
Package ‘Platypus’
October 12, 2022

Type Package

Title Single-Cell Immune Repertoire and Gene Expression Analysis

Description We present 'Platypus', an open-source software platform providing a user-friendly inter-
face to investigate B-cell receptor and T-cell receptor repertoires from scSeq experiments. 'Platy-
pus' provides a framework to automate and ease the analysis of single-cell immune reper-
toires while also incorporating transcriptional information involving unsupervised cluster-
ing, gene expression and gene ontology (Yer-
manos A, et al (2021) <doi:10.1093/nargab/lqab023>).

Version 3.4.1

Date 2022-03-01

Maintainer Alexander Yermanos <ayermanos@gmail.com>

Depends R(>= 3.5.0),

Imports BiocGenerics, Biostrings, cowplot, dplyr, ggplot2, ggtree,
jsonlite, Matrix(>= 1.3-3), doParallel, foreach, plyr,
reshape2, seqinr, stringr, Seurat, SeuratObject, tibble, tidyr,
utils, useful

Suggests AnnotationDbi, ape, bigstatsr, bio3d, Biobase, biomaRt,
caret, circlize, colorspace, data.table, dichromat, e1071,
edgeR, fda.usc, fgsea, ggalluvial, ggpubr, ggrepel, ggridges,
ggseqlogo, graphkernels, graphlayouts, grid, gridExtra,
harmony, igraph, iNEXT, IRanges, limma, keras, kmer, knitr,
magrittr, Matrix.utils, methods, monocle3, msigdbr, naivebayes,
org.Hs.eg.db, org.Mm.eg.db, Peptides, phangorn, pheatmap,
phytools, pROC, ProjecTILs, protr, purrr, r3dmol, randomForest,
RColorBrewer, readbitmap, readr, readxl, reticulate,
rstudioapi, rlang, Rtsne, scales, scuttle, SeuratWrappers,
SingleCellExperiment, slingshot, ssh, SummarizedExperiment,
stringdist, tensorflow, tidygraph, tidytree, tidyselect, umap,
vanddraabe, vegan, viridis, xgboost, yardstick, testthat (>=
3.0.0)

Additional_repositories https://vickreiner.github.io/drat/

License GPL-2

Encoding UTF-8

1

https://doi.org/10.1093/nargab/lqab023
https://vickreiner.github.io/drat/

2 R topics documented:

RoxygenNote 7.1.1

VignetteBuilder knitr

LazyData true

Config/testthat/edition 3

NeedsCompilation no

Author Alexander Yermanos [aut, cre],
Andreas Agrafiotis [ctb],
Raphael Kuhn [ctb],
Danielle Shlesinger [ctb],
Jiami Han [ctb],
Tudor-Stefan Cotet [ctb],
Victor Kreiner [ctb]

Repository CRAN

Date/Publication 2022-08-15 07:20:20 UTC

R topics documented:
AbForests_AntibodyForest . 6
AbForests_CompareForests . 9
AbForests_ConvertStructure . 11
AbForests_CsvToDf . 12
AbForests_ForestMetrics . 13
AbForests_PlotGraphs . 15
AbForests_PlyloToMatrix . 16
AbForests_RemoveNets . 17
AbForests_SubRepertoiresByCells . 19
AbForests_SubRepertoiresByUniqueSeq . 20
AbForests_UniqueAntibodyVariants . 22
AlphaFold_prediction . 24
AntibodyForests . 27
AntibodyForests_communities . 32
AntibodyForests_dynamics . 34
AntibodyForests_embeddings . 35
AntibodyForests_expand_intermediates . 37
AntibodyForests_heterogeneous . 38
AntibodyForests_infer_ancestral . 39
AntibodyForests_join_trees . 40
AntibodyForests_kernels . 41
AntibodyForests_label_propagation . 42
AntibodyForests_metrics . 43
AntibodyForests_node_transitions . 45
AntibodyForests_overlap . 46
AntibodyForests_paths . 47
AntibodyForests_phylo . 49
AntibodyForests_plot . 50
AntibodyForests_plot_metrics . 53

R topics documented: 3

automate_GEX . 54
Bcell_sequences_example_tree . 56
Bcell_tree_2 . 57
call_MIXCR . 57
CellPhoneDB_analyse . 58
class_switch_prob_hum . 61
class_switch_prob_mus . 61
clonofreq . 62
clonofreq.isotype.data . 62
clonofreq.isotype.plot . 63
clonofreq.trans.data . 63
clonofreq.trans.plot . 64
cluster.id.igraph . 65
colors . 65
dot_plot . 66
Echidna_simulate_repertoire . 67
Echidna_vae_generate . 72
get.avr.mut.data . 73
get.avr.mut.plot . 73
get.barplot.errorbar . 74
get.elbow . 75
get.n.node.data . 75
get.n.node.plot . 76
get.seq.distance . 76
get.umap . 77
get.vgu.matrix . 77
GEX_clonotype . 78
GEX_cluster_genes . 79
GEX_cluster_genes_heatmap . 80
GEX_cluster_membership . 81
GEX_coexpression_coefficient . 82
GEX_DEgenes . 83
GEX_DEgenes_persample . 85
GEX_dottile_plot . 87
GEX_gene_visualization . 88
GEX_GOterm . 89
GEX_GSEA . 90
GEX_heatmap . 92
GEX_lineage_trajectories . 93
GEX_pairwise_DEGs . 94
GEX_phenotype . 95
GEX_phenotype_per_clone . 96
GEX_projecTILS . 97
GEX_proportions_barplot . 98
GEX_pseudobulk . 99
GEX_pseudotime_trajectory_plot . 101
GEX_scatter_coexpression . 102
GEX_topN_DE_genes_per_cluster . 102

4 R topics documented:

GEX_trajectories . 103
GEX_visualize_clones . 105
GEX_volcano . 106
hotspot_df . 108
hum_b_h . 109
hum_b_l . 110
hum_t_h . 110
hum_t_l . 111
iso_SHM_prob . 112
mus_b_h . 112
mus_b_l . 113
mus_b_trans . 113
mus_t_h . 114
mus_t_l . 115
no.empty.node . 115
one_spot_df . 116
pheno_SHM_prob . 117
PlatypusDB_AIRR_to_VGM . 117
PlatypusDB_fetch . 118
PlatypusDB_find_CDR3s . 121
PlatypusDB_list_projects . 121
PlatypusDB_load_from_disk . 122
PlatypusDB_VGM_to_AIRR . 123
PlatypusML_balance . 125
PlatypusML_classification . 126
PlatypusML_feature_extraction_GEX . 127
PlatypusML_feature_extraction_VDJ . 129
select.top.clone . 131
small_vgm . 132
Spatial_celltype_plot . 132
Spatial_cluster . 133
Spatial_density_plot . 135
Spatial_evolution_of_clonotype_plot . 136
Spatial_marker_expression . 138
Spatial_module_expression . 140
Spatial_nb_SHM_compare_to_germline_plot . 141
Spatial_scaling_parameters . 142
Spatial_selection_expanded_clonotypes . 143
Spatial_selection_of_cells_on_image . 144
Spatial_VDJ_assignment . 145
Spatial_VDJ_plot . 146
Spatial_vgm_formation . 148
special_v . 149
trans_switch_prob_b . 149
trans_switch_prob_t . 150
umap.top.highlight . 150
VDJ_abundances . 151
VDJ_alpha_beta_Vgene_circos . 153

R topics documented: 5

VDJ_analyze . 156
VDJ_antigen_integrate . 157
VDJ_assemble_for_PnP . 159
VDJ_bulk_to_vgm . 161
VDJ_call_enclone . 163
VDJ_call_MIXCR . 164
VDJ_call_MIXCR_full . 166
VDJ_call_RECON . 167
VDJ_circos . 169
VDJ_clonal_donut . 170
VDJ_clonal_expansion . 172
VDJ_clonal_expansion_abundances . 174
VDJ_clonal_lineages . 175
VDJ_clonotype . 177
VDJ_contigs_to_vgm . 179
VDJ_db_annotate . 180
VDJ_db_load . 181
VDJ_diversity . 182
VDJ_dublets . 184
VDJ_dynamics . 184
VDJ_enclone . 186
VDJ_expand_aberrants . 189
VDJ_extract_germline . 190
VDJ_get_public . 192
VDJ_GEX_clonal_lineage_clusters . 193
VDJ_GEX_clonotyme . 194
VDJ_GEX_clonotype_clusters_circos . 198
VDJ_GEX_expansion . 200
VDJ_GEX_integrate . 201
VDJ_GEX_matrix . 202
VDJ_GEX_overlay_clones . 209
VDJ_GEX_stats . 211
VDJ_isotypes_per_clone . 212
VDJ_kmers . 214
vdj_length_prob . 215
VDJ_logoplot_vector . 216
VDJ_network . 217
VDJ_ordination . 218
VDJ_overlap_heatmap . 219
VDJ_per_clone . 221
VDJ_phylogenetic_trees . 222
VDJ_phylogenetic_trees_plot . 224
VDJ_plot_SHM . 225
VDJ_public . 227
VDJ_rarefaction . 228
VDJ_reclonotype_list_arrange . 229
VDJ_select_clonotypes . 230
VDJ_structure_analysis . 232

6 AbForests_AntibodyForest

VDJ_tree . 236
VDJ_variants_per_clone . 237
VDJ_Vgene_usage . 239
VDJ_Vgene_usage_barplot . 239
VDJ_Vgene_usage_stacked_barplot . 241
VDJ_VJ_usage_circos . 242
VGM_expanded_clones . 244
VGM_expand_featurebarcodes . 245
VGM_integrate . 247

Index 249

AbForests_AntibodyForest

Infer and draw B cell evolutionary networks

Description

AntibodyForest takes the output of either ConvertStructure or CsvToDf or SubRepertoires or Re-
moveNets and outputs B cell phylogenetic networks in tree format. There is also the possibility to
give the full-length list of clonal lineages, which contains both isotype and transcriptional cluster
information, only when no prior data transformation is desired. Each network represents a clonal
lineage, referring to the number of B cell receptor sequences originating from an independent V(D)J
recombination event. Each vertex represents a unique recovered full-length variable heavy and light
chain antibody sequence of a clonal family. Edges separating nodes are drawn given that clonal vari-
ants are similarly related according to their Levenshtein distance. Edge weights are extacted from
the distance matrix apart from the special case of unmutated germline, in which the weights of out-
going edges from it are either set to 1 or to the difference between the corresponding distance from
the matrix and the absolute value of the difference between the sequence lengths of germline and
corresponding connected nodes. At tree building, starting from the reference ancestral germline,
each node is connected to nodes that can be reached via the minimum distance based on the dis-
tance matrix calculation. Therefore, potential edges that go back to previous tree layers along with
bidirectional circles are eliminated. Polytomies, displayed by B cell clones producing multiple dis-
tinct offsprings, are resolved in case of reaching nodes with equal minimum distance. Indeed, the
algorithm removes edges either randomly from the recipient nodes,based on the node closest or
farthest from the germline, considering the number of intermediate nodes or edge path length, or
the highest/lowest counting of cells on the present node. Additional ties are settled by random edge
selection. Consequently, parsimony holds, meaning that each daughter node has only one parent.
Distinct tree topologies enable to visually investigate the trade-off between balance and evolution,
and further quantify the amount of diversification of the subsequent detected clonal abundant clones
during somatic hypermutation and class switching. The minimum decision-based criterion deter-
mines the amount of balance presented in the tree, while the maximum decision-based method the
amount of evolution presented in the tree. Single color or color distribution on each node demon-
strates the proportion of B cells with the specific isotype(s) or transcriptional cluster(s), while setting
the size of vertices can be performed based on the number of unique sequences per clone, vertex
betweenness and vertex closeness. Scaling of nodes by their relative clonal expansion assists in
pinpointing identical antibody sequences across a multitude of B cells. Node labeling can depict
clonal frequency.

AbForests_AntibodyForest 7

Usage

AbForests_AntibodyForest(
full_list,
csv,
files,
distance_mat,
clonal_frequency,
scaleByClonalFreq,
weight,
tie_flag,
scaleBybetweenness,
scaleByclocloseness_metr,
opt,
random.seed,
alg_opt,
cdr3

)

Arguments

full_list a list of clone lineages, represented as data.frames

csv an indicator variable. TRUE if full_list argument is a list of csv files, FALSE
otherwise

files a list of data.frames. Each data.frame contains 2 columns, one that describes
the sequences and the other which type of information (isotype or cluster) is
considered in the analysis. All these cases are determined by the user.

distance_mat a custom integer distance matrix, or NULL for using the default distance ma-
trix (calucated based on the levenshtein distance, which counts the number of
mutations between sequences).

clonal_frequency

a logical variable, TRUE if labeling of vertices is based on clonal frequency and
FALSE otherwise.

scaleByClonalFreq

logical variable with TRUE if vertex size is scaled by the number of unique
sequences per clone and FALSE otherwise.

weight logical variable. When its value is FALSE, then the weights of outgoing edges
from Germline node are set to 1. When its value is TRUE, the weights are set to
the difference between the number of mutations among sequences in germline
and connected nodes(value in the corresponding distance matrix) and the ab-
solute value of the difference between the sequence lengths of germline and
corresponding connected nodes. In both cases, weights of remaining edges are
extracted from the distance matrix. Outgoing edges from Germline represent the
number of mutations of sequences having as common ancestor the Germline.

tie_flag a string, with options ’rand’, ’full’, ’close_to_germ’, ’far_from_germ’, ’close_path_to_germ’,
’far_path_from_germ’,’most_expanded’ and ’least_expanded’ for removing edges
when equal distance (tie) in distance matrix. ’rand’ means random pruning

8 AbForests_AntibodyForest

in one of nodes, ’full’ means keeping all nodes, close_to_germ means prun-
ing of node(s) farthest from germline (based on number of intermediate nodes),
’far_from_germ’ means pruning of node(s) closest to germline (based on num-
ber of intermediate nodes), ’close_path_to_germ’ means pruning of node(s) far-
thest from germline (based on edge path length), ’far_path_from_germ’ meams
pruning of node(s) closest to germline (based on edge path length),’most_expanded’
means pruning of node(s) with the lowest B cell count(clonal frequency) and
least_expanded, which means pruning of node(s) with the hightest B cell count(clonal
frequency). In cases of subsequent ties, a random node is selected.

scaleBybetweenness

logical variable with TRUE if vertex size is scaled by the vertex betweenness
centrality.

scaleByclocloseness_metr

logical variable with TRUE if vertex size is scaled by closeness centrality of
vertices in graph.

opt a string with options "isotype" and "cluster". The option "isotype" is utilized
when the user desires to do an isotype analysis, while the selection of "cluster"
denotes that an analysis based on transcriptome is requested.

random.seed a random seed, specified by the user, when random sampling of sequences hap-
pens in each of the cases described in tie_flag argument.

alg_opt a string denoting the version of the edge selection algorithm used in the con-
struction of networks. Possible choices: "naive", "two-step".

cdr3 variable with values 0 if the user desires to select full length sequences (only
when the input is a list of csv files), 1 for sequences in the CDR3 only (only
when the input is a list of csv files) and NULL otherwise.

Value

graphs. A list of lists. E.g graphs[[1][[1]] network: an igraph object, containing the first net-
work in tree format. graphs[[1]][[2]] legend: contains the legend parameters of the first net-
work. graphs[[1]][[3]] count.rand: contains the number of randomly considered nodes for the
first network. graphs[[1]][[4]] adj.matrix: contains the adjacency matrix for the first network.
graphs[[1]][[5]] distance.matrix: contains the distance matrix for the first network. graphs[[1]][[6]]
cells.per.network: contains the number of cells for the first network. graphs[[1]][[7]] variants.per.network:
contains the number of variants for the first network. graphs[[1]][[8]] variant.sequences: con-
tains the sequences of the variants for the first network. graphs[[1]][[9]] cells.per.variant: con-
tains the number of cells per variant (clonal frequency) for the first network. graphs[[1]][[10]]
cell.indicies.per.variant: the indices of cells per variant for the first network. graphs[[1]][[11]]
new.variant.names: contains the names of variants for the first network. graphs[[1]][[12]] germline.index:
contains the index of germline sequence for the first network. graphs[[1]][[13]] isotype.per.variant:
contains the isotypes corresponding to each variant for the first network. graphs[[1]][[14]] tran-
scriptome.cluster.per.variant: contains the transcriptional clusters corresponding to each variant for
the first network. graphs[[1]][[15]] isotype.per.cell: contains the isotype corresponding to each cell
for the first network. graphs[[1]][[16]] transcriptome.cluster.per.cell: contains the transcriptional
cluster corresponding to each cell for the first network.

AbForests_CompareForests 9

See Also

ConvertStructure, CsvToDf, SubRepertoires, RemoveNets

Examples

Not run:
AbForests_AntibodyForest(full_list = Platypus::new,csv=FALSE, files,clonal_frequency=TRUE,
scaleByClonalFreq=TRUE,weight=TRUE,tie_flag='close_to_germ',
scaleBybetweenness=FALSE,scaleByclocloseness_metr=FALSE,
opt="cluster",alg_opt="0",cdr3=NULL)

End(Not run)

AbForests_CompareForests

Comparison of distinct B cell repertoires

Description

CompareForests takes the output of AntibodyForest for 2 distinct repertoires and performs a com-
parison of these 2 repertoires.

Usage

AbForests_CompareForests(
list1,
list2,
DAG,
clonal_frequency,
scaleByClonalFreq,
weight,
tie_flag,
opt

)

Arguments

list1 a list of lists. Each sublist contains an igraph object with the networks of the
evolved B clonal lineages in tree format, their legend and the number of ran-
domly considered nodes per network for Repertoire of 1 (Output of Antibody-
Forest). E.g list1[[1][[1]] is an igraph object, containing the first network of the
evolved B clonal lineage in tree format. list1[[1]][[2]] contains the legend pa-
rameters of the first network of the evolved B clonal lineage. list1[[1]][[3]] is
the number of randomly considered nodes for the first network of the evolved B
clonal lineage.

10 AbForests_CompareForests

list2 a list of lists. Each sublist contains an igraph object with the networks of the
evolved B clonal lineages in tree format, their legend and the number of ran-
domly considered nodes per network for Repertoire of 2 (Output of Antibody-
Forest). E.g list2[[1][[1]] is an igraph object, containing the first network of the
evolved B clonal lineage in tree format. list2[[1]][[2]] contains the legend pa-
rameters of the first network of the evolved B clonal lineage. list2[[1]][[3]] is
the number of randomly considered nodes for the first network of the evolved B
clonal lineage.

DAG a logical variable, when TRUE a directed acyclic graph is produced.
clonal_frequency

a logical variable, TRUE if labeling of vertices is based on clonal frequency and
FALSE otherwise.

scaleByClonalFreq

logical variable with TRUE if vertex size is scaled by the number of unique
sequences per clone and FALSE otherwise.

weight logical variable. When its value is FALSE, then the weights of outgoing edges
from Germline node are set to 1. When its value is TRUE, the weights are set to
the difference between the number of mutations among sequences in germline
and connected nodes(value in the corresponding distance matrix) and the ab-
solute value of the difference between the sequence lengths of germline and
corresponding connected nodes. In both cases, weights of remaining edges are
extracted from the distance matrix. Outgoing edges from Germline represent the
number of mutations of sequences having as common ancestor the Germline.

tie_flag a string, with options ’rand’, ’full’, ’close_to_germ’, ’far_from_germ’, ’close_path_to_germ’,
’far_path_from_germ’,’most_expanded’ and ’least_expanded’ for removing edges
when equal distance (tie) in distance matrix. ’rand’ means random pruning
in one of nodes, ’full’ means keeping all nodes, close_to_germ means prun-
ing of node(s) farthest from germline (based on number of intermediate nodes),
’far_from_germ’ means pruning of node(s) closest to germline (based on num-
ber of intermediate nodes), ’close_path_to_germ’ means pruning of node(s) far-
thest from germline (based on edge path length), ’far_path_from_germ’ meams
pruning of node(s) closest to germline (based on edge path length),’most_expanded’
means pruning of node(s) with the lowest B cell count(clonal frequency) and
least_expanded, which means pruning of node(s) with the hightest B cell count(clonal
frequency). In cases of subsequent ties, a random node is selected.

opt a string with options "isotype" and "cluster". The option "isotype" is utilized
when the user desires to do an isotype analysis, while the selection of "cluster"
denotes that an analysis based on transcriptome is requested.

Value

combined_df. A data.frame that summarizes metrics for both repertoires. In particular, each row
represents a single network and networks of both repertoires are combined row wise. Columns of
combined_df are: Column1: Weighted.Longest.path.from.germline. Column2: Length.of.weighted.longest.shortest.path.from.germline.
Column3: Unweighted.Longest.path.from.germline. Column4: Length.of.unweighted.longest.shortest.path.from.germline.
Column5: Average.number.of.daughter.cells. Column6: Std.number.of.daughter.cells. Column7:
Min.number.of.daughter.cells. Column8: Max.number.of.daughter.cells. Column9: Weighted.vertex.degree.

AbForests_ConvertStructure 11

Column10: Average.number.of.clusters/isotypes. Column11: Isotypes/Clusters.info. Column12:
vertex.betweenness.centrality. Column13: edge.betweenness.centrality. Column14: closeness.centrality.of.vertices.
Column15: global.clustering.coefficient. Column16: average.clustering.coefficient. Column17:
Mean.clonal.expansion. If the labeling or scaling of nodes in graph is based on clonal frequency
(arguments: clonal_frequency==TRUE or scaleByClonalFreq==TRUE), then combined_df con-
tains also: Column18: Ratio.Number.of.edges.from.germline.to.each.node.with.clonal.frequency.
Column19: Mean.Ratio.Number.of.edges.from.germline.to.each.node.with.clonal.frequency. Col-
umn20: Mean.number.of.edges.from.germline. Column21: Ratio.Total.path.length.from.germline.to.each.node.with.clonal.frequency.
Column22: Mean.Ratio.Total.path.length.from.germline.to.each.node.with.clonal.frequency. Col-
umn23: Mean.Total.path.length.from.germline. Column24: Repertoire.id. Column25: Number.of.sequences.

isotype_info_rep1 A data.frame. It summarizes isotype/cluster info for repertoire 1.

isotype_info_rep2 A data.frame. It summarizes isotype/cluster info for repertoire 2.

See Also

AntibodyForest, ForestMetrics

Examples

Not run:
CompareForests(list1,list2,DAG=TRUE,
clonal_frequency=TRUE,scaleByClonalFreq=TRUE,weight=TRUE,
tie_flag='close_to_germ',opt="cluster")

End(Not run)

AbForests_ConvertStructure

Extract transcriptome/isotype information and B cell receptor se-
quences from single cell immune repertoire formatted as list of
data.frames

Description

ConvertStructure alters a list of clone lineages, represented as data.frames and recovers the type of
isotypes or transcriptional clusters and antibody sequences from these clone lineages. It can receive
as input the original data or the output of SubRepertoiresByUniqueSeq or SubRepertoiresByCells.
Then, the output list is used as input to the RemoveNets or AntibodyForest function.

Usage

AbForests_ConvertStructure(list, opt, cdr3)

12 AbForests_CsvToDf

Arguments

list a list of data.frames. Each data.frame may contain information concerning full
length heavy and light chain sequences, CDRH3 and CDRL3 sequences, the
type of isotype and the transcriptional cluster that corresponds to each of these
sequences.

opt a string with options "isotype" and "cluster". The option "isotype" is utilized
when the user desires to do an isotype analysis, while the selection of "cluster"
denotes that an analysis based on transcriptome is requested.

cdr3 variable with values 0 if the user desires to select full length sequences (only
when the input is a list of csv files), 1 for sequences in the CDR3 only (only
when the input is a list of csv files) and NULL otherwise.

Value

list a list of data.frames. Each data.frame contains 2 columns, one that describes the sequences and
the other which type of information (isotype or cluster) is considered in the analysis. All these cases
are determined by the user.

See Also

RemoveNets, AntibodyForest

Examples

Not run:
ConvertStructure(list,opt="cluster",cdr3=NULL)
ConvertStructure(list,opt="isotype",1)

End(Not run)

AbForests_CsvToDf Convert list of csvs, to nested list of data.frames

Description

CsvToDf converts a list of csv files, which are clone lineages to a list of data.frames.

Usage

AbForests_CsvToDf(files)

Arguments

files a list of csv files. Each csv file may contain information concerning full length
heavy and light chain sequences, CDRH3 and CDRL3 sequences, the type of
isotype and the transcriptional cluster that corresponds to each of these se-
quences.

AbForests_ForestMetrics 13

Value

graphs a list of data.frames. Each data.frame contains 2 columns, one that describes the sequences
and the other the type of information (isotype or cluster) is considered in the analysis. All these
cases are determined by the user.

See Also

AntibodyForest

Examples

Not run:
CsvToDf(files)

End(Not run)

AbForests_ForestMetrics

Calculate metrics for networks

Description

ForestMetrics takes the output of AntibodyForest and calculates metrics for each of the networks.

Usage

AbForests_ForestMetrics(
graphs,
DAG,
clonal_frequency,
scaleByClonalFreq,
weight,
tie_flag,
opt

)

Arguments

graphs A list of lists. Each sublist contains an igraph object with the networks of the
evolved B clonal lineages in tree format, their legend and the number of ran-
domly considered nodes per network(Output of AntibodyForest function). E.g
graphs[[1][[1]] is an igraph object, containing the first network of the evolved B
clonal lineage in tree format. graphs[[1]][[2]] contains the legend parameters of
the first network of the evolved B clonal lineage. graphs[[1]][[3]] is the num-
ber of randomly considered nodes for the first network of the evolved B clonal
lineage.

DAG a logical variable, when TRUE a directed acyclic graph is produced.

14 AbForests_ForestMetrics

clonal_frequency

a logical variable, TRUE if labeling of vertices is based on clonal frequency and
FALSE otherwise.

scaleByClonalFreq

logical variable with TRUE if vertex size is scaled by the number of unique
sequences per clone and FALSE otherwise.

weight logical variable. When its value is FALSE, then the weights of outgoing edges
from Germline node are set to 1. When its value is TRUE, the weights are set to
the difference between the number of mutations among sequences in germline
and connected nodes(value in the corresponding distance matrix) and the ab-
solute value of the difference between the sequence lengths of germline and
corresponding connected nodes. In both cases, weights of remaining edges are
extracted from the distance matrix. Outgoing edges from Germline represent the
number of mutations of sequences having as common ancestor the Germline.

tie_flag a string, with options ’rand’, ’full’, ’close_to_germ’, ’far_from_germ’, ’close_path_to_germ’,
’far_path_from_germ’,’most_expanded’ and ’least_expanded’ for removing edges
when equal distance (tie) in distance matrix. ’rand’ means random pruning
in one of nodes, ’full’ means keeping all nodes, close_to_germ means prun-
ing of node(s) farthest from germline (based on number of intermediate nodes),
’far_from_germ’ means pruning of node(s) closest to germline (based on num-
ber of intermediate nodes), ’close_path_to_germ’ means pruning of node(s) far-
thest from germline (based on edge path length), ’far_path_from_germ’ meams
pruning of node(s) closest to germline (based on edge path length),’most_expanded’
means pruning of node(s) with the lowest B cell count(clonal frequency) and
least_expanded, which means pruning of node(s) with the hightest B cell count(clonal
frequency). In cases of subsequent ties, a random node is selected.

opt a string with options "isotype" and "cluster". The option "isotype" is utilized
when the user desires to do an isotype analysis, while the selection of "cluster"
denotes that an analysis based on transcriptome is requested.

Value

metrics. A list of lists. Each list contains various metrics for the quantification of networks. E.g
metrics[[1][[1]] is the weighted Longest path from germline for the first network. metrics[[1]][[2]]
is the length of weighted longest shortest path from germline for the first network. metrics[[1]][[3]]
is the unweighted Longest path from germline for the first network. metrics[[1]][[4]] is the length
of unweighted longest shortest path from germline for the first network. metrics[[1]][[5]] is the
weighted shortest path network for the first network. metrics[[1]][[6]] is the uweighted shortest
path network for the first network. metrics[[1]][[7]] is the average number of daughter cells for
the first network. metrics[[1]][[8]] is the std number of daughter cells for the first network. met-
rics[[1]][[9]] is the min number of daughter cells for the first network. metrics[[1]][[10]] is the
max number of daughter cells for the first network. metrics[[1]][[11]] is a ggplot object that con-
tains the plot of Degree Distribution of daughter cells for the first network. metrics[[1]][[12]] is the
weighted vertex degree for the first network. metrics[[1]][[13]] is a ggplot object that contains the
plot of unweighted Degree Distribution of daughter cells for the first network. metrics[[1]][[14]]
is the average number of isotypes for the first network. metrics[[1]][[15]] is a ggplot object that
contains the plot of Distribution of isotypes for the first network. metrics[[1]][[16]] is the Iso-
types/Clusters info data.frame with columns Parent, Child and Parent-Child, which contains the

AbForests_PlotGraphs 15

type of isotypes/clusters for each pair of nodes (Parent-Child relationship in tree) found in the first
network. metrics[[1]][[17]] is a ggplot object that contains the plot of Isotype/Cluster Direction-
ality for the first network. In particular, the frequency of all types of isotypes/clusters for each
pair of nodes in the tree is depicted. metrics[[1]][[18]] is the vertex betweenness centrality for
the first network. It is defined by the number of geodesics (shortest paths) going through a vertex
according to igraph documentation. metrics[[1]][[19]] is the edge betweenness centrality for the
first network. It is defined by the number of geodesics (shortest paths) going through an edge ac-
cording to igraph documentation. metrics[[1]][[20]] is the closeness centrality of vertices for the
first network. The closeness centrality of a vertex is defined by the inverse of the average length
of the shortest paths to/from all the other vertices in the graph according to igraph documentation.
metrics[[1]][[21]] is a ggplot object that contains the plot of Path length from Germline vs Node
Degree for the first network. metrics[[1]][[22]] is a ggplot object that contains the plot of Number
of edges from Germline vs Node Degree for the first network. metrics[[1]][[23]] is an igraph object
that contains the Isotype/Cluster transition network for the first network. metrics[[1]][[24]] is the
global clustering coefficient for the first network. metrics[[1]][[25]] is the average clustering coef-
ficient for the first network. metrics[[1]][[26]] is the mean clonal expansion for the first network,
calculated as the mean of clonal frequencies of all vertices in the network. If the labeling or scaling
of nodes in graph is based on clonal frequency (arguments: clonal_frequency==TRUE or scaleBy-
ClonalFreq==TRUE), then metrics[[1]][[27]] is the ratio: Number of edges from germline to each
node with clonal frequency for the first network. metrics[[1]][[28]] is the mean ratio: Number of
edges from germline to each node with clonal frequency for the first network. metrics[[1]][[29]] is
a ggplot object that contains the ratio of Number of edges from germline to each node with clonal
frequency for the first network. metrics[[1]][[30]] is the mean number of edges from germline for
the first network. metrics[[1]][[31]] is the ratio: Total path length from germline to each node with
clonal frequency for the first network. metrics[[1]][[32]] is the mean ratio: Total path length from
germline to each node with clonal frequency for the first network. metrics[[1]][[33]] is a ggplot
object that contains the ratio of Total path length from germline to each node with clonal frequency
for the first network. metrics[[1]][[34]] is the mean Total path length from germline for the first
network. metrics[[2]][[1]] is the weighted Longest path from germline for the second network.

See Also

AntibodyForest

Examples

Not run:
ForestMetrics(graphs,DAG=TRUE,clonal_frequency=TRUE,scaleByClonalFreq=TRUE,
weight=TRUE,tie_flag='close_to_germ',opt="cluster")

End(Not run)

AbForests_PlotGraphs Plot igraph and ggplot objects

16 AbForests_PlyloToMatrix

Description

PlotGraphs takes as input the output of AntibodyForest or ForestMetrics functions and plots all
corresponding networks in the single cell immune repertoire or the corresponding ggplot object, the
user specifies, from all clone lineages. The function gives the option in the user to store each tree
or ggplot object within the repertoire in pdf format.

Usage

AbForests_PlotGraphs(graphs, no_arg, topdf, filename)

Arguments

graphs a list of networks (Output of AntibodyForest function) or metrics (Output of
ForestMetrics function).

no_arg element of list the user desires to plot : integer value,if the user desires to plot a
metric and NULL, if the user desires to plot the networks.

topdf logical value, TRUE if user wants to store plots in pdf format (the no_arg ele-
ment of each list is saved in a separate page of the pdf).

filename name of saved pdf file based on the user’s preferences.

Value

Empty, output plots are written to file as specified by the user with the parameter filename

See Also

AntibodyForest, ForestMetrics

Examples

Not run:
PlotGraphs(graphs,no_arg=NULL,topdf=TRUE,filename)
PlotGraphs(graphs,no_arg5,topdf=TRUE,filename)

End(Not run)

AbForests_PlyloToMatrix

Conversion of phylogenetic tree to distance matrix

Description

PlyloToMatrix converts a previously existing phylogenetic tree to a corresponding distance matrix
using the cophenetic distance. Then, there is the option to utilize this custom distance matrix as an
input distance matrix to AntibodyForest function. The user is responsible for specifying a correct
and valid distance matrix. In particular, the size of distance matrix must match the number of
sequences for each network in each repertoire.

AbForests_RemoveNets 17

Usage

AbForests_PlyloToMatrix(tree_name)

Arguments

tree_name a plylogenetic tree (phylo object).

Value

dist_mat The corresponding distance matrix uses the cophenetic distance between two observations
that have been clustered. This distance is defined to be the intergroup dissimilarity at which the two
observations are first combined into a single cluster.

See Also

AntibodyForest

Examples

Not run:
PlyloToMatrix(tree_name)

End(Not run)

AbForests_RemoveNets Filter sub-repertoires with less than N unique sequences or with less
than C unique cells

Description

RemoveNets takes the output of SubRepertoires and performs the filtering of the 5 sub-repertoires.
In particular, from these 5 sub-repertoires, networks with number of nodes or number of unique
sequences below a specified threshold are eliminated.

Usage

AbForests_RemoveNets(
list,
opt,
distance_mat,
tie_flag,
weight,
N,
C,
random.seed,
alg_opt

)

18 AbForests_RemoveNets

Arguments

list a list of 5 sub-lists of data.frames. Each sub-list corresponds to the set of net-
works, in which a majority isotype is specifyied. list[[1]] or list$list_IGHG con-
tains the networks, in data.frame format, with more IGG isotypes, list[[2]] or
list$list_IGHA contains the networks, in data.frame format, with more IGA iso-
types, list[[3]] or list$list_IGHM contains the networks, in data.frame format,
with more IGM isotypes, list[[4]] or list$list_IGAG contains the networks, in
data.frame format, with a tie in IGA and IGG isotypes and list[[5]] or list$list_other
contains the networks, in data.frame format, with other isotypes apart from the
aforementioned combinations. In each sub-list, each data.frame represents a
clone lineage and contains 2 columns, one that describes the antibody sequences
and the other which type of information (isotype) is considered in the analysis.
This list of data.frames has been generated by SubRepertoires function based on
the initial data input and user’s preferences.

opt a string with options "isotype" and "cluster". The option "isotype" is utilized
when the user desires to do an isotype analysis, while the selection of "cluster"
denotes that an analysis based on transcriptome is requested.

distance_mat a custom integer distance matrix, or NULL for using the default distance matrix
(calucated based on the levenshtein distance, which counts the number of muta-
tions between sequences). Given the phylogenetic tree, a custom-made distance
matrix can be produced by PlyloToMatrix function.

tie_flag a string, with options ’rand’, ’full’, ’close_to_germ’, ’far_from_germ’, ’close_path_to_germ’,
’far_path_from_germ’,’most_expanded’ and ’least_expanded’ for removing edges
when equal distance (tie) in distance matrix. ’rand’ means random pruning
in one of nodes, ’full’ means keeping all nodes, close_to_germ means prun-
ing of node(s) farthest from germline (based on number of intermediate nodes),
’far_from_germ’ means pruning of node(s) closest to germline (based on num-
ber of intermediate nodes), ’close_path_to_germ’ means pruning of node(s) far-
thest from germline (based on edge path length), ’far_path_from_germ’ meams
pruning of node(s) closest to germline (based on edge path length),’most_expanded’
means pruning of node(s) with the lowest B cell count(clonal frequency) and
least_expanded, which means pruning of node(s) with the hightest B cell count(clonal
frequency). In cases of subsequent ties, a random node is selected.

weight logical variable. When its value is FALSE, then the weights of outgoing edges
from Germline node are set to 1. When its value is TRUE, the weights are set to
the difference between the number of mutations among sequences in germline
and connected nodes(value in the corresponding distance matrix) and the ab-
solute value of the difference between the sequence lengths of germline and
corresponding connected nodes. In both cases, weights of remaining edges are
extracted from the distance matrix.

