Package 'OutrankingTools'

October 12, 2022

туре Раскаде
Title Functions for Solving Multiple-criteria Decision-making Problems
Version 1.0
Date 2014-12-22
Author Michel Prombo <michel.prombo@statec.etat.lu> or <michel.prombo@gmail.com></michel.prombo@gmail.com></michel.prombo@statec.etat.lu>
Maintainer Michel Prombo <michel.prombo@graduates.centraliens.net></michel.prombo@graduates.centraliens.net>
Description Functions to process "outranking" ELECTRE methods existing in the literature. See, e.g., http://en.wikipedia.org/wiki/ELECTRE about the outranking approach and the foundations of ELECTRE methods.
Depends igraph
License GPL (>= 2)
NeedsCompilation no
Repository CRAN
Date/Publication 2014-12-24 01:26:42
R topics documented: OutrankingTools-package
Electre_tri
Index 13

OutrankingTools-package

Functions for Solving Multiple-criteria Decision-making Problems

Description

The outranking methods constitute one of the most fruitful approach in the field of Multiple Criteria Decision Making (MCDM). They main feature is to compare all feasible alternatives or actions by pair building up some binary relations, crisp or fuzzy, and then exploit in appropriate way these relations in order to obtain final recommendations. This package contains functions to process ELECTRE methods existing in the literature. See, e.g., http://en.wikipedia.org/wiki/ELECTRE about the outranking approach and the foundations of ELECTRE methods.

Details

Package: OutrankingTools

Type: Package Version: 1.0

Date: 2014-12-22 License: GPL (>= 2)

Author(s)

Michel Prombo <michel.prombo@statec.etat.lu>

Maintainer: <michel.prombo@graduates.centraliens.net>

References

Roy, B. (1996) Multiple Criteria Methodology for Decision Aiding, Dordrecht: Kluwer Academic. Roy, B. and Bouyssou, D. (1985). An example of comparison of two decision-aid models,in G. Fandel and J. Spronk (eds) Ballestero, E. and Romero, C. (1998) Multiple Criteria Decision Making and its Applications to Economic Problems, Boston-Dordrecht-London: Kluwer Academic. Vincke, P. (1992) Multi-criteria Decision-Aid, John Wiley, Chichester. Roy B. (1968) Classement et choix en presence de points de vue multiples (la methode Electre), Revue Française d Informatique et de Recherche Operationnelle.

Electre3_AlphaBetaThresholds

ELECTRE III using affine function form of the thresholds

Description

ELECTRE III method aims to answer the following question: considering a finite set of actions, A, evaluated on a coherent family of pseudo-criteria, F, how to make a partition of A in classes of quivalence and provide a necessarily complete pre-order expressing the relative position of these classes? In the first phase, ELECTRE III method involves the construction of a fuzzy outranking relation. In the second phase, an algorithm is used for making a ranking in a final partial pre-order, that combines two complete pre-orders.

Usage

```
Electre3_AlphaBetaThresholds(performanceMatrix,
alternatives,
criteria,
minmaxcriteria,
criteriaWeights,
alpha_q,
beta_q,
alpha_p,
beta_p,
alpha_v,
beta_v,
mode_def)
```

Arguments

nert	orman	сема	trıv
PCII	Or man	CCIII	CI IV

Matrix or data frame containing the performance table. Each row corresponds to an alternative, and each column to a criterion. Rows (resp. columns) must be named according to the IDs of the alternatives (resp. criteria).

alternatives Vector containing names of alternatives, according to which the data should be

filtered.

criteria Vector containing names of criteria, according to which the data should be fil-

terea.

minmaxcriteria criteriaMinMax Vector containing the preference direction on each of the criteria. "min" (resp."max") indicates that the criterion has to be minimized (maxi-

ized).

criteriaWeights

Vector containing the weights of the criteria.

alpha_q Vector containing the coefficients alpha when indifference threshold is as affine

function of the performance.

beta_q Vector containing coefficients beta when indifference threshold is as affine func-

tion of the performance.

