class 'clBuffer'
length(x)
S3 method for class 'clBuffer'
x[indices]
S3 replacement method for class 'clBuffer'
x[indices] <- value

Arguments

context OpenCL context as created by oclContext

length Length of the required buffer

mode Mode of the buffer, can be one of "numeric", "clFloat", "integer"

vector Numeric or integer vector or clFloat object

any Arbitrary object

oclContext 3

x OpenCL buffer object (clBuffer)

indices Indices to access the buffer, must be omitted (as of now)

value New values

... Arguments passed to subsequent methods

Author(s)

Aaron Puchert

See Also

oclContext, oclRun

Examples

library(OpenCL)
ctx<-oclContext()

buf<-clBuffer(ctx, 16, "numeric")
Do not write buf<-..., as this replaces buf with a vector.
buf[]<-sqrt(1:16)
buf

intbuf<-as.clBuffer(1:16, ctx)
print(intbuf)

length(buf)
as.numeric(buf)
buf[]

clBuffer is the required argument and return type of oclRun.
See oclRun() examples.

oclContext Create an OpenCL context for a given device.

Description

OpenCL contexts host kernels and buffers for the device they are hosted on. They also have an
attached command queue, which allows out-of-order execution of all operations. Once you have a
context, you can create a kernel in the context with oclSimpleKernel.

Usage

oclContext(device = "default", precision = c("best", "single", "double"))

4 oclDevices

Arguments

device Device object as obtained from oclDevices or a type as in oclDevices. In this
case, a suitable device of the given type will be selected automatically.

precision Default precision of the context. This is the precision that will be chosen by
default for numeric buffers and kernels with numeric output mode.

Value

An OpenCL context.

Author(s)

Aaron Puchert

See Also

oclDevices, oclSimpleKernel

Examples

library(OpenCL)
platform <- oclPlatforms()[[1]]
device <- oclDevices(platform)[[1]]
ctx <- oclContext(device)
print(ctx)

oclDevices Get a list of OpenCL devices.

Description

oclDevices retrieves a list of OpenCL devices for the given platform.

Usage

oclDevices(platform = oclPlatforms()[[1]], type = "all")

Arguments

platform OpenCL platform (see oclPlatforms)

type Desired device type, character vector of length one. Valid values are "cpu",
"gpu", "accelerator", "all", "default". Partial matches are allowed.

Value

List of devices. May be empty.

oclInfo 5

Author(s)

Simon Urbanek

See Also

oclPlatforms

Examples

p <- oclPlatforms()
if (length(p)) print(oclDevices(p[[1]], "all"))

oclInfo Retrieve information about an OpenCL object.

Description

Some OpenCL obejcts have information tokens associated with them. For example the device obejct
has a name, vendor, list of extensions etc. oclInfo returns a list of such properties for the given
object.

Usage

oclInfo(item)
S3 method for class 'clDeviceID'
oclInfo(item)
S3 method for class 'clPlatformID'
oclInfo(item)
S3 method for class 'list'
oclInfo(item)

Arguments

item object to retrieve information properties from

Value

List of properties. The properties vary by object type. Some common properties are "name",
"vendor", "version", "profile" and "exts".

Author(s)

Simon Urbanek

6 oclPlatforms

Examples

p <- oclPlatforms()
if (length(p)) {

print(oclInfo(p[[1]]))
d <- oclDevices(p[[1]])
if (length(d)) print(oclInfo(d))

}

oclPlatforms Retrieve available OpenCL platforms.

Description

oclPlatforms retrieves all available OpenCL platforms.

Usage

oclPlatforms()

Value

List of available OpenCL platforms.

Author(s)

Simon Urbanek

See Also

oclDevices

Examples

print(oclPlatforms())

oclRun 7

oclRun Run a kernel using OpenCL.

Description

oclRun is used to execute code that has been compiled for OpenCL.

Usage

oclRun(kernel, size, ..., dim = size)

Arguments

kernel Kernel object as obtained from oclSimpleKernel

size Length of the output vector

... Additional arguments passed to the kernel

dim Numeric vector describing the global work dimensions, i.e., the index range that
the kernel will be run on. The kernel can use get_global_id(n) to obtain
the (n + 1)-th dimension index and get_global_size(n) to get the dimension.
OpenCL standard supports only up to three dimensions, you can use use index
vectors as arguments if more dimensions are required. Note that dim is not
necessarily the dimension of the result although it can be.

Details

oclRun pushes kernel arguments, executes the kernel and retrieves the result. The kernel is expected
to have either __global double * or __global float * type (write-only) as the first argument
which will be used for the result and const unsigned int second argument denoting the result
length. All other arguments are assumed to be read-only and will be filled according to the ...
values. These can either be OpenCL buffers as generated by clBuffer for pointer arguments, or
scalar values (vectors of length one) for scalar arguments. Only integer (int), and numeric (double
or float) scalars and OpenCL buffers are supported as kernel arguments. The caller is responsible
for matching the argument types according to the kernel in a way similar to .C and .Call.