N the threshold of unique sequences below which networks are removed.

C the threshold of unique cells below which networks are removed.

random.seed a random seed, specified by the user, when random sampling of sequences hap-
pens in each of the cases described in tie_flag argument.

alg_opt a string denoting the version of the edge selection algorithm used in the con-
struction of networks. "0" means the naive version and "1" the advanced one.

AbForests_SubRepertoiresByCells 19

Value

list a nested list of 5 sub-lists of data.frames. Each sub-list corresponds to the reduced set of net-
works according to threshold N, in which a majority isotype is specifyied. list[[1]] or list$list_IGHG
contains the networks, in data.frame format, with more IGG isotypes, list[[2]] or list$list_IGHA
contains the networks, in data.frame format, with more IGA isotypes, list[[3]] or list$list_IGHM
contains the networks, in data.frame format, with more IGM isotypes, list[[4]] or list$list_IGAG
contains the networks, in data.frame format, with a tie in IGA and IGG isotypes and list[[5]] or
list$list_other contains the networks, in data.frame format, with other isotypes apart from the afore-
mentioned combinations.

See Also

SubRepertoires, SubRepertoiresByUniqueSeq, PlyloToMatrix, AntibodyForest

Examples

Not run:
RemoveNets(list,opt="cluster",distance_mat=NULL,
tie_flag='close_to_germ',weight=TRUE,N=4,C=NULL,random.seed=165)

End(Not run)

AbForests_SubRepertoiresByCells

Split single cell immune repertoire into sub-repertoires by isotype
based on number of B cells

Description

SubRepertoiresByCells separates the single cell immune repertoire into 5 sub-repertoires taking into
account the number of cells. The goal is to determine the majority isotype per each network in the
immune repertoire. Therefore, each sub-repertoire is dominated by isotype IGG, IGA, IGM, other
and if there is an equal number of IGA and IGG isotypes in a network, IGA-IGG category exists
respectively. In particular, in case there exists a tie in the number of IGA and IGM, the network
is considered to contain IGA as majority isotype, while the same number of IGG and IGM in the
network categorize this network as containing IGG as majority isotype. The function receives the
output of CsvToDf or original data and can be given as input to ConvertStructure function.

Usage

AbForests_SubRepertoiresByCells(list)

Arguments

list a list of data.frames. Each data.frame represents a clone lineage and separates
initial input data into subsets of networks.

20 AbForests_SubRepertoiresByUniqueSeq

Value

list a nested list of 5 sub-lists of data.frames. Each sub-list corresponds to the set of networks,
in which a majority isotype is specifyied. list[[1]] or list$list_IGHG contains the networks, in
data.frame format, with more IGG isotypes, list[[2]] or list$list_IGHA contains the networks, in
data.frame format, with more IGA isotypes, list[[3]] or list$list_IGHM contains the networks, in
data.frame format, with more IGM isotypes, list[[4]] or list$list_IGAG contains the networks, in
data.frame format, with a tie in IGA and IGG isotypes and list[[5]] or list$list_other contains the
networks, in data.frame format, with other isotypes apart from the aforementioned combinations.

See Also

ConvertStructure, CsvToDf

Examples

Not run:
SubRepertoiresByCells(list)

End(Not run)

AbForests_SubRepertoiresByUniqueSeq

Split single cell immune repertoire into sub-repertoires by isotype
based on number of unique sequences

Description

SubRepertoiresByUniqueSeq separates the single cell immune repertoire into 5 sub-repertoires tak-
ing into account only unique sequences. The goal is to determine the majority isotype per each
network in the immune repertoire. Therefore, each sub-repertoire is dominated by isotype IGG,
IGA, IGM, other and if there is an equal number of IGA and IGG isotypes in a network, IGA-IGG
category exists respectively. In particular, in case there exists a tie in the number of IGA and IGM,
the network is considered to contain IGA as majority isotype, while the same number of IGG and
IGM in the network categorize this network as containing IGG as majority isotype.

Usage

AbForests_SubRepertoiresByUniqueSeq(
list,
opt,
distance_mat,
tie_flag,
weight,
random.seed,
alg_opt,
cdr3

)

AbForests_SubRepertoiresByUniqueSeq 21

Arguments

list a list of data.frames. Each data.frame represents a clone lineage and contains 2
columns, one that describes the antibody sequences and the other which type of
information (isotype) is considered in the analysis. This list of data.frames has
been generated by ConvertStructure function based on the initial data input or
the output of CsvToDf and user’s preferences.

opt a string with options "isotype" and "cluster". The option "isotype" is utilized
when the user desires to do an isotype analysis, while the selection of "cluster"
denotes that an analysis based on transcriptome is requested.

distance_mat a custom integer distance matrix, or NULL for using the default distance matrix
(calucated based on the levenshtein distance, which counts the number of muta-
tions between sequences). Given the phylogenetic tree, a custom-made distance
matrix can be produced by PlyloToMatrix function.

tie_flag a string, with options ’rand’, ’full’, ’close_to_germ’, ’far_from_germ’, ’close_path_to_germ’,
’far_path_from_germ’,’most_expanded’ and ’least_expanded’ for removing edges
when equal distance (tie) in distance matrix. ’rand’ means random pruning
in one of nodes, ’full’ means keeping all nodes, close_to_germ means prun-
ing of node(s) farthest from germline (based on number of intermediate nodes),
’far_from_germ’ means pruning of node(s) closest to germline (based on num-
ber of intermediate nodes), ’close_path_to_germ’ means pruning of node(s) far-
thest from germline (based on edge path length), ’far_path_from_germ’ meams
pruning of node(s) closest to germline (based on edge path length),’most_expanded’
means pruning of node(s) with the lowest B cell count(clonal frequency) and
least_expanded, which means pruning of node(s) with the hightest B cell count(clonal
frequency). In cases of subsequent ties, a random node is selected.

weight logical variable. When its value is FALSE, then the weights of outgoing edges
from Germline node are set to 1. When its value is TRUE, the weights are set to
the difference between the number of mutations among sequences in germline
and connected nodes(value in the corresponding distance matrix) and the ab-
solute value of the difference between the sequence lengths of germline and
corresponding connected nodes. In both cases, weights of remaining edges are
extracted from the distance matrix.

random.seed a random seed, specified by the user, when random sampling of sequences hap-
pens in each of the cases described in tie_flag argument.

alg_opt a string denoting the version of the edge selection algorithm used in the con-
struction of networks. "0" means the naive version and "1" the advanced one.

cdr3 variable with values 0 if the user desires to select full length sequences (only
when the input is a list of csv files), 1 for sequences in the CDR3 only (only
when the input is a list of csv files) and NULL otherwise.

Value

list a nested list of 5 sub-lists of data.frames. Each sub-list corresponds to the set of networks,
in which a majority isotype is specifyied. list[[1]] or list$list_IGHG contains the networks, in
data.frame format, with more IGG isotypes, list[[2]] or list$list_IGHA contains the networks, in
data.frame format, with more IGA isotypes, list[[3]] or list$list_IGHM contains the networks, in

22 AbForests_UniqueAntibodyVariants

data.frame format, with more IGM isotypes, list[[4]] or list$list_IGAG contains the networks, in
data.frame format, with a tie in IGA and IGG isotypes and list[[5]] or list$list_other contains the
networks, in data.frame format, with other isotypes apart from the aforementioned combinations.

See Also

AntibodyForest, ConvertStructure, CsvToDf, PlyloToMatrix

Examples

Not run:
SubRepertoiresByUniqueSeq(list,opt="isotype",distance_mat=NULL,
tie_flag='close_to_germ',weight=TRUE,random.seed=165,alg_opt="naive",cdr3=NULL)

End(Not run)

AbForests_UniqueAntibodyVariants

Count the number of unique antibody variants per clonal lineage

Description

UniqueAntibodyVariants calculates the number of unique antibody sequences, as dictated by the
different grouping sequences strategy,for each network in the immune repertoire.

Usage

AbForests_UniqueAntibodyVariants(
list,
opt,
distance_mat,
tie_flag,
weight,
random.seed,
alg_opt,
cdr3

)

Arguments

list a list of data.frames. Each data.frame represents a clone lineage and contains
information on the antibody sequences and on the isotype/transcriptional cluster
is considered in the analysis based the user’s preferences.

opt a string with options "isotype" and "cluster". The option "isotype" is utilized
when the user desires to do an isotype analysis, while the selection of "cluster"
denotes that an analysis based on transcriptome is requested.

AbForests_UniqueAntibodyVariants 23

distance_mat a custom integer distance matrix, or NULL for using the default distance matrix
(calucated based on the levenshtein distance, which counts the number of muta-
tions between sequences). Given the phylogenetic tree, a custom-made distance
matrix can be produced by PlyloToMatrix function.

tie_flag a string, with options ’rand’, ’full’, ’close_to_germ’, ’far_from_germ’, ’close_path_to_germ’,
’far_path_from_germ’,’most_expanded’ and ’least_expanded’ for removing edges
when equal distance (tie) in distance matrix. ’rand’ means random pruning
in one of nodes, ’full’ means keeping all nodes, close_to_germ means prun-
ing of node(s) farthest from germline (based on number of intermediate nodes),
’far_from_germ’ means pruning of node(s) closest to germline (based on num-
ber of intermediate nodes), ’close_path_to_germ’ means pruning of node(s) far-
thest from germline (based on edge path length), ’far_path_from_germ’ meams
pruning of node(s) closest to germline (based on edge path length),’most_expanded’
means pruning of node(s) with the lowest B cell count(clonal frequency) and
least_expanded, which means pruning of node(s) with the hightest B cell count(clonal
frequency). In cases of subsequent ties, a random node is selected.

weight logical variable. When its value is FALSE, then the weights of outgoing edges
from Germline node are set to 1. When its value is TRUE, the weights are set to
the difference between the number of mutations among sequences in germline
and connected nodes(value in the corresponding distance matrix) and the ab-
solute value of the difference between the sequence lengths of germline and
corresponding connected nodes. In both cases, weights of remaining edges are
extracted from the distance matrix.

random.seed a random seed, specified by the user, when random sampling of sequences hap-
pens in each of the cases described in tie_flag argument.

alg_opt a string denoting the version of the edge selection algorithm used in the con-
struction of networks. "0" means the naive version and "1" the advanced one.

cdr3 variable with values 0 if the user desires to select full length sequences (only
when the input is a list of csv files), 1 for sequences in the CDR3 only (only
when the input is a list of csv files) and NULL otherwise.

Value

uni_seq a vector, same size as list, which contains the number of unique antibody variants for each
clonal lineage.

Examples

Not run:
UniqueAntibodyVariants(list,opt="cluster",
distance_mat=NULL,tie_flag=close_to_germ,weight=TRUE,random.seed=165,alg_opt="naive",cdr3=NULL)

End(Not run)

24 AlphaFold_prediction

AlphaFold_prediction Structure prediction of Mixcr wrapper output with Alpha Fold

Description

This function takes the output from the VDJ_call_MIXCR function as input in the VDJ.mixcr.out
argument and predicts the structure with Alpha Fold. From the VDJ.mixcr.out object the full length
VDJ & VJ sequence containing all the frameworks and CDR’s is used to predict the structure of the
variable part with Alpha Fold multi. If the user has no access to the Euler function, the fucntion
just returns a fasta file with the VDJ and VJ sequence, that can be used for running Alpha Fold on a
Cluster. For users that have a login to the Euler cluster, this function will automatically connect to
Euler and start Alpha Fold for all the indicated sequences. After the prediction is finished the same
function can be used to import the predicted structures as a pdb file and add it to the input as a list
object

Usage

AlphaFold_prediction(
VDJ.mixcr.out,
cells.to.predict,
max.template.date,
dir.name,
fasta.storage.path,
euler.user.name,
rm.local.fasta,
import,
import.local.path,
import.local.dirnames,
euler.dirname,
euler.dirpath,
n.ranked,
rm.euler.files,
rm.local.output,
output.path,
antigen.fasta.path,
fasta.directory.path,
platypus.version

)

Arguments

VDJ.mixcr.out Contains the output from the VDJ_call_MIXCR function with VJ_aa_mixcr
and VDJ_aa_mixcr columns containing the full length amino acid sequence of
Framework 1 - 4.

cells.to.predict

Here you can specify 10x barcodes for the cells of the VDJ.mixcr.out that should
be used for structure prediction. It can be set to "ALL" if the antibody structure
of all cells shall be predicted.

AlphaFold_prediction 25

max.template.date

This is a parameter for running Alpha Fold and a date can be specified in the
following format: "yyyy-mm-dd" This tells Aplhpa Fold which state of the
databases it shall use.

dir.name By default the function creates a directory named AlphaFold_Fasta, where the
FASTA files created for prediction. The name of this directory can be changed
by specifying the dir.name argument.

fasta.storage.path

Here you can specify where the function saves the fasta files needed as an Alpha
Fold input. By default files an ’AlphaFold_Fasta’ directory with all the fasta
files is created in the same directory as the R script runs.

euler.user.name

If running Alpha Fold on Euler is requested, the user name needs to be specified
in this parameter. Make sure that you have access to GPU usage on the Cluster.
You will be prompted to enter you password by the "ssh" package which handles
your credentials in a safe manner.

rm.local.fasta Here you can specify if the local AlphaFold_Fasta directory shall be deleted
from your local computer after uploaded to the scratch on Euler. By default it is
set to TRUE, to keep your environment clean. If the function is not used in the
Euler modus it is set to FALSE, so you will have the fasta files as an output.

import This argument is for telling the function to import predicted structures. It is
by default set to FALSE, which will initiate prediction not import. There are
two options for importing predicted structures: Import = "euler" will start a
connection to Euler and import the pdb files from the "AlphaFold_Fasta/output"
directory. Import = "local" will import the pdb files form a local directory.

import.local.path

If import = "local" is used you can specify the path to the AlphaFold_Output
directory here. By default it is expected in the same directory as the r script
runs.

import.local.dirnames

If import = "local" is used the function expects a directory named ’Output_AlphaFold’
in the same directory as the script runs. In case you do not wanna import all the
pdb files off all samples in the ’Output_AlphaFold directory you can specify a
sub directories in the import.local.dirnames parameter. (import.local.dirnames =
c(s4_AGCCTAATCCCTTGCA-1_ranked,s4_CCCATACCACGTTGGC-1_ranked,...))

euler.dirname If import = "euler" is used the name of the directory containing the Alpha Fold
output directory can be specified in euler.dirname. It is set to "AlphaFold_Fasta"
by default and is expected to be on your scratch.

euler.dirpath If import = "euler" is used the path to the directory containing the Alpha Fold
output folder can be specified in euler.path. By default the function expects
the output in the AlphaFold_Fasta directory on your scratch. In case you wanna
import the data from a different location you can specify the path here. The func-
tion expects a sub directory named output which contains sub directories named
after the specific barcodes. (../scratch/AlphaFold_Fasta/output/s4_AGCCTAATCCCTTGCA-
1/)

n.ranked Alpha Fold returns 21 predictions for each sequence which are ranked for 0:20.
The ranked_0 is the most accurate according to the model. Here you can specify

26 AlphaFold_prediction

how many of the top ranked structures are added to the output object. By default
only the most accurate structure ’ranked_0.pdb’ is integrated.

rm.euler.files Here you can specify if the files on Euler shall be deleted after importing them.
It is set to FASLE by default to reduce the risk of unintentionally deleting the
predictions. However, make sure to keep you scratch environment clean.

rm.local.output

Here you an specify if the downloaded output folder from Euler shall be deleted
after the import. It is set to true by default to keep you environment clean.

output.path If the data is downloaded from the cluster it is by default stored in a sub folder
in the current directory. If the data should be downloaded at a different location
this can be specified in the output.path.

antigen.fasta.path

It can be of interest to predict the antibody structure together with the antigen
to see interaction. For this purpose a path to a FASTA file containing the amino
acid sequence of the antigen can be specified in the antigen.fasta.path argument.
This will add the antigen sequence to every antibody prediction.

fasta.directory.path

The prediction function can also be used to predict structure directly from amino
acid FASTA files without specifying a the VDJ.mixcr.out argument. For this the
path to a directory, congaing all the FASTA files of interest can be specified in
the fasta.directory.path argument. The files just need to have the .fasta extension.
If multiple FASTA files are in the directory, the function will predict all of them
separately.

platypus.version

This function is not directly depended on other Platypus functions but was de-
veloped to be compatible with v3.

Value

This function returns a list with the VDJ.mixcr.out in the first element and a list of pdb files as a
second element

Note

For running Alpha Fold on Euler, the user needs to have access to GPU usage. This is automatically
activated if one is part of the Reddy Euler Group.

If running prediction on Euler, the function will create a "AlphaFold_Fasta" directory in sour scratch
on the cluster where all the fasta files are uploaded. The output files will be saved as well in this
directory.

Examples

Not run:

ADD EXAMPLE CODE HERE

End(Not run)

AntibodyForests 27

AntibodyForests Infer B cell evolutionary networks and/or sequence similarity net-
works

Description

Function to infer immune receptor evolutionary networks (trees) or complex/sequence-similarity
networks from a Platypus VDJ object/VGM[[1]] - AntibodyForests objects will be created for each
sample and each unique clonotype, if the default parameters are used. Networks can be created
in a tree-building manner (minimum spanning tree algorithm with custom tie solving methods), by
linking sequences with a minimal string distance between them iteratively (and solving distance ties
in a hierarchical way, with multiple resolve.ties parameters/configurations). Nodes in the network
represent unique sequences per clonotype, edges are determined by the string distance between
the nodes/sequences. Sequence types are dictated by the sequence.tyoe parameter, allowing net-
works to be built for most of the sequence types available in a Platypus VDJ object. Networks
can also be created by pruning edges from a fully connected network obtained from all sequences
from a specific clonotype - complex similarity networks. Pruning can either be done via a dis-
tance threshold (prunes nodes too far apart), a node degree threshold (to prune nodes with a smaller
degree/not well connected), or an expansion threshold (to prune nodes for sequences with low ex-
pansion/frequency). Lastly, networks can be created by converting a phylogenetic tree inferred via
different methods (neighbour-joining, maximum likelihood, maximum parsimony) into an igraph
object,

Usage

AntibodyForests(
VDJ,
sequence.type,
include.germline,
network.algorithm,
directed,
distance.calculation,
resolve.ties,
connect.germline.to,
pruning.threshold,
remove.singletons,
keep.largest.cc,
VDJ.VJ.1chain,
node.features,
filter.na.features,
filter.specific.features,
node.limits,
cell.limits,
weighted.edges,
weighted.germline,
expand.intermediates,
specific.networks,

28 AntibodyForests

network.level,
forest.method,
random.seed,
parallel,
as.igraph

)

Arguments

VDJ VDJ or vgm[[1]] object, as obtained from the VDJ_GEX_matrix function in
Platypus.

sequence.type string denoting the sequence types to create the networks for. ’cdr3.aa’ - net-
works for amino-acid CDR3 sequences, ’cdr3.nt’ - networks for nucleotide CDR3
sequences, ’VDJ.VJ.nt.trimmed’ - full, trimmed VDJ-VJ sequences, as obtained
when setting trin.and.align = T for VDJ_GEX_matrix(), ’VDJ.VJ.nt.raw’ - full,
raw VDJ-VJ sequences, ’VDJ.VJ.aa.mixcr’ and ’VDJ.VJ.nt.mixcr’ for the VDJ
and VJ chains (nt or aa) as inferred by MIXCR, ’VDJ.aa.mixcr’ and ’VDJ.nt.mixcr’
for the VDJ chain inferred by MIXCR, ’VJ.aa.mixcr’ and ’VJ.nt.mixcr’ for the
VJ chain inferred by MIXCR, ’VDJ.nt.trimmed’ for the trimmed VDJ chain as
nucleotides, ’VDJ.nt.raw’ for the untrimmed VDJ chain as nucleotides, sim-
ilarly for the VJ chain (’VJ.nt.trimmed’ and ’VJ.nt.raw’), ’VDJ.cdr3s.aa’ for
the CDRH3 region as amino-acids, VDJ.cdr3s.nt’ for the CDRH3 region as nu-
cleotides, similarly for the CDRL3 regions (’VJ.cdr3s.aa’, ’VJ.cdr3s.nt’), ’VDJ.aa’
and ’VJ.aa’ for the full VDJ/VJ sequence as amino-acids. Defaults to ’VDJ.VJ.nt.trimmed’.

include.germline

string or vector of strings, denoting the germline column(s) to be used (in the
c(’VDJ_germline’, ’VJ_germline’) order). ’trimmed.ref’ - the networks will in-
clude a germline node, obtained by pasting the VDJ_trimmed_ref and VJ_trimmed_ref
sequences for each clonotype, obtained by calling VDJ_call_MIXCR on VDJ.
As reconstructed germlines as usually available for full VDJ.VJ.nt sequences,
use this with sequence.type=VDJ.VJ.nt.trimmed. NULL will not include a germline.

network.algorithm

string denoting the algorithm used in constructing the networks. ’tree’ - will use
a tree evolutionary inference algorithm: nodes denoting unique sequences per
clonotype will be linked iteratively, as long as their string distance is the mini-
mum. Use the resolve.ties parameter to further dictate the tree topology (when
there are multiple ties in the minimum links). ’prune’ will create networks by
pruning nodes from a fully connected networks. It must always be followed by
a pruning method. For example, ’prune.distance’ will prune nodes with a larger
string distance than the threshold specified in the pruning.threshold parameter.
’prune.degree’ will remove nodes with a lower degree than the threshold spec-
ified in pruning.threshold. ’prune.expansion’ will remove nodes with a lower
sequence frequency/expansion than the threshold specified in pruning.threshold.
Multiple pruning methods can be used simultaneously, as long as multiple prun-
ing.threshold is a vector - a threshold for each method. For example, ’prune.distance.degree’
with pruning.threshold=c(3,2) will remove edges of nodes with a string dis-
tance greater than 3, then will remove nodes with a degree smaller than 2.
’prune.distance.degree.expansion’ with pruning.threshold=c(3,2,1) will also re-

AntibodyForests 29

move one-of sequences/nodes (with a single cell). ’phylogenetic.tree.nj’ will
create phylogenetic (binary) trees using the neighbour-joining algorithm via
ape::nj(). ’phylogenetic.tree.ml’ will create phylogenetic (binary) trees using
a maximum-likelihood algorithm from the phangorn package (phangorn::ml()).
’phylogenetic.tree.mp’ will create phylogenetic (binary) trees using a maximum-
parsimony algorithm from the phangorn package (phangorn::mp()). ’mst’ will
create undirected trees using the minimum spanning tree algorithm from igraph
(without specific tie solving mechanisms). ’global’ is a custom option to easily
create whole-repertoire/multi-repertoire similarity networks: it defaults to the
’prune.distance’ option, while also changing some other parameters to ensure
consistency (directed is set to F, include.germline is set to F, network.level is set
to ’global’)

directed boolean, whether networks obtained using network.algorithm=’tree’ should be
directed (from the germline to the leaf nodes) or not. T - directed; F - undirected
trees.

distance.calculation

string or function, specifying the method for calculating string distances be-
tween the sequences. Must be compatible with the method parameter of the
stringdist::stringdistmatrix() function. Will default to ’lv’ for Levenshtein dis-
tances. Else, if a function of the form distance(seq1, seq2) must be specified,
which should output a float = custom distance metric between the selected se-
quences.

resolve.ties vector of strings, denoting the manner in which ties should be resolved when
assembling trees via network.algorithm=’tree’. Ties are defined as edges with
the same weights=string distances (as determined by the distance matrix for the
fully connected network) between nodes already added in the tree and nodes to
be added in the tree. There are multiple default and custom configurations for
this parameter: ’first’ will pick the first edge from a pool of edges of equal string
distance (between the sequences) - these are ordered based on each node’s ex-
pansion/cell count (therefore ’first’ will try to add the most expanded node first);
’random’ - resolve ties by picking random tied edges; ’close.germline.edges’
and ’far.germline.edges’ - will prefer the nodes closer or farther to/from the
germline, as a number of edges (unweighted) to be next integrated into the net-
work; ’close.germline.distance’ and ’far.germline.distance’ - picks nodes closer/farther
to/from the germline, determined by the string distance; ’close.germline.weighted’
and ’far.germline.weighted’ - picks edges with nodes closer/farther to/from the
germline, as a weighted path from the germline to the most recent integrated
node; ’min.expansion’ and ’max.expansion’ - will pick the most/least expanded
sequences; ’min.degree’ and ’max.degree’ - picks the nodes with the mini-
mum or maximum degree - a distance threshold must be specified in the prun-
ing.threshold parameter, otherwise all nodes will have the same degree; An addi-
tional custom configuration can be used: either min/max/specific feature value,
tied to a specific feature column as defined in the node.features parameter, using
’-’. For example, ’yes-OVA_binder’ will select nodes that are OVA binders when
resolving ties; for min and max, the node.feature column should be of numeric
class. If a vector is provided, ties will be resolved in a hierarchical manner: for
example, if resolve.ties=c(’max.expansion’, ’close.germline.distance’), it will
first try to pick nodes with a max expansion that were not added in the network

30 AntibodyForests

(with edge ties to those already added), then those closer to the germline (mini-
mum string distance). As these two options do not always fully converge, mean-
ing that there could be also expansion ties and distance ties between the nodes to
be added, not just edge ties, a ’first’ options is always added at the end of the hi-
erarchical tie resolving algorithm, which always converges/picks a specific edge
and resolves a tie. Moreover, the ’first’ option is also added when only selecting
a single option (still in the form of a vector - for e.g., c(’min.expansion’) turns
automatically into c(’min.expansion’, ’first’)).

connect.germline.to

string defining how the germline should be connected for both the pruning
and tree building algorithms. When network.algorithm=’tree’, two options are
available: ’min.adjacent’ - will first connect the nodes with the min string dis-
tance from the germline, then continue adding nodes and building the tree, and
’threshold.adjacent’ - will connect nodes with a string distance value lower than
the threshold defined in pruning.threshold. As the pruning algorithm starts by
pruning all connections out of the specified boundaries, irrespective if they are
germline ones or not, the germline needs to be added at the end if it is re-
moved. If not, then this option is ignored. Thus, there are additional options
for including the germline when building a network via the pruning algorithm:
’largest.connected.component’ - connects the germline to the largest resulting
connected component(s), ’all.connected.components’ - to all connected compo-
nents, ’all.connected.components.non.single’ - does not connect the germline to
single-node components; ’none’ - germline is not connected; ’min.adjacent’ -
connects to the node(s) with the minimum string distance.

pruning.threshold

vector of max size=3, specifying the thresholds for the pruning algorithm when
network.algorithm includes ’prune’ (as seen. ’prune’ can be followed by either
’expansion’, ’degree’ or ’distance’, or a combination of them - ’prune.distance.degree’).
If we have ’prune.degree’, we need to first specify a distance threshold (as
’prune.degree’=’prune.distance.degree’, otherwise the degree is the same for all
nodes in a fully connected network). See also network.algorithm. For a direct
use, if network.algorithms is set to prune.distance, set pruning.threshold to a
single integer denoting the distance between two nodes for which edges will be
pruned (equal or more).

remove.singletons

integer - in the case of the pruning network algorithm or ’global’ network al-
gorithm, it denotes the minimum connected component node number threshold
(for e.g., if remove.singletons = 3, it will remove all nodes from a graph that
form a 3-node compnent or less: 2-node and singletons). If NULL, will keep all
components (including singletons) in the complex similarity graph.

keep.largest.cc

boolean - if T, will only keep the largest connected component in the similarity
network (pruning network algorithm or ’global’ option for network.algorithm).
If F, will keep all components (including singletons unless removed via re-
move.singletons).

VDJ.VJ.1chain boolean, T - excludes cells with an aberrant number of VDJ or VJ chains; F -
will be kept in for network inference.

AntibodyForests 31

node.features string or vector of strings, denoting the column name(s) in the original VDJ/VGM[[1]]
from which the node features to be extracted. This is done by first pooling the
cell cell_barcodes per unique sequence in the VDJ (for each clonotype), then
adding the features of those cells.

filter.na.features

string or vector of strings, denoting the same column name(s) as specified in
node.features. This will remove netowrks were ALL nodes values for the spe-
cific feature are equal to NA.

filter.specific.features

list with two elements - first one denotes the column/feature which you wish to
filter on, second denotes the specific feature which HAS TO BE INCLUDED
IN THE NETWORK (e.g., list(’OVA_binder’, ’yes’) will result in networks that
have at least 1 binder for OVA).

node.limits list of integers or NULLs. node.limits[[1]] determines the least amount of unique
sequences to create a network for, otherwise a network will not be created. If
node.limits[[1]] is NULL, then there is no lower bound for the number of se-
quences in each network. node.limits[[2]] defines the upper bound for the num-
ber of sequences - networks with more sequences will have the extra ones re-
moved, keeping only the most abundant sequences/largest sequence frequency.

cell.limits list of integers or NULLs. cell.limits[[1]] the minimum threshold of cells which
should produce a unique sequence (sequences below this threshold are removed
from the network). If node.limits[[1]] is NULL, then there is no lower bound
for the number of cells per unique sequence. node.limits[[2]] defines the upper
bound for the number of cells per sequence - sequence frequency.

weighted.edges boolean, T - edge weights will be equal to the string distance between a pair of
nodes; F - edge weights = 1

weighted.germline

boolean, T - adds weights to the edges connected to the germline, equal to the
string distance between the germline and the specific connected nodes; F - edge
weights = 1.

expand.intermediates

boolean. T - will add inferred, intermediate nodes between nodes in the original
network, determined by the string distance between a pair of nodes (for e.g., 2
nodes with an edge=string distance matrix of 3 will result in in 5 total nodes - 3
inferred nodes and 2 original ones, edges=1)

specific.networks

#either an integer of max sorted clonotypes to be picked for network inference,
’all’ for all clonotypes to be used, or list of specific clonotypes to create networks
for.

network.level string determining the level at which networks should be built - ’intraclonal’ will
create intraclonal networks = networks for each sample and for each clonotype
in the VDJ; ’global.clonotype’ will create networks for each unique clonotype,
irrespective of sample ids; ’global’ will pool all clonotypes from all samples
into a single global network; ’forest.per.sample’ and ’forest.global’ are tree-
specific methods, used when obtaining networks via network.algorithm=’tree’:
’forest.per.sample’ will join the intraclonal trees in each sample, ’forest.global’
will join ALL trees. Joining is determined by the forest.method parameter.

32 AntibodyForests_communities

forest.method string determining how the trees should be joined if network.level=’forest.per.sample’
or ’forest.global’. ’single.germline’ - trees will all be joined at a single germline
(the one from the first clonotype), recalculating the string distances for the
new adjacent nodes; ’multiple.germlines’ - trees will all be joined in the same
network, keeping the original germlines; ’multiple.germlines.joined’ - same as
’multiple.germlines’, but new edges will be added between the germlines.

random.seed numeric, seed for the random tie resolving method of resolve.ties.

parallel boolean with T - a parallelized mclapply will be used for each internal function,
to accelerate computation; F - normal lapply will be used. Used best when
having a large number of networks/clonotypes per sample.

as.igraph boolean - if T, the resulting networks will be igraph objects. Otherwise, they are
converted to tidygraph tibble objects.

Value

nested list of AntibodyForests objects for each sample and each clonotype. For example, out-
put[[1]][[2]] denotes the AntibodyForests object of the first sample, second clonotype. If only a
single clonotype and sample are available in the VDJ (or if the networks are joined via network.level
= ’forest.global’), will output a single AntibodyForests object.

Examples

Not run:
AntibodyForests(VDJ, sequence.type='VDJ.VJ.nt.trimmed',
include.germline=T, network.algorithm='tree',
resolve.ties=c('close.germline.distance', 'max.expansion'),
node.features='OVA_binder', expand.intermediates=T, network.level='intraclonal')

End(Not run)

AntibodyForests_communities

Network clustering/community detection for the AntibodyForests sim-
ilarity networks

Description

Performs community detection/clustering on the AntibodyForests sequence similarity networks.
Annotates the resulting networks with a new igraph vertex attribute (’community’) for downstream
analysis or plotting. Can also add these annotations back to the VGM.

Usage

AntibodyForests_communities(
trees,
VGM,
community.algorithm,

AntibodyForests_communities 33

graph.type,
which.bipartite,
features,
count.level,
additional.parameters

)

Arguments

trees AntibodyForests object/list of AntibodyForests objects - the resulting sequence
similarity or minimum spanning tree networks from the AntibodyForests func-
tion

VGM VGM object - for annotating the VGM object with the resulting clusters/communities.
community.algorithm

string - denotes the community/clustering algorithm to be used. Several op-
tions are available: ’louvain’, ’walktrap’, ’edge_betweenness’, ’fast_greedy’,
’label_prop’, ’leading_eigen’, ’optimal’, ’spinglass’.

graph.type string - the graph type available in the AntibodyForests object which will be
used as the function input. Currently supported network/analysis types: ’tree’
(for the minimum spanning trees or sequence similarity networks obtained from
the main AntibodyForests function), ’heterogeneous’ for the bipartite graphs ob-
tained via AntibodyForests_heterogeneous, ’dynamic’ for the dynamic networks
obtained from AntibodyForests_dynamics.

which.bipartite

string - whether to perform clustering on the cell layer of the bipartite/heterogeneous
graph (’cells’), sequence layer (’sequences’) or on both (’both’).

features vector of strings - features to be considered in the output bar plots (of feature
counts per cluster). These features must be integrated when creating the initial
AntibodyForests objects by using the node.features parameter.

count.level string - whether to consider cells (’cells’) or sequences (’sequences’) when count-
ing the unique feature values in the output bar plots. When counting by se-
quences/nodes, each unique node is assigned the feature value of the majority of
its consituent cells.

additional.parameters

named list - additional parameters to be considered in the clustering algorithm,
as mentioned in the igraph documentation for the respective algorithms (e.g.,
additional.parameters = list(resolution = 0.25)).

Value

a single AntibodyForests object or a nested list of AntibodyForests objects (depending on the input
type) with community/cluster annotations as a vertex attribute. Additional bar plots of feature
counts per resulting cluster are also displayed.

See Also

AntibodyForests, AntibodyForests_plot

34 AntibodyForests_dynamics

Examples

Not run:
AntibodyForests_communities(trees = AntibodyForests_object,
VGM = NULL, community.algorithm = 'louvain',
graph.type = 'tree', features = 'seurat_clusters',
count.level = 'cells', additional.parameters = list(resolution = 0.25))

End(Not run)

AntibodyForests_dynamics

Create a nested list of longitudinal AntibodyForests objects

Description

Adds the dynamic slots to a nested list of AntibodyForests objects outputted from AntibodyForests
function. Also inverts the nested list (per clonotype per sample instead of per sample per clono-
type) - for tracking the evolution of a specific clonotype across multiple timepoints (samples). The
timepoints order can be specified in the timepoint.order parameter. The new dynamic graphs con-
tain all the unique nodes across the timepoints, but with edges created only for a single tree of
a given timepoint. The new dynamic slots will be used for downstream analyses - Antibody-
Forests_metrics(graph.type = ’dynamic’) and AntibodyForests_track_nodes. Before running this
function, ensure your clonotypes are defined the same way across each timepoint before creating
your networks using AntibodyForests (e.g., use the VDJ_call_enclone function or VDJ_clonotype
with global.clonotype set to TRUE to ensure clonotype 1 is defined the same across each timepoint,
otherwise clonotype1 in timepoint/sample 1 might not correspond to the same clonal definition as
clonotype1 in timepoint/sample2).