alpha_p Vector containing coefficients beta when preference threshold is as affine func-

tion of the performance.

beta_p Vector containing coefficients beta when preference threshold is as affine func-

tion of the performance.

alpha_v	Vector containing coefficients beta when veto threshold is as affine function of the performance.
beta_v	Vector containing coefficients beta when veto threshold is as affine function of the performance.
mode_def	Vector containing the mode of definition which indicates the mode of calculation of the thresholds (direct (D), considers the worst of the two actions; inverse(I), considers the best of the two actions). If Null, "Direct" mode will be setting

Author(s)

Michel Prombo <michel.prombo@statec.etat.lu>

References

Roy B.: "The outranking approach and the foundations of ELECTRE methods", Theory and Decision 31, 1991, 49-73.

Examples

```
## Illustrative example used to present the ELECTRE III-IV software in the French version.
## The objective: make the ranking of 10 French cars that were evaluated on 7 criteria
##(VALLE E, D. AND ZIELNIEWICZ, P. (1994a).
## Document du LAMSADE 85, Universite Paris-Dauphine, Paris.)
## the performance table
performanceMatrix <- cbind(</pre>
c(103000,101300,156400,267400,49900,103600,103000,170100,279700,405000),
c(171.3,205.3,221.7,230.7,122.6,205.1,178.0,226.0,233.8,265.0),
c(7.65,7.90,7.90,10.50,8.30,8.20,7.20,9.10,10.90,10.30),
c(352,203,391,419,120,265,419,419,359,265),
c(11.6,8.4,8.4,8.6,23.7,8.1,11.4,8.1,7.8,6.0)
c(88.0,78.3,81.5,64.7,74.1,81.7,77.6,74.7,75.5,74.7)
c(69.7,73.4,69.0,65.6,76.4,73.6,66.2,71.7,70.9,72.0))
# Vector containing names of alternatives
alternatives<-c("CBX16", "P205G", "P405M", "P605S", "R4GTL", "RCLIO", "R21TS", "R21TU", "R25BA", "ALPIN")
# Vector containing names of criteria
criteria <-c("Prix","Vmax","C120","Coff","Acce","Frei","Brui")</pre>
# vector indicating the direction of the criteria evaluation .
minmaxcriteria <-c("min","max","min","max","min","min","min")</pre>
# criteriaWeights vector
criteriaWeights <-c(0.3,0.1,0.3,0.2,0.1,0.2,0.1)
# thresholds vector
alpha_q <- c(0.08, 0.02, 0, 0, 0.1, 0, 0)
```

```
beta_q <- c(-2000,0,1,100,-0.5,0,3)
alpha_p <- c(0.13,0.05,0,0,0.2,0,0)
beta_p <- c(-3000,0,2,200,-1,5,5)
alpha_v <- c(0.9,NA,0,NA,0.5,0,0)
beta_v <- c(50000,NA,4,NA,3,15,15)
# Vector containing the mode of definition which
# indicates the mode of calculation of the thresholds.
mode_def <- c("I","D","D","D","D","D","D","D")</pre>
# Testing
Electre3_AlphaBetaThresholds(performanceMatrix,
alternatives,
criteria,
minmaxcriteria,
criteriaWeights,
alpha_q,
beta_q,
alpha_p,
beta_p,
alpha_v,
beta_v,
mode_def)
```

Electre3_SimpleThresholds

ELECTRE III using non affine form of the thresholds

Description

ELECTRE III method aims to answer the following question: considering a finite set of actions, A, evaluated on a coherent family of pseudo-criteria, F, how to make a partition of A in classes of quivalence and provide a necessarily complete pre-order expressing the relative position of these classes? In the first phase, ELECTRE III method involves the construction of a fuzzy outranking relation. In the second phase, an algorithm is used for making a ranking in a final partial pre-order, that combines two complete pre-orders.