Value

The resulting buffer of length size.

Author(s)

Simon Urbanek, Aaron Puchert

See Also

oclSimpleKernel, clBuffer

8 oclSimpleKernel

Examples

library(OpenCL)
ctx = oclContext(precision="single")

code = c("
__kernel void dnorm(

__global numeric* output,
const unsigned int count,
__global numeric* input,
const numeric mu, const numeric sigma)

{
size_t i = get_global_id(0);
if(i < count)

output[i] = exp(-0.5 * ((input[i] - mu) / sigma) * ((input[i] - mu) / sigma))
/ (sigma * sqrt(2 * 3.14159265358979323846264338327950288));

}")
k.dnorm <- oclSimpleKernel(ctx, "dnorm", code)
f <- function(x, mu=0, sigma=1)

as.numeric(oclRun(k.dnorm, length(x), as.clBuffer(x, ctx), mu, sigma))

expect differences since the above uses single-precision but
it should be close enough
f(1:10/2) - dnorm(1:10/2)

does the device support double-precision?
if (any("cl_khr_fp64" == oclInfo(attributes(ctx)$device)$exts)) {

k.dnorm <- oclSimpleKernel(ctx, "dnorm", code, "double")
f <- function(x, mu=0, sigma=1) {

buf <- clBuffer(ctx, length(x), "double")
buf[] <- x
as.numeric(oclRun(k.dnorm, length(x), buf, mu, sigma))

}

probably not identical, but close...
f(1:10/2) - dnorm(1:10/2)

} else cat("\nSorry, your device doesn't support double-precision\n")

Note that in practice you can use precision="best" in the first
example which will pick "double" on devices that support it and
"single" elsewhere

oclSimpleKernel Create and compile OpenCL kernel code.

Description

Creates a kernel object by compiling the supplied code. The kernel can then be used in oclRun.

oclSimpleKernel 9

Usage

oclSimpleKernel(context, name, code,
output.mode = c("numeric", "single", "double", "integer"))

Arguments

context Context (as created by oclContext) to compile the kernel in.

name Name of the kernel function - must match the name used in the supplied code.

code Character vector containing the code. The code will be concatenated (as-is, no
newlines are added!) by the engine.

output.mode Mode of the output argument of the kernel, as in clBuffer. This can be one of
"single", "double", "integer", or "numeric". The default value "numeric" maps
to the default precision of the context.
The kernel code may use a type numeric that is typedef’d to the given preci-
sion, i.e. either float or double. The OpenCL extension cl_khr_fp64 will be
enabled automatically in the second case, so you don’t have to add the pragma
yourself.

Details

oclSimpleKernel builds the program specified by code and creates a kernel from the program.

The kernel built by this function is simple in that it can have exactly one vector output and arbitrarily
many inputs. The first argument of the kernel must be __global double* or __global float*
for the output and the second argument must be const unsigned int for the length of the output
vector. Additional numeric scalar arguments are assumed to have the same mode as the output, i.e.
if the output shall have "double" precision, then numeric scalar arguments are assumed to be double
values, similarly for single-precision. All additional arguments are optional. See oclRun for an
example of a simple kernel.

Note that building a kernel can take substantial amount of time (depending on the OpenCL imple-
mentation) so it is generally a good idea to compile a kernel once and re-use it many times.

Value

Kernel object that can be used by oclRun.

Author(s)

Simon Urbanek, Aaron Puchert

See Also

oclContext, oclRun

Index

∗ interface
clBuffer, 2
oclContext, 3
oclDevices, 4
oclInfo, 5
oclPlatforms, 6
oclRun, 7
oclSimpleKernel, 8

.C, 7

.Call, 7
[.clBuffer (clBuffer), 2
[<-.clBuffer (clBuffer), 2

as.clBuffer (clBuffer), 2
as.double.clBuffer (clBuffer), 2
as.integer.clBuffer (clBuffer), 2

clBuffer, 2, 7, 9

is.clBuffer (clBuffer), 2

length.clBuffer (clBuffer), 2

oclContext, 2, 3, 3, 9
oclDevices, 4, 4, 6
oclInfo, 5
oclPlatforms, 4, 5, 6
oclRun, 2, 3, 7, 8, 9
oclSimpleKernel, 3, 4, 7, 8

print.clBuffer (clBuffer), 2

10

	clBuffer
	oclContext
	oclDevices
	oclInfo
	oclPlatforms
	oclRun
	oclSimpleKernel
	Index