Usage

AntibodyForests_dynamics(trees, graph.type, timepoints.order)

Arguments

trees nested list of AntibodyForests objects, as obtained from the AntibodyForests
function. Ensure the clonotype definition is consistent across each timepoint
before running this function (and before running AntibodyForests to obtain your
trees). Also ensure the timepoint ids are present in the sample_id column of your
VDJ/VGM[[1]] object.

graph.type string - ’tree’ will use the usual output of the AntibodyForests function (tree
graphs), ’heterogeneous’ will use the output of the AntibodyForests_heterogeneous
function (bipartite networks for both cells and sequences).

timepoints.order

vector of strings - order of the timepoints in the resulting nested list. For ex-
ample, output[[1]][[1]] denotes the first clonotype, first timepoint/sample, out-
put[[1]][[2]] denotes the first clonotype, second timepoint/sample,

AntibodyForests_embeddings 35

Value

nested list of AntibodyForests objects for each clonotype and each sample/timepoint. For example,
output[[1]][[2]] denotes the AntibodyForests object of the first clonotype, second timepoint.

Examples

Not run:
AntibodyForests_dynamics(trees, graph.type = 'tree', timepoint.order = c('s1', 's2', 's3')

End(Not run)

AntibodyForests_embeddings

Structural node embeddings for the AntibodyForests minimum span-
ning trees/ sequence similarity networks

Description

Structural node embeddings algorithms of the AntibodyForests networks. Supported algorithms
include: node2vec (https://arxiv.org/abs/1607.00653) and spectral graph embedding on either the
adjacency or the Laplacian matrix. Currently the node2vec model is supported as long as Rkeras is
installed.

Usage

AntibodyForests_embeddings(
trees,
graph.type,
embedding.method,
dim.reduction,
color.by,
num.walks,
num.steps,
p,
q,
window.size,
num.negative.samples,
embedding.dim,
batch.size,
epochs,
tsne.perplexity,
seed,
parallel

)

36 AntibodyForests_embeddings

Arguments

trees AntibodyForests object/list of AntibodyForests objects - the resulting sequence
similarity or minimum spanning tree networks from the AntibodyForests func-
tion

graph.type string - the graph type available in the AntibodyForests object which will be
used as the function input. Currently supported network/analysis types: ’tree’
(for the minimum spanning trees or sequence similarity networks obtained from
the main AntibodyForests function), ’heterogeneous’ for the bipartite graphs ob-
tained via AntibodyForests_heterogeneous, ’dynamic’ for the dynamic networks
obtained from AntibodyForests_dynamics.

embedding.method

string - the embeddings model/algorithm. ’node2vec’ for an implementation
of graph random walk and node2vec using R-keras (might be slow depend-
ing on graph size), ’spectral_adjacency’ for spectral graph embeddings of the
adjacency matrix (using igraph’s embed_adjacency_matrix() function), ’spec-
tral_laplacian’ for embedding the Laplacian matrix (using igraph’s embed_laplacian_matrix()
function).

dim.reduction string - dimensionality reduction algorithm for the resulting node2vec embed-
dings. Currently implemented methods include: ’umap’, ’tsne’ and ’pca’.

color.by vector of strings - features to color the resulting scatter plots by. These features
must be included as igraph vertex attributes when creating the AntibodyForests
objects, by including them in the node.features parameter.

num.walks integer - number of biased random walks to be performed for the node2vec
training dataset.

num.steps integer - number of steps per biased random walk.
p numeric - probability of revisiting the same node already vistied in a random

walk step (= return parameter).
q numeric - probability of ’jumping’ to a node closer or farther away from the

node visited at step x (e.g., q > 1, random walk is biased to closer nodes, q < 1,
random walk will ’jump’ to farher nodes more frequently).

window.size integer - size of sampling window in the skipgram model.
num.negative.samples

integer - number of negative samples to be considered in the skipgram model.
embedding.dim integer - latent/embedding dimension of the node2vec output vectors.
batch.size integer - training batch size of the node2vec model.
epochs integer - number of training epochs for the node2vec model.
tsne.perplexity

numeric - T-SNE reduction perplexity.
seed integer - random seed for the random walk steps of the node2vec model.
parallel boolean - whether to execute the random walks in parallel or not.

Value

A scatterplot of reduced vector embeddings for each node in the graphs, colored by the features
specified in color.by.

AntibodyForests_expand_intermediates 37

Examples

Not run:
AntibodyForests_embeddings(output_networks,
graph.type = 'tree', embedding.method = 'node2vec',
dim.reduction = 'pca', num.walks = 10, num.steps = 10,
embedding.dim = 64, batch.size = 32, epochs = 50)

End(Not run)

AntibodyForests_expand_intermediates

Infer intermediate nodes in the minimum spanning trees/ sequences
similiarity networks created by the AntibodyForests function

Description

Intermediate nodes are expanded/inferred based on the edge weight between two existing nodes:
for example, of node 1 and node 2 are connected by an edge of weight = 3, 2 new nodes are added
in-between and all resulting edges have weight = 1.

Usage

AntibodyForests_expand_intermediates(trees, parallel)

Arguments

trees AntibodyForests object/list of AntibodyForests objects - the resulting sequence
similarity or minimum spanning tree networks from the AntibodyForests func-
tion.

parallel boolean - whether to execute the main subroutine in parallel or not. Requires
the ’parallel’ R package.

Value

nested list of AntibodyForests objects or single AntibodyForests object, with the resulting networks
having expanded/inferred intermediate nodes.

Examples

Not run:
AntibodyForests_expand_intermediates(trees)

End(Not run)

38 AntibodyForests_heterogeneous

AntibodyForests_heterogeneous

Bipartite sequence-cell networks in AntibodyForests

Description

Creates a bipartite network from a Seurat object and an already inferred AntibodyForests sequence
similarity/ minimum spanning tree network.

Usage

AntibodyForests_heterogeneous(
trees,
GEX.object,
node.features,
cell.graph.type,
recluster.cells,
recluster.resolution,
snn.threshold,
keep.largest.cc,
parallel

)

Arguments

trees AntibodyForests object/list of AntibodyForests objects - the resulting sequence
similarity or minimum spanning tree networks from the AntibodyForests func-
tion.

GEX.object Seurat object/ VGM[[2]] for the inferred AntibodyForests networks (must in-
clude all cells available in the AntibodyForests object).

node.features vector of strings - gene names in the Seurat object to be added as igraph vertex
attributes in the resulting heterogeneous networks (will add gene expression per
gene).

cell.graph.type

string - graph algorithm for building the cell-cell/ nearest-neighbour graphs, as
done by the Seurat::FindNeighbors() function. ’knn’ for the K nearest-neighbour
graphs, ’snn’ for the shared nearest-neighbour graphs.

recluster.cells

boolean - whether to recluster the resulting cell graphs or keep the already ex-
isting Seurat cluster definitions.

recluster.resolution

numeric - recluster resolution for the Louvain algorithm if recluster.cells is TRUE.

snn.threshold numeric - SNN edge weight threshold to further prune edges in the cell graphs
(increased value = sparser cell graphs). Defaults to 1/15 (as done in the Seu-
rat::FindNeighbors function).

AntibodyForests_infer_ancestral 39

keep.largest.cc

boolean - whether to keep only the largest connected component in the cell
graphs or keep all singletons/doubletons/etc., as well.

parallel boolean - whether to execute the heterogeneous graph building algorithm in par-
allel or not. Requires the ’parallel’ R package.

Value

nested list of AntibodyForests objects for each clonotype and each sample/timepoint or a single
AntibodyForests object, with a new added object slot for the heterogeneous graph.

Examples

Not run:
AntibodyForests_heterogeneous(trees, GEX.object = VGM[[2]], cell.graph.type = 'snn')

End(Not run)

AntibodyForests_infer_ancestral

Creates phylogenetic trees, infers ancestral sequences, and converts
the resulting trees into igraph objects.

Description

Phylogenetic trees and ancestral sequence reconstruction is performed using the IQ-TREE software.
The IQ-TREE directory is required beforehand.

Usage

AntibodyForests_infer_ancestral(
trees,
alignment.method,
iqtree.directory,
collapse.trees,
parallel

)

Arguments

trees AntibodyForests object/list of AntibodyForests objects - the resulting sequence
similarity or minimum spanning tree networks from the AntibodyForests func-
tion.

alignment.method

string - method/software to perform multiple sequence alignment before the
ancestral sequence reconstruction step. Options include: ’mafft’ (requires the
MAFFT software to be locally installed beforehand), ’clustal’, ’clustalomega’,
’tcoffee’, ’muscle’, which all require the ’ape’ R package.

40 AntibodyForests_join_trees

iqtree.directory

string - path to the IQ-TREE software directory.
collapse.trees boolean - if T, will collapse the resulting phylogenetic trees if an intermediate

daughter sequence/node is the same as its parent.
parallel boolean - whether to execute the main subroutine in parallel or not. Requires

the ’parallel’ R package to be installed.

Value

nested list of AntibodyForests objects or single AntibodyForests object, with a modified tree slot
including the phylogenetic tree converted into igraph objects and the reconstructed intermedi-
ate/ancestral sequences.

Examples

Not run:
AntibodyForests_infer_ancestral(trees, alignment.method = 'mafft',
igtree.directoty = '/Users/.../Desktop/iqtree-1.6.12-MacOSX')

End(Not run)

AntibodyForests_join_trees

Joins a list of trees/networks as AntibodyForests objects into a single
AntibodyForests object

Description

Joins a list of trees/networks as AntibodyForests into a single AntibodyForests object. The resulting
network will include all joined networks as separate components. Useful for faster downstream
analyses (e.g., node metrics via AntibodyForests_metrics on this object instead on each separate
object, plotting multiple trees in the same plot, etc.,)

Usage

AntibodyForests_join_trees(tree.list, join.per, join.method)

Arguments

tree.list (nested) list of AntibodyForests objects, as obtained from the AntibodyForests
function.

join.per string - ’sample’ joins the objects per sample if the input is a nested list of Anti-
bodyForests objects, resulting in a single joined graph per sample, ’global’ joins
all graphs in the nested list into a single object.

join.method string - networks, especially minimum spanning trees, can be joined into a single
connected graph if join.method = ’single.germline’ (will pick a single germline
from all available germlines and will recalculate the string distance) or ’multi-
ple.germlines.joined’ (will add inter-germline edges). Will create a single object
with disconnected subgraph if join.method = ’multiple.germlines’.

AntibodyForests_kernels 41

Value

single AntibodyForests object consisting of the joined graphs/trees. Resulting graph can be either a
single connected component (if join.method = ’single.germline’ or ’multiple.germlines.joined’) or
multiple disconnected subgraphs (join.method = ’multiple.germlines’).

Examples

Not run:
AntibodyForests_join_trees(tree.list, join.per = 'sample', join.method = 'multiple.germlines')

End(Not run)

AntibodyForests_kernels

Graph kernel methods for graph structure/topology comparisons

Description

Performs graph structural comparisons using graph kernel-based method. Currently available kernel
methods include: the Weisfeiler-Lehman kernel, the graphlet kernel, and the random walk kernel.

Usage

AntibodyForests_kernels(
trees,
graph.type,
kernel.method,
additional.param,
max.networks

)

Arguments

trees (nested) list of AntibodyForests objects, as obtained from the AntibodyForests
function, to be compared.

graph.type string - ’tree’ will use the usual output of the AntibodyForests function (tree
graphs), ’heterogeneous’ will use the output of the AntibodyForests_heterogeneous
function (bipartite networks for both cells and sequences).

kernel.method string - kernel method to be used, as implemented in the ’graphkernels’ R pack-
age. ’weisfeiler_lehman’ for the Weisfeiler-Lehman kernel, ’graphlet, and ’ran-
dom_walk’.

additional.param

integer - additional kernel options/parameters (e.g., kernel iterations for the
Weisfeiler-Lehman kernel).

max.networks integer - maximum number of networks to be compared (will pick the networks
with the most number of cells first).

42 AntibodyForests_label_propagation

Value

Heatmap of the graph kernel values.

Examples

Not run:
AntibodyForests_kernels(trees, graph.type = 'tree',
kernel.method = 'weisfeiler_lehman',
additional.params = 10, max.networks = 50)

End(Not run)

AntibodyForests_label_propagation

Propagate label annotations/values on sparsely labeled networks as
AntibodyForests objects.

Description

Performs label diffusion/propagation, using two different algorithms: if propagation.algorithm =
’diffusion’, will perform label propagation using the graph heat diffusion method (http://mlg.eng.cam.ac.uk/zoubin/papers/CMU-
CALD-02-107.pdf), ’neighbours’ for neihbour majority voting propagation (https://arxiv.org/abs/0709.2938).

Usage

AntibodyForests_label_propagation(
trees,
features,
propagation.algorithm,
diffusion.n.iter,
diffusion.threshold,
parallel

)

Arguments

trees nested list of AntibodyForests objects or single object, as obtained from the
AntibodyForests function.

features vector of strings - features to be propagated in the graph. Must be performed on
sparsely-labeled graphs (with NA node attribute values).

propagation.algorithm

string - label propagation/diffusion algorithm to be used. If propagation.algorithm
= ’diffusion’, will perform label propagation using the graph heat diffusion
method (http://mlg.eng.cam.ac.uk/zoubin/papers/CMU-CALD-02-107.pdf), ’neigh-
bours’ for neihbour majority voting propagation (https://arxiv.org/abs/0709.2938).

diffusion.n.iter

integer - number of diffusion iteration if propagation.algorithm = ’diffusion’.

AntibodyForests_metrics 43

diffusion.threshold

numeric - probability min. threshold for the diffusion algorithm.

parallel boolean - whether to execute the main subroutine in parallel or not. Requires
the ’parallel’ R package to be installed.

Value

Nested list of AntibodyForests objects or single object with new propagated labels added as vertex
attributes (e.g., feature_label_propagation will be a new vertex attribute in the resulting Antibody-
Forests objects).

Examples

Not run:
AntibodyForests_label_propagation(ova_trees,
features = 'OVA_binder',
propagation.algorithm = 'diffusion', parallel = T)

End(Not run)

AntibodyForests_metrics

Node metrics for the AntibodyForests sequence similarity networks
and minimum spanning trees.

Description

Calculates several node metrics for the resulting AntibodyForests networks, adding these as a per-
node dataframe in the new metrics slot. Must be called before AntibodyForests_plot_metrics.

Usage

AntibodyForests_metrics(
trees,
metrics,
graph.type,
features,
exclude.intermediates,
exclude.germline,
separate.bipartite,
parallel

)

44 AntibodyForests_metrics

Arguments

trees nested list of AntibodyForests objects or single object, as obtained from the
AntibodyForests function.

metrics vector of strings - node metric to be calculated. Currently supported metrics
include: 1. Betweenness centrality - ’betweenness’ 2. Closeness centrality -
’closeness’ 3. Eigenvector centrality - ’eigenvector’ 4. Authority score - ’au-
thority’ 5. Local and average clustering coefficients - ’local_cluster_coefficient’,
’average_cluster_coefficient’ 6. Strength or weighted vertex degree - ’strength’
7. Degree - ’degree’ 8. Daughter nodes for directed graphs - ’daughters’ 9.
Vertex eccentricity (shortest path distance from the farthest other node in the
graph) - ’eccentricity’ 10. Pagerank algorithm values - ’pagerank’ 11. Shortest
(weighted) paths from germline - ’path_from_germline’, ’weighted_path_from_germline’
12. Shortest(weighted) paths from the most expanded node - ’path_from_most_expanded’,
’weighted_path_from_most_expanded’, 13. Shortest(weighted) paths from the
hub node (highest degree) - ’path_from_hub’, ’weighted_path_from_hub’

graph.type string - the graph type available in the AntibodyForests object which will be
used as the function input. Currently supported network/analysis types: ’tree’
(for the minimum spanning trees or sequence similarity networks obtained from
the main AntibodyForests function), ’heterogeneous’ for the bipartite graphs ob-
tained via AntibodyForests_heterogeneous, ’dynamic’ for the dynamic networks
obtained from AntibodyForests_dynamics.

features vector of strings - features to be considered when calculating whole-graph met-
rics (e.g., dominant/most abundant feature per graph).

exclude.intermediates

boolean - if T, will not calculate the node-level metrics for the intermediate
nodes obtained from AntibodyForests_expand_intermediates().

exclude.germline

boolean - if T, will exclude the germline nodes from the node metric calcula-
tions.

separate.bipartite

boolean - if T and graph.type = ’heterogeneous’, will separate the cell and
sequence graph and calculate the node metrics independently, then recombine
them in the same final graph.

parallel boolean - whether to execute the main subroutine in parallel or not. Requires
the ’parallel’ R package to be installed.

Value

nested list of AntibodyForests objects or single AntibodyForests object, with a new class slot added
(metrics) = a per-node dataframe of metric values.

Examples

Not run:
AntibodyForests_metrics(trees, graph.type = 'tree', metrics = c('degree', 'pagerank'))

End(Not run)

AntibodyForests_node_transitions 45

AntibodyForests_node_transitions

Calculates the node transitions frequencies for a given feature and an
AntibodyForests object

Description

Node transitions represent the number of (un)directed edges between two feature values of a given
feature type in a single sequence similarity network or minimum spanning trees (e.g., between
VDJ_cgene = ’IGHA’ and VDJ_cgene = ’IGHM’). The resulting AntibodyForests objects will con-
tain a new slot - node_transitions. Will also output bar plots of the transition frequencies.

Usage

AntibodyForests_node_transitions(
trees,
features,
combined,
graph.type,
permutation.test,
exclude.germline,
exclude.intermediates,
n.permutations,
plot.results,
parallel

)

Arguments

trees nested list of AntibodyForests objects or single object, as obtained from the
AntibodyForests function.

features vector of strings - features for the node transition counting. Each node will be
assigned the dominant feature if its constituent cells have different feature values
(e.g., for features = c(’seurat_clusters’)). These features need to be first added as
vertex attributes when creating the AntibodyForests networks, specified in the
node.features parameter of AntibodyForests.

combined boolean - if T, will assign a new feature by combining the feature values as
specified in the features parameter (e.g., if node 1 has VDJ_cgene = ’IGHM’
and seurat_clusters = 1, will create a new feature = ’IGHM 1’ for that node, for
joint node transitions).

graph.type string - the graph type available in the AntibodyForests object which will be
used as the function input. Currently supported network/analysis types: ’tree’
(for the minimum spanning trees or sequence similarity networks obtained from
the main AntibodyForests function), ’heterogeneous’ for the bipartite graphs ob-
tained via AntibodyForests_heterogeneous, ’dynamic’ for the dynamic networks
obtained from AntibodyForests_dynamics.

46 AntibodyForests_overlap

permutation.test

boolean - if T, will perform a permutation statistical test on the node feature
transition values.

exclude.germline

boolean - if T, will exclude the germline from the node feature transitions count-
ing.

exclude.intermediates

boolean - if T, will exclude the intermediate nodes expanded using Antibody-
Forests_expand_intermediates() from the node transitions counting.

n.permutations integer - number of node feature permutations for the permutation test.

plot.results boolean - if T, will display the node transitions counts as bar plots, per feature
specified in the features parameter.

parallel boolean - whether to execute the main subroutine in parallel or not. Requires
the ’parallel’ R package to be installed.

Value

nested list of AntibodyForests objects for each clonotype and each sample or single object, with an
additional node_transitions slot of transition/edge counts.

Examples

Not run:
AntibodyForests_node_transitions(trees,
graph.type = 'tree', features = 'VDJ_cgene',
plot.results = T)

End(Not run)

AntibodyForests_overlap

Edge overlap heatmaps for a set of AntibodyForests sequence similar-
ity networks or minimum spanning trees.

Description

Similar to the AntibodyForests_node_transitions function, will calculate the incidence of features
across undirected edges. In this case, each edge will be considered a unique species - with incidence
counts across each unique feature value if a specific edge is connected to a node with that feature.
Overlap metrics are then calculated for this edge-feature incidence matrix.

Usage

AntibodyForests_overlap(trees, group.by, method)

AntibodyForests_paths 47

Arguments

trees nested list of AntibodyForests objects, as obtained from the AntibodyForests
function.

group.by vector of strings - node features to group the edges by (counts edge incidence
across the unique feature values for the specified node feature).

method string - overlap calculator: ’overlap’ for unique/public edge counts across the
feature values, ’jaccard’ to calculate the Jaccard index.

Value

Edge overlap heatmaps for the specific overlap metric/method.

Examples

Not run:
AntibodyForests_overlap(trees, group.by = 'seurat_clusters', method = 'jaccard')

End(Not run)

AntibodyForests_paths Calculates the longest/shortest paths from a node to a given node for
the AntibodyForests minimum spanning trees / sequence similarity net-
works

Description

Calculates the longest or shortest paths in a given AntibodyForests graph from a node to another
given node. Nodes can be specified as integers (e.g., path.from = 5, picking the fifth node in the
igraph vertex list) or by predetermined attributes (e.g., path.from = ’germline’ and path.to = ’hub’
will calculate the paths between all germlines and hubs in a set of networks. Moreover, there is an
option to select paths for nodes given specific node features (e.g., path.from = list(’seurat_clusters’,
’1’) and path.to = ’hub’ will infer the paths from the nodes with a majority of Seurat clusters = 1,
and to the hub nodes).

Usage

AntibodyForests_paths(
trees,
graph.type,
path.from,
path.to,
paths,
interlevel.from,
weighted,
plot.results,
color.by,
cell.frequency,

48 AntibodyForests_paths

parallel
)

Arguments

trees nested list of AntibodyForests objects or single object, as obtained from the
AntibodyForests function.

graph.type string - the graph type available in the AntibodyForests object which will be
used as the function input. Currently supported network/analysis types: ’tree’
(for the minimum spanning trees or sequence similarity networks obtained from
the main AntibodyForests function), ’heterogeneous’ for the bipartite graphs ob-
tained via AntibodyForests_heterogeneous, ’dynamic’ for the dynamic networks
obtained from AntibodyForests_dynamics.

path.from string/list of strings/integer - starting nodes for a path. Options are either an
integer, selecting the nth most abundant node, ’hub’ to select the hub nodes,
’most_expanded’ for the nodes with most cells, ’leaf’ for leaf nodes, ’germline’
for the germline node, or a list of the form list(feature, feature_value) to select
nodes with a specific feature value.

path.to string/list of strings/integer - end nodes for a path. Options are either an in-
teger, selecting the nth most abundant node, ’hub’ to select the hub nodes,
’most_expanded’ for the nodes with most cells, ’leaf’ for leaf nodes, ’germline’
for the germline node, or a list of the form list(feature, feature_value) to select
nodes with a specific feature value.

paths string - whether to calculate the longest path (’longest’), shortest path (’short-
est’), or both (c(’longest’, ’shortest’))

interlevel.from

string/list of strings/integer - starting nodes for an interlevel path for the bi-
partite/heterogeneous networks (if graph.type = ’heterogeneous’). Options are
either an integer, selecting the nth most abundant node, ’hub’ to select the hub
nodes, ’most_expanded’ for the nodes with most cells, ’leaf’ for leaf nodes,
’germline’ for the germline node, or a list of the form list(feature, feature_value)
to select nodes with a specific feature value.

weighted boolean - whether to calculate the weighted or unweighted shortest/longest paths.

plot.results boolean - if T, will output a bar plot of node feature counts per path (of all nodes
in a given path). Features are determined by the color.by parameter.

color.by string - features for the feature count per path bar plots if plot.results is set to T.

cell.frequency boolean - whether to consider the node or cell frequency for the feature counts
in the resulting bar plot if plot.results is T.

parallel boolean - whether to execute the main subroutine in parallel or not. Requires
the ’parallel’ R package to be installed.

Value

nested list of AntibodyForests objects or a single object with a new slot - paths. If plot.results is T,
will also output a bar plot of feature counts per path (considering all node in a given path).

AntibodyForests_phylo 49

Examples

Not run:
AntibodyForests_paths(trees, graph.type = 'tree',
path.from = 'germline', path.to = 'leaf',
plot.results = T, color.by = 'seurat_clusters')

End(Not run)

AntibodyForests_phylo Converts the igraph networks of a given AntibodyForests object into a
given (useful to convert the minimum spanning trees into a phyloge-
netic tree)

Description

Will automatically convert the minimum spanning trees in a given AntibodyForests object into
a phylogenetic tree as a phylo object. This new object will be added into the phylo slot of the
AntibodyForests object.

Usage

AntibodyForests_phylo(trees, output.format, solve.multichotomies, parallel)

Arguments

trees nested list of AntibodyForests objects or single object, as obtained from the
AntibodyForests function.

output.format string - ’treedata’ will output the phylogenetic tree as a tidytree treedata object,
’phylo’ as an ape::phylo object.

solve.multichotomies

boolean - whether to remove multichotomies in the resulting phylogenetic tree
using ape::multi2di

parallel boolean - whether to execute the main subroutine in parallel or not. Requires
the ’parallel’ R package to be installed.

Value

nested list of AntibodyForests objects for each clonotype and each sample/timepoint or a single
object, with a new phylo slot for the phylogenetic tree.

Examples

Not run:
AntibodyForests_phylo(trees, output.format = 'phylo')

End(Not run)

50 AntibodyForests_plot

AntibodyForests_plot Custom plots for trees/networks created with AntibodyForests

Description

AntibodyForests_plot takes the input of AntibodyForests and outputs a list of plot-ready graphs
(inside the AntibodyForests object) to be further used with plot(). Plots can also be automicat-
ically saved to pdf via the save.pdf parameter. The resulting igraph object have their node/edge
colors/shapes/sizes added following the specific parameters in the AntibodyForests_plot function.

Usage

AntibodyForests_plot(
network.list,
graph.type,
node.color,
node.label,
node.shape,
node.size,
max.node.size,
node.scale.factor,
edge.length,
edge.width,
path.list,
specific.node.colors,
specific.node.shapes,
specific.edge.colors,
color.by.majority,
cell.color,
specific.cell.colors,
cell.size,
network.layout,
save.pdf,
save.dir,
show.legend,
color.gradient

)

Arguments

network.list nested list of igraph objects, as obtained from the AntibodyForests function. in-
put[[1]][[2]] represents the igraph object for the first sample, second clonotype,
if the normal AntibodyForests parameters are used.

graph.type string - graph to be plotted - ’tree’ for the normal tree plots, ’heterogeneous’
for the single-cell grahs (call AntibodyForests_heterogeneous before), ’phylo’
to plot the phylo objects (call AntibodyForests_phylo before), ’dynamic’ for the
dynamic/temporal graphs.

AntibodyForests_plot 51

node.color string specifying the name of the igraph vertex attribute (or the original vgm[[1]]/VDJ
column name used in the node.features parameter of AntibodyForests) to be
used for coloring the nodes. If the node.shape is also ’pie’, the resulting nodes
will be a pie chart of the per-node values denoted by the node.color parameter
(if there are multiple different values per node - e.g., a node denotes a sequence,
which can be further traced back to multiple cells with different barcodes and
with potentially different transcriptomic clusters - multiple feature values per
node). If the node.color parameter is NULL, the default node color will be
’#FFCC00’ (yellow) for sequence nodes, lighter gray for intermediate/inferred
nodes, and darker gray for germline nodes.

node.label string - ’cells’ to label the nodes by the number of cells with that specific se-
quence, ’rank’ for cell count-based ranking of the nodes. If NULL, will not add
number labels to the sequence nodes.

node.shape string specifying the the name of the igraph vertex attribute (or the original
vgm[[1]]/VDJ column name used in the node.features parameter of Antibody-
Forests) to be used for node shapes. Shapes will be assigned per unique value
from the values of this column/vertex attribute. There is a maximum of 7 unique
shapes to be chosen from, therefore node.shapes should be used for features with
less than 7 unique values. If the node.shape parameter is null, the node shape
for all nodes will default to ’circle’

node.size string denoting either a specific method of scaling the node sizes of the input
graph or a specific vertex attribute of numeric values (added via the node.features
parameter of the AntibodyForests from the original vgm[[1]]/VDJ dataframe) to
be used for node sizes. If NULL, then the sizes will be equal to node.scale.factor
* 1. If scaleByEigen, node sizes will be scaled by the eigenvector centrality of
each node; scaleByCloseness - closeness centrality; scaleByBetweenness - be-
tweenness centrality; scaleByExpansion - by the sequence frequency of each
node, as originally calculated by the AntibodyForests function.

max.node.size Maximum size of any given node
node.scale.factor

integer to further refine the size of each node. Each vertex size will be multiplied
by scaling factor.

edge.length either NULL - edge lengths are constant, scaleByWeight - edge lengths will
be scaled by the edge weight attribute (the string distance between pairs of se-
quences/nodes, as calculated by the AntibodyForests function) - larger weights/string
distances = longer edges/nodes further apart, or a specific igraph edge attribute
name.

edge.width either NULL - edge widths are constant, scaleByWeight - edge widths will be
scaled by the edge weight attribute (the string distance between pairs of se-
quences/nodes, as calculated by the AntibodyForests function) - larger weights/string
distances = thinner edges), or a specific igraph edge attribute name.

path.list named list of igraph paths, as obtained from the AntibodyForests_metrics func-
tion.

specific.node.colors

named list of colors to be used for the node.color parameter. If NULL, col-
ors will be automatically added for each unique value. For example, if spe-

52 AntibodyForests_plot

cific.node.colors=list(’yes’=’blue’, ’no’=’red’), then the nodes labeled as ’yes’
will be colored blue, the others red.

specific.node.shapes

named list of node shapes to be used for the node.shapes parameter. Must be
shapes compatible with igraph objects, use setdiff(igraph::shapes(), "") to get a
list of possible values. For example, if specific.node.shapes=list(’yes’=’circle’,
’no’=’square’), then the nodes labele as ’yes’ will be circles, the others squares.

specific.edge.colors

named list of edge colors to be used for the edge.colors parameter. The names
should be the path metrics names obtained from the nested paths list, from Anti-
bodyForests_metrics. For example, if specific.edge.colors=list(’longest.path.weighted’=’blue’,
’shortest.path.unweighted’=’red’), the longest weighted paths obtained from Abti-
bodyForests will be colored blue for each igraph object, the rest will be red.

color.by.majority

boolean - if T, will color the entire network (all nodes) by the dominant/most
frequent node feature, as specified in the node.color parameter.

cell.color string - cell feature column denoting the cell colors - as denoted by the node.features
parameter when calling AntibodyForests_heterogeneous.

specific.cell.colors

named list of cell colors and their features (e.g., for Seurat clusters: list(1 =
’red’, 2 = ’blue’)). Optional (will auto search for unique colors per feature).

cell.size integer denoting the size of the cell nodes.

network.layout either NULL - will default to the automatic igraph::layout_nicely(), ’fr’ - igraph::layout_with_fr()
- for fully connected graphs/graphs with defined connected components, ’tree’ -
for tree graphs, as obtained from AntibodyForests with network.algorithm=’tree’.

save.pdf boolean - if T, plots will be automatically saved to pdf, in the current working
directory; F - normal output of the function (plot-ready igraph object and specific
layout). New folders will be created for each sample of the input nested list of
igraph objects.

save.dir path to the directory oin which the network PDFs will be saved.

show.legend boolean - whether the legend should be showed in the resulting plots

color.gradient string - defualt: NULL - the feature whose value will be plot as a color gradient

Value

nested list of plot-ready AntibodyForests objects. Can also save the plots as a PDF file.

See Also

AntibodyForests, AntibodyForests_metrics

Examples

Not run:
AntibodyForests_plot(graphs, node.color='clonotype_id',
node.size='scaleByExpansion', network.layout='tree',

AntibodyForests_plot_metrics 53

save.pdf=T)

End(Not run)

AntibodyForests_plot_metrics

Plots the resulting node metrics from the AntibodyForests_metrics
function

Description

Will plot the resulting node metrics from the AntibodyForests_metrics function either as violin plots
(plot.format = ’violin’ or as a scatter plot of the principal components of the metrics dataframe - as
long as multiple node metrics are calculated per node). Requires the AntibodyForests_plot_metrics
to be called before (as this function uses the resulting node_metrics dataframes).

Usage

AntibodyForests_plot_metrics(
trees,
plot.format,
metrics.to.plot,
group.by,
max.groups,
specific.groups,
sample.by,
features

)

Arguments

trees nested list of AntibodyForests objects or single object, as obtained from the
AntibodyForests function.

plot.format string - ’violin’ for violin plots of node metrics per feature (as determined by the
feature parameter), or ’pca’ for performing PCA on the node metrics dataframe.

metrics.to.plot

vector of strings - the metrics to be plotted from the metrics dataframe (must be
already calculated using the AntibodyForests_metrics function)

group.by string - whether to group the violin/scatter plots by additional features (e.g.,
group.by = ’sample_id’ to get violin plots per feature, per each unique sample).

max.groups integer - maximum number of groups to be considered in the resulting plots if
group.by is not NULL.

specific.groups

vector of strings - specific groups to plot if group.by is not NULL.
sample.by string - additional grouping factor (e.g., group.by can be set to ’clonotype_id’

and sample.by to ’sample_id’ for plots grouped by both clonotypes and samples)
features string - will determine the point colors in the PCA scatterplot.

54 automate_GEX

Value

either a violin plot or a scatter plot of the node metrics, as specified in the plot.format parameter

Examples

Not run:
AntibodyForests_plot_metrics(trees,
plot.format = 'violin', metrics.to.plot = 'degree',
group.by = 'sample_id', sample.by = NULL)

End(Not run)

automate_GEX GEX processing wrapper in Platypus V2

Description

Automates the transcriptional analysis of the gene expression libraries from cellranger. This func-
tion will integrate multiple samples

Usage

automate_GEX(
GEX.outs.directory.list,
GEX.list,
integration.method,
VDJ.gene.filter,
mito.filter,
norm.scale.factor,
n.feature.rna,
n.count.rna.min,
n.count.rna.max,
n.variable.features,
cluster.resolution,
neighbor.dim,
mds.dim,
groups

)

Arguments

GEX.outs.directory.list

The path to the output of cellranger vdj runs. Multiple repertoires to be inte-
grated together should be supplied as a character vector in the first element of
a list. For example, if two separate VDJ repertoires should be integrated together
(e.g. on the same tSNE plot), GEX.outs.directory.list[[1]] <- c("my.VDJ1.path/outs/","my.VDJ2.path/outs/")
should be stored as input. If these repertoires should be analyzed separately,

automate_GEX 55

>GEX.outs.directory.list[[1]] <- "my.VDJ1.path/outs/" >GEX.outs.directory.list[[2]]
<- "my.VDJ2.path/outs/" should be supplied.. This can be left blank if supply-
ing the clonotypes and all_contig files diretly as input. Multiple analyses can be
stored

GEX.list List containing the output from Seurat Read10x. This must be supplied if
GEX.out.directory is not provided.

integration.method

String specifying which data normalization and integration pipeline should be
used. Default is "scale.data", which correspondings to the ScaleData function
internal to harmony package. ’sct’specifies SCTransform from the Seurat pack-
age. "harmony" should be specificied to perform harmony integration. This
method requires the harmony package from bioconductor.

VDJ.gene.filter

Logical indicating if variable genes from the b cell receprot and t cell receptor
should be removed from the analysis. True is highly recommended to avoid
clonal families clustering together.

mito.filter Numeric specifying which percent of genes are allowed to be composed of mito-
chondrial genes. This value may require visual inspection and can be specific to
each sequencing experiment. Users can visualize the percentage of genes corre-
sponding to mitochondrial genes using the function "investigate_mitochondial_genes".

norm.scale.factor

Scaling factor for the standard Seurat pipeline. Default is set to 10000 as re-
ported in Seurat documentation.

n.feature.rna Numeric that specifies which cells should be filtered out due to low number of
detected genes. Default is set to 0. Seurat standard pipeline uses 2000.

n.count.rna.min

Numeric that specifies which cells should be filtered out due to low RNA count.Default
is set to 0. Seurat standard pipeline without VDJ information uses 200.

n.count.rna.max

Numeric that specifies which cells should be filtered out due to high RNA count.Default
is set to infinity. Seurat standard pipeline without VDJ information uses 2500.

n.variable.features

Numeric specifying the number of variable features. Default set to 2000 as
specified in Seurat standard pipeline.

cluster.resolution

Numeric specifying the resolution that will be supplied to Seurat’s FindClusters
function. Default is set to 0.5. Increasing this number will increase the number
of distinct Seurat clusters. Suggested to examine multiple parameters to ensure
gene signatures differentiating clusters remains constant.

neighbor.dim Numeric vector specifying which dimensions should be supplied in the Find-
Neighbors function from Seurat. Default input is ’1:10’.

mds.dim Numeric vector specifying which dimensions should be supplied into dimen-
sional reduction techniques in Seurat and Harmony. Default input is ’1:10’.

groups Integer specifying the groups of the different samples. This is needed if there
are multiple biological replicates for a given condition sequenced and aligned
through cellranger separately.