Usage

```
Electre3_SimpleThresholds(performanceMatrix,
alternatives,
criteria,
minmaxcriteria,
criteriaWeights,
IndifferenceThresholds,
PreferenceThresholds,
VetoThresholds,
mode_def)
```

Arguments

performanceMatrix

Matrix or data frame containing the performance table. Each row corresponds to an alternative, and each column to a criterion. Rows (resp. columns) must be named according to the IDs of the alternatives (resp. criteria).

alternatives

Vector containing names of alternatives, according to which the data should be filtered.

criteria

Vector containing names of criteria, according to which the data should be filtered.

minmaxcriteria criteriaMinMax Vector containing the preference direction on each of the criteria. "min" (resp."max") indicates that the criterion has to be minimized (maximized).

criteriaWeights

Vector containing the weights of the criteria.

IndifferenceThresholds

Vector containing the indifference thresholds constraints defined for each criterion.

PreferenceThresholds

Vector containing the preference thresholds constraints defined for each criterion.

VetoThresholds Vector containing the veto thresholds constraints defined for each criterion

mode_def

Vector containing the mode of definition which indicates the mode of calculation of the thresholds (direct (D), considers the worst of the two actions; inverse(I), considers the best of the two actions). If Null, "Direct" mode will be setting

Author(s)

Michel Prombo <michel.prombo@statec.etat.lu>

References

Roy B.: "The outranking approach and the foundations of ELECTRE methods", Theory and Decision 31, 1991, 49-73.

Examples

```
# the performance table
performanceMatrix <- cbind(</pre>
c(-14,129,-10,44,-14),
c(90,100,50,90,100),
c(0,0,0,0,0)
c(40,0,10,5,20)
c(100,0,100,20,40)
# Vector containing names of alternatives
```

Electre_1 7

```
alternatives <- c("Project1", "Project2", "Project3", "Project4", "Project5")
# Vector containing names of criteria
criteria <- c( "CR1","CR2","CR3","CR4","CR5")</pre>
# vector indicating the direction of the criteria evaluation
minmaxcriteria <- c("max","max","max","max","max")</pre>
# criteriaWeights vector
# thresholds vector
IndifferenceThresholds <- c(25,16,0,12,10)
PreferenceThresholds <- c(50,24,1,24,20)
VetoThresholds <- c(100,60,2,48,90)
criteriaWeights \leftarrow c(1,1,1,1,1)
# Vector containing the mode of definition which
# indicates the mode of calculation of the thresholds.
# Testing
Electre3_SimpleThresholds(performanceMatrix,
alternatives,
criteria,
minmaxcriteria,
criteriaWeights,
IndifferenceThresholds,
PreferenceThresholds,
VetoThresholds)
```

Electre_1

Electre 1: Method used to solve multiple criteria decision making

Description

The acronym ELECTRE stands for: \'ELimination Et Choix Traduisant la R\'Ealit\'e (ELimination and Choice Expressing REality).ELECTRE I method is then designed to rank reliability design scheme in order of decision maker preference. This method is based on the concept of concordance and discordance.

Usage

```
Electre_1(performanceMatrix,
alternatives,
criteria,
criteriaWeights,
```

8 Electre_1

```
minmaxcriteria,
concordance_threshold = 1,
discordance_threshold = 0)
```

Arguments

performanceMatrix

Matrix or data frame containing the performance table. Each row corresponds to an alternative, and each column to a criterion. Rows (resp. columns) must be named according to the IDs of the alternatives (resp. criteria).

alternatives

Vector containing names of alternatives, according to which the data should be filtered.

criteria

Vector containing names of criteria, according to which the data should be fil-

criteriaWeights

ector containing the weights of the criteria.

minmaxcriteria criteriaMinMax Vector containing the preference direction on each of the criteria. "min" (resp. "max") indicates that the criterion has to be minimized (maximized).

concordance_threshold

parameter defining concordance threshold. The default value is 1. The user can set a new value between 0 and 1

discordance_threshold

parameter defining discordance threshold. The default value is 0. The user can set a new value between 0 and 1.

Value

The function returns a list structured as follows:

"Performance Matrix"

A matrix containing the performance table. Each row corresponds to an alternative, and each column to a criterion

"Concordance Matrix"

Concordance matrix is one of two working relations (concordance and discordance) which are subsequently used to construct the final dominance relation. For an outranking aSb to be validated, a sufficient majority of criteria should be in favor of this assertion.

"Discordance Matrix"

Discordance matrix is one of two working relations (concordance and discordance) which are subsequently used to construct the final dominance relation. The concept of discordance is complementary to the one of (concordance and represents the discomfort experienced in the choosing of alternative a above alternative b

Author(s)

Michel Prombo <michel.prombo@statec.etat.lu>

References

Roy B.: "The outranking approach and the foundations of ELECTRE methods", Theory and Decision 31, 1991, 49-73.

Examples

```
## This illustrative example has been used in to present
##the ELECTRE III-IV software in the French version.
## The objective is to make the ranking of 10 French cars that were evaluated on 7 criteria
##(VALLE E, D. AND ZIELNIEWICZ, P. (1994a).
## Document du LAMSADE 85, Universite Paris-Dauphine, Paris.)
## The performance table
performanceMatrix <- cbind(</pre>
c(103000,101300,156400,267400,49900,103600,103000,170100,279700,405000),
c(171.3, 205.3, 221.7, 230.7, 122.6, 205.1, 178.0, 226.0, 233.8, 265.0),
c(7.65, 7.90, 7.90, 10.50, 8.30, 8.20, 7.20, 9.10, 10.90, 10.30),
c(352,203,391,419,120,265,419,419,359,265),
c(11.6,8.4,8.4,8.6,23.7,8.1,11.4,8.1,7.8,6.0)
c(88.0,78.3,81.5,64.7,74.1,81.7,77.6,74.7,75.5,74.7),
c(69.7,73.4,69.0,65.6,76.4,73.6,66.2,71.7,70.9,72.0))
## Vector containing names of alternatives
alternatives <-c("CBX16", "P205G", "P405M", "P605S", "R4GTL", "RCLIO", "R21TS", "R21TU", "R25BA", "ALPIN")
## Vector containing names of criteria
criteria <-c("Prix","Vmax","C120","Coff","Acce","Frei","Brui")</pre>
## vector indicating the direction of the criteria evaluation .
minmaxcriteria <-c("min","max","min","max","min","min","min")</pre>
## criteriaWeights vector
criteriaWeights <-c(0.3,0.1,0.3,0.2,0.1,0.2,0.1)
Electre_1(performanceMatrix,
alternatives,
criteria,
criteriaWeights,
minmaxcriteria,
concordance_threshold=0.8, discordance_threshold=0.1)
```

Electre_tri

ELECTRE TRI Method

Description

The Electre Tri is a multiple criteria decision aiding method, designed to deal with sorting problems. Electre Tri method has been developed by LAMSADE (Paris-Dauphine University, Paris, France).

Usage

Electre_tri(performanceMatrix,
alternatives,
profiles,
profiles_names,
criteria,
minmaxcriteria,
criteriaWeights,
IndifferenceThresholds,
PreferenceThresholds,
VetoThresholds,
lambda = NULL)

Arguments

performanceMatrix

Matrix or data frame containing the performance table. Each row corresponds to an alternative, and each column to a criterion. Rows (resp. columns) must be named according to the IDs of the alternatives (resp. criteria).

alternatives Vector containing names of alternatives, according to which the data should be

filtered.

profiles Matrix containing, in each row, the lower profiles of the categories. The columns

are named according to the criteria, and the rows are named according to the categories. The index of the row in the matrix corresponds to the rank of the

category.

profiles_names Vector containing profiles'names

criteria Vector containing names of criteria, according to which the data should be fil-

tered.

minmaxcriteria criteriaMinMax Vector containing the preference direction on each of the crite-

ria. "min" (resp. "max") indicates that the criterion has to be minimized (maxi-

mized)

criteriaWeights

Vector containing the weights of the criteria.