56 Bcell_sequences_example_tree

Value

Returns a processed Seurat object containing transcriptional information from all samples which
can be supplied to the VDJ_GEX_integrate function.

Examples

Not run:
automate_GEX(out_directory=fullRepertoire.output,
rep.size=3*length(unlist(fullRepertoire.output[[1]])),
distribution="identical",
with.germline="FALSE")

End(Not run)

Bcell_sequences_example_tree

Example csv file 1

Description

Example csv file 1

Usage

Bcell_sequences_example_tree

Format

An object of class data.frame with 170 rows and 1 columns.

References

R package Platypus : https://doi.org/10.1093/nargab/lqab023

Bcell_tree_2 57

Bcell_tree_2 Example csv file 2

Description

Example csv file 2

Usage

Bcell_tree_2

Format

An object of class data.frame with 85 rows and 1 columns.

References

R package Platypus:https://doi.org/10.1093/nargab/lqab023

call_MIXCR Calls MiXCR VDJ object of Platypus V2

Description

Extracts information on the VDJRegion level using MiXCR. This function assumes the user can run
an executable instance of MiXCR and is elgible to use MiXCR as determined by license agreements.
The VDJRegion corresponds to the recombined heavy and light chain loci starting from framework
region 1 (FR1) and extending to frame work region 4 (FR4). This can be useful for extracting
full-length sequences ready to clone and further calculating somatic hypermutation occurances.

Usage

call_MIXCR(VDJ.per.clone, mixcr.directory, species)

Arguments

VDJ.per.clone The output from the VDJ_per_clone function. This object should have informa-
tion regarding the contigs and clonotype_ids for each cell.

mixcr.directory

The directory containing an executable version of MiXCR. This must be down-
loaded separately and is under a separate license.

species Either "mmu" for mouse or "hsa" for human. These use the default germline
genes for both species contained in MIXCR.

58 CellPhoneDB_analyse

Value

Returns a nested list containing VDJRegion information as determined by MIXCR. The outer list
corresponds to the individual repertoires in the same structure as the input VDJ.per.clone. The inner
list corresponds to each clonal family, as determined by either the VDJ_clonotype function or the
defaul nucleotide clonotyping produced by cellranger.Each element in the inner list corresponds to
a dataframe containing repertoire information such as isotype, CDR sequences, mean number of
UMIs. This output can be supplied to further package functions such as VDJ_extract_sequences
and VDJ_GEX_integrate.

See Also

VDJ_extract_sequences

Examples

Not run:
call_MIXCR(VDJ.per.clone = VDJ.per.clone.output
,mixcr.directory = "~/Downloads/mixcr-3.0.12/mixcr",species = "mmu")

End(Not run)

CellPhoneDB_analyse Cellphone DB utility

Description

Function to set up the data so that it can be read and processed by CellPhoneDB, which saves the
results of the analysis in a directory "out" and adds them in a new vgm (output of VDJ_GEX_matrix
function) list item (CellPhoneDB). Needs Python to be installed in the computer. Running time can
take some minutes. Depending on the state of the connection to ensembl and whether this is down,
the function might not work if it needs to convert the genes identity. In these cases, try at some
other moment and the connection should hopefully be back. !!! In case the python call does is not
executed, please refer to the parameter "pre.code" !!!

Usage

CellPhoneDB_analyse(
vgm.input,
column,
groups,
organism,
gene.id,
analysis.method,
project.name,
iterations,
threshold,
result.precision,

CellPhoneDB_analyse 59

subsampling,
subsampling.num.pc,
subsampling.num.cells,
subsampling.log,
pvalue,
debug.seed,
threads,
install.cellphonedb,
pre.code,
platypus.version

)

Arguments

vgm.input Output of the VDJ_GEX_matrix function

column Character vector. Mandatory. Column name of VDJ_GEX_matrix[[2]] where
the groups to be tested for interactions are located

groups Strings vector. Mandatory. Vector with groups of the indicated column to be
compared.

organism Character vector. Defaults to "human". If == "mouse" the function converts the
gene’s mouse names into the human ones.

gene.id Character vector. Defaults to "ensembl". Possible arguments: "ensembl" ,
"hgnc_symbol", "gene_name". Indicates the gene ID used by CellPhoneDB
during the analysis. CellPhoneDB specific method argument.

analysis.method

Character vector. Defaults to "statistical_analysis" Possible arguments: "statisti-
cal_analysis". CellPhoneDB is developing also "degs_analysis" method, which
will be included among the possible arguments once released. Indicates the anal-
ysis method used by CellPhoneDB. CellPhoneDB specific method argument.

project.name Character vector. Defaults to NULL. If a name is given by the user, a subfolder
with this name is created in the output folder. CellPhoneDB specific method
argument.

iterations Numerical. Defaults to 1000. Number of iterations for the statistical analysis.
CellPhoneDB specific method argument.

threshold Numerical. By defaults not specified. % of cells expressing the specific lig-
and/receptor. Range: 0<= threshold <=1.

result.precision

Numerical. Defaults to 3. Number of decimal digits in results. CellPhoneDB
specific method argument.

subsampling Logical. Defaults to FALSE. If set to TRUE it enables subsampling. Cell-
PhoneDB specific method argument.

subsampling.num.pc

Numerical. Defaults to 100, if subsampling == TRUE. Number of PCs to use.
CellPhoneDB specific method argument.

60 CellPhoneDB_analyse

subsampling.num.cells

Numerical. Defaults to 1/3 of cells, if subsampling == TRUE. Number of cells
to subsample. CellPhoneDB specific method argument.

subsampling.log

Logical. No default, mandatory when subsampling. Enables subsampling log1p
for non log-transformed data inputs. CellPhoneDB specific method argument.

pvalue Numerical. Defaults to 0.05. P-value threshold. CellPhoneDB specific statisti-
cal method argument.

debug.seed Numerical. Deafults to -1. Debug random seed. To disable it use a value >=0.
CellPhoneDB specific statistical method argument

threads Numerical. Defaults to -1. Number of threads to use (needs to be >=1). Cell-
PhoneDB specific statistical method argument.

install.cellphonedb

Logical. Defaults to TRUE. Installs the CellPhoneDB Python package if set
==TRUE.

pre.code Character string. One command line or multiple command lines separated by
" && " of code to execute in the console before cellphonedb is called. In case
Cellphonedb is installed within a Conda enviroment (highly recommended), set
this to "conda activate MyEnviroment", "activate MyEnviroment" or "conda init
cmd.exe && activate MyEnviroment" depending on your Conda installation.

platypus.version

This function works with "v3" only, there is no need to set this parameter

Value

VDJ_GEX_matrix object with additional list item (VDJ_GEX_matrix[[10]]), containing results
and plots of CellPhoneDB analysis. Saves in the directory the input files, results and plots of
CellPhoneDB analysis.

Examples

Not run:
vgm_cellphonedb<-CellPhoneDB_analyse(vgm.input=vgm_m,
organism="mouse", groups=c(3,6,9),
gene.id="ensembl",
analysis.method= "statistical_analysis",
install.cellphonedb = FALSE,
subsampling= TRUE,
subsampling.num.pc=100,
subsampling.num.cells=70,
subsampling.log=TRUE,
project.name = "test")

End(Not run)

class_switch_prob_hum 61

class_switch_prob_hum class_switch_prob_hum The probability matrix of class switching for
human b cells. The row names of the matrix are the isotypes the cell is
switching from, the column names are the isotypes the cell is switching
to. All B cells start from IGHM, and switch to one of the other isotypes
or remain the same.

Description

class_switch_prob_hum The probability matrix of class switching for human b cells. The row
names of the matrix are the isotypes the cell is switching from, the column names are the isotypes
the cell is switching to. All B cells start from IGHM, and switch to one of the other isotypes or
remain the same.

Usage

data("class_switch_prob_hum")

Format

A 8*8 matrix.The row and clumn names are "IGHM","IGHD","IGHG1","IGHG2","IGHG3","IGHG4","IGHE","IGHA".
The probability for a cell to switch from "IGHM" to "IGHD" is the value at class_switch_prob_hum[1,2].

class_switch_prob_mus class_switch_prob_mus The probability matrix of class switching for
mouse b cells. The row names of the matrix are the isotypes the cell is
switching from, the column names are the isotypes the cell is switching
to. All B cells start from IGHM, and switch to one of the other isotypes
or remain the same.

Description

class_switch_prob_mus The probability matrix of class switching for mouse b cells. The row names
of the matrix are the isotypes the cell is switching from, the column names are the isotypes the cell
is switching to. All B cells start from IGHM, and switch to one of the other isotypes or remain the
same.

Usage

data("class_switch_prob_mus")

Format

A 9*9 matrix.The row and clumn names are "IGHM","IGHD","IGHG1","IGHG2A","IGHG2B","IGHG2C","IGHG3","IGHE","IGHA".
The probability for a cell to switch from "IGHM" to "IGHD" is the value at class_switch_prob_mus[1,2].

62 clonofreq.isotype.data

clonofreq Plot clonal frequency barplot of the outout simulated data

Description

Plot the top abundant clonal frequencies in a barplot with ggplot2

Usage

clonofreq(clonotypes, top.n, y.limit)

Arguments

clonotypes The clonotypes dataframe, which is the second element in the simulation output
list.

top.n The top n abundant clones to be shown in the plot. If missing, all clones will be
shown.

y.limit The upper limit for y axis in the plot.

Value

top abundant clonal frequencies in a barplot with ggplot2

clonofreq.isotype.data

Get information about the clonotype counts grouped by isotype.

Description

Return

Usage

clonofreq.isotype.data(all.contig.annotations, top.n)

Arguments

all.contig.annotations

The output dataframe all_contig_annotation from function simulate.repertoire.
top.n The top n abundant clones to be shown in the plot. If missing, all clones will be

shown.

Value

dataframes containing the top n abundant clonotypes and their frequency and isotype information
for further processing.

clonofreq.isotype.plot 63

clonofreq.isotype.plot

Get information about the clonotype counts grouped by isotype.

Description

Plot a stacked barplot for clonotype counts grouped by isotype.

Usage

clonofreq.isotype.plot(all.contig.annotations, top.n, y.limit, colors)

Arguments

all.contig.annotations

The output dataframe all_contig_annotation from function simulate.repertoire.
top.n The top n abundant clones to be shown in the plot. If missing, all clones will be

shown.
y.limit The upper limit for y axis in the plot.
colors A named character vector of colors, the names are the isotypes. If missing, the

default has 11 colors coresponding to the default isotype names.

Value

a stacked barplot for clonotype counts grouped by isotype

clonofreq.trans.data Get information about the clonotype counts grouped by transcriptome
state(cell type).

Description

Dataframe with clonotype counts grouped by transcriptome state(cell type).

Usage

clonofreq.trans.data(all.contig.annotations, history, trans.names, top.n)

Arguments

all.contig.annotations

The output dataframe all_contig_annotation from function simulate.repertoire.
history The dataframe history from simulate output.
trans.names The names of cell types which are used in transcriptome.switch.prob argument

in the simulation.
top.n The top n abundant clones to be shown in the plot. If missing, all clones will be

shown.

64 clonofreq.trans.plot

Value

a dataframe with clonotype counts grouped by transcriptome state(cell type).

clonofreq.trans.plot Get information about the clonotype counts grouped by transcriptome
state(cell type).

Description

Plot a stacked barplot for clonotype counts grouped by transcriptome state(cell type).

Usage

clonofreq.trans.plot(
all.contig.annotations,
history,
trans.names,
top.n,
y.limit,
colors

)

Arguments

all.contig.annotations

The output dataframe all_contig_annotation from function simulate.repertoire.

history The dataframe history from simulate output.

trans.names The names of cell types which are used in transcriptome.switch.prob argument
in the simulation.

top.n The top n abundant clones to be shown in the plot. If missing, all clones will be
shown.

y.limit The upper limit for y axis in the plot.

colors A named character vector of colors, the names are the isotypes. If missing, the
default has 11 colors coresponding to the default isotype names.

Value

a stacked barplot for clonotype counts grouped by transcriptome state(cell type).

cluster.id.igraph 65

cluster.id.igraph Get clone network igraphs colored by seurat cluster id.

Description

Get clone network igraphs colored by seurat cluster id.

Usage

cluster.id.igraph(meta.data, history, igraph.index, empty.node)

Arguments

meta.data the meta.data dataframe from the Seurat object of the simulation. The object
should be pre-processed and has cluster ids in the meta.data.

history The dataframe ’history’ from the simulation output.

igraph.index The list ’igraph.index’ from the simulation output.

empty.node If TRUE, there will be empty node in igraph. if FALSE, the empty node will be
deleted.

Value

a list of clone network igraphs colored by seurat cluster id

colors colors A vector of characters specifying colors used in igraph phylo-
genetic tree. Default colors: "#66C2A5", "#FC8D62", "#8DA0CB",
"#E78AC3" ,"#A6D854"

Description

colors A vector of characters specifying colors used in igraph phylogenetic tree. Default colors:
"#66C2A5", "#FC8D62", "#8DA0CB", "#E78AC3" ,"#A6D854"

Usage

data("colors")

Format

a character vector

66 dot_plot

dot_plot Function to cutomise the Dot Plot of CellPhoneDB analysis results.

Description

Function to cutomise the Dot Plot of CellPhoneDB analysis results.

Usage

dot_plot(
vgm.input,
selected.rows,
selected.columns,
threshold.type,
threshold.value,
project.name,
filename,
width,
height,
text.size,
return.vector,
platypus.version

)

Arguments

vgm.input Output of the VDJ_GEX_matrix function. Mandatory. Object where to save the
dotplot.

selected.rows Strings vector. Defaults to NULL. Vector of rows to plot (interacting genes pair),
one per line.

selected.columns

Strings vector. Defaults to NULL. Vector of columns (interacting groups) to
plot, one per line

threshold.type Character vector. Defaults to NULL. Possible arguments: "pvalue", "log2means",
"pvalue_topn", "log2means_topn". Which thresholding system the user wants
to use.

threshold.value

Numerical. Defaults to NULL. Value below/above (depending on whether it’s
pvalue or log2means) which genes to plot are selected.

project.name Character vector. Defaults to NULL. Subfolder where to find the output of the
CellPhoneDB analysis and where to save the dot_plot output plot.

filename Character vector. Defaults to "selection_plot.pdf". Name of the file where the
dot_plot output plot will be saved.

width Numerical. Defaults to 8. Width of the plot.

height Numerical. Defaults to 10. Height of the plot.

Echidna_simulate_repertoire 67

text.size Numerical. Defaults to 12. Font size of the plot axes

return.vector Logical. Defaults to FALSE. If set to TRUE, it includes the vector of genes_pairs
present in the dot_plot in the VDJ_GEX_matrix[[10]] list.

platypus.version

This function works with "v3" only, there is no need to set this parameter

Value

VDJ_GEX_matrix object with output dot plot added to VDJ_GEX_matrix[[10]] list.

Examples

Not run:
vgm_cellphonedb<-dot_plot(vgm.input=vgm_cellphonedb,
selected.columns = c("group_1_3|group_2_6", "group_1_3|group_3_9", "group_2_6|group_1_3",
"group_2_6|group_3_9", "group_3_9|group_1_3", "group_3_9|group_2_6"),
threshold.type="pvalue_topn", threshold.value=50,
project.name = "test", height = 12, width=6, text.size=10, return.vector=TRUE)

End(Not run)

Echidna_simulate_repertoire

Simulate immune repertoire and transcriptome data

Description

Simulate repertoire and transcriptome matrix, with igraph tree plot for each clone showing the
evolution process. the node in the tree plot are colored with transcriptome state and isotype.

Usage

Echidna_simulate_repertoire(
initial.size.of.repertoire,
species,
cell.type,
cd4.proportion,
duration.of.evolution,
complete.duration,
vdj.productive,
vdj.model,
vdj.insertion.mean,
vdj.insertion.stdv,
vdj.branch.prob,
clonal.selection,
cell.division.prob,
sequence.selection.prob,

68 Echidna_simulate_repertoire

special.v.gene,
class.switch.prob,
class.switch.selection.dependent,
class.switch.independent,
SHM.method,
SHM.nuc.prob,
SHM.isotype.dependent,
SHM.phenotype.dependent,
max.cell.number,
max.clonotype.number,
death.rate,
igraph.on,
transcriptome.on,
transcriptome.switch.independent,
transcriptome.switch.prob,
transcriptome.switch.isotype.dependent,
transcriptome.switch.SHM.dependent,
transcriptome.switch.selection.dependent,
transcriptome.states,
transcriptome.noise,
seq.name

)

Arguments

initial.size.of.repertoire

The initial number of existing cells when the evolution starts. Default is 10.

species The species of the simulated repertoire, can be "mus" for mouse or "hum" for
human. Default is "mus".

cell.type The cell type for the simulation. "B" or "T"

cd4.proportion A number between 0 and 1 specifying the proportion of Cd4+ T cells, when
cell.type is "T" and transcirptime states data is default. Default is 1, all the cells
are Cd4. When user specify transciptome data for T cells, mixture of CD4+ and
CD8+ T cells are not applicable.

duration.of.evolution

The maxim time steps for simulation.
complete.duration

TRUE or FALSE. Default is TURE. If TURE, after cell number or clone num-
ber reaches the upper limit, the evolution(class switch, mutation, transcriptional
state switch) will continue until the duration.of.evolution is complete. If FLASE,
the evolution will stop when either cell number or clone number reaches the
limit.

vdj.productive "random": the sequence will be generated from random VDJ recombination,
there might be a proportion of unproductive sequences.These VDJ genes were
taken from IMGT. When more than one allele was present for a given gene, the
first was used. "naive": the VDJ sequence be sampled from a pool of productive
sequences obtained by filtering randomly simulated sequences with MIXCR.

Echidna_simulate_repertoire 69

"vae": the VDJ sequence be sampled from a pool of productive sequences ob-
tained by filtering sequences generated from vae models with MIXCR.

vdj.model Specifies the model used to simulate V-D-J recombination. Can be either "naive"
or "data". "naive" is chain independent and does not differentiate between dif-
ferent species. To rely on the default "experimental" options, this should be
"data" and the parameter vdj.insertion.mean should be "default". This will al-
low for different mean additions for either the VD and JD junctions and will
differ depending on species.

vdj.insertion.mean

Integer value describing the mean number of nucleotides to be inserted during
simulated V-D-J recombination events. If "default" is entered, the mean will be
normally distributed.

vdj.insertion.stdv

Integer value describing the standard deviation corresponding to insertions of
V-D-J recombination. No "default" parameter currently supported but will be
updated with future experimental data. This should be a number if using a cus-
tom distribution for V-D-J recombination events, but can be "default" if using
the "naive" vdj.model or the "data", with vdj.insertion.mean set to "default".

vdj.branch.prob

Probability of new VDJ recombination event in each time step.when new VDJ
recombination happen, a new cell with a new sequence will be generated. De-
fault is 0.2.

clonal.selection

TRUE or FALSE. If TURE, cells in clones with higher frequency have their
division probability proportional to the clonal frequency. If FALSE, clones with
higher frequency will have lower probability to expand.

cell.division.prob

Probability of cells to be duplicated in each time step. Default is 0.1. If uneven
probability for different clones is needed, the input should be a vector of 2 nu-
meric items, with the first item being the lower bound, the second item being the
upper bound of the division rate. The most abundant clone will get the highest
division rate, and division rate of other clones will follow arithmetic progres-
sion and keep decreasing until the last abundant clone with the lower limit of
division rate. If input 3 values, the third value will be the division rate for cells
with selected sequences. If a fourth number is given, the division probability
of selected sequence will be sampled between the third number and the fourth
number.

sequence.selection.prob

Probability of each unique sequence to be selected as expanding sequence.Expanding
sequences can have their division rate specified in the third element of cell.division.prob.

special.v.gene If TRUE, simulation will apply special sequence.selection.prob for heavy and
light chain v gene combination specified in dataframe "special_v".

class.switch.prob

Probability matrix of class switching for b cells. The row names of the matrix
are the isotypes the cell is switching from, the column names are the isotypes
the cell is switching to. All B cells start from IGHM, and switch to one of the
other isotypes or remain the same. Default values are in the attaching matrix

70 Echidna_simulate_repertoire

"class_switch_prob_hum" and "class_switch_prob_mus". The order of isotype
in rows and columns should be the same.

class.switch.selection.dependent

If TRUE,class switching will happen when the cell is selected,if the cell has IgM
or IgD isotype.

class.switch.independent

If TRUE, class switching will happen randomly at each time step for all cells. If
FALSE, random class switching will be switched off.

SHM.method The mode of SHM speciation events. Options are either: "poisson","data","motif","wrc",
and "all". Specifying either "poisson" or "naive" will result in mutations that can
occur anywhere in the heavy chain region, with each nucleotide having an equal
probability for a mutation event. Specifying "data" focuses mutation events dur-
ing SHM in the CDR regions (based on IMGT), and there will be an increased
probability for transitions (and decreased probability for transversions). Spec-
ifying "motif" will cause neighbor dependent mutations based on a mutational
matrix from high throughput sequencing data sets (Yaari et al., Frontiers in Im-
munology, 2013). "wrc" allows for only the WRC mutational hotspots to be
included (where W equals A or T and R equals A or G). Specifying "all" will
use all four types of mutations during SHM branching events, where the weights
for each can be specified in the "SHM.nuc.prob" parameter.

SHM.nuc.prob Specifies the rate at which nucleotides change during speciation (SHM) events.
This parameter depends on the type of mutation specified by SHM.method. For
both "poisson" and "data", the input value determines the probability for each
site to mutate (the whole sequence for "poisson" and the CDRs for "data"). For
either "motif" or "wrc", the number of mutations per speciation event should be
specified. Note that these are not probabilities, but the number of mutations that
can occur (if the mutation is present in the sequence). If "all" is specified, the
input should be a vector where the first element controls the poisson style muta-
tions, second controls the "data", third controls the "motif" and fourth controls
the "wrc".

SHM.isotype.dependent

If TRUE, somatic hypermutation of certain isotype will happen based on proba-
bility specified in dataframe "iso_SHM_prob".

SHM.phenotype.dependent

If TRUE, somatic hypermutation of certain phenotype will happen based on
probability specified in dataframe "pheno_SHM_prob".

max.cell.number

Integer value describing maximum number of cells allowed. Default is 1500.
max.clonotype.number

Integer value describing maximum number of clones allowed. cell derived from
the same mother cell belong to same clone.

death.rate Probability of cell death happen to each cell in each time step.

igraph.on If TRUE, mutational network for every B cell clone will be in the output. If
False, the igraphs will not be included.

transcriptome.on

If TRUE, the simulation will include transcriptome data. If FALSE, only vdj
sequence will be simulated.

Echidna_simulate_repertoire 71

transcriptome.switch.independent

TRUE or FALSE value describing whether transcriptome state is allowed to
switch independently, not dependent on class switching or somatic hypermu-
tation. If TURE, transcriptome.switch.prob should be specified to control the
probability of transcriptome state switching.

transcriptome.switch.prob

Probability of transcriptome state switching independently. Default values are
in the attaching matrix "trans_switch_prob_b" and "trans_switch_prob_t". The
order of cell type in rows and columns should be the same, and the order of the
cell type in the matrix should match cell type names in transcriptome.states.

transcriptome.switch.isotype.dependent

TRUE or FALSE value describing whether transcriptome state of a cell is al-
lowed to switch depending on isotype switching. If TRUE, transcriptome state
will switch once class switching happens.

transcriptome.switch.SHM.dependent

TRUE or FALSE value describing whether transcriptome state of a cell is al-
lowed to switch depending on somatic hypermutation. If TRUE, transcriptome
state will switch once somatic hypermutation happens.

transcriptome.switch.selection.dependent

If TRUE, selected cells will undergo transcriptome state switching if their tran-
scriptome state is 1.

transcriptome.states

A data.frame specifying base gene expression for different cell type, with gene
names as row names, cell type names as column names. When missing, a de-
fault data.frame will be used. Default data.frame includes "Germinalcenter-
Bcell", "NaiveBcell", "Plasmacell", "MemoryBcell" for B cells, and "Naïve
Cd4", "ActivatedCd4", "MemoryCd4", "NaiveCd8", "EffectorCd8" ,"Memo-
ryCd8","ExhaustedCd8" for T cells. The order of the cell type names in tran-
scriptome.states should match cell type names in the transcriptome.switch.prob
matrix.

transcriptome.noise

A character expression specifying the distribution of noise ratio to be multiplied
with the base gene expression for each cell. It should be a text expression that
generates a numeric vector, which is of the same length as gene names in the
trasncriptome.state input. Default value is "rnorm(nrow(transcriptome.states),
mean = 1, sd = 0.3)".

seq.name Integer specifies how many top-ranking clones are included in Seq_Name dataframe
in the output list for phylogenetic tree plotting in other pipeline. If missing,
Seq_Name won’t be included in the output.

Value

A list containing the VDJ sequence and corresponding transcriptome data: "all_contig_annotations",
"clonotypes", "all_contig", "consensus","reference","reference_real", "transcriptome","igraph_list_iso","igraph_list_trans","Seq_Name","igraph.index.attr","history","igraph.index","selected.seq","version","parameters".

72 Echidna_vae_generate

Echidna_vae_generate Simulate B or T cell receptor sequences by variational autoen-
codes(VAEs) trained with experimental data.

Description

Simulate B or T cell receptor sequences by variational autoencodes(VAEs) trained with experimen-
tal data.

Usage

Echidna_vae_generate(
sequence,
n.train,
n.sample,
batch.size,
latent.dim,
intermediate.dim,
epochs,
epsilon.std,
null.threshold

)

Arguments

sequence a vector of seuqnece the model to be trained on

n.train number of sequence to be used in training set, the rest will be in testing set

n.sample number of new sequence to generate from VAE model

batch.size set to larger to save time, set to smaller to same computing power

latent.dim parameter used in VAE model
intermediate.dim

parameter used in VAE model

epochs parameter used in VAE model

epsilon.std parameter used in VAE model

null.threshold threshold of predicted value to be considered as an existing base, default is 0.05.
When generated sequence is too short, lower this threshold.

Value

A simulated VDJ repertoire on the basis of the input experimental repertoire

get.avr.mut.data 73

get.avr.mut.data Get information about somatic hypermutation in the simulation. This
function return a barplot showing the average mutation.

Description

Get information about somatic hypermutation in the simulation. This function return a barplot
showing the average mutation.

Usage

get.avr.mut.data(igraph.index.attr, history, clonotype.select, level)

Arguments

igraph.index.attr

A list "igraph.index.attr" from the simulation output.

history A dataframe "history" from the simulation output.

clonotype.select

The selected clonotype index, can be the output of the function "select.top.clone.clone".

level Can be "clone" or "cell". If "clone", the function will return average mutation
on unique variant level. Otherwise it will return on cell level.

Value

a bar plot showing the average mutation on clone or cell level.

get.avr.mut.plot Get information about somatic hypermutation in the simulation. This
function return a barplot showing the average mutation.

Description

Get information about somatic hypermutation in the simulation. This function return a barplot
showing the average mutation.

Usage

get.avr.mut.plot(igraph.index.attr, history, clonotype.select, level, y.limit)

74 get.barplot.errorbar

Arguments

igraph.index.attr

A list "igraph.index.attr" from the simulation output.

history A dataframe "history" from the simulation output.

clonotype.select

The selected clonotype index, can be the output of the function "select.top.clone".

level Can be "node" or "cell". If "node", the function will return average mutation on
unique variant level. Otherwise it will return on cell level.

y.limit The upper limit for y axis in the plot.

Value

a barplot showing the average mutation per node (same heavy and light chain set) or per cell.

get.barplot.errorbar Return a barplot of mean and standard error bar of certain value of
each clone.

Description

Return a barplot of mean and standard error bar of certain value of each clone.

Usage

get.barplot.errorbar(data, y.lab, y.limit)

Arguments

data A dataframe. Columns are different simulations, rows are the top clones. The
first row is the top abundant clone.

y.lab A string specifies the y lable name of the barplot.

y.limit The upper limit for y axis in the plot.

Value

a barplot of mean and standard error bar of certain value of each clone.

get.elbow 75

get.elbow Get the seurat object from simulated transciptome output.

Description

Get the seurat object from simulated transciptome output.

Usage

get.elbow(data)

Arguments

data The output "transcriptome" dataframe from simulation output.

Value

the seurat object from simulated transciptome output.

get.n.node.data Get the number of unique variants in each clone in a vector. The output
is the vector representing the numbers of unique variants.

Description

Get the number of unique variants in each clone in a vector. The output is the vector representing
the numbers of unique variants.

Usage

get.n.node.data(data, clonotype.select)

Arguments

data The output "igraph.index.attr" list from simulation output.
clonotype.select

The index of the clones to be shown. If missing, all clones will be included.

Value

the number of unique variants in each clone in a vector. The output is the vector representing the
numbers of unique variants.

76 get.seq.distance

get.n.node.plot Get the number of unique variants in each clone in a vector and the
barplot. The first item in the output is the vector representing the num-
bers of unique variants, the second item is the barplot.

Description

Get the number of unique variants in each clone in a vector and the barplot. The first item in the
output is the vector representing the numbers of unique variants, the second item is the barplot.

Usage

get.n.node.plot(igraph.index.attr, clonotype.select, y.limit)

Arguments

igraph.index.attr

The output "igraph.index.attr" list from simulation output.
clonotype.select

The index of the clones to be shown. If missing, all clones will be included.
y.limit The upper limit for y axis in the plot.

Value

the number of unique variants in each clone in a vector and the barplot. The first item in the output
is the vector representing the numbers of unique variants, the second item is the barplot.

get.seq.distance Computing sequence distance according to the number of unmatched
bases.

Description

Computing sequence distance according to the number of unmatched bases.

Usage

get.seq.distance(germline, sequence)

Arguments

germline A string representing the germline sequence.
sequence A string of the sequence to be compared, which has the same length as germline.

Value

the number of unmatched bases in 2 sequences.

get.umap 77

get.umap Further process the seurat object from simulated transciptome output
and make UMAP ready for plotting.

Description

Further process the seurat object from simulated transciptome output and make UMAP ready for
plotting.

Usage

get.umap(gex, d, reso)

Arguments

gex output from get.elbow function.

d dims argurment of in Seurat::FindNeighbors() and Seurat::RunUMAP

reso resolution argument in Seurat::FindClusters()

Value

Further processed seurat object from simulated transciptome output with UMAP ready for plotting.

get.vgu.matrix Get paired v gene heavy chain and light chain matrix on clono-
type level. A v gene usage pheatmap can be obtain by p<-
pheatmap::pheatmap(vgu_matrix,show_colnames= T, main = "V
Gene Usage"), where the vgu_matrix is the output of this function.

Description

Get paired v gene heavy chain and light chain matrix on clonotype level. A v gene usage pheatmap
can be obtain by p<-pheatmap::pheatmap(vgu_matrix,show_colnames= T, main = "V Gene Us-
age"), where the vgu_matrix is the output of this function.

Usage

get.vgu.matrix(all.contig.annotations, level)

Arguments

all.contig.annotations

The dataframe "all_contig_annotation" from simulation output.

level Can be "clone" or "cell". If "clone", the function will return paired v gene usage
matrix on clonotype level. Otherwise it will return on cell level.

78 GEX_clonotype

Value

a paired v gene heavy chain and light chain matrix on clonotype level.

GEX_clonotype Platypus V2 GEX and VDJ integration for clonotypes

Description

Platypus V2: Integrates VDJ and gene expression libraries by providing cluster membership seq_per_vdj
object and the index of the cell in the Seurat RNA-seq object.

Usage

GEX_clonotype(GEX.object, VDJ.per.clone)

Arguments

GEX.object A single seurat object from automate_GEX function. This will likely be sup-
plied as automate_GEX.output[[1]].

VDJ.per.clone Output from the VDJ_per_clone function. Each element in the list should be
found in the output from the automate_GEX function.

Value

Returns a dataframe containing repertoire information, such as isotype, CDR sequences, mean
number of UMIs. This output can be supplied to furhter packages VDJ_extract_sequences and
VDJ_GEX_integrate

Examples

Not run:
GEX_clonotype(GEX.object=automate.GEX.output[[1]], VDJ.per.clone=vdj.per.clone.output)

End(Not run)

GEX_cluster_genes 79

GEX_cluster_genes Differentially expressed genes between clusters or data subsets

Description

For more flexibility consider GEX_DEgenes(). Extracts the differentially expressed genes between
two samples. This function uses the FindMarkers function from the Seurat package. Further param-
eter control can be accomplished by calling the function directly on the output of automate_GEX
or VDJ_GEX_matrix.

Usage

GEX_cluster_genes(GEX, min.pct, filter, base, platypus.version)

Arguments

GEX Output Seurat object of either automate_GEX for platypus.version v2 or of
VDJ_GEX_matrix for platypus.version v3 (usually VDJ_GEX_matrix.output[[2]])

min.pct The minimum percentage of cells expressing a gene in either of the two groups
to be compared. Default is 0.25

filter Character vector of initials of the genes to be filtered. Default is c("MT-", "RPL",
"RPS"), which filters mitochondrial and ribosomal genes.

base The base with respect to which logarithms are computed. Default: 2
platypus.version

is set automatically

Value

Returns a dataframe containing the output from the FindMarkers function, which contains informa-
tion regarding the genes that are differentially regulated, statistics (p value and log fold change),
and the percent of cells expressing the particular gene. Ech element in the list corresponds to the
clusters in numerical order. For example, the first element in the list output[[1]] corresponds to the
genes deferentially expressed in cluster 0 in GEX

Examples

#Platypus version v2
#GEX_cluster_genes(GEX =automate_GEX_output[[i]], min.pct = .25
#, filter = c("MT-", "RPL", "RPS"))

#Platypus version v3
GEX_cluster_genes(GEX = subset(Platypus::small_vgm[[2]], seurat_clusters %in% c(0,1)), min.pct = .25
, filter = c("MT-", "RPL", "RPS"))

80 GEX_cluster_genes_heatmap

GEX_cluster_genes_heatmap

Heatmap of cluster defining genes

Description

Produces a heatmap displaying the expression of the top genes that define each cluster in the Seurat
object. The output heatmap is derived from DoHeatmap from Seurat and thereby can be edited
using typical ggplot interactions. The number of genes per cluster and the nunber of cells to display
can be specified by the user. Either the log fold change or the p value can be used to select the top
n genes.

Usage

GEX_cluster_genes_heatmap(
GEX,
GEX_cluster_genes.output,
n.genes.per.cluster,
metric,
max.cell,
group.colors,
slot,
platypus.version

)

Arguments

GEX Output Seurat object of either automate_GEX for platypus.version v2 or of
VDJ_GEX_matrix for platypus.version v3 (usually VDJ_GEX_matrix.output[[2]])

GEX_cluster_genes.output

The output from the GEX_cluster_genes function - this should be a list with
each list element corresponding to the genes, p values, logFC, pct expression
for the genes deferentially regulated for each cluster.

n.genes.per.cluster

An integer value determining how many genes per cluster to display in the output
heatmap. This number should be adjusted based on the number of clusters. Too
many genes per cluster and clusters may cause a problem with the heatmap
function in Seurat.

metric The metric that dictates which are the top n genes returned. Possible options are
"p.value" (default), "avg_logFC", "top_logFC", "bottom_logFC". "top_logFC"
returns the top expressed genes for each cluster, whereas "bottom_logFC" re-
turns the least expressed genes per cluster-both by log fold change.

max.cell The max number of cells to display in the heatmap for each cluster, which cor-
responds to the number of columns. Default is set to 100 cells per cluster.

group.colors Optional character vector. Array of colors with the same length as GEX_cluster_genes.output
to color bars above the heatmap. Defaults to rainbow palette

GEX_cluster_membership 81

slot Seurat object slot from which to plot gene expression data.
platypus.version

is set automatically

Value

Returns a heatmap from the function DoHeatmap from the package Seurat, which is a ggplot object
that can be modified or plotted. The number of genes is determined by the n.genes parameter and
the number of cells per cluster is determined by the max.cell argument. This function gives a visual
description of the top genes differentially expressed in each cluster.

Examples

Not run:
#For Platypus version 2
cluster_defining_gene_heatmap <- GEX_cluster_genes_heatmap(GEX = automate_GEX_output[[i]]
,GEX_cluster_genes.output=GEX_cluster_genes_output
,n.genes.per.cluster=5,metric="p.value",max.cell=5)

#For Platypus version 3

cluster_defining_gene_heatmap <- GEX_cluster_genes_heatmap(GEX = VDJ_GEX_matrix.output[[2]]
,GEX_cluster_genes.output=GEX_cluster_genes_output
,n.genes.per.cluster=5,metric="p.value",max.cell=5)

End(Not run)

GEX_cluster_membership

Cluster membership plots by sample

Description

Plots the cluster membership for each of the distinct samples in the Seurat object from the auto-
mate_GEX function. The distinct samples are determined by "sample_id" field in the Seurat object.

Usage

GEX_cluster_membership(GEX, by.group, platypus.version)

Arguments

GEX Output Seurat object containing gene expression data from automate_GEX (platy-
pus.version = "v2") or VDJ_GEX_matrix (platypus.version = "v3", usually VDJ_GEX_matrix.output[[2]])function
that contained at least two distinct biological samples. The different biological
samples correspond to integer values (v2) or factor values (v3) in the order of
the working directories initially supplied to the automate_GEX function.

82 GEX_coexpression_coefficient

by.group Logical indicating whether to look at the cluster distribution per group (using
the group_id column). Default is set to FALSE.

platypus.version

Version of platypus to use. Defaults to "v2". If an output of the GEX_automate
function is supplied, set to "v2". If an output of the VDJ_GEX_matrix function
is supplied set to "v3"

Value

Returns a ggplot object in which the values on the x axis correspond to each cluster found in the
Seurat object. The y axis corresponds to the percentage of cells found in each cluster. The bar and
color corresponds to the distinct sample_id.

Examples

#Platypus v2
#GEX_cluster_membership(GEX=automate_GEX_out[[2]], platypus.version = "v2")
#Platypus v3
GEX_cluster_membership(GEX= Platypus::small_vgm[[2]], platypus.version = "v3")

GEX_coexpression_coefficient

Coexpression of selected genes

Description

Returns eiter a plot or numeric data of coexpression levels of selected genes.Coexpression % is
calculated as the quotient of double positive cells (counts \> 0) and the sum of total cells positive
for either genes.

Usage

GEX_coexpression_coefficient(GEX, genes, subsample.n, plot.dotmap)

Arguments

GEX GEX seurat object generated with VDJ_GEX_matrix (VDJ_GEX_matrix.output\[\[2\]\])

genes Character vector. At least 2 genes present in rownames(GEX). Use "all" to
include all genes. The number of comparisons to make is the length(genes)!
(factorial). More than 100 genes are not recommended.

subsample.n Interger. Number of cells to subsample. If set to 100, 100 cells will be randomly
sampled for the calculation

plot.dotmap Boolean. Whether to return a plot

Value

Returns a dataframe if pot.dotmap == F or a ggplot if plot.dotmap == T detailing the coexpression
levels of selected genes within the given cell population

GEX_DEgenes 83

Examples

#To return a dataframe with coefficients
#GEX_coexpression_coefficient(GEX = VDJ_GEX_matrix.output[[2]]
#, genes = c("CD19", "EBF1","SDC1"), subsample.n = "none", plot.dotmap = FALSE)

#To return a dotplot detailing coexpression and overall expression
GEX_coexpression_coefficient(GEX = Platypus::small_vgm[[2]]
, genes = c("CD19", "CD83"), subsample.n = "none", plot.dotmap = FALSE)

GEX_DEgenes Wrapper for differential gene expression analysis and plotting

Description

Extracts the differentially expressed genes between two groups of cells. These groups are defined
as cells having either of two entries (group1, group2) in the grouping.column of the input Seurat
object metadata This function uses the FindMarkers function from the Seurat package.

Usage

GEX_DEgenes(
GEX,
FindMarkers.out,
grouping.column,
group1,
group2,
min.pct,
filter,
return.plot,
logFC,
color.p.threshold,
color.log.threshold,
color.by.threshold,
up.genes,
down.genes,
base,
label.n.top.genes,
genes.to.label,
platypus.version,
size.top.colorbar

)

Arguments

GEX Output Seurat object from automate_GEX or VDJ_GEX_matrix_function (VDJ_GEX_matrix.output[[2]])
function that contained at least two distinct biological groups.

84 GEX_DEgenes

FindMarkers.out

OPTIONAL: the output of the FindMarkers function. This skips the DEG calcu-
lation step and outputs desired plots. All plotting parameters function as normal.
Grouping parameters and min.pct are ignored.

grouping.column

Character. A column name of GEX@meta.data. In this column, group1 and
group2 should be found. Defaults to "sample_id". Could also be set to "seu-
rat_clusters" to generate DEGs between cells of 2 chosen clusters.

group1 either character or integer specifying the first group of cells that should be com-
pared. (e.g. "s1" if sample_id is used as grouping.column)

group2 either character or integer specifying the first group of cells that should be com-
pared. (e.g. "s2" if sample_id is used as grouping.column)

min.pct The minimum percentage of cells expressing a gene in either of the two groups
to be compared.

filter Character vector of initials of the genes to be filtered. Default is c("MT-", "RPL",
"RPS"), which filters mitochondrial and ribosomal genes.

return.plot Character specifying if a "heatmap", "heatmap" or a "volcano" or "none" is to
be returned. If not "none" then @return is a list where the first element is a
dataframe and the second a plot (see @return). Defaults to none

logFC Logical specifying whether the genes will be displayed based on logFC (TRUE)
or pvalue (FALSE).

color.p.threshold

numeric specifying the adjusted p-value threshold for geom_points to be col-
ored. Default is set to 0.01.

color.log.threshold

numeric specifying the absolute logFC threshold for geom_points to be colored.
Default is set to 0.25.

color.by.threshold

Boolean. Set to TRUE to color by color.p.threshold and color.log.threshold. Set
to FALSE for a continuous color scale by fold change.

up.genes FOR HEATMAP Integer specifying the number of upregulated genes to be
shown.

down.genes FOR HEATMAP Integer specifying the number of downregulated genes to be
shown.

base The base with respect to which logarithms are computed. Default: 2
label.n.top.genes

FOR VOLCANO Interger. How many top genes to label either by Fold change
(if logFC == TRUE) or by p.value (if logFC == FALSE). More than 50 are not
recommended. Also works in conjunction with genes.to.label

genes.to.label FOR VOLCANO Character vector of genes to label irregardless of their p value.
platypus.version

Function works with V2 and V3, no need to set this parameter
size.top.colorbar

Integer. Size of the top colorbar for heatmap plot.

GEX_DEgenes_persample 85

Value

Returns a dataframe containing the output from the FindMarkers function, which contains informa-
tion regarding the genes that are differentially regulated, statistics (p value and log fold change),
and the percent of cells expressing the particular gene for both groups.

Examples

#Basic run between two samples
DEGs <- GEX_DEgenes(GEX = Platypus::small_vgm[[2]],min.pct = .25,
group1 = "s1",group2 = "s2", return.plot = "volcano")
#DEGs[[1]] => Table of DEGs
#DEGs[[2]] => Volcano plot

#Getting DEGs between two seurat clusters
#GEX_DEgenes(GEX = Platypus::small_vgm[[2]],min.pct = .25,
#grouping.column = "seurat_clusters",group1 = "0",group2 = "1")

#Plotting a heatmap by foldchange of sample markers
#GEX_DEgenes(GEX = VDJ_GEX_matrix.output[[2]]
#,min.pct = .25,group1 = "s1",group2 = "s2", return.plot = "heatmap"
#, up.genes = 10, down.genes = 10, logFC = TRUE)

#Plotting volcano by p value of sample markers. Label additional genes of interest
#GEX_DEgenes(GEX = VDJ_GEX_matrix.output[[2]],min.pct = .25
#,group1 = "s1",group2 = "s2", return.plot = "volcano", logFC = FALSE
#, label.n.top.genes = 40, genes.to.label = c("CD28", "ICOS"))

#Generate a heatmap from an already existing FindMarkers output
#GEX_DEgenes(GEX = VDJ_GEX_matrix.output[[2]]
#, FindMarkers.out = FindMarkers.output.dataframe, return.plot = "heatmap"
#, up.genes = 10, down.genes = 10, logFC = TRUE, platypus.version = "v3")

GEX_DEgenes_persample Platypus V2 Differentially expressed genes

Description

!Only for Platypus version v2. For more flexibility and platypus v3 please refer to GEX_Degenes.
Extracts the differentially expressed genes between two samples. This function uses the FindMark-
ers function from the Seurat package. Further parameter control can be accomplished by calling the
function directly on the output of automate_GEX and further extracting sample information from
the "sample_id" component of the Seurat object.

Usage

GEX_DEgenes_persample(
automate.GEX,
min.pct,
sample1,

86 GEX_DEgenes_persample

sample2,
by.group,
filter,
return.plot,
logFC,
up.genes,
down.genes,
base

)

Arguments

automate.GEX Output Seurat object from automate_GEX function that contained at least two
distinct biological samples. The differential biological samples correspond to
integer values in the order of the working directories initially supplied to the
automate_GEX function.

min.pct The minimum percentage of cells expressing a gene in either of the two groups
to be compared.

sample1 either character or integer specifying the first sample that should be compared.
sample2 either character or integer specifying the first sample that should be compared.
by.group Logical specifying if groups should be used instead of samples. If TRUE, then

the argument in sample1 and sample2 will correspond to cells found in the
groups from sample1 or sample2.

filter Character vector of initials of the genes to be filtered. Default is c("MT-", "RPL",
"RPS"), which filters mitochondrial and ribosomal genes.

return.plot Logical specifying if a heatmap of the DEX genes is to be returned. If TRUE
then @return is a list where the first element is a dataframe and the second a
heatmap (see @return)

logFC Logical specifying whether the genes will be displayed based on logFC (TRUE)
or pvalue (FALSE).

up.genes Integer specifying the number of upregulated genes to be shown.
down.genes Integer specifying the number of downregulated genes to be shown.
base The base with respect to which logarithms are computed. Default: 2

Value

Returns a dataframe containing the output from the FindMarkers function, which contains informa-
tion regarding the genes that are differentially regulated, statistics (p value and log fold change),
and the percent of cells expressing the particular gene for both groups.

Examples

Not run:
GEX_DEgenes_persample(automate.GEX=automate.GEX.output[[i]]
,min.pct = .25,sample1 = "1",sample2 = "2")

End(Not run)

GEX_dottile_plot 87

GEX_dottile_plot GEX Dottile plots

Description

Outputs a dotplot for gene expression, where the color of each dot is scaled by the gene expression
level and the size is scaled by the % of cells positive for the gene

Usage

GEX_dottile_plot(GEX, genes, group.by, threshold.to.plot, platypus.version)

Arguments

GEX GEX seurat object generated with VDJ_GEX_matrix

genes Character vector. Genes of those in rownames(GEX) to plot. Can be any num-
ber, but more then 30 is discuraged because of cluttering

group.by Character. Name of a column in GEX@meta.data to split the plot by. If set to
\"none\", a plot with a single column will be produced.

threshold.to.plot

Integer 1-100. % of cells which must be expressing the feature to plot a point.
If below, the field will be left empty

platypus.version

This is coded for \"v3\" only, but in practice any Seurat Object can be fed in

Value

Returns a ggplot object were the dot size indicates the percentage of expressing cells and the dot
color indicates the expression level.

Examples

#To return a plot detailing the expression of common genes by seurat cluster
GEX_dottile_plot(GEX = Platypus::small_vgm[[2]], genes = c("CD19","CD83"),
group.by = "seurat_clusters", threshold.to.plot = 5)

88 GEX_gene_visualization

GEX_gene_visualization

Visualization of marker expression in a data set or of predefined genes
(B cells, CD4 T cells and CD8 T cells).

Description

Visualization of marker expression in a data set or of predefined genes (B cells, CD4 T cells and
CD8 T cells).

Usage

GEX_gene_visualization(
GEX,
gene_set,
predefined_genes = c("B_cell", "CD4_T_cell", "CD8_T_cell"),
group.by

)

Arguments

GEX GEX output of the VDJ_GEX_matrix function (VDJ_GEX_matrix[[2]])).
gene_set Character vector containing the markers of interest given by the user.
predefined_genes

Character vector to chose between B_cell, CD4_T_cell, and CD8_T_cell.
group.by Character. Column name of vgm to group plots by

Value

Return a list. Element[[1]] is the feature plot of markers of interest or predefined genes. Ele-
ment[[2]] is the dottile plot of markers of interest or predefined genes. Element[[3]] is the violin
plot of markers of interest or predefined genes.

Examples

Not run:
Pre-defined gene set for CD4 T cells
GEX_gene_visualization(GEX = VGM$GEX, predefined_genes = "CD4_T_cell")

Pre-defined gene set for CD8 T cells
GEX_gene_visualization(GEX = VGM$GEX, predefined_genes = "CD8_T_cell")

Pre-defined gene set for B cells
GEX_gene_visualization(GEX = VGM$GEX, predefined_genes = "B_cell")

Gene set defined by user
GEX_gene_visualization(GEX = VGM$GEX, gene_set=c("CD8A","CD3E","SELL","FAS","ID3","SDC1"))

End(Not run)

GEX_GOterm 89

GEX_GOterm GEX GO-Term analysis and plotting

Description

Runs a GO term analysis on a submitted list of genes. Works with the output of GEX_topN_DE_genes_per_cluster
or a custom list of genes to obtain GOterms.

Usage

GEX_GOterm(
GEX.cluster.genes.output,
topNgenes,
ontology,
species,
up.or.down,
MT.Rb.filter,
kegg,
go.plots,
top.N.go.terms.plots,
kegg.plots,
top.N.kegg.terms.plots

)

Arguments

GEX.cluster.genes.output

Either output of Platypus::GEX_cluster_genes or custom character vector con-
taining gene symbols. A custom gene list will not be further filtered or ordered.

topNgenes How many of the most significant up or down regulated genes should be consid-
ered for GO term analysis. All genes will be used if left empty.

ontology Ontology used for the GO terms. "MF", "BP" or "CC" possible. Default: "BP"

species The species the genes belong to. Default: "Mm" (requires the package "org.Mm.eg.db").
Set to "Hs" for Human (requires the package "org.Hs.eg.db")

up.or.down Whether up or downregulated genes should be used for GO term analysis if
GEX_cluster_genes output is used. Default: "up"

MT.Rb.filter logical, if mitochondrial and ribosomal genes should be filtered out.

kegg logical, if KEGG pathway analysis should be conducted. Requires internet con-
nection. Default: False.

go.plots logical, if top GO-terms should be visualized. Default: False. If True, for each
cluster the top N (top.N.GO.terms.plots) Go-terms for each cluster will be plot-
ted to the working directory and saved as a list element. Plots are made both
based on padj and ratio.

90 GEX_GSEA

top.N.go.terms.plots

The number of most significant GO-terms to be incluted in the go.plots. Default:
10.

kegg.plots logical, if top KEGG-terms should be visualized. Default: False. If True, for
each cluster the top N (top.N.kegg.terms.plots) KEGG-terms for each cluster
will be plotted to the working directory and saved as a list element. Plots are
made both based on padj and ratio.

top.N.kegg.terms.plots

The number of most significant KEGG-terms to be incluted in the kegg.plots.
Default: 10.

Value

Returns a list of data frames and plots containing the TopGO and the TopKEGG output containing
the significant GO/KEGG terms and their visualizations.

Examples

Not run:

GEX_GOterm(DE_genes_cluster,MT.Rb.filter = TRUE, ontology = "MF")
GEX_GOterm(rownames(DE_genes_cluster[[1]]),MT.Rb.filter = TRUE, species= "Mm",
ontology = "BP", go.plots = TRUE)

#Install the needed database with
#if (!requireNamespace("BiocManager", quietly = TRUE))
#install.packages("BiocManager")
#BiocManager::install("org.Mm.eg.db")
#BiocManager::install("org.Hs.eg.db")

End(Not run)

GEX_GSEA GEX Gene Set Enrichment Analysis and plotting

Description

Conducts a Gene Set Enrichment Analysis (GSEA) on a set of genes submitted in a data frame with
a metric each. Works with the output of GEX_genes_cluster or a custom data frame containing the
gene symbols either in a column "symbols" or as rownames and a metric for each gene. The name
of the column containing the metric has to be declared via the input metric.colname.

Usage

GEX_GSEA(
GEX.cluster.genes.output,
MT.Rb.filter,
filter,

GEX_GSEA 91

path.to.pathways,
metric.colname,
pval.adj.cutoff,
Enrichment.Plots,
my.own.geneset,
eps,
platypus.version,
verbose

)

Arguments

GEX.cluster.genes.output

Data frame containing the list of gene symbols and a metric. Function works
directly with GEX_cluster_genes output.

MT.Rb.filter Logical, should Mitotic and Ribosomal genes be filtered out of the geneset. True
by default.

filter Character vector containing the identifying symbol sequence for the genes which
should be filtered out, if MT.Rb.filter == T. By default set to c("MT-", "RPL",
"RPS").

path.to.pathways

Either a path to gmt file containing the gene sets (can be downloaded from
MSigDB) or vector where first element specifies species and second element
specifies the MSigDB collection abbreviation. E.g.: c("Homo sapiens", "H").
Mouse C7 (immunologic signature) gene set will be used by default.

metric.colname Name of column which contains the metric used for the ranking of the submitted
genelist. "avg_logFC" is used by default.

pval.adj.cutoff

Only genes with a more significant adjusted pvalue are considered. Default:
0.001

Enrichment.Plots

List of Gene-set names which should be plotted as Enrichment plots in addition
to the top 10 Up and Downregulated Genesets.

my.own.geneset A list, where each element contains a gene list and is named with the correspond-
ing pathway name. Default is set to FALSE, so that gene sets from MSigDB are
used. Should not contain ".gmt" in name.

eps Numeric, specifying boundary for calculating the p value in the GSEA.
platypus.version

Function works with V2 and V3, no need to set this parameter.

verbose Print run parameters and status to console

Value

Returns a list containing a tibble with the gene sets and their enrichment scores and Enrichment
plots. List element [[1]]: Dataframe with Genesets and statistics. [[2]]: Enrichment plots of top10
Up regulated genesets. [[3]]: Enrichment plots of top10 Down regulated genesets. [[4]]: Enrich-
ment plots of submited gene-sets in parameter Enrichment.Plot.

92 GEX_heatmap

Examples

Not run:
df <- GEX_cluster_genes(gex_combined[[1]])

#Using gmt file to perform gsea
output <- GEX_GSEA(GEX.cluster.genes.output = df[[1]], MT.Rb.filter = TRUE
, path.to.pathways = "./c5.go.bp.v7.2.symbols.gmt")
cowplot::plot_grid(plotlist=output[[2]], ncol=2)
View(gex_gsea[[1]])

#Directly downloading gene set collection from MSigDB to perform gsea
output <- GEX_GSEA(GEX.cluster.genes.output = df[[1]], MT.Rb.filter = TRUE
, path.to.pathways = c("Mus musculus", "C7"))

#Using your own gene list to perform gsea
output <- GEX_GSEA(GEX.cluster.genes.output = df[[1]], MT.Rb.filter = TRUE
, my.own.geneset = my_geneset)

End(Not run)

GEX_heatmap Flexible GEX heatmap wrapper

Description

Produces a heatmap containing gene expression information at the clonotype level. The rows cor-
respond to different genes that can either be determined by pre-made sets of B or T cell markers,
or can be customized by the user. The columns correspond to individual cells and the colors corre-
spond to the different clonotype families.

Usage

GEX_heatmap(
GEX,
b.or.t,
sample.index,
clone.rank.threshold,
custom.array,
slot

)

Arguments

GEX A single seurat object from clonotype_GEX function corresponding to all of
the samples in a single VDJ_analyze object. This will likely be supplied as
clonotype_GEX.output[[i]] if there were multiple, distinct transcriptomes.

b.or.t Logical indicating if B or T cell gene panel should be used.

GEX_lineage_trajectories 93

sample.index Corresponds to which repertoire should be used in the case that the length of
clonotype.list has a length greater than 1. The transcriptional profiles from only
one repertoire can be plotted at a time.

clone.rank.threshold

A numeric that specifies the threshold clonal rank that specifies which clono-
types to extract transcriptome information from. For example, if 10 is supplied
then the gene expression for the top ten clones included on the heatmap, sepa-
rated by clonotype.

custom.array Corresponds to which repertoire should be used in the case that the length of
clonotype.list has a length greater than 1. The transcriptional profiles from only
one repertoire can be plotted at a time.

slot Seurat data slot from which to plot values. Can be "raw.data", "data" or "scale.data"

Value

Returns a heatmap via Seurat::DoHeatmap of gene expression per clonotype

See Also

VDJ_extract_sequences

Examples

#prep the small_vgm sample dataset
small_vgm <- Platypus::small_vgm
small_vgm[[2]]$clone_rank <- c(1:nrow(small_vgm[[2]]@meta.data))
GEX_heatmap(GEX = small_vgm[[2]],b.or.t = "custom"
,clone.rank.threshold = 1,sample.index = "s1"
,custom.array = c("CD24A","CD83"), slot = "data")

GEX_lineage_trajectories

This is a function to infer single cell trajectories and identifying lin-
eage structures on clustered cells. Using the slingshot library

Description

This is a function to infer single cell trajectories and identifying lineage structures on clustered cells.
Using the slingshot library

Usage

GEX_lineage_trajectories(GEX, grouping, cluster.num)

94 GEX_pairwise_DEGs

Arguments

GEX GEX output of the VDJ_GEX_matrix function (VDJ_GEX_matrix[[2]]))

grouping Determine by which identifier to group by. E.g. ’group_id’ or default ’seu-
rat_clusters’ which are automatically generated in the clustering process.

cluster.num A seurat cluster number for starting point of the lineage. Can be identified by
using Seurat::DimPlot(VGM[[2]],group.by = "seurat_clusters"). Default is "0".

Value

Returns a list. Element [[1]] returns updated GEX object with the inferred pseudotime trajectories
per lineage. [[2]] returns the UMAP with the grouped cells. [[3]] and [[4]] show the slingshot
inferred trajectories in two different styles.

Examples

Not run:
lineage_trajectories <- GEX_lineage_trajectories(VGM$GEX,
grouping = 'group_id',
cluster.num = "3")

End(Not run)

GEX_pairwise_DEGs Wrapper for calculating pairwise differentially expressed genes

Description

Produces and saves a list of volcano plots with each showing differentially expressed genes between
pairs groups. If e.g. seurat_clusters used as group.by, a plot will be generated for every pairwise
comparison of clusters. For large numbers of this may take longer to run. Only available for
platypus v3

Usage

GEX_pairwise_DEGs(
GEX,
group.by,
min.pct,
RP.MT.filter,
label.n.top.genes,
genes.to.label,
save.plot

)

GEX_phenotype 95

Arguments

GEX Output Seurat object of the VDJ_GEX_matrix function (VDJ_GEX_matrix.output[[2]])

group.by Character. Defaults to "seurat_clusters" Column name of GEX@meta.data to
use for pairwise comparisons. More than 20 groups are discuraged.

min.pct Numeric. Defaults to 0.25 passed to Seurat::FindMarkers

RP.MT.filter Boolean. Defaults to True. If True, mitochondrial and ribosomal genes are
filtered out from the output of Seurat::FindMarkers

label.n.top.genes

Integer. Defaults to 50. Defines how many genes are labelled via geom_text_repel.
Genes are ordered by adjusted p value and the first label.n.genes are labelled

genes.to.label Character vector. Defaults to "none". Vector of gene names to plot indipendently
of their p value. Can be used in combination with label.n.genes.

save.plot Boolean. Defaults to True. Whether to save plots as appropriately named .png
files

Value

A nested list with out[[i]][[1]] being ggplot volcano plots and out[[i]][[2]] being source DEG
dataframes.

Examples

GEX_pairwise_DEGs(GEX = Platypus::small_vgm[[2]],group.by = "sample_id"
,min.pct = 0.25,RP.MT.filter = TRUE,label.n.top.genes = 2,genes.to.label = c("CD24A")
,save.plot = FALSE)

GEX_phenotype Assignment of cells to phenotypes based on selected markers

Description

Adds a column to a VGM[[2]] Seurat object containing cell phenotype assignments. Defaults for T
and B cells are available. Marker sets are customizable as below

Usage

GEX_phenotype(seurat.object, cell.state.names, cell.state.markers, default)

Arguments

seurat.object A single seurat object / VDJ_GEX_matrix.output[[2]] object
cell.state.names

Character vector containing the cell state labels defined by the markers in cell.state.markers
parameter. Example is c("NaiveCd4","MemoryCd4").

96 GEX_phenotype_per_clone

cell.state.markers

Character vector containing the gene names for each state. ; is used to use
multiple markers within a single gene state. Different vector elements cor-
respond to different states. Order must match cell.state.names containing the
c("CD4+;CD44-","CD4+;IL7R+;CD44+").

default Default is TRUE - will use predefined gene sets and cell states.

Value

Returns the input Seurat object with an additional column

Examples

vgm.phenotyped <- GEX_phenotype(seurat.object = Platypus::small_vgm[[2]]
, default = TRUE)

GEX_phenotype_per_clone

Plotting of GEX phenotype by VDJ clone

Description

Integrates VDJ and gene expression libraries by providing cluster membership seq_per_vdj ob-
ject and the index of the cell in the Seurat RNA-seq object. ! For platypus.version == "v3" and
VDJ_GEX_matrix output the function will iterate over entries in the sample_id column of the GEX
by default.

Usage

GEX_phenotype_per_clone(
GEX,
clonotype.ids,
global.clonotypes,
GEX.group.by,
GEX.clonotypes,
platypus.version

)

Arguments

GEX For platypus.version == "v3" the GEX object from the output of the VDJ_GEX_matrix
function (VDJ_GEX_matrix.output \[\[2\]\]). For platypus.version == "v2" a
single seurat object from automate_GEX function after labeling cell phenotypes
using the GEX_phenotype function.

GEX_projecTILS 97

clonotype.ids For platypus.version == "v2" Output from either VDJ_analyze or VDJ_clonotype
functions. This list should correspond to a single GEX.list object, in which each
list element in clonotype.list is found in the GEX.object. Furthermore, these
repertoires should be found in the automate_GEX library.

global.clonotypes

Boolean. Defaults to FALSE. Set to True if clonotyping has been done across
samples

GEX.group.by For platypus.version == "v3". Character. Column name of the GEX@meta.data
to group barplot by. Defaults to seurat_clusters

GEX.clonotypes For platypus.version == "v3". Numeric vector with ids of clonotypes to plot e.g.
c(1,2,3,4). Can also be set to "topclones"

platypus.version

Set to either "v2" or "v3" depending on wether suppyling GEX_automate or
VDJ_GEX_matrix\[\[2\]\] objects. Defaults to "v3"

Value

Returns a stacked barplot that visualizes the seurat cluster membership for different cell phenotypes.

Examples

#For testing: only a single clonotype in two samples
small_vgm_cl <- Platypus::small_vgm
small_vgm_cl[[2]]$clonotype_id_10x <- "clonotype1"
GEX_phenotype_per_clone(GEX = small_vgm_cl[[2]]
, GEX.clonotypes = c(1), GEX.group.by = "seurat_clusters", platypus.version = "v3")

GEX_projecTILS ProjectTILs tool utility

Description

Projection of scRNA-seq data into reference single-cell atlas, enabling their celltype annotation
based on the single-cell atlas.

Usage

GEX_projecTILS(
ref_path,
GEX,
split_by,
filtering = c(TRUE, FALSE),
NA_cells = c(TRUE, FALSE)

)

98 GEX_proportions_barplot

Arguments

ref_path Path to reference TIL atlas file (ex: c:/Users/.../ref_TILAtlas_mouse_v1.rds).
The atlas can be downloaded from the GitHub of ProjecTILs.

GEX GEX output of the VDJ_GEX_matrix function (VDJ_GEX_matrix[[2]])).
split_by Optional character vector to specify how the GEX should be split for analysis.

This parameter can refer to any column in the GEX. If none is given by the user
the analysis will take the whole GEX.

filtering Logical, if TRUE a filtering is apply which eliminates unwanted cells. By de-
fault it is set to FALSE.

NA_cells Logical, if TRUE the cells not assigned by projecTILs are kept in the bar plot,
if FALSE, not assigned cells are filtered out. By default it is set to TRUE.

Value

Return a list. Element[[1]] is the GEX data frame containing two new columns containing Projec-
TILs cell type assignment. Element[[2]] is the output of make.projection function from projecTILs
based on the given GEX. Element[[3]] contains a UMAP plot per each groups based on projecTILs
assignment. Element[[4]] plots of the fraction of cells with predicted state per cluster.

Examples

Not run:
#Without splitting argument, considering the whole VGM
output_projecTILS_whole_VGM<-GEX_projecTILS(
ref_path = "c:/Users/.../ref_TILAtlas_mouse_v1.rds", GEX = VGM$GEX,
filtering =TRUE)
output_projecTILS_whole_VGM[[3]] #Umap
output_projecTILS_whole_VGM[[4]] #Barplots

#With splitting argument by groups_id
output_projecTILS_split_by_group<-GEX_projecTILS(
ref_path = "c:/Users/.../ref_TILAtlas_mouse_v1.rds", GEX = VGM$GEX,
filtering = TRUE, split_by = "group_id", NA_cells = FALSE)
output_projecTILS_split_by_group[[3]] #Umap
output_projecTILS_split_by_group[[4]] #Barplots

End(Not run)

GEX_proportions_barplot

Plots proportions of a group of cells within a secondary group of cells.
E.g. The proportions of samples in seurat clusters, or the proportions
of samples in defined cell subtypes

Description

Plots proportions of a group of cells within a secondary group of cells. E.g. The proportions of
samples in seurat clusters, or the proportions of samples in defined cell subtypes

GEX_pseudobulk 99

Usage

GEX_proportions_barplot(GEX, source.group, target.group, stacked.plot, verbose)

Arguments

GEX GEX Seurat object generated with VDJ_GEX_matrix (VDJ_GEX_matrix.output[[2]])

source.group Character. A column name of the GEX@meta.data with the group of which
proportions should be plotted

target.group Character. A column name of the GEX@meta.data with the group to calculate
proportions within. If unsure, see examples for clarification

stacked.plot Boolean. Defaults to FALSE. Whether to return a stacked barplot, with the y
axis representing the % of cells of the target group. If set to FALSE a normal
barplot (position = "dodge") will be returned with the y axis representing the %
of cells of the source group

verbose Print information about factor levels and ordering to console

Value

Returns a ggplot barplot showing cell proportions by source and target group.

Examples

#To return a normal barplot which shows the % of cells of
#each sample contained in each cluster
GEX_proportions_barplot(GEX = Platypus::small_vgm[[2]], source.group = "sample_id"
, target.group = "seurat_clusters",stacked.plot = FALSE)

#To return a stacked barplot which shows the % of cells of each
#cluster attributed to each sample
GEX_proportions_barplot(GEX = Platypus::small_vgm[[2]],
source.group = "seurat_clusters", target.group = "sample_id"
,stacked.plot = TRUE)

GEX_pseudobulk Function that performs pseudo-bulking on the data (VGM input), ac-
cording to criteria specified by the User, and uses the pseudo-bulked
data to perform Differential Gene Expression (DGE) analysis.

Description

Function that performs pseudo-bulking on the data (VGM input), according to criteria specified by
the User, and uses the pseudo-bulked data to perform Differential Gene Expression (DGE) analysis.

100 GEX_pseudobulk

Usage

GEX_pseudobulk(
vgm.input,
column.group,
group1,
group2,
column.comparison,
comparison,
pool,
platypus.version

)

Arguments

vgm.input Output of the VDJ_GEX_matrix function. Mandatory

column.group Character vector. Mandatory. Column name of VDJ_GEX_matrix[[2]] where
the groups to be tested for differenetial gene expression are located

group1 Strings vector. Mandatory. Samples to be grouped together for differential ex-
pression analysis against group2 (if pool=TRUE or column.comparison!=NULL).
If pool=FALSE, vector containing samples to be tested individually against sam-
ples with the same index in the vector of group2.

group2 Strings vector. Mandatory. Samples to be grouped together for differential ex-
pression analysis against group1 (if pool=TRUE or column.comparison!=NULL).
If pool=FALSE, vector containing samples to be tested individually against sam-
ples with the same index in the vector of group1.

column.comparison

Character vector. Defaults to NULL. Column name of VDJ_GEX_matrix[[2]]
where the comparison cathegories are located, if DGE between group1 and
group2 is performed across diferrent cathegories.

comparison, Strings vector. Defaults to NULL. Comparison cathegories, if more than one is
present.

pool Logical. Defaults to FALSE. Indicates whether samples specified in group1 and
group2 are to be pooled together within the same group.

platypus.version

This function works with "v3" only, there is no need to set this parameter

Value

A data.frame or list of data.frames containing the results of the DGE analysis for every level of
pseudo-bulking.

Examples

Not run:
pseudo_DE<-GEX_pseudobulk(
vgm.input=VGM_NP396_GP33_GP66_labelled,
column.group="sample_id",

GEX_pseudotime_trajectory_plot 101

group1 = c("s1"), group2 = c("s4"),
column.comparison = "seurat_clusters",
comparison=c(2,3,5,9), pool=FALSE)

End(Not run)

GEX_pseudotime_trajectory_plot

This function plots pseudotime along the trajectories which have been
constructed with the GEX_trajectories() function.

Description

This function plots pseudotime along the trajectories which have been constructed with the GEX_trajectories()
function.

Usage

GEX_pseudotime_trajectory_plot(cds, root.nodes, monocle.version, root.state)

Arguments

cds cell data set object. Output element [[1]] of the GEX_trajectories() function

root.nodes For monocle3: Root nodes to determine for the pseudotime trajectories. GEX_trajectories
output [[3]] yields all the possible root nodes. Choose the ones you like.

monocle.version

Version of monocle. Either monocle2 or monocle3. Has to be the same as in
GEX_trajectories().Default is monocle3.

root.state For monocle2: Root state to determine starting cluster for the pseudotime tra-
jectories. GEX_trajectories ouput [[3]] yields all the possible root states Choose
the one you like.

Value

Returns a list.Element [[1]] cell data set object with the pseudotime trajectories. Element [[2]]
pseudotime trajectory plot

Examples

Not run:
##monocle3
pseudotime_output <- GEX_pseudotime_trajectory_plot(
GEX_trajectories_output[[1]], root.nodes = c('Y_742','Y_448','Y_964'))

##monocle2
pseudotime_output <- GEX_pseudotime_trajectory_plot(
GEX_trajectories_output[[1]], monocle.version = 'monocle3', root.state = "2")

102 GEX_topN_DE_genes_per_cluster

End(Not run)

GEX_scatter_coexpression

Scatter plot for coexpression of two selected genes

Description

Plots a composite figure showing single marker expression as histograms and coexpression as a
scatterplot.

Usage

GEX_scatter_coexpression(GEX, gene.1, gene.2, color.theme)

Arguments

GEX GEX seurat object generated with VDJ_GEX_matrix

gene.1 Character. Name of a gene in rownames(VDJ.matrix)

gene.2 Character. Name of a gene in rownames(VDJ.matrix)

color.theme Character. A color to use for the composite plot

Value

Returns a gridplot showing coexpression scatterplot as well as histograms of gene.1 and gene.2

Examples

gene1 <- "CD24A"
gene2 <- "CD83"
GEX_scatter_coexpression(GEX = Platypus::small_vgm[[2]], gene1,gene2)

GEX_topN_DE_genes_per_cluster

Platypus V2 GEX DE genes helper

Description

Organizes the top N genes that define each Seurat cluster and converts them into a single dataframe.
This can be useful for obtaining insight into cluster-specific phenotypes.