IndifferenceThresholds

Vector containing the indifference thresholds constraints defined for each criterion.

PreferenceThresholds

Vector containing the preference thresholds constraints defined for each crite-

rion.

VetoThresholds Vector containing the veto thresholds constraints defined for each criterion

lambda The lambda-cutting lambda- should be in the range 0.5 and 1.0) level indicates

how many of the criteria have to be fulfilled in order to assign an alternative to

a specific category. Default value=0.75

Author(s)

Michel Prombo <michel.prombo@statec.etat.lu>

References

Mousseau V., Slowinski R., "Inferring an ELECTRE TRI Model from Assignment Examples", Journal of Global Optimization, vol. 12, 1998, 157-174. Mousseau V., Figueira J., NAUX J.P, "Using assignment examples to infer weights for ELECTRE TRI method: Some experimental results", Universite de Paris Dauphine, cahier du Lamsade n 150, 1997, Mousseau V., Slowinski R., Zielniewicz P.: "ELECTRE TRI 2.0a, User documentation", Universite de Paris-Dauphine, Document du LAMSADE no 111

Examples

```
# the performance table
performanceMatrix <- cbind(</pre>
c(-120.0, -150.0, -100.0, -60, -30.0, -80, -45.0)
c(-284.0,-269.0,-413.0,-596,-1321.0,-734,-982.0),
c(5.0,2.0,4.0,6,8.0,5,7.0),
c(3.5,4.5,5.5,8,7.5,4,8.5),
c(18.0,24.0,17.0,20,16.0,21,13.0)
# Vector containing names of alternatives
alternatives <- c("a1", "a2", "a3", "a4", "a5", "a6", "a7")
# Vector containing names of criteria
criteria <- c( "g1", "g2", "g3", "g4", "g5")</pre>
criteriaWeights < c(0.25,0.45,0.10,0.12,0.08)
# vector indicating the direction of the criteria evaluation .
minmaxcriteria <- c("max", "max", "max", "max", "max")</pre>
# Matrix containing the profiles.
profiles <- cbind(c(-100, -50), c(-1000, -500), c(4,7), c(4,7), c(15,20))
# vector defining profiles' names
profiles_names <-c("b1","b2")</pre>
# thresholds vector
IndifferenceThresholds <- c(15,80,1,0.5,1)
PreferenceThresholds \leftarrow c(40,350,3,3.5,5)
VetoThresholds <- c(100,850,5,4.5,8)
# Testing
Electre_tri(performanceMatrix,
alternatives,
profiles,
profiles_names,
```

criteria,
minmaxcriteria,
criteriaWeights,
IndifferenceThresholds,
PreferenceThresholds,
VetoThresholds,
lambda=NULL)

Index

```
* Aggregation/disaggregation approaches
    Electre_tri, 9
* Discrimination thresholds
    Electre3_AlphaBetaThresholds, 2
    Electre3_SimpleThresholds, 5
* ELECTRE methods
    Electre3_AlphaBetaThresholds, 2
    Electre3_SimpleThresholds, 5
    Electre_tri, 9
    OutrankingTools-package, 2
* Multi-criteria decision aiding
    Electre_tri, 9
* Outranking approaches
    Electre3_AlphaBetaThresholds, 2
    Electre3_SimpleThresholds, 5
    OutrankingTools-package, 2
* Sorting problem
    Electre_tri, 9
    OutrankingTools-package, 2
* package
    OutrankingTools-package, 2
* preference modelling, multicriteria
        analysis
    Electre3_AlphaBetaThresholds, 2
    Electre3_SimpleThresholds, 5
    OutrankingTools-package, 2
* pseudo-criterion
    Electre3_AlphaBetaThresholds, 2
    Electre3_SimpleThresholds, 5
Electre3_AlphaBetaThresholds, 2
Electre3_SimpleThresholds, 5
Electre_1, 7
Electre_tri, 9
OutrankingTools
        (OutrankingTools-package), 2
OutrankingTools-package, 2
```