Usage

GEX_topN_DE_genes_per_cluster(GEX_cluster_genes.output, n.genes, by_FC, filter)

GEX_trajectories 103

Arguments

GEX_cluster_genes.output

The output from the GEX_cluster_genes function - this should be a list with
each list element corresponding to the genes, p values, logFC, pct expression
for the genes differentially regulated for each cluster.

n.genes The number of genes to be selected from each cluster. If n.genes is higher than
the number of cells in a cluster then it is silently adjusted to be

by_FC Logical indicating if the top n genes are selected based on the logFC value in-
stead of p value. Default is FALSE.

filter Character vector of initials of the genes to be filtered. Default is c("MT-", "RPL",
"RPS"), which filters mitochondrial and ribosomal genes.

Value

Returns a dataframe in which the top N genes defining each cluster based on differential expression
are selected.

Examples

Not run:
GEX_topDE_genes_per_cluster(GEX_cluster_genes.output=list_of_genes_per_cluster
, n.genes=20, by_FC=FALSE, filter=c("MT-", "RPS", "RPL"))

End(Not run)

GEX_trajectories This is a function which infers trajectories along ordered cells on di-
mensionality reduced data. It projects trajectrories on a dim. red. plot
such as Umap. This uses Monocle3 or Monocle2.

Description

This is a function which infers trajectories along ordered cells on dimensionality reduced data. It
projects trajectrories on a dim. red. plot such as Umap. This uses Monocle3 or Monocle2.

Usage

GEX_trajectories(
GEX,
color.cells.by,
reduction.method,
cluster.method,
genes,
label.cell.groups,
label.groups.by.cluster,
labels.per.group,

104 GEX_trajectories

group.label.size,
monocle.version,
ordering.cells.method

)

Arguments

GEX GEX output of the VDJ_GEX_matrix function (VDJ_GEX_matrix[[2]]))

color.cells.by Column name in SummarizedExperiment::colData(GEX). To decide how the
cells are colored in the output plot. E.g. color.cells.by = ’group_id’ the cells
will be colored based on their group_id.

reduction.method

Which method to use for dimensionality reduction for monocle3. Supports
"UMAP", "tSNE", "PCA" or "LSI". Default value is "UMAP".

cluster.method Monocle3 gives two clustering options: Using the Leiden or the Louvain algo.
Default is louvain.

genes Takes a vector of genes (e.g. genes = c(’CD3E’, ’CD4’, ’CD8A’, ’CD44’)) to
highlight the expression of these genes in UMAP and in the trajectory plot in
monocle3. Default is NULL.

label.cell.groups

Whether to label cells in each group according to the most frequently occur-
ring label(s) (as specified by color_cells_by) in the group. If false, plot_cells()
simply adds a traditional color legend. Default is TRUE

label.groups.by.cluster

Instead of labeling each cluster of cells, place each label once, at the centroid of
all cells carrying that label. Default is TRUE

labels.per.group

How many labels to plot for each group of cells. Default is 1

group.label.size

Font size to be used for cell group labels. Default is 1

monocle.version

Version of monocle. Either monocle2 or monocle3. Default is monocle3.
ordering.cells.method

In monocle2 you can choose between selecting genes with high dispersion across
cells for ordering cells along a trajectory (= ’high.dispersion’). Or order cells
based on genes which differ between clusters, uses an unsupervised procedure
called "dpFeature" (= ’differ.genes’). Defalut is "differ.genes"

Value

Returns a list.For monocle3: Element [[1]] returns a cell data set object with a new column for
the UMAP clustering. This will be used for the GEX_pseudotime_trajectory_plot() function. [[2]]
contains a plot of the clusters. [[3]] contains also a cluster plot but with the inferred trajectories. For
monocle2: [[1]] cell data set object. [[2]] Trajetory plot with cells coloured based on their states
(important to choose root state for pseudotime plot). [[3]] Trajectory plot based on color.cells.by

GEX_visualize_clones 105

Examples

Not run:

trajectory_output <- GEX_trajectories(GEX = vgm[[2]],
reduction.method = "UMAP",
color.cells.by = "group_id",
labels_per_group = 2,
group_label_size = 3)

#visualizing gene expressions
interesting_genes = c("Cxcr6", "Il7r")
genes_trajectories <- GEX_trajectories(GEX = VGM$GEX,
color.cells.by = "group_id",
genes = interesting_genes)

##monocle2 ! DEPRECATED !
#trajectory_output <- GEX_trajectories(GEX = vgm[[2]],
monocle.version = "monocle2",
ordering.cells.method = "high.dispersion")

End(Not run)

GEX_visualize_clones Platypus V2 GEX and VDJ integration for visualizing clone clustering

Description

!Only for platypus version v2. For platypus v3 refer to: VDJ_GEX_overlay_clones() Visualize
selected clonotypes on the tSNE or UMAP projection.

Usage

GEX_visualize_clones(
GEX.list,
VDJ.GEX.integrate.list,
highlight.type,
highlight.number,
reduction

)

Arguments

GEX.list list of Seurat objects, output of the automate_GEX function.
VDJ.GEX.integrate.list

Output of the VDJ_GEX_integrate function.

highlight.type (Optional) either "None" if representation highlighted by cluster, "clonotype" if
want to highlight most expanded clonotypes, or "sample" if several samples are
within the same Seurat object. Default is None.

106 GEX_volcano

highlight.number

(Optional) an integer or list of integers representing the number of most ex-
panded clonotypes or samples one wants to select eg 4 to highlight the 4th most
expanded clonotype or 2:5 to highlight the top 2 to top 5 most expanded clono-
type. Only compatible with highlight.type "clonotype" or "sample", will be ig-
nored if type is "None". Default is 1.

reduction (Optional) Reduction to plot, either "tsne", "umap", or "harmony". Default is
"tsne".

Value

concatenated ggplot2 plot with selected clonotypes highlighted (if None, the coloring is according
to the clustering).

Examples

Not run:
GEX_visualize_clones(GEX.list=automate_GEX.output,
VDJ.per.clone=VDJ_per_clone.output,
highlight.type="clonotype",
highlight.number=1:4,
reduction="umap")

End(Not run)

GEX_volcano Flexible wrapper for GEX volcano plots

Description

Plots a volcano plot from the output of the FindMarkers function from the Seurat package or the
GEX_cluster_genes function alternatively.

Usage

GEX_volcano(
DEGs.input,
input.type,
condition.1,
condition.2,
explicit.title,
RP.MT.filter,
color.p.threshold,
color.log.threshold,
label.p.threshold,
label.logfc.threshold,
n.label.up,
n.label.down,

GEX_volcano 107

by.logFC,
maximum.overlaps,
plot.adj.pvalue

)

Arguments

DEGs.input Either output data frame from the FindMarkers function from the Seurat package
or GEX_cluster_genes list output.

input.type Character specifing the input type as either "findmarkers" or "cluster.genes".
Defaults to "cluster.genes"

condition.1 either character or integer specifying ident.1 that was used in the FindMark-
ers function from the Seurat package. Should be left empty when using the
GEX_cluster_genes output.

condition.2 either character or integer specifying ident.2 that was used in the FindMark-
ers function from the Seurat package. Should be left empty when using the
GEX_cluster_genes output.

explicit.title logical specifying whether the title should include logFC information for each
condition.

RP.MT.filter Boolean. Defaults to TRUE. Whether to exclude ribosomal and mitochondrial
genes.

color.p.threshold

numeric specifying the adjusted p-value threshold for geom_points to be col-
ored. Default is set to 0.01.

color.log.threshold

numeric specifying the absolute logFC threshold for geom_points to be colored.
Default is set to 0.25.

label.p.threshold

numeric specifying the adjusted p-value threshold for genes to be labeled via
geom_text_repel. Default is set to 0.001.

label.logfc.threshold

numeric specifying the absolute logFC threshold for genes to be labeled via
geom_text_repel. Default is set to 0.75.

n.label.up numeric specifying the number of top upregulated genes to be labeled via geom_text_repel.
Genes will be ordered by adjusted p-value. Overrides the "label.p.threshold" and
"label.logfc.threshold" parameters.

n.label.down numeric specifying the number of top downregulated genes to be labeled via
geom_text_repel. Genes will be ordered by adjusted p-value. Overrides the
"label.p.threshold" and "label.logfc.threshold" parameters.

by.logFC logical. If set to TRUE n.label.up and n.label.down will label genes ordered by
logFC instead of adjusted p-value.

maximum.overlaps

integer specifying removal of labels with too many overlaps. Default is set to
Inf.

plot.adj.pvalue

logical specifying whether adjusted p-value should by plotted on the y-axis.

108 hotspot_df

Value

Returns a volcano plot from the output of the FindMarkers function from the Seurat package, which
is a ggplot object that can be modified or plotted. Infinite p-values are set defined value of the
highest -log(p) + 100.

Examples

Not run:
#using the findmarkers.output
GEX_volcano(findmarkers.output = FindMarkers.Output
, condition.1 = "cluster1", condition.2 = "cluster2"
, maximum.overlaps = 20)

GEX_volcano(findmarkers.output = FindMarkers.Output
, condition.1 = "cluster1", condition.2 = "cluster2"
, n.label.up = 50, n.label.down = 20)

#using the GEX_cluster_genes output
GEX_volcano(findmarkers.output = GEX_cluster_genes.Output
, cluster.genes.output =TRUE)

End(Not run)

hotspot_df hotspot_df Hotspot mutations taken from Yaari et al., Frontiers in Im-
munology, 2013. This contains transition probabilities for all 5mer
combinations based on high throughput sequencing data. The transi-
tion probabilities are for the middle nucleotide in each 5mer set. This
can be customized by changing the genes and sequences. Custom mu-
tation hotspots can be supplied by modifying this dataframe. Repeat-
ing particular hotspot entries allows for the hotspot to mutate more
than one time per SHM event.

Description

@format A data frame with 1024 rows and 6 variables:

pattern Character array where each entry corresponds to a 5 base motif. The mutation probabilities
correspond to the middle nucleotide in each 5mer.

toA The probability for the middle nucleotide in "pattern" to mutate to an adenine
toC The probability for the middle nucleotide in "pattern" to mutate to an cytosine
toG The probability for the middle nucleotide in "pattern" to mutate to an guanine
toT The probability for the middle nucleotide in "pattern" to mutate to an thymine
Source The origin of how this motif was discovered. Either Inferred or Experimental

Usage

data("hotspot_df")

hum_b_h 109

Format

An object of class data.frame with 1024 rows and 6 columns.

Source

Yaari et al., Frontiers in Immunology, 2013

hum_b_h hum_b_h

Description

human germline IgH (heavy chain v,d,j gene segments). When multiple alleles were present, the
first one was included. These names and sequences can be changed by customized by changing
this dataframe. Additionally, repeating elements can give certain germline gene elements a larger
probability of being used during repertoire evolution.

Usage

data("hum_b_h")

Format

A list including 3 elements (data frames): v gene, d gene, j gene,respectively.

[[1]]

gene The v gene name

seq The corresponding sequence [[2]]

gene The d gene name

seq The corresponding sequence [[3]]

gene The j gene name

seq The corresponding sequence

Source

IMGT

110 hum_t_h

hum_b_l hum_b_l

Description

human germline IgH (light chain v,d,j gene segments). When multiple alleles were present, the
first one was included. These names and sequences can be changed by customized by changing
this dataframe. Additionally, repeating elements can give certain germline gene elements a larger
probability of being used during repertoire evolution.

Usage

data("hum_b_l")

Format

A list including 2 elements (data frames): v gene, d gene, j gene,respectively.
[[1]]

gene The v gene name

seq The corresponding sequence [[2]]

gene The j gene name

seq The corresponding sequence

Source

IMGT

hum_t_h hum_t_h

Description

human germline TRB (heavy chain v,d,j gene segments). When multiple alleles were present, the
first one was included. These names and sequences can be changed by customized by changing
this dataframe. Additionally, repeating elements can give certain germline gene elements a larger
probability of being used during repertoire evolution.

Usage

data("hum_t_h")

hum_t_l 111

Format

A list including 3 elements (data frames): v gene, d gene, j gene,respectively.
[[1]]

gene The v gene name

seq The corresponding sequence [[2]]

gene The d gene name

seq The corresponding sequence [[3]]

gene The j gene name

seq The corresponding sequence

Source

IMGT

hum_t_l hum_t_l

Description

human germline TRA (light chain v,d,j gene segments). When multiple alleles were present, the
first one was included. These names and sequences can be changed by customized by changing
this dataframe. Additionally, repeating elements can give certain germline gene elements a larger
probability of being used during repertoire evolution.

Usage

data("hum_t_l")

Format

A list including 2 elements (data frames): v gene, d gene, j gene,respectively.
[[1]]

gene The v gene name

seq The corresponding sequence [[2]]

gene The j gene name

seq The corresponding sequence

Source

IMGT

112 mus_b_h

iso_SHM_prob iso_SHM_prob A probability dataframe specifying SHM.nuc.prob for
cells of different isotypes. The first column is the names of isotypes,
while the second column is the SHM.nuc.prob of cell of that isotype.
user can define different SHM.nuc.prob for isotypes.

Description

iso_SHM_prob A probability dataframe specifying SHM.nuc.prob for cells of different isotypes.
The first column is the names of isotypes, while the second column is the SHM.nuc.prob of cell of
that isotype. user can define different SHM.nuc.prob for isotypes.

Usage

data("iso_SHM_prob")

Format

a dataframe with 2 columns

mus_b_h mus_b_h

Description

C57BL/6 germline IgH (heavy chain v,d,j gene segments). When multiple alleles were present, the
first one was included. These names and sequences can be changed by customized by changing
this dataframe. Additionally, repeating elements can give certain germline gene elements a larger
probability of being used during repertoire evolution.

Usage

data("mus_b_h")

Format

A list including 3 elements (data frames): v gene, d gene, j gene,respectively.
[[1]]

gene The v gene name

seq The corresponding sequence [[2]]

gene The d gene name

seq The corresponding sequence [[3]]

gene The j gene name

seq The corresponding sequence

mus_b_l 113

Source

IMGT

mus_b_l mus_b_l

Description

C57BL/6 germline IgH (light chain v,d,j gene segments). When multiple alleles were present, the
first one was included. These names and sequences can be changed by customized by changing
this dataframe. Additionally, repeating elements can give certain germline gene elements a larger
probability of being used during repertoire evolution.

Usage

data("mus_b_l")

Format

A list including 2 elements (data frames): v gene, d gene, j gene,respectively.
[[1]]

gene The v gene name
seq The corresponding sequence [[2]]
gene The j gene name
seq The corresponding sequence

Source

IMGT

mus_b_trans mus_b_trans A data frame contains mouse B cell average gene ex-
pression for multiple cell types, with the rows representing the gene
names, column names representing the cell type names. The original
single cell sequencing data is retrieved from 10xgenomics and com-
bined with experimental data The expression level for different cell
types are obtained by calculating the average expression after sorting
the original data by markers as shown below.

Description

mus_b_trans A data frame contains mouse B cell average gene expression for multiple cell types,
with the rows representing the gene names, column names representing the cell type names. The
original single cell sequencing data is retrieved from 10xgenomics and combined with experimental
data The expression level for different cell types are obtained by calculating the average expression
after sorting the original data by markers as shown below.

114 mus_t_h

Usage

data("mus_b_trans")

Format

A data frame with 26538 rows and 4 variables, with the rows representing the gene names, column
names representing the cell type names.

NaiveBcell Cd19+;Cd27-;Cd38-
GerminalcenterBcell Fas+;Cd19+
Plasmacell Sdc1+
MemoryBcell Cd38+;Fas-

Source

https://support.10xgenomics.com/single-cell-vdj/datasets/3.0.0/vdj_v1_mm_c57bl6_pbmc_5gex; https://support.10xgenomics.com/single-
cell-vdj/datasets/3.0.0/vdj_v1_mm_balbc_pbmc_5gex

mus_t_h mus_t_h

Description

C57BL/6 germline TRB (heavy chain v,d,j gene segments). When multiple alleles were present,
the first one was included. These names and sequences can be changed by customized by changing
this dataframe. Additionally, repeating elements can give certain germline gene elements a larger
probability of being used during repertoire evolution.

Usage

data("mus_t_h")

Format

A list including 3 elements (data frames): v gene, d gene, j gene,respectively.
[[1]]

gene The v gene name
seq The corresponding sequence [[2]]
gene The d gene name
seq The corresponding sequence [[3]]
gene The j gene name
seq The corresponding sequence

Source

IMGT

mus_t_l 115

mus_t_l mus_t_l

Description

C57BL/6 germline TRA (light chain v,d,j gene segments). When multiple alleles were present, the
first one was included. These names and sequences can be changed by customized by changing
this dataframe. Additionally, repeating elements can give certain germline gene elements a larger
probability of being used during repertoire evolution.

Usage

data("mus_t_l")

Format

A list including 2 elements (data frames): v gene, d gene, j gene,respectively.
[[1]]

gene The v gene name

seq The corresponding sequence [[2]]

gene The j gene name

seq The corresponding sequence

Source

IMGT

no.empty.node Get clone network igraphs without empty mode. Empty node repre-
sents the ’extincted’ sequences, that are not in any living cell but once
existed.

Description

Get clone network igraphs without empty mode. Empty node represents the ’extincted’ sequences,
that are not in any living cell but once existed.

Usage

no.empty.node(history, igraph.index)

116 one_spot_df

Arguments

history The dataframe ’history’ from the simulation output.

igraph.index The list ’igraph.index’ from the simulation output.

empty.node If TRUE, there will be empty node in igraph. if FALSE, the empty node will be
deleted.

Value

a list of clone network igraphs without empty mode.

one_spot_df one_spot_df

Description

WRC hotspot mutations taken from Yaari et al., Frontiers in Immunology, 2013. These include only
the mutations following the WRC pattern, where W equals A or T and R equals A or G). Custom
mutation hotspots can be supplied by modifying this dataframe. Repeating particular hotspot entries
allows for the hotspot to mutate more than one time per SHM event.

Usage

data("one_spot_df")

Format

A data frame with 32 rows and 6 variables:

pattern Character array where each entry corresponds to a 5 base motif. The mutation probabilities
correspond to the middle nucleotide in each 5mer.

toA The probability for the middle nucleotide in "pattern" to mutate to an adenine

toC The probability for the middle nucleotide in "pattern" to mutate to an cytosine

toG The probability for the middle nucleotide in "pattern" to mutate to an guanine

toT The probability for the middle nucleotide in "pattern" to mutate to an thymine

Source The origin of how this motif was discovered. Either Inferred or Experimental

Source

Yaari et al., Frontiers in Immunology, 2013

pheno_SHM_prob 117

pheno_SHM_prob pheno_SHM_prob A probability dataframe specifying SHM.nuc.prob
for cells of different phenotypes. The first column is the names of phe-
notypes, while the second column is the SHM.nuc.prob of cell of that
phenotype. user can define different SHM.nuc.prob for phenotypes.

Description

pheno_SHM_prob A probability dataframe specifying SHM.nuc.prob for cells of different pheno-
types. The first column is the names of phenotypes, while the second column is the SHM.nuc.prob
of cell of that phenotype. user can define different SHM.nuc.prob for phenotypes.

Usage

data("pheno_SHM_prob")

Format

a dataframe with 2 columns

PlatypusDB_AIRR_to_VGM

AIRR to Platypus V3 VGM compatibility function

Description

Loads in and converts input AIRR-compatible tsv file(s) into the Platypus VGM object format.All
compulsory AIRR data columns are needed. Additionally, the following columns are required:
v_call, cell_id, clone_id. If trim.and.align is set to TRUE additionally the following columns are
needed: v_sequence_start, j_sequence_end. Note on TRUST4 input: TRUST4 (https://doi.org/10.1038/s41592-
021-01142-n2) is a newly alignment tool for VDJ data by the Shirley lab. It is able to also extract
VDJ sequences from 10x GEX data. We are actively testing TRUST4 as an alternative to Cell-
ranger and can not give recommendations as of now. This function does support the conversion
of TRUST4 airr output data into the Platypus VGM format. In that case, an extra column will be
added describing whether the full length VDJ sequence was extracted for any given cell and chain.

Usage

PlatypusDB_AIRR_to_VGM(
AIRR.input,
get.VDJ.stats,
VDJ.combine,
trim.and.align,
filter.overlapping.barcodes.VDJ,
group.id,
verbose

)

118 PlatypusDB_fetch

Arguments

AIRR.input Source of the AIRR table(s) as a list. There are 2 available input options: 1. 1.
List with local paths to .tsv files / 3. List of AIRR tables loaded in as R objects
within the current R environment.

get.VDJ.stats Boolean. Defaults to TRUE. Whether to generate summary statistics on reper-
toires and output those as output_VGM[[3]]

VDJ.combine Boolean. Defaults to TRUE. Whether to integrate repertoires. A sample iden-
tifier will be appended to each barcode both. Highy recommended for all later
functions

trim.and.align Boolean. defaults to FALSE. Whether to trim VJ/VDJ seqs and add information
from alignment in AIRR dataframe columns. ! No alignment is done here,
instead, columns containing alignment information in the AIRR dataframes are
reformatted.

filter.overlapping.barcodes.VDJ

Boolean. defaults to TRUE. Whether to remove barcodes which are shared
among samples in the GEX analysis. Shared barcodes normally appear at a
very low rate.

group.id vector with integers specifying the group membership. c(1,1,2,2) would specify
the first two elements of the input AIRR list are in group 1 and the third/fourth
input elements will be in group 2.

verbose Writes runtime status to console. Defaults to FALSE

Value

A VDJ_GEX_Matrix object used in Platypus V3 as an input to most analysis and plotting functions

Examples

Not run:

VGM <- PlatypusDB_AIRR_to_VGM(AIRR.input =
list("~/pathto/s1/airr_rearrangement.tsv", "~pathto/s2/airr_rearrangement.tsv"),
VDJ.combine = TRUE, group.id = c(1,2), filter.overlapping.barcodes.VDJ = TRUE)

End(Not run)

PlatypusDB_fetch Loads and saves RData objects from the PlatypusDB

Description

Loads and saves RData objects from the PlatypusDB

PlatypusDB_fetch 119

Usage

PlatypusDB_fetch(
PlatypusDB.links,
save.to.disk,
load.to.enviroment,
load.to.list,
path.to.save,
combine.objects

)

Arguments

PlatypusDB.links

Character vector. One or more links to files in the PlatypusDB. Links are con-
structed as follows: "%Project id%/%sample_id%/%filetype%". Any of the
three can be "ALL", to download all files fitting the other link elements. If %file-
type% is gexVGM, vdjVGM or metadata, %sample_id% needs to be "ALL", as
these are elements which are not divided by sample. See examples for clarifi-
cation. See last example on how to download AIRR compliant data. Feature
Barcode (FB) data will be downloaded both for GEX and VDJ if present and
does not need to be specified in the path. For sample_id entries the the metadata
table for a given project via the function PlatypusDB_list_projects()

save.to.disk Boolean. Defaults to FALSE. Whether to save downloaded files individually to
the directory specified in path.to.save

load.to.enviroment

Boolean. Defaults to TRUE. Whether to load objects directly into the current
.GlobalEnv. An array of the names of the loaded objects will be returned. !Be
aware of RAM limitations of your machine when downloading multiple large
files.

load.to.list Boolean. Defaults to FALSE. Whether to return loaded objects as a list. !Be
aware of RAM limitations of your machine when downloading multiple large
files.

path.to.save System path to save files to.

combine.objects

Boolean. Defaults to TRUE. Whether to combine objects if appropriate. e.g.
VDJ and GEX RData objects for a sample are saved as two independent ob-
jects and downloaded as such, to allow for flexibility. If combine.objects is
set to TRUE, the function will coerce RData objects of each loaded sample or
of each loaded VDJ_GEX_matrix appropriately. Combined input of VDJ and
GEX Rdata objects can be directly supplied to the VDJ_GEX_matrix function.

Value

A list of loaded project files as R objects if load.to.list = T or a name of these object loaded to the
enviroment if load.to.enviroment = T.

120 PlatypusDB_fetch

Examples

Not run:

#Get a list of available projects by name
names(PlatypusDB_list_projects())

#Load the VDJ_GEX_matrix of a project as an object and
#also save it to disk for later.
#This will download the VDJ and GEX part of the VDJ_GEX_matrix and combine
PlatypusDB_fetch(PlatypusDB.links = c("Kuhn2021a//ALL")
,save.to.disk = FALSE,load.to.enviroment = TRUE, load.to.list = FALSE
, combine.object = TRUE,path.to.save = "/Downloads")

#Load VDJ dataframe of the VDJ GEX matrix for all samples of one project
loaded_list <- PlatypusDB_fetch(PlatypusDB.links = c("Kuhn2021a//VDJmatrix")
,save.to.disk = FALSE,load.to.enviroment = FALSE, load.to.list = TRUE)

#Load the VDJ and GEX RData of 2 samples from
#2 different projects which can be directly passed
#on to the VDJ_GEX_matrix function to integrate
#downloaded_objects <- PlatypusDB_fetch(
#PlatypusDB.links = c("Project1/s1/ALL", "Project1/s2/ALL")
#,save.to.disk = FALSE,load.to.enviroment = FALSE, load.to.list = TRUE
#, combine.objects = TRUE)

#integrated_samples <- VDJ_GEX_matrix_DB(data.in = downloaded_objects)

#Download metadata objects for projects
list_of_metadata_tables <- PlatypusDB_fetch(
PlatypusDB.links = c("Kuhn2021a//metadata")
,save.to.disk = FALSE,load.to.enviroment = FALSE, load.to.list = TRUE)

#Dowload of airr_rearrangement.tsv
#Load VDJ.RData into a list
#downloaded_objects <- PlatypusDB_fetch(
#PlatypusDB.links = c("Project1/ALL/VDJ.RData"),save.to.disk = FALSE
#,load.to.enviroment = FALSE, load.to.list = TRUE)

#Extract airr_rearrangement table for sample 1
#airr_rearrangement <- downloaded_objects[[1]][[1]][[6]]
#Index hierarchy: Sample, VDJ or GEX, VDJ element

#Save for import to AIRR compatible pipeline
#write.table(airr_rearrangement, file = "airr_rearrangement_s1.tsv", sep='\t',
#row.names = FALSE, quote=FALSE)

End(Not run)

PlatypusDB_find_CDR3s 121

PlatypusDB_find_CDR3s CDR3 query function for PlatypusDB

Description

Queries for the occurrence of CDR3 sequences in public datasets on PlatypusDB.

Usage

PlatypusDB_find_CDR3s(VDJ.cdr3s.aa, VJ.cdr3s.aa, projects.to.search)

Arguments

VDJ.cdr3s.aa Character A VDJ CDR3s amino acid sequence to search for

VJ.cdr3s.aa Character A VJ CDR3s amino acid sequence to search for
projects.to.search

Optional character vector. Defaults to "ALL". Names of projects to search
within.

Value

A list of subsets of VDJ matrices from projects containing the query VDJ CDR3 (out[[1]]), the VJ
CDR3 (out[[2]]) and cells containing both the query VDJ and VJ CDR3s (out[[3]])

Examples

Not run:

public_clones <- PlatypusDB_find_CDR3s(VDJ.cdr3s.aa = "CMRYGNYWYFDVW"
, VJ.cdr3s.aa = "CLQHGESPFTF", projects.to.search = "ALL")

End(Not run)

PlatypusDB_list_projects

Metadata download by project for PlatypusDB

Description

Lists metadata tables of available projects on PlatypusDB

Usage

PlatypusDB_list_projects(keyword)

122 PlatypusDB_load_from_disk

Arguments

keyword Character. Keyword by which to search project ids (First Author, Year) in the
database. Defaults to an empty string ("") which will list all projects currently
available

Value

A list of metadata tables by project. List element names correspond to project ids to use in the
PlatypusDB_fetch function

Examples

Not run:

#Get list of all available projects and metadata.
PlatypusDB_projects <- PlatypusDB_list_projects()

#Names of list are project ids to use in PlatypusDB_fetch function
names(PlatypusDB_projects)
#Common format: first author, date, letter a-z (all lowercase)

#View metadata of a specific project
print(PlatypusDB_projects[["Kuhn2021a"]])

End(Not run)

PlatypusDB_load_from_disk

PlatypusDB utility for import of local datasets

Description

Utility function for loading in local dataset as VDJ_GEX_matrix and PlatypusDB compatible R ob-
jects. Especially useful when wanting to integrate local and public datasets. This function only im-
ports and does not make changes to format, row and column names. Exception: filtered_contig.fasta
are appended to the filtered_contig_annotations.csv as a column for easy access

Usage

PlatypusDB_load_from_disk(
VDJ.out.directory.list,
GEX.out.directory.list,
FB.out.directory.list,
batches

)

PlatypusDB_VGM_to_AIRR 123

Arguments

VDJ.out.directory.list

List containing paths to VDJ output directories from cell ranger. This pipeline
assumes that the output file names have not been changed from the default 10x
settings in the /outs/ folder. This is compatible with B and T cell repertoires
(both separately and simultaneously).

GEX.out.directory.list

List containing paths the outs/ directory of each sample or directly the raw or
filtered_feature_bc_matrix folder. Order of list items must be the same as for
VDJ. This outs directory may also contain Feature Barcode (FB) information.
Do not specify FB.out.directory in this case.

FB.out.directory.list

List of paths pointing at the outs/ directory of output of the Cellranger counts
function which contain Feature barcode counts. Any input will overwrite poten-
tial FB data loaded from the GEX input directories. Length must match VDJ
and GEX directory inputs. (in case of a single FB output directory for multiple
samples, please specifiy this directory as many times as needed)

batches Integer vector. Defaults to all 1, yielding all samples with batch number "b1".
Give a batch number to each sample (each entry in the VDJ/GEX input lists).
This will be saved as element 5 in the sample list output.

Value

Large nested list object containing all needed Cellranger outputs to run the VDJ_GEX_matrix
function. Level 1 of the list are samples, level 2 are VDJ GEX and metadata information. (e.g.
out[[1]][[1]] corresponds to VDJ data objects of sample 1)

Examples

Not run:
VDJ.in <- list()
VDJ.in[[1]] <- c("~/VDJ/S1/")
VDJ.in[[2]] <- c("~/VDJ/S2/")
GEX.in <- list()
GEX.in[[1]] <- c("~/GEX/S1/")
GEX.in[[2]] <- c("~/GEX/S2/")
PlatypusDB_load_from_disk(VDJ.out.directory.list = VDJ.in, GEX.out.directory.list = GEX.in)

End(Not run)

PlatypusDB_VGM_to_AIRR

Platypus V3 VGM to AIRR compatibility function

Description

Exports AIRR compatible tables supplemented with VDJ and GEX information from the Platypus
VGM object and the cellranger output airr_rearrangements.tsv

124 PlatypusDB_VGM_to_AIRR

Usage

PlatypusDB_VGM_to_AIRR(
VGM,
VDJ.features.to.append,
GEX.features.to.append,
airr.rearrangements,
airr.integrate

)

Arguments

VGM Output object of the VDJ_GEX_matrix function generated with VDJ.combine
= T, GEX.combine = T (to merge all samples) and integrate.VDJ.to.GEX = T
(to integrate VDJ and GEX data)

VDJ.features.to.append

Character vector. Defaults to "none". Can be either "all" or column names of
the VGM VDJ matrix (VGM[[1]]) to append to the AIRR compatible table.

GEX.features.to.append

Character vector. Defaults to "none". Can be either "all" or GEX metadata
column names or Gene names of the VGM GEX object (VGM[[2]])(passed to
Seurat::FetchData()) to append to the AIRR compatible table. For a list of avail-
able features run: names(VGM[[2]]@meta.data) and rownames(VGM[[2]])

airr.rearrangements

Source of the airr_rearrangements.tsv file as generated by Cellranger. There are
3 available input options: 1. R list object from Platypus_DB_load_from_disk
or Platypus_DB_fetch / 2. List with local paths to airr_rearrangements.tsv /
3. List of airr_rearrangements.tsv loaded in as R objects within the current R
enviroment. ! Order of input list must be identical to that of sample_ids in the
VGM ! If not provided or set to "none" CIGAR strings in output will be empty.

airr.integrate Boolean. Defaults to TRUE, whether to integrate output AIRR tables

Value

A list of length of samples in VGM containing a AIRR-compatible dataframe for each sample if
airr.integrate = F or a single dataframe if airr.integrate = T ! Cave the format: VGM object => 1
cell = 1 row; AIRR table 1 cell = as many rows as VDJ and VJ chains available for that cell. GEX
cell-level information is attached to all rows containing a chain of that cell.

Examples

Not run:
#complete workflow below

#usage with airr rearrangement tables from PlatypusDB_load_from_disk
#or PlatypusDB_fetch list object
airr.list.out <- PlatypusDB_VGM_to_AIRR(VGM = VGM
, VDJ.features.to.append = c("VDJ_cdr3s_aa")
, GEX.features.to.append = c("CTLA4", "TOX"), airr.rearrangements = Data.in)

PlatypusML_balance 125

#usage with airr rearrangement tables from disk
airr.list.out <- PlatypusDB_VGM_to_AIRR(VGM = VGM
, VDJ.features.to.append = c("VDJ_cdr3s_aa")
, GEX.features.to.append = c("CTLA4", "TOX"),
airr.rearrangements =list("~/path_to/s1/airr.rearrangement.tsv"
,"~/path_to/s2/airr_rearrangement.tsv"))

#usage with airr rearrangement tables from objects in R environment
airr.list.out <- PlatypusDB_VGM_to_AIRR(VGM = VGM
, VDJ.features.to.append = c("VDJ_cdr3s_aa")
, GEX.features.to.append = c("CTLA4", "TOX"),
airr.rearrangements = list(airr_rearrangements.s1, airr_rearrangements_2))

#Complete workflow
#set paths of cellranger directories containing
#also the airr_rearrangements.tsv file
VDJ.out.directory.list <- list()
VDJ.out.directory.list[[1]] <- c("~/cellrangerVDJ/s1")
VDJ.out.directory.list[[2]] <- c("~/cellrangerVDJ/s2")

GEX.out.directory.list <- list()
GEX.out.directory.list[[1]] <- c("~/cellrangerGEX/s1")
GEX.out.directory.list[[2]] <- c("~/cellrangerGEX/s2")
#Run VGM with GEX and VDJ integration
VGM <- VDJ_GEX_matrix(VDJ.out.directory.list = VDJ.out.directory.list,
GEX.out.directory.list = GEX.out.directory.list,
GEX.integrate = TRUE, VDJ.combine = TRUE, integrate.GEX.to.VDJ = TRUE
, integrate.VDJ.to.GEX = TRUE,
get.VDJ.stats = FALSE, trim.and.align = FALSE)
#Generate AIRR compatible table supplemented by GEX information
airr.list.out <- PlatypusDB_VGM_to_AIRR(VGM = VGM,
VDJ.features.to.append = c("VDJ_sequence_nt_trimmed","VJ_sequence_nt_trimmed"),
GEX.features.to.append = c("UMAP_1","UMAP_2","CTLA4", "TOX"),
airr.rearrangements = c("~/cellrangerVDJ/s1/airr_rearrangement.tsv"
,"~/cellrangerVDJ/s2/airr_rearrangement.tsv"))

#To save a dataframe as .tsv
write.table(airr_dataframe, file = "supplemented_airr_rearrangements.tsv"
, sep='\t', row.names = FALSE, quote=FALSE)

End(Not run)

PlatypusML_balance Secondary ML for crossvalidation

Description

This PlatypusML_classification function takes as input encoded features obtained using the Platy-
pusML_extract_features function. The function runs cross validation on a specified number of folds

126 PlatypusML_classification

for different classification models and reports the AUC scores and ROC curves.

Usage

PlatypusML_balance(matrix, label.1, label.2, proportion, random.seed)

Arguments

matrix Matrix. Output of the PlatypusML_extract_features function, with the last col-
umn storing the label.

label.1 String. The label of the first class.

label.2 String. The label of the second class.

proportion Vector of size 2 (floats between 0 and 1 that need to sum up to 1). Specifies the
proportions for the two classes. The smaller proportion will be assigned to the
minority class by default.

random.seed Integer. The seed to be set when sampling for balancing the dataset.

Value

This function returns a matrix containing equal number of samples for the two classes.

Examples

Not run:
TODO: example

End(Not run)

PlatypusML_classification

Core ML for crossvalidation

Description

This PlatypusML_classification function takes as input encoded features obtained using the Platy-
pusML_extract_features function. The function runs cross validation on a specified number of folds
for different classification models and reports the AUC scores and ROC curves.

Usage

PlatypusML_classification(features, cv.folds, balancing, proportion)

PlatypusML_feature_extraction_GEX 127

Arguments

features Matrix. Output of the PlatypusML_extract_features function, containing the
desired label in the last column.

cv.folds Integer. The number of folds to be used in cross validation

balancing Boolean. Whether to perform class balancing. Defaults to TRUE.

proportion Vector of size 2 (floats between 0 and 1 that need to sum up to 1). Specifies the
proportions for the two classes. The smaller proportion will be assigned to the
minority class by default. Defaults to c(0.5,0.5).

Value

This function returns a list containing [["combined"]] summary plot with ROC & confusion matri-
ces, [["ROC"]] the ROC curve, [["confusion"]] confusion matrices for each classifier.

Examples

Not run:
To classify and obtain the performance of different models,
using extracted and encoded features.

#extract features
features_VDJ_GP33_binder <- PlatypusML_feature_extraction_VDJ(VGM = VGM,
which.features = c("VDJ_cdr3s_nt"),
which.encoding = c("kmer"),
parameters.encoding.nt = c(3),
which.label = "GP33_binder")

#classify
classifier_GP33_binder <- classification(features = features_VDJ_GP33_binder,
cv.folds = 5,
balancing = TRUE)

#view summary
classifier_GP33_binder$combined

End(Not run)

PlatypusML_feature_extraction_GEX

Extraction of features from GEX matrix of VGM

Description

This PlatypusML_feature_extraction_GEX function takes as input specified features from the sec-
ond output of the VDJ_GEX_matrix function and encodes according to the specified strategy. The
function returns a matrix containing the encoded extracted features as columns and the different
cells as rows. This function should be called as a first step in the process of modeling the VGM data
using machine learning.

128 PlatypusML_feature_extraction_GEX

Usage

PlatypusML_feature_extraction_GEX(
VGM,
encoding.level,
unique.sequence,
which.features,
n.PCs,
which.label,
problem,
verbose.classes,
platypus.version

)

Arguments

VGM output of the VDJ_GEX_matrix function, containing both VDJ and GEX ob-
jects.

encoding.level String. Specifies on which level the features will be extracted. There are three
possible options: "clone" (one random sample per clone), "clone.avg" (aver-
age expression per clone), "unique.sequence" (selecting only unique sequences
based on a specified sequence (in the unique.sequence argument)). Defaults to
"clone.avg".

unique.sequence

String. Needs to be specified only when encoding.level is set to "unique.sequence".
The name of the sequence on which unique selection should be based on. De-
faults to "VDJ_cdr3s_aa".

which.features String. Information on which GEX features should be encoded. Options are
"varFeatures" (the 1000 most variable features obtained by Seurat::FindVariableFeatures)
or "PCs" (the top n PCs, number of PCs to be defined in n.PCs). Defaults to
"PCs".

n.PCs Integer. Number of PCs to be used if choosing which.features == "PCs". Max
50. Defaults to 20.

which.label String. The name of the column in VGM[[2]] which will be appended to the
encodings and used as a label in a chosen ML model later. The label has to be a
binary label. If missing, no label will be appended to the encoded features.

problem String ("classification" or "regression"). Whether the return matrix will be used
in a classification problem or a regression one. Defaults to "classification".

verbose.classes

Boolean. Whether to display information on the distribution of samples between
classes. Defaults to TRUE. For this parameter to be set to TRUE, classification
must all be set to TRUE (default).

platypus.version

This function works with "v3" only, there is no need to set this parameter.

PlatypusML_feature_extraction_VDJ 129

Value

A dataframe containing the encoded features and its label, each row corresponding to a different
cell. The label can be found in the last column of the dataframe returned. If which.label="NA" only
the encoded features are returned.

Examples

Not run:
To return the encoded gene expression in form of the 20 PCs at the clone level
(average expression per clone).
Attaching the "GP33_binder" label to be used in downstream ML models.

features_PCs_GP33_binder <- PlatypusML_feature_extraction_GEX(
VGM = VGM,
encoding.level = "clone.avg",
which.features = "PCs",
n.PCs = 20,
which.label = "GP33_binder")

To return the encoded gene expression in form of the 1000 most variable features
(genes) at the clone level.
Attaching the "GP33_binder" label to be used in downstream ML models.

features_varFeatures_GP33_binder <- PlatypusML_features_extraction_GEX(
VGM = VGM,
encoding.level = "clone",
which.features = "varFeatures",
which.label = "GP33_binder")

End(Not run)

PlatypusML_feature_extraction_VDJ

Extraction of features from VDJ table of VGM

Description

This PlatypusML_feature_extraction function takes as input specified features from the first output
of the VDJ_GEX_matrix function and encodes according to the specified strategy. The function
returns a matrix containing the encoded extracted features in the order specified in the input as
columns and the different cells as rows. This function should be called as a first step in the process
of modeling the VGM data using machine learning.

Usage

PlatypusML_feature_extraction_VDJ(
VGM,
which.features,

130 PlatypusML_feature_extraction_VDJ

which.encoding,
encoding.level,
unique.sequence,
parameters.encoding.nt,
parameters.encoding.aa,
which.label,
problem,
verbose.classes,
platypus.version

)

Arguments

VGM VGM output of the VDJ_GEX_matrix function
which.features String vector. Information on which columns of the VDJ input the function

should encode
which.encoding String vector of size 2. Defaults to ’onehot’. Information on which encoding

strategy to be used for the two types of sequences: the first entry of the vector
corresponds to the nucleotide type of encoding and the second one to the amino
acid type of encoding. If one type of sequence is not among the Other possible
values for amino acid sequences are ’kmer’, ’blosum’, ’dc’, ’tc’ or ’topoPCA’
and for nucleotide sequences ’kmer’.

encoding.level String. Specifies on which level the features will be extracted. There are three
possible options: "cell" (all available), "clone" (one unique sample per clone),
"unique.sequence" (selecting only unique sequences based on a specified se-
quence (int he unique.sequence argument)). It defaults to cell.

unique.sequence

String. Needs to be specified only when encoding.level is set to "unique.sequence".
The name of the sequence on which unique selection should be based on.

parameters.encoding.nt

List. Parameters to be used for encoding, if the chosen encoding requires it.
’onehot’ -> no parameters necessary, defaults to NULL ’kmer’ -> one parameter
necessary to set the length of the subsequence, defaults to 3

parameters.encoding.aa

List. Parameters to be used for encoding, if the chosen encoding requires it.
’onehot’, ’dc’, ’tc’ -> no parameters necessary, defaults to NULL ’kmer’ -> one
parameter necessary to set the length of the subsequence, defaults to 3 ’blosum’
-> two parameters necessary: k (The number of selected scales (i.e. the first k
scales) derived by the substitution matrix. This can be selected according to the
printed relative importance values.) and lag (The lag parameter. Must be less
than the amino acids.). They default to (5, 7). ’topoPCA’ -> three parameters
necessary: index (Integer vector. Specify which molecular descriptors to select
from the topological descriptors), pc (Integer. Number of principal components.
Must be no greater than the number of amino acid properties provided.) and
lag(The lag parameter. Must be less than the amino acids.). They default to
(c(1:78),5,7).

which.label String. The name of the column in VDJ which will be used as a label in a chosen
model later. If missing, no label will be appended to the encoded features.

select.top.clone 131

problem String ("classification" or "regression"). Whether the return matrix will be used
in a classification problem or a regression one. Defaults to "classification".

verbose.classes

Boolean. Whether to display information on the distribution of samples between
classes. Defaults to TRUE. For this parameter to be set to TRUE, classification
must all be set to TRUE (default).

platypus.version

This function works with "v3" only, there is no need to set this parameter.

Value

A dataframe containing the encoded features and its label, each row corresponding to a different
cell. The encodings are ordered as they have been entered in the ’which.features’ parameter. The
label can be found in the last column of the dataframe returned.

Examples

Not run:
To return the encoded 'VDJ_cdr3s_nt' sequences using 3mer encoding for nt sequences.
Attaching the "GP33_binder" label to be used in downstream ML models.

features_VDJ_GP33_binder <- PlatypusML_feature_extraction_VDJ(VGM = VGM,
which.features = c("VDJ_cdr3s_nt"),
which.encoding = c("kmer"),
parameters.encoding.nt = c(3),
which.label = "GP33_binder")

End(Not run)

select.top.clone Get the index of top ranking clones.

Description

Get the index of top ranking clones.

Usage

select.top.clone(clonotypes, top.n)

Arguments

clonotypes The output "clonotypes" dataframe from simulation output.

top.n The top n abundant clones to be selected.

Value

a vector of indexes of top ranking clones

132 Spatial_celltype_plot

small_vgm Small VDJ GEX matrix (VGM) for function testing purposes

Description

Small VDJ GEX matrix (VGM) for function testing purposes

Usage

small_vgm

Format

An object of class list of length 5.

References

R package Platypus : https://doi.org/10.1093/nargab/lqab023

Spatial_celltype_plot Plotting celltype assign to cell according to their phenotype on the
spatial image.

Description

Plotting celltype assign to cell according to their phenotype on the spatial image.

Usage

Spatial_celltype_plot(
sample_names,
bcs_merge,
images_tibble,
vgm_GEX,
title,
size,
legend_title,
unclassified_cells = c(TRUE, FALSE),
specific_celltype = c("T", "B", "No", "Unclassified"),
density = c(TRUE, FALSE)

)

Spatial_cluster 133

Arguments

sample_names Character vector containing the name of the sample.

bcs_merge Data frame containing imagerow, imagecol and barcode of the cells belonging to
the spatial image. It can also be created by the function scaling_spatial_image_parameter
by selecting the output parameter 10.

images_tibble Tbl-df containing the sample name, grob, height and width of the spatial im-
age. It can also be created by the function scaling_spatial_image_parameter by
selecting the output parameter 5.

vgm_GEX Data frame containing GEX information (VGM[[2]]). It must have a barcode
column containing GEX_barcode and a cell.state column (output from GEX_phenotype).

title Character vector to name the plot.

size Number, to define the size of the text, default = 15.

legend_title Character vector to name the legend scale.
unclassified_cells

Booleans, if TRUE the unclassified cells are also plot and if FALSE they aren’t
plot exept if the parameter specific_celltype = "Unclassified". In this case the
unclassified cells are displayed even unclassified_cells = FALSE. Default =
FALSE.

specific_celltype

Character vector, the user can choose to express a specific celltype like T, B or
Unclassified cells. Default = No.

density Booleans, if TRUE a density map is made. Default = FALSE

Value

Returns a ggplot of the celltypes and if density = TRUE a density map of the cells on the spatial
image.

Examples

Not run:
Spatial_celltype_plot(bcs_merge = scaling_parameters[[10]],
vgm_GEX = vgm_spatial$GEX@meta.data,images_tibble = scaling_parameters[[5]],
sample_names = sample_names,title="B and T celltype", legend_title = "Celltype",
unclassified_cells = FALSE, specific_celltype = "Unclassified")

End(Not run)

Spatial_cluster Plotting clusters of cells by choosing between 10X Genomics cluster-
ing or reclustering the cells.

Description

Plotting clusters of cells by choosing between 10X Genomics clustering or reclustering the cells.

134 Spatial_cluster

Usage

Spatial_cluster(
cluster = c("GEX_cluster", "reclustering"),
GEX.out.directory.list,
vgm_VDJ,
vgm_cluster,
sample_names,
bcs_merge,
images_tibble,
title,
size,
legend_title

)

Arguments

cluster Character vector to describe the clustering, "GEX_cluster" is for plotting 10X
Genomics clustering and "reclustering" is for reclustering the cells according to
the given subset.

GEX.out.directory.list

Character vector that give the path to filtered_feature_bc_matrix data.

vgm_VDJ Data frame containing cell of interest and x and y coordinates and GEX_barcode.

vgm_cluster Data frame containing GEX barcode and cluster given by 10X Genomics. Only
needed if cluster parameter is set to "GEX_cluster".

sample_names Character vector containing the name of the sample.

bcs_merge Data frame containing imagerow, imagecol and barcode of the cells belonging to
the spatial image. It can also be created by the function scaling_spatial_image_parameter
by selecting the output parameter 10.

images_tibble Tbl-df containing the sample name, grob, height and width of the spatial im-
age. It can also be created by the function scaling_spatial_image_parameter by
selecting the output parameter 5.

title Character vector to name the plot.

size Number, to define the size of the text, default = 15.

legend_title Character vector to name the legend scale.

Value

If plotting = TRUE, returns a list containing [[1]] the plot of the selected cells according to their
group, [[2]] a data frame that contains the column seurat_clusters with the new cluster. If plotting
= FALSE, it returns just the data frame.

Examples

Not run:
#Clustering of whole cells regardless of cell type
GEX_cluster_B_cells<-Spatial_cluster(cluster = "GEX_cluster",

Spatial_density_plot 135

vgm_cluster = vgm_with_simulated_VDJ$spatial$cluster[[1]],
vgm_VDJ = vgm_with_simulated_VDJ$VDJ,
GEX.out.directory.list = GEX.out.directory.list[[1]],images_tibble=scaling_parameters[[5]],
bcs_merge=scaling_parameters[[10]], title = "B cells",
sample_names = sample_names, legend_title = "GEX clusters")
GEX_cluster_B_cells[[1]]

#Reclustering with only B cells
reclustering_B_cells<-Spatial_cluster(cluster = "reclustering",
vgm_VDJ = vgm_with_simulated_VDJ$VDJ,
GEX.out.directory.list = GEX.out.directory.list[[1]],
images_tibble=scaling_parameters[[5]],bcs_merge=scaling_parameters[[10]],
title = "B cells", sample_names = sample_names, legend_title = "Reclustering")
reclustering_B_cells[[1]]

End(Not run)

Spatial_density_plot Plotting the contour density of selected cells or of all cells.

Description

Plotting the contour density of selected cells or of all cells.

Usage

Spatial_density_plot(
sample_names,
bcs_merge,
images_tibble,
vgm_VDJ,
title,
size

)

Arguments

sample_names Character vector containing the name of the sample.

bcs_merge Data frame containing imagerow, imagecol and barcode of the cells belonging to
the spatial image. It can also be created by the function scaling_spatial_image_parameter
by selecting the output parameter 10.

images_tibble Tbl-df containing the sample name, grob, height and width of the spatial im-
age. It can also be created by the function scaling_spatial_image_parameter by
selecting the output parameter 5.

vgm_VDJ Data frame containing all the data on the cell. It must contain the column clono-
type_id which describes the number of the clonotype to which the cell belongs.
This data frame can be obtained by the assignment functions (VDJ_assignment_random_based,
VDJ_assignment_density_based and VDJ_assignment_germline_based).

136 Spatial_evolution_of_clonotype_plot

title Character vector to name the plot.

size Number, to define the size of the text, default = 15.

Value

Returns a plot of cell contour density on the spatial image.

Examples

Not run:
#Assignment density-based
density_BCR_assignment<-Spatial_VDJ_assignment(GEX_matrix = GEX_matrix,
vgm = vgm_with_simulated_VDJ,
vgm_VDJ = vgm_with_simulated_VDJ$VDJ, celltype = "B",
simulated_VDJ = simulated_B_cells_VDJ,
method = "density")
vgm_with_simulated_VDJ$VDJ<-density_BCR_assignment

top_1_VDJ_BCR_density_data<-Spatial_selection_expanded_clonotypes(
nb_clonotype = 1, vgm_VDJ = vgm_with_simulated_VDJ$VDJ)

p_spatial_BCR_density_clonotype_density<-Spatial_density_plot(
vgm_VDJ = top_1_VDJ_BCR_density_data,
images_tibble = scaling_parameters[[5]],
bcs_merge = scaling_parameters[[10]],sample_names = sample_names,
title = "B cell density assignment")
p_spatial_BCR_density_clonotype_density

End(Not run)

Spatial_evolution_of_clonotype_plot

Plotting the phylogenetic network of a clonotype based on the somatic
hypermutations of the immune repertoire sequences on a spatial im-
age.

Description

Plotting the phylogenetic network of a clonotype based on the somatic hypermutations of the im-
mune repertoire sequences on a spatial image.

Usage

Spatial_evolution_of_clonotype_plot(
simulation = c(TRUE, FALSE),
AbForest_output,
VDJ,
nb_clonotype,
simulated_VDJ,

Spatial_evolution_of_clonotype_plot 137

tracking_type = c("closest", "all"),
sample_names,
bcs_merge,
images_tibble,
title,
size,
legend_title

)

Arguments

simulation Logical operator, to describe which type of data we want to plot, TRUE if the
data are output of Echidna simulation and FALSE if the we use real dataset.

AbForest_output

Igraph of phylogenetic tree of a clonotype of interest found in the large list
output from AntibodyForest function, only needed if we use real dataset.

VDJ Data frame containing VDJ information, found in the vgm made by platypus. It
must have x and y coordinates column and the column containing the factor to
plot.

nb_clonotype Numeric, value which designates the clonotype we want to study if we use sim-
ulated data (Echidna output).

simulated_VDJ Large list, output of Echidna simulate_repertoire function. Only needed if we
use simulated data.

tracking_type Integer, to define how daughter cells are linked to mother cells.If "all" parameter
it means that each daughter cell is link by all these potential mother cells and
if "closest" parameter, only closest potential mother cell is link to the daughter
cell.

sample_names Character vector containing the name of the sample.

bcs_merge Data frame containing imagerow, imagecol and barcode of the cells belonging to
the spatial image. It can also be created by the function scaling_spatial_image_parameter
by selecting the output parameter 10.

images_tibble Tbl-df containing the sample name, grob, height and width of the spatial im-
age. It can also be created by the function scaling_spatial_image_parameter by
selecting the output parameter 5.

title Character vector to name the plot.

size Number, to define the size of the text, default = 15.

legend_title Character vector to name the legend scale.

Value

Plot of phylogenetic network of a clonotype of interest.

Examples

Not run:
Spatial_evolution_of_clonotype_plot(simulation = FALSE,

138 Spatial_marker_expression

tracking_type = "closest",AbForest_output = forest$s1$clonotype10,VDJ=vgm$VDJ,
sample_names = sample_names, images_tibble = scaling_parameters[[5]],
bcs_merge = scaling_parameters[[10]],
title = "Tracking evolution of clonotype 10", legend_title = "nb of SHM")

Spatial_evolution_of_clonotype_plot(simulation = FALSE,tracking_type = "all",
AbForest_output = forest$s1$clonotype10,VDJ=vgm$VDJ,
sample_names = sample_names, images_tibble = scaling_parameters[[5]],
bcs_merge = scaling_parameters[[10]],
title = "Tracking evolution of clonotype 10", legend_title = "nb of SHM")

Spatial_evolution_of_clonotype_plot(simulation = TRUE,tracking_type = "closest",
nb_clonotype = 11 ,simulated_VDJ = simulated_B_cells_VDJ,
VDJ =vgm_with_simulated_VDJ$VDJ,bcs_merge = bcs_merge,
images_tibble = scaling_parameters[[5]],title = "B cell density",
legend_title = "nb_of_SHM",sample_names=sample_names)

Spatial_evolution_of_clonotype_plot(simulation = TRUE,tracking_type = "all",
nb_clonotype = 11 ,simulated_VDJ = simulated_B_cells_VDJ,
VDJ =vgm_with_simulated_VDJ$VDJ,bcs_merge = bcs_merge,
images_tibble = scaling_parameters[[5]],title = "B cell density",
legend_title = "nb_of_SHM",sample_names=sample_names)

End(Not run)

Spatial_marker_expression

Plotting a gene of interest in selected cells on the spatial image.

Description

Plotting a gene of interest in selected cells on the spatial image.

Usage

Spatial_marker_expression(
sample_names,
bcs_merge,
images_tibble,
matrix,
marker,
GEX_barcode,
title,
threshold,
size

)

Spatial_marker_expression 139

Arguments

sample_names Character vector containing the name of the sample.

bcs_merge Data frame containing imagerow, imagecol and barcode of the cells belonging to
the spatial image. It can also be created by the function scaling_spatial_image_parameter
by selecting the output parameter 10.

images_tibble Tbl-df containing the sample name, grob, height and width of the spatial im-
age. It can also be created by the function scaling_spatial_image_parameter by
selecting the output parameter 5.

matrix Data frame containing all the genes detected per cells. This data frame can be
obtained by the scaling_parameters functions.

marker Character vector containing the name of a gene of interest.

GEX_barcode Character vector containing the GEX barcode of the cell of interest with the -1
at the end

title Character vector to name the plot.

threshold Number, to define the threshold. If threshold = No, plot of the module and if
threshold is a number, plot show the cells above the threshold.

size Number, to define the size of the text, default = 15.

Value

Returns a plot of the level of expression of a gene in cells.

Examples

Not run:
GEX_BCR_barcode<-vgm_with_simulated_VDJVDJGEX_barcode
GEX_BCR_barcode<-paste0(GEX_BCR_barcode,"-1") #Add -1 at the end of each barcode
#Without expression threshold
Spatial_marker_expression(matrix=scaling_parameters[[9]],
marker="CD3E",bcs_merge=scaling_parameters[[10]],
images_tibble=scaling_parameters[[5]],
GEX_barcode=GEX_BCR_barcode,sample_names=sample_names, title = "B cells",
threshold = "No")

#With expression threshold
Spatial_marker_expression(matrix=scaling_parameters[[9]],
marker="CD3E",bcs_merge=scaling_parameters[[10]],
images_tibble=scaling_parameters[[5]],
GEX_barcode=GEX_BCR_barcode,sample_names=sample_names, title = "B cells",
threshold = 5)

End(Not run)

140 Spatial_module_expression

Spatial_module_expression

Plotting the expression of a gene module on the spatial image with or
without a threshold.

Description

Plotting the expression of a gene module on the spatial image with or without a threshold.

Usage

Spatial_module_expression(
sample_names,
gene.set,
GEX.out.directory.list,
bcs_merge,
images_tibble,
title,
size,
threshold,
legend_title

)

Arguments

sample_names Character vector containing the name of the sample.

gene.set Charcter vector containing the markers name.
GEX.out.directory.list

Character vector that give the path to filtered_feature_bc_matrix data.

bcs_merge Data frame containing imagerow, imagecol and barcode of the cells belonging to
the spatial image. It can also be created by the function scaling_spatial_image_parameter
by selecting the output parameter 10.

images_tibble Tbl-df containing the sample name, grob, height and width of the spatial im-
age. It can also be created by the function scaling_spatial_image_parameter by
selecting the output parameter 5.

title Character vector to name the plot.

size Number, to define the size of the text, default = 15.

threshold Number, to define the threshold. If threshold = No, plot of the module and if
threshold is a number, plot show the cells above the threshold.

legend_title Character vector to name the legend scale.

Value

Returns a ggplot of gene module expression.

Spatial_nb_SHM_compare_to_germline_plot 141

Examples

Not run:
gene.set <- list() # make empty list
gene.set[[1]] <- c("CD19","XBP1","SDC1") # put gene set in list

#Without expression threshold
Spatial_module_expression(sample_names = sample_names,gene.set = gene.set,
GEX.out.directory.list = GEX.out.directory.list[[1]],bcs_merge = scaling_parameters[[10]],
images_tibble = scaling_parameters[[5]], threshold = "No")

#With expression threshold
Spatial_module_expression(sample_names = sample_names,gene.set = gene.set,
GEX.out.directory.list = GEX.out.directory.list[[1]],bcs_merge = scaling_parameters[[10]],
images_tibble = scaling_parameters[[5]], threshold = 1)

End(Not run)

Spatial_nb_SHM_compare_to_germline_plot

Plotting number of somatic hypermutation of clones compare to the
germline sequence of the clonotype.

Description

Plotting number of somatic hypermutation of clones compare to the germline sequence of the clono-
type.

Usage

Spatial_nb_SHM_compare_to_germline_plot(
simulation = c(TRUE, FALSE),
vgm_VDJ,
AbForest_output,
nb_clonotype,
simulated_VDJ,
sample_names,
bcs_merge,
images_tibble,
title,
size,
legend_title

)

Arguments

simulation Logical operator, to describe which type of data we want to plot, TRUE if the
data are output of Echidna simulation and FALSE if the we use real dataset.

vgm_VDJ Data frame containing cell of interest and x and y coordinates and GEX_barcode.

142 Spatial_scaling_parameters

AbForest_output

Igraph of phylogenetic tree of a clonotype of interest found in the large list
output from AntibodyForest function, only needed if we use real dataset.

nb_clonotype Numeric, value which designates the clonotype we want to study if we use sim-
ulated data (Echidna output).

simulated_VDJ Large list, output of Echidna simulate_repertoire function. Only needed if we
use simulated data.

sample_names Character vector containing the name of the sample.

bcs_merge Data frame containing imagerow, imagecol and barcode of the cells belonging to
the spatial image. It can also be created by the function scaling_spatial_image_parameter
by selecting the output parameter 10.

images_tibble Tbl-df containing the sample name, grob, height and width of the spatial im-
age. It can also be created by the function scaling_spatial_image_parameter by
selecting the output parameter 5.

title Character vector to name the plot.

size Number, to define the size of the text, default = 15.

legend_title Character vector to name the legend scale.

Value

Spatial plot with cells colored by number of somatic hypermutation

Examples

Not run:
Spatial_nb_SHM_compare_to_germline_plot(simulation = FALSE,
AbForest_output=forest[[1]][[2]], vgm_VDJ = vgm$VDJ,
images_tibble = scaling_parameters[[5]],bcs_merge = scaling_parameters[[10]],
sample_names = sample_names,
title = "Number of SHM of clonotype 10", legend_title = "nb of SHM")

End(Not run)

Spatial_scaling_parameters

Scaling of the spatial parameters to be able to express the gene expres-
sion on the spatial image.

Description

Scaling of the spatial parameters to be able to express the gene expression on the spatial image.

Usage

Spatial_scaling_parameters(vgm_spatial, GEX.out.directory.list, sample_names)

Spatial_selection_expanded_clonotypes 143

Arguments

vgm_spatial List containing the output of VDJ_GEX_matrix function from Platypus with at
least the gene expression data and the addition of spatial parameters: image,
scalefacor, tissue, cluster and matrix.

GEX.out.directory.list

Path to the filtered feature bc matrix data.

sample_names Character vector containing the name of the sample.

Value

Returns a list containing all parameters to scale the data on the spatial image. List element [[1]]:
images_cl. List element [[2]]: height of the image. List element [[3]]: width of the image. List
element [[4]]: grobs. List element [[5]]: images_tibble. List element [[6]]: scales. List element
[[7]]: cluster. List element [[8]]: bcs. List element [[9]]: matrix. List element [[10]]: bcs_merge.

Examples

Not run:
scaling_parameters<-Spatial_scaling_parameters(vgm_spatial = vgm_spatial,
GEX.out.directory.list = GEX.out.directory.list,
sample_names = sample_names)

End(Not run)

Spatial_selection_expanded_clonotypes

Selection of VGM[[1]]/VDJ data of the x more expanded clonotypes.

Description

Selection of VGM[[1]]/VDJ data of the x more expanded clonotypes.

Usage

Spatial_selection_expanded_clonotypes(nb_clonotype, vgm_VDJ)

Arguments

nb_clonotype Number that describes how many clonotypes we want to extract from the VGM[[1]].

vgm_VDJ Data frame containing VDJ information, found in the vgm made by platypus. It
must have x and y coordinates column and the column containing the factor to
plot.

Value

Returns a data frame with only the data belonging to the number of selected clonotypes. The
clonotypes being the most expanded ones.

144 Spatial_selection_of_cells_on_image

Examples

Not run:
top_5_VDJ_data<-Spatial_selection_expanded_clonotypes(nb_clonotype = 5, vgm_VDJ = vgm$VDJ)

End(Not run)

Spatial_selection_of_cells_on_image

Allows to select an area on the spatial image and to isolate the cells
expressed on this part and repeat this process several times.

Description

Allows to select an area on the spatial image and to isolate the cells expressed on this part and repeat
this process several times.

Usage

Spatial_selection_of_cells_on_image(
vgm_VDJ,
alpha,
bcs_merge,
images_tibble,
sample_names,
nbpoints,
title,
size,
plotting

)

Arguments

vgm_VDJ Data frame containing all the data on the cell. It must contain the column clono-
type_id which describes the number of the clonotype to which the cell belongs.
This data frame can be obtained by the assignment functions (VDJ_assignment_random_based,
VDJ_assignment_density_based and VDJ_assignment_germline_based).

alpha Number that give the transparency coefficient (value between 0 and 1). If it is
not given it will automatically be 0.

bcs_merge Data frame containing imagerow, imagecol and barcode of the cells belonging to
the spatial image. It can also be created by the function scaling_spatial_image_parameter
by selecting the output parameter 10.

images_tibble Tbl-df containing the sample name, grob, height and width of the spatial im-
age. It can also be created by the function scaling_spatial_image_parameter by
selecting the output parameter 5.

sample_names Character vector containing the name of the sample.

Spatial_VDJ_assignment 145

nbpoints Numerical value that limite the maximum number of mouse click for the selec-
tion, default = 100.

title Character vector to name the plot.

size Number, to define the size of the text, default = 15.

plotting Character vector to return (TRUE) or not (FALSE) the plot of the selection

Value

If plotting = TRUE, returns a list containing [[1]] the plot of the selected cells according to their
group, [[2]] a data frame that contains all the cells but the selected cells are distinguished. If plotting
= FALSE it juste returns the dataframe.

Examples

Not run:
test<-Spatial_selection_of_cells_on_image(
vgm_VDJ = vgm_spatial_simulatedVDJB_cells$random_BCR_assignment,
images_tibble = scaling_parameters[[5]],
bcs_merge = scaling_parameters[[10]],sample_names = sample_names,
plotting = TRUE)

End(Not run)

Spatial_VDJ_assignment

Assign simulated immune repertoire sequences (BCR or TCR) simu-
lated by Echidna to transcriptome and location in a spatial image in
function of cell type.

Description

Assign simulated immune repertoire sequences (BCR or TCR) simulated by Echidna to transcrip-
tome and location in a spatial image in function of cell type.

Usage

Spatial_VDJ_assignment(
GEX_matrix,
vgm,
vgm_VDJ,
celltype,
simulated_VDJ,
method = c("random", "density", "germline")

)

146 Spatial_VDJ_plot

Arguments

GEX_matrix Dataframe containing barcode, imagecol and imagerow from bcs_merge.

vgm Output of VDJ_GEX_matrix function with already the simulated VDJ data.

vgm_VDJ Dataframe from VDJ_GEX_matrix output (vgm[[1]]).

celltype Character designating the cell type that we want to study either "B" or "T".

simulated_VDJ Large list, output of Echidna simulate_repertoire function. Only needed if we
use simulated data.

method Character to chose the assignment method of BCR or TCR to transcriptomic
information, it can be "random", "density" or "germline".

Value

A dataframe corresponding to the VDJ (VGM[[1]]) with GEX_barcode and x, y coordinates column
(allowing to localise each BCR or TCR on the spatial image).

Examples

Not run:
#1)Assignment random to GEX
random_BCR_assignment <- Spatial_VDJ_assignment(GEX_matrix = GEX_matrix,
vgm = vgm_with_simulated_VDJ,
vgm_VDJ = vgm_with_simulated_VDJ$VDJ, celltype = "B",
simulated_VDJ = simulated_B_cells_VDJ, method = "random")

#2)Assignment density-based
density_BCR_assignment<-Spatial_VDJ_assignment(GEX_matrix = GEX_matrix,
vgm = vgm_with_simulated_VDJ,
vgm_VDJ = vgm_with_simulated_VDJ$VDJ, celltype = "B",
simulated_VDJ = simulated_B_cells_VDJ, method = "density")

#3)Assignment germline-based
germline_BCR_assignment<-Spatial_VDJ_assignment(GEX_matrix = GEX_matrix,
vgm = vgm_with_simulated_VDJ,
vgm_VDJ = vgm_with_simulated_VDJ$VDJ, celltype = "B",
simulated_VDJ = simulated_B_cells_VDJ, method = "germline")

End(Not run)

Spatial_VDJ_plot Plotting immune repertoire data as clonotype or isotype for cells on a
spatial image.

Description

Plotting immune repertoire data as clonotype or isotype for cells on a spatial image.

Spatial_VDJ_plot 147

Usage

Spatial_VDJ_plot(
sample_names,
bcs_merge,
images_tibble,
title,
size,
legend_title,
vgm_VDJ,
analysis

)

Arguments

sample_names Character vector containing the name of the sample.

bcs_merge Data frame containing imagerow, imagecol and barcode of the cells belonging to
the spatial image. It can also be created by the function scaling_spatial_image_parameter
by selecting the output parameter 10.

images_tibble Tbl-df containing the sample name, grob, height and width of the spatial im-
age. It can also be created by the function scaling_spatial_image_parameter by
selecting the output parameter 5.

title Character vector to name the plot.

size Number, to define the size of the text, default = 15.

legend_title Character vector to name the legend scale.

vgm_VDJ Data frame containing VDJ information, found in the vgm made by platypus. It
must have x and y coordinates column and the column containing the factor to
plot.

analysis Column in the dataframe containing the factor of interest to plot on the spatial
image.

Value

Returns a plot of the factor of interest express on a spatial image.

Examples

Not run:
Spatial_VDJ_plot(vgm_VDJ = top_5_VDJ_data,analysis = top_5_VDJ_data$VDJ_cgene,
images_tibble = scaling_parameters[[5]], bcs_merge = scaling_parameters[[10]],
sample_names = sample_names, title = "B cell", legend = "Isotype")

End(Not run)

148 Spatial_vgm_formation

Spatial_vgm_formation Addition of the spatial information to the VGM matrix, output of
VDJ_GEX_matrix()

Description

Addition of the spatial information to the VGM matrix, output of VDJ_GEX_matrix()

Usage

Spatial_vgm_formation(
vgm,
tissue_lowres_image_path,
scalefactors_json_path,
tissue_positions_list_path,
cluster_path,
matrix_path

)

Arguments

vgm Large list, output of VDJ_GEX_matrix()
tissue_lowres_image_path

Path to file containing the image of the tissue in png format
scalefactors_json_path

Path to a file for converting pixel positions in the original, full-resolution image
to pixel positions in the histological image in json format

tissue_positions_list_path

Path to a text file containing a table with rows that correspond to spots in csv
format

cluster_path Path to 10X Genomic clustering file that is not specific for immune cells, in csv
format

matrix_path Path to the filtered feature barcode matrix containing barcode from fixed list of
known-good barcode sequences in the h5 format

Value

Returns the input VGM matrix (output of VDJ_GEX_matrix()) with an additional list containing
the spatial information.

Examples

Not run:
#Needed spatial files
tissue_lowres_image_path<-list()
tissue_lowres_image_path[[1]]<-c("c:/.../tissue_lowres_image.png")

special_v 149

scalefactors_json_path<-list()
scalefactors_json_path[[1]]<-c("c:/.../scalefactors_json.json")

tissue_positions_list_path<-list()
tissue_positions_list_path[[1]]<-c("c:/.../tissue_positions_list.csv")

cluster_path<-list()
cluster_path[[1]]<-c("c:/.../analysis/clustering/graphclust/clusters.csv")

matrix_path<-list()
matrix_path[[1]]<-c("c:/.../filtered_feature_bc_matrix/filtered_feature_bc_matrix.h5")

#VGM formation with spatial data
vgm_spatial<-Spatial_vgm_formation(vgm = vgm_without_spatial_data_and_VDJ,
tissue_lowres_image_path = tissue_lowres_image_path,
tissue_positions_list_path = tissue_positions_list_path,
scalefactors_json_path = scalefactors_json_path,
cluster_path = cluster_path, matrix_path = matrix_path)

End(Not run)

special_v special_v a dataframe, of heavy and light chain v gene combination
and their probability to be selected for expansion.

Description

special_v a dataframe, of heavy and light chain v gene combination and their probability to be
selected for expansion.

Usage

data("special_v")

Format

An object of class data.frame with 5 rows and 3 columns.

trans_switch_prob_b trans_switch_prob_b The probability for B cell transcriptome states
switching. The row names of the matrix are the cell states the cell
is switching from, the column names are the cells states the cell is
switching to.

150 umap.top.highlight

Description

trans_switch_prob_b The probability for B cell transcriptome states switching. The row names of
the matrix are the cell states the cell is switching from, the column names are the cells states the
cell is switching to.

Usage

data("trans_switch_prob_b")

Format

A 4*4 matrix. The row and clumn names are: "GerminalcenterBcell","NaiveBcell","Plasmacell","MemoryBcell".
The probability for a cell to switch from "GerminalcenterBcell" to "Plasmacell" is the value at
trans_switch_prob_b[1,3].

trans_switch_prob_t trans_switch_prob_t The probability for T cell transcriptome states
switching. The row names of the matrix are the cell states the cell
is switching from, the column names are the cells states the cell is
switching to.

Description

trans_switch_prob_t The probability for T cell transcriptome states switching. The row names of
the matrix are the cell states the cell is switching from, the column names are the cells states the
cell is switching to.

Usage

data("trans_switch_prob_t")

Format

A 7*7 matrix. The row and clumn names are: "NaiveCd4","ActivatedCd4","MemoryCd4","NaiveCd8","EffectorCd8","MemoryCd8","ExhaustedCd8".

umap.top.highlight Set idents for top abundant clones in Seurat object, get ready for high-
light the top abundant clones in UMAP.

Description

Set idents for top abundant clones in Seurat object, get ready for highlight the top abundant clones
in UMAP.

VDJ_abundances 151

Usage

umap.top.highlight(gex, all.contig.annotations, top.n)

Arguments

gex output from get.umap function.
all.contig.annotations

The output dataframe all_contig_annotations from simulation.

top.n The top n abundant clones to be shown in the plot. If missing, all clones will be
shown.

Value

a Seurat object ready for highlight the top abundant clones in UMAP

VDJ_abundances Calculate abundances/counts of specific features for a VDJ dataframe

Description

Calculate the absolute counts or proportions of a specific cell-level feature (column in the VDJ/VDJ.GEX.matrix[[1]]
object), per an optional specific grouping factor (e.g., clonotype via ’clonotype_id’) and an optional
sample factor(e.g., ’sample_id’). Outputs either a count dataframe of the specific feature or a gg-
plot2 barplot.

Usage

VDJ_abundances(
VDJ,
feature.columns,
proportions,
specific.features,
grouping.column,
max.groups,
specific.groups,
sample.column,
VDJ.VJ.1chain,
treat.incomplete.groups,
treat.incomplete.features,
combine.features,
treat.combined.features,
treat.combined.groups,
specific.feature.colors,
output.format

)

152 VDJ_abundances

Arguments

VDJ VDJ or VDJ.GEX.matrix[[1]] object, as obtained from the VDJ_GEX_matrix
function in Platypus.

feature.columns

vector of strings, denoting the columns of the VDJ/VDJ.GEX.matrix[[1]] object
from which to extract the unique feature values (for which we will calculate the
counts or proportions).

proportions string, ’absolute’ will return the absolute counts, ’group.level.proportions’ will
return the counts divided by the total number or elements/values in the spe-
cific groups (group level proportions), ’sample.level.proportions’ will return the
counts divided by the total number of elements in the sample.

specific.features

vector of specific feature values (or NULL) for which to calculate counts/proportions,
from the specified feature.columns parameter (only works if a single feature col-
umn is specified in feature.columns).

grouping.column

string, vector of strings, or ’none’ - represents the column from the VDJ/VDJ.GEX.matrix[[1]]
object by which to group counting process. This is usually the ’clonotype_id’
column to calculate frequencies at the clonotype level. If ’none’, no group-
ing will be done. To group by multiple columns, input the specific columns as
a vector of strings. For example, if feature.columns=’VDJ_cgene’ and group-
ing.column=’clonotype_id’, we will obtain a count dataframe of the frequencies
of each isotype per unique clonotype (per sample if sample.column=’sample_id’).

max.groups integer or NULL, the maximum number of groups for which to count features.
If NULL, it will count for all groups.

specific.groups

vector of strings (or ’none’), if the counting should be done only for specific
groups (e.g., count the frequency of isotype only for clonotypes 1 and 2 if fea-
ture.columns=’VDJ_cgene’, grouping.column=’clonotype_id’ and specific.groups=c(’clonotype1’,
’clonotype2’))

sample.column string, represents the sample column if your VDJ/VDJ.GEX.matrix[[1]] object
has multiple samples (usually ’sample_id’)

VDJ.VJ.1chain boolean, if T will remove aberrant cells (more than 1 VDJ of VJ chain), if F it
will keep them.

treat.incomplete.groups

string, method of dealing with groups which are missing the features in the fea-
ture.columns parameter (e.g., a clonotype which does not have any transcrip-
tomic clusters annotations if feature.columns=’transcript_cluster’).’exclude’ -
excludes groups with no cells for the specific features, ’unknown’ - sets them
as unknown

treat.incomplete.features

string, method of dealing with missing feature values (e.g., a clonotype has sev-
eral NA values for the ’VDJ_cgene’ feature.column - cells with NA values). ’un-
known’ - counted as unknown, ’exclude’ - excludes completely, ’max.global’ -
replaces value by max value of that feature across the repertoire, ’max.group’ -
replaced by the max feature value inside that group, ’proportional’ - iteratively
assigns the missing values to the known groups, keeping the same proportions.

VDJ_alpha_beta_Vgene_circos 153

combine.features

boolean - if T and we have two columns in feature.columns, will combine the
feature values for each cell in the VDJ object, counting them as a single feature
when calculating proportions.

treat.combined.features

string, method of dealing with combined features with missing values. ’exclude’
will be treated similarly to excluding incomplete feature values (excluding them
completely if a single value is missing from the combination), or ’include’ and
will be treated as a new feature value.

treat.combined.groups

string, method of dealing with combined groups with missing values, in case
the grouping.column parameter is a vector of strings. ’exclude’ will exclude
the combined group altogether if a group value is missing/NA. ’include’ will
include such groups in the analysis.

specific.feature.colors

named list of specific colors to be used in the final barplots, for each unique fea-
ture value in the VDJ object’s feature.columns values. For example, if we have a
feature column of binders with unique values=c(’yes’, ’no’), specific.feature.colors=list(’yes’=’blue’,
’no’=’red’) will color them accordingly.

output.format string, either ’plots’ to obtain barplots, ’abundance.df’ to obtain the count dataframe,
or ’abundance.df.list’ to obtain a list of count dataframes, for each sample.

Value

Either a count dataframe with the following columns: group(=unique group value, e.g., ’clono-
type1’ if grouping.column=’clonotype_id’), sample, group_frequency, unique_feature_values, fea-
ture_value_counts, total_feature_names or a barplot of the counts/proportions per feature, per group.

Examples

VDJ_abundances(VDJ = small_vgm[[1]],
feature.columns='VDJ_cgene', proportions='absolute',
grouping.column='clonotype_id', specific.groups='none',
output.format='plot')

VDJ_alpha_beta_Vgene_circos

Produces a Circos plot from the VDJ_analyze output. Connects the
V-alpha with the corresponding V-beta gene for each clonotype.

Description

Produces a Circos plot from the VDJ_analyze output. Connects the V-alpha with the corresponding
V-beta gene for each clonotype.

154 VDJ_alpha_beta_Vgene_circos

Usage

VDJ_alpha_beta_Vgene_circos(
VGM,
V.or.J,
B.or.Tcells,
label.threshold,
c.threshold,
cell.level,
clonotype.per.gene.threshold,
c.count.label,
c.count.label.size,
platypus.version,
filter1H1L,
gene.label,
gene.label.size,
arr.col,
arr.direction,
topX,
platy.theme,
clonotype.column

)

Arguments

VGM The output of the VDJ_GEX_matrix function (VDJ_GEX_matrix.output[[1]])
has to be supplied. For Platypus v2: The output of the VDJ_GEX_integrate
function (Platypus platypus.version v2). A list of data frames for each sample
containing the clonotype information and cluster membership information.

V.or.J Determines whether to plot the alpha beta gene pairing of the V or J genes. "V",
"J" or "both" as possible inputs. Default: "both".

B.or.Tcells Specify whether B or T cells are being analyzed ("B" or "T"). If not specified,
function attempts to decide based on gene names.

label.threshold

Genes are only labeled if the count is larger then the label.threshold. By default
all label.threshold = 0 (all genes are labeled).

c.threshold Only clonotypes are considered with a frequency higher then c.threshold. Al-
lows to filter for only highly expanded clonotypes.

cell.level Logical, defines whether weight of connection should be based on number of
clonotypes of number of cells. Default: number of clonotypes.

clonotype.per.gene.threshold

How many clonotypes are required to plot a sector for a gene. Filters the rows
and colums of the final adjacency matrix.

c.count.label Boolean, lets the user decide if the gene and count labels should be plotted or
not. Default = T.

c.count.label.size

Determines the font size of the gene labels. By default the font size for count
labels is 0.6.

VDJ_alpha_beta_Vgene_circos 155

platypus.version

Which platypus.version of platypus is being used. Default = v3. Set to v3 if
VDJ_GEX_matrix.output[[1]] is used

filter1H1L Whether to filter the input VGM in "v3" to only include cells with 1 VDJ and 1
VJ chain. Defaults to TRUE

gene.label Boolean, lets the user decide if the gene labels should be plotted or not.

gene.label.size

Determines the font size of the gene labels. By default the labelsize is automat-
ically adjusted to 0.7 for labels with two or less digits, 0.6 for labels between 2
and 6 digits, and 0.4 for all longer labels. A manually defined font size will be
the same for all labels!

arr.col Data.frame with three columns where the first two indicate the names of genes,
clonotypes or clusters to be connected, and the third corresponds to the color of
the arrow. Default set to data.frame(c("dummy.clonotype"), c("dummy.cluster"),
c("dummy.color")), so no arrow is drawn.

arr.direction Either 1 or -1 and determines the direction of the arrow. Default=1.

topX Filters for the top X clonotypes and only plots the respective gene combinations
or cluster memberships.

platy.theme Allows plotting in the new "pretty" theme or the older "spiky" theme without
group labels and radial arrangement of gene.labels. Default = "pretty".

clonotype.column

Which column in VGM contains the clonotyping information? Default="clonotype_id_10X".

Value

Returns a circos plot and a list object with the following elememts for N samples: [[1 to N]] The
first N listelements corresponds to the recorded circos plots for N beeing the number or samples in
the VGM. Since Circlize uses the R base plotting funciton, this is not a ggplot object but can still
be replotted by calling the first list element. [[N+1]] Adjacency matrix forwarded to VDJ_circos().
This Matrix contains the counts and can be used for manual replotting using VDJ_circos directly.
[[N+2]] Contains a named list with colors for each connection drawn and can be used for manual
replotting using VDJ_circos directly. [[N+3]] Contains a named list with grouping information and
can be used for manual replotting using VDJ_circos directly.

Examples

Not run:
alpha_beta_VJgene <- VDJ_alpha_beta_Vgene_circos(vgm[[1]])
print circos plot:
alpha_beta_VJgene[[1]]

End(Not run)

156 VDJ_analyze

VDJ_analyze Platypus V2 VDJ processing wrapper.

Description

Platypus V2 Processes and organizes the repertoire sequening data from cellranger vdj and returns
a list of dataframes, where each dataframe corresponds to an individual repertoire. The function
will return split CDR3 sequences, germline gene information, filter out those clones with either
incomplete information or doublets (multiple CDR3 sequences for a given chain). This function
should be called once for desired integrated repertoire and transcriptome. For example, if there
are 3 VDJ libraries and 3 GEX libraries and the goal is to analyze all three GEX libraries together
(e.g. one UMAP/tSNE reduction) this then function should be called one time and the three VDJ
directories should be provided as input to the single function call.

Usage

VDJ_analyze(
VDJ.out.directory,
filter.1HC.1LC,
clonotype.list,
contig.list,
filtered.contigs

)

Arguments

VDJ.out.directory

Character vector with each element containing the path to the output of cell-
ranger vdj runs. Multiple repertoires to be integrated in a single transcriptome
should be supplied as multiple elements of the character vector. This can be left
blank if supplying the clonotypes and contig files directly as input. This pipeline
assumes that the output file names have not been changed from the default 10x
settings in the /outs/ folder. This is compatible with B and T cell repertoires
(both separately and simultaneously).

filter.1HC.1LC Logical indicating whether only those clones containing 1 VH/TRB and VL/TRA
should be maintined for furhter analysis. Default is set to TRUE, which restricts
the analysis to only clones with exactly 1 heavy chain and 1 light chain (or 1
beta + 1 alpha in the case of T cells).

clonotype.list List of dataframes containing clonotyping information for each repertoire. The
column names should correspond to the clonotypes.csv file from cellranger vdj
output.

contig.list List of dataframes containing the contig information for each repertoire. The
column names should correspond to the all_contigs.csv file from cellranger vdj
output.

VDJ_antigen_integrate 157

filtered.contigs

Logical indicating if the filtered contigs file should be used. TRUE will read
VDJ information from only the filtered output of cellranger. FALSE will read
the all contigs file from cellranger. Default set to TRUE (filtered output)

Value

Returns a list of dataframes where each dataframe corresponds to one input directory. If only one
file is supplied, the output list will only contain one element. This output can be supplied as input to
other functions including VDJ_per_clone, VDJ_network, VDJ_germline_genes, VDJ_expansion,
visualize_clones_GEX, VDJ_phylo, VDJ_clonotype. Germline gene information is based on the
majority of cells within each clonotype. For example, if the majority of cells in clonotype1 have
the IGHG1 isotype then then entire clonal family will be determined as IGHG1. For a cell-specific
investigation, the output of this function can be supplied to the function VDJ_per_clone, which will
provide isotype, sequence, germline gene, etc information for each cell within the each clone.

Examples

Not run:
example.vdj.analyze <- VDJ_analyze(
VDJ.out.directory = "~/path/to/cellranger/vdj/outs/", filter.1HC.1LC = T)

End(Not run)

VDJ_antigen_integrate Integrates antigen-specific information into the
VDJ/VDJ.GEX.matrix[[1]] object

Description

Integrate antigen-specific information from a list of antigen dataframes or antigen csv file paths.
The antigen data should contain either the clonotypes, cell barcodes, or sequences with the specific
column names of the VDJ/VDJ.GEX.matrix[[1]] object. These columns will be used to rematch the
binder information at the cell, sequence, or clonotype level into the main VDJ.GEX.matrix[[1]].

Usage

VDJ_antigen_integrate(
VDJ,
antigen.data.list,
antigen.features,
binder.threshold,
VDJ.VJ.1chain,
match.by,
matching.type,
distance.threshold,
cores,

158 VDJ_antigen_integrate

sample.id,
aberrant.chosen.sequences,
output.format

)

Arguments

VDJ VDJ or VDJ.GEX.matrix[[1]] object, as obtained from the VDJ_GEX_matrix
function in Platypus.

antigen.data.list

list of antigen csv file paths or antigen dataframes for the specific antigen datasets.
To ease matching, the column names by which we will match should be the same
as the column names in the original VDJ/VDJ.GEX.matrix[[1]] object.

antigen.features

vector of columns of antigen features to be integrated from the antigen csv files
into the VDJ/VDJ.GEX.matrix[[1]] object. The vector can also use unique,
short-hand names of the columns to add (e.g., ’affinity’ for ’octet.affinity.[nM]’).

binder.threshold

list or nested list of threshold values and specific features by which to define
binders in the VDJ. For example, if binder.threshold=list(list(’affinity’, 0.2),
list(’elisa’, 0.8)), we will have two new binder columns: binders_affinity if the
values are greater than 0.2, binders_elisa if they are greater than 0.8.

VDJ.VJ.1chain boolean, if T will remove aberrant cells (more than 1 VDJ of VJ chain), if F it
will keep them in the VDJ when matching antigen data.

match.by string, represents the method by which to match the antigen data and inte-
grate it into the VDJ/VDJ.GEX.matrix[[1]] object. ’clonotype’ will match by
’clonotype_id’ (needs to be present in the antigen data), ’clonotype.v3’ will
match by v3 cellranger clonotypes (you need a v3_clonotypes column in the
VDJ/VDJ.GEX.matrix[[1]], ’cdr3.aa’ by VDJ and VJ cdr3s amino acid sequences,
’cdrh3.aa’ by VDJ cdr3s amino acid sequences, ’VDJ.VJ.aa’ by full VDJ and
VJ aa sequences, ’VDJ.VJ.nt’ by trimmed nt VDJ and VJ sequences (must
run VDJ_call_MIXCR first on the VDJ),’cdr3.nt’ by VDJ and VJ cdr3s as nu-
cleotides, ’cdrh3.nt.’ by VDJ cdr3s as nucleotides, ’absolut’ will match the
VDJ_cdr3s_aa with the CDR3 column in Absolut! datasets.

matching.type string, either ’exact’ for exact sequence matching if the match.by parameter is a
sequence type, or ’homology’ for homology matching (matches if the Levehn-
stein distance is less than the distance.threshold parameter).

distance.threshold

integer, maximum string distance value by which to match sequences in the
antigen data and sequences in the VDJ object (to further integrate the antigen
data).

cores Number of cores to use for parallel computations. Defaults to number of avail-
able cores. Setting this parameter is good practice on clusters.

sample.id boolean, if T then will also match by the ’sample_id’ column in the antigen
dataframes.

VDJ_assemble_for_PnP 159

aberrant.chosen.sequences

boolean, if T will add a column of the chosen aberrant sequences (which matched
a sequence in the antigen data) if matching by sequence (and VDJ.VJ.1chain=F).

output.format string, ’vgm’ - returns the full VDJ object, ’dataframe.per.sample’ - list of VDJ
dataframes for each sample.

Value

Either the original VDJ dataframe with additional columns of the antigen features integrated, a list
of VDJ dataframes per sample.

Examples

Not run:
VDJ_antigen_integrate(VDJ,antigen.directory.list=antigen.directory.list,
antigen.feature=c('elisa', 'affinity'),VDJ.VJ.1chain=T,
match.by='clonotype',sample.id=T, output.format='vgm')

End(Not run)

VDJ_assemble_for_PnP Ab sequence assembly for recombinant PnP expression

Description

Assembles sequences from MIXCR output into inserts for expression in PnP cells. For detailes
check https://doi.org/10.1038/ncomms12535 ! ALWAYS VALIDATE INDIVIDUAL SEQUENCE
IN GENEIOUS OR OTHER SOFTWARE BEFORE ORDERING SEQUENCES FOR EXPRES-
SION ! Check notes on column content below ! Only cells with 1 VDJ and 1 VJ sequence are
considered. Warnings are issued if sequences do not pass necessary checks

Usage

VDJ_assemble_for_PnP(
VDJ.mixcr.matrix,
id.column,
species,
manual_IgKC,
manual_2A,
manual_VDJLeader,
write.to.disk,
filename,
verbose

)

160 VDJ_assemble_for_PnP

Arguments

VDJ.mixcr.matrix

Output dataframe from the VDJ_call_MIXCR function or a dataframe generated
using the VDJ_GEX_matrix function and supplemented with MIXCR informa-
tion (Needed columns: All Framework and CDR sequences)

id.column Character. Column name of VDJ.mixcr.matrix to use as ID for the assembled
sequences. Defaults to "barcode"

species Character. Which IgKC sequence to use. Can be "human" or "mouse". Defaults
to "mouse"

manual_IgKC Character. Manual overwrite for sequence used as IgKC.

manual_2A Character. Manual overwrite for sequence used as Furine 2A site.
manual_VDJLeader

Character. Manual overwrite for sequence used as VDJ Leader and signal pep-
tide.

write.to.disk Boolean. Defaults to TRUE. Whether to save assembled sequences to working
directory

filename Character. Output file name for .fasta and .csv files if write.to.disk == T. Defaults
to PnP_assembled_seqs.fasta/.csv

verbose Print runtime message to console. Defaults to FALSE

Value

Returns the input VGM matrix with one additional column containing the assembles sequences.
If write.to.disk == T writes a CSV containing key columns of the VGM as well as a .FASTA file
to the current working director (getwd()) ! Important notes on column content: 1. The column
"seq_length_check" contains either "passed" or "FAILED". If FAILED, this means that at least
one of the sequences (e.g. FRL1) was shorter than 9NTs and therefore considered invalid. Please
check for missing sequences if you find any warnings 2. The column "seq_codon_check" is deemed
"passed" if all CDR and FR input sequences of a cell contain only full codons (i.e. are divisible by
3) 3. The column "PnP_assembled_seqs" contains the assembled sequences / inserts for PnP expres-
sion. These should be validated manually in Geneious or other software and can then be ordered to
be synthesized. 4. The column "PnP_assembled_annotations" contains a string of annotations for
the respective assembled sequence. The structure is | [Sequence element] -> [index (starting from
1) of last nucleotide of the sequence element] ... 5. The column "PnP_assembled_translations"
contains the amino acid translation of the full contig that will result from the assembled insert in the
backbone PnP vector. Please note: the sequences in the PnP_assembled_translation resulted from
pasting the VJ leader sequence (contained in the PnP vector backbone), the PnP_assembled_seqs
(The insert itself) and a surrogate stop codon ATAA. If correct, the translation should only contain
one * (stop codon) at the very end. For reference: VJLeader sequence: ATGGATTTTCAGGT-
GCAGATTTTCAGCTTCCTGCTAATCAGCGCTTCAGTTATAATGTCCCGGGGG 6. The col-
umn "seq_VJCDR3_check" is deemed "passed" if the translated sequence of the input VJ CDR3
is found in the translated assembled sequence. If this test fails, there is likely an issue with the VJ
segment 7. The column "seq_Fur2A_check" is deemed "passed" if correct AA sequence of the 2A
site is found in the translated assembled sequence. If this test fails, and the seq_VJCDR3_test was
passed, there is likely an issue at the border between VJ and IgKC/2A sequences 8. The column
"seq_VDJCDR3_check" is deemed "passed" if the translated sequence of the input VDJ CDR3

VDJ_bulk_to_vgm 161

is found in the translated assembled sequence. 9. The column "seq_splicesite_check" is deemed
passed if the last 6 nucleotides of the assembled sequence are one of the following: "TCCTCA",
"TCTTCA","TCGTCA","TCATCA".

Examples

Not run:

VGM_with_PnP_seq <- VDJ_assemble_for_PnP(VDJ.mixcr.matrix = VDJ_call_MIXCR.output
, id.column = "barcode",species = "mouse", manual_IgKC = "none", manual_2A = "none"
, manual_VDJLeader = "none", write.to.disk = TRUE, filename = "PnP_seq_example")

End(Not run)

VDJ_bulk_to_vgm Utility function for bulk data to standard Platypus format conversion

Description

The VDJ_bulk_to_vgm function converts bulk output files from MIXCR or MAF into a vgm-format
compatible with most downstream Platypus functions used for VDJ repertoire analysis.

Usage

VDJ_bulk_to_vgm(
VDJ.bulk.out.directory.list,
input.type,
integrate.MIXCR.output,
vgm.expanded,
clone.strategy,
group.id,
cell.type,
batches,
best.match.only

)

Arguments

VDJ.bulk.out.directory.list

List containing paths to bulk VDJ output files from MIXCR or MAF. TRUST4
(and TRUST4.FULL) require an RDS file as input

input.type Character vector. Defaults to "MIXCR". "MIXCR", "MAF", "TRUST4", and
"TRUST4.FULL" are supported. "TRUST4.FULL" contains TRUST additional
columns, which were not originally supported by vgm: "cdr1", "cdr2", "v_cigar",
"d_cigar", "j_cigar", "v_identity", "j_identity", "complete_vdj".

162 VDJ_bulk_to_vgm

integrate.MIXCR.output

Boolean. Defaults to TRUE. Whether to include in the VGM output additional
MiXCR (49-78) columns.

vgm.expanded Boolean. Defaults to TRUE. Whether to include vgm[[9]] in the output list,
where vgm[[9]] is the expanded version of vgm[[1]] having 1 line per read. For
some Platypus functions, only vgm[[9]] (and not vgm[[1]]) may be compatible.

clone.strategy Character vector to specify the clonotyping strategy. Defaults to "cdr3.aa".
Note that MIXCR input comes with clonotypes already assigned, and there-
fore clone.strategy should be specified only when the user wants to change the
clonoyping strategy, and if no clone.strategy is provided, re-clonotyping will
not be performed. Meanwhile, MAF inputs do not come with the clonotypes
pre-assigned. Hence, if no clone.strategy is specified, "cdr3.aa" will be used
as the default clonotyping strategy. The clonotyping strategies available in this
function are: "cdr3.aa", "VDJJ.VJJ", "VDJJ.VJJ.cdr3length".

group.id Numeric vector. Defaults to NA. The user can specify to which group does
each file belong to (e.g. a group could correspond to some specific treatment).
The length of this numeric vector should match the number of samples in the
VDJ.bulk.out.directory.list input.

cell.type Character vector. Defaults to NA. Cell type (e.g., "Bcell") of the MIXCR or
MAF file that is provided as input.

batches Numeric vector. Defaults to NA. An additional grouping parameter that can be
specified by the user. The length of this numeric vector should match the number
of samples in the VDJ.bulk.out.directory.list input.

best.match.only

Boolean. Whether only the highest scoring gene (V,J,D,C gene should) should
be included in the output, or all matching genes in MIXCR should be included
(MAF outputs: for the same read we can only have one possible V,J,D or C
gene). Defaults to TRUE.

Value

a VGM object (vgm.bulk.list). vgm.bulk.list[[1]]: each line correspond to a clonotype. vgm.bulk.list[[9]]
(if vgm.expanded==TRUE): each line correspond to a read. The other (2-8) entries of the list are
left empty for compatibility with Platypus functions.

Examples

Not run:
Run from local directory using MIXCR/MAF bulk VDJ-repertoire files as inputs:
VDJ.bulk.out.directory.list <- list()
VDJ.bulk.out.directory.list[[1]] <- c("~/MIXCR_vdj_cdr3_clonotyping/C4.txt")
VDJ.bulk.out.directory.list[[2]] <- c("~/MIXCR_vdj_cdr3_clonotyping/C6.txt")
bulk.vgm.MIXCR <- VDJ_bulk_to_vgm(VDJ.bulk.out.directory.list = VDJ.bulk.out.directory.list,
input.type = 'MIXCR',
integrate.MIXCR.output = TRUE,
group.id = c(1,2),
cell.type = "Bcells",
batches = c(1,1),

VDJ_call_enclone 163

vgm.expanded = TRUE,
best.match.only = FALSE)

To re-clonotype MIXCR samples based on e.g., the CDR3 a.a. sequence:
bulk.vgm.MIXCR <- VDJ_bulk_to_vgm(VDJ.bulk.out.directory.list = VDJ.bulk.out.directory.list,
input.type = 'MIXCR',
integrate.MIXCR.output = TRUE,
group.id = c(1,2),
cell.type = "Bcells",
batches = c(1,1),
vgm.expanded = TRUE,
best.match.only = FALSE,
clone.strategy = "cdr3.aa")

End(Not run)

VDJ_call_enclone (Re)clonotype a VDJ object using cellranger’s enclone tool

Description

Calls recon to clonotype a VDJ object given a VDJ.directory (with sample folders which should
include the all_contig_annotations.json file) - outputs a new VDJ with updated clonotype_id, clono-
type_id_10x, and clonotype_frequency columns

Usage

VDJ_call_enclone(
VDJ,
VDJ.directory,
global.clonotype,
samples.to.clonotype,
samples.to.combine,
same.origin,
output.format,
operating.system,
parallel

)

Arguments

VDJ VDJ or VDJ.GEX.matrix[[1]] object, as obtained from the VDJ_GEX_matrix
function in Platypus.

VDJ.directory string - directory for the VDJ data, should be the main folder which includes the
individual sample folders (each with the all_contig_annotations.json file that is
used by enclone)

164 VDJ_call_MIXCR

global.clonotype

bool - if T, will use clonotype definitions irrespective of samples. Must also be
T is you wish to merge clonotypes from two specific (which should be specified
in the samples.to.combine parameter)

samples.to.clonotype

- vector - lists the samples names which should be clonotyped. The unspecified
samples will keep their old clonotype defintions.

samples.to.combine

- vector or list of vectors - lists the samples which you wish to have their clono-
types merged (e.g., c(’s1’,’s2’) to only merge the first 2 samples, or list(c(’s1’,’s3’),
c(’s2’, ’s4’)) to merge the first and third, second and fourth, respectively). global.clonotype
must be set to T!

same.origin bool - if the merged samples come from the same donor, with the same or with
different origins. If two datasets come from the same origin, enclone will filter
to remove certain artifacts.

output.format string - ’vgm’ to output a VGM-specific VDJ dataframe (all samples in the same
dataframe).

operating.system

string - operating system on which enclone will be run. ’Windows’ for Win-
dows, ’Linux’ for Linux, ’Darwin’ for MacOS.

parallel bool - if T, the program will be executed in parallel, on no. cores = max. avail-
able cores - 1.

Value

Reclonotyped VDJ object using the enclone software and 10x-specific clonotype deifinition.

Examples

Not run:
VDJ_call_enclone(vdj, VDJ.directory, samples.to.combine = c('s1', 's2', 's3'), global.clonotype = T)

End(Not run)

VDJ_call_MIXCR MiXCR wrapper for Platypus V3 VDJ object

Description

Extracts information on the VDJRegion level using MiXCR on WINDOWS, MAC and UNIX sys-
tems for input from both Platypus v2 (VDJ.per.clone) or v3 (Output of VDJ_GEX_matrix) This
function assumes the user can run an executable instance of MiXCR and is elgible to use MiXCR as
determined by license agreements. ! FOR WINDOWS USERS THE EXECUTABLE MIXCR.JAR
HAS TO PRESENT IN THE CURRENT WORKING DIRECTORY ! The VDJRegion corresponds
to the recombined heavy and light chain loci starting from framework region 1 (FR1) and extending
to frame work region 4 (FR4). This can be useful for extracting full-length sequences ready to clone
and further calculating somatic hypermutation occurrences.

VDJ_call_MIXCR 165

Usage

VDJ_call_MIXCR(
VDJ,
operating.system,
mixcr.directory,
species,
simplify,
platypus.version

)

Arguments

VDJ For platypus.version = "v2" the output from the VDJ_per_clone function. This
object should have information regarding the contigs and clonotype_ids for each
cell. For platypus.version = "v3" the VDJ dataframe output of the VDJ_GEX_matrix
function (VDJ.GEX.matri.output[[1]])

operating.system

Can be either "Windows", "Darwin" (for MAC) or "Linux". If left empty this is
detected automatically

mixcr.directory

The directory containing an executable version of MiXCR. FOR WINDOWS
USERS THIS IS SET TO THE CURRENT WORKING DIRECTORY (please
paste the content of the MIXCR folder after unzipping into your working direc-
tory. Make sure, that mixcr.jar is not within any subfolders.)

species Either "mmu" for mouse or "hsa" for human. These use the default germline
genes for both species contained in MIXCR. Defaults to "hsa"

simplify Only relevant when platypus.version = "v3". Boolean. Defaults to TRUE. If
FALSE the full MIXCR output and computed SHM column is appended to the
VDJ If TRUE only the framework and CDR3 region columns and computed
SHM column is appended. To discriminate between VDJ and VJ chains, prefixes
are added to all MIXCR output columns

platypus.version

Character. Defaults to "v3". Can be "v2" or "v3" dependent on the input format

Value

For platypus.version = "v3" returns input VDJ dataframe supplemented with MIXCR output in-
formation. For platypus.version = "v2" returns a nested list containing VDJRegion information as
determined by MIXCR. The outer list corresponds to the individual repertoires in the same structure
as the input VDJ.per.clone. The inner list corresponds to each clonal family, as determined by either
the VDJ_clonotype function or the defaul nucleotide clonotyping produced by cellranger.Each ele-
ment in the inner list corresponds to a dataframe containing repertoire information such as isotype,
CDR sequences, mean number of UMIs. This output can be supplied to further package functions
such as VDJ_extract_sequences and VDJ_GEX_integrate.

See Also

VDJ_extract_sequences

166 VDJ_call_MIXCR_full

Examples

Not run:
#For platypus version 2
VDJ_call_MIXCR(VDJ = VDJ.per.clone.output,
mixcr.directory = "~/Downloads/mixcr-3.0.12/mixcr",species = "mmu")

#For platypus version 3 on a Windows system
VDJ_call_MIXCR(VDJ = VDJ_GEX_matrix.output[[1]],
mixcr.directory = "WILL BE SET TO CURRENT WORKING DIRECTORY",
species = "mmu", platypus.version = "v3", simplify = TRUE)

End(Not run)

VDJ_call_MIXCR_full MiXCR wrapper for Platypus V3 VDJ object. In addition to the
VDJ_call_MIXCR function, the output also contains the concatenated
sequences from FR1 all the way to FR2 for both the VDJ and VJ.

Description

Extracts information on the VDJRegion level using MiXCR on WINDOWS, MAC and UNIX sys-
tems for input from both Platypus v2 (VDJ.per.clone) or v3 (Output of VDJ_GEX_matrix) This
function assumes the user can run an executable instance of MiXCR and is elgible to use MiXCR as
determined by license agreements. ! FOR WINDOWS USERS THE EXECUTABLE MIXCR.JAR
HAS TO PRESENT IN THE CURRENT WORKING DIRECTORY ! The VDJRegion corresponds
to the recombined heavy and light chain loci starting from framework region 1 (FR1) and extending
to frame work region 4 (FR4). This can be useful for extracting full-length sequences ready to clone
and further calculating somatic hypermutation occurrences. In addition to the VDJ_call_MIXCR
function, the output also contains the concatenated sequences from FR1 all the way to FR2 for both
the VDJ and VJ.

Usage

VDJ_call_MIXCR_full(
VDJ,
mixcr.directory,
species,
platypus.version,
operating.system,
simplify

)

Arguments

VDJ For platypus.version = "v2" the output from the VDJ_per_clone function. This
object should have information regarding the contigs and clonotype_ids for each
cell. For platypus.version = "v3" the VDJ dataframe output of the VDJ_GEX_matrix
function (VDJ.GEX.matri.output[[1]])

VDJ_call_RECON 167

mixcr.directory

The directory containing an executable version of MiXCR. FOR WINDOWS
USERS THIS IS SET TO THE CURRENT WORKING DIRECTORY (please
paste the content of the MIXCR folder after unzipping into your working direc-
tory. Make sure, that mixcr.jar is not within any subfolders.)

species Either "mmu" for mouse or "hsa" for human. These use the default germline
genes for both species contained in MIXCR. Defaults to "hsa"

platypus.version

Character. Defaults to "v3". Can be "v2" or "v3" dependent on the input format

operating.system

Can be either "Windows", "Darwin" (for MAC) or "Linux". If left empty this is
detected automatically

simplify Only relevant when platypus.version = "v3". Boolean. Defaults to TRUE. If
FALSE the full MIXCR output and computed SHM column is appended to the
VDJ If TRUE only the framework and CDR3 region columns and computed
SHM column is appended. To discriminate between VDJ and VJ chains, prefixes
are added to all MIXCR output columns

VDJ_call_RECON Calls the Kaplinsky/RECON tool

Description

Calls the Kaplinsky/RECON tool on the VDJ/VDJ.GEX.matrix[[1]] object to infer the parent dis-
tribution of species and estimate their diversity. Outputs either a dataframe of the resulting means
and weights of the RECON species parent distribution estimation or a plot of the original species
distribution along resampled values from the reconstructed parent distribution.

Usage

VDJ_call_RECON(
VDJ,
recon.directory,
feature.columns,
grouping.column,
VDJ.VJ.1chain,
max.features,
size.threshold,
resample,
max.feature.size,
reticulate,
operating.system

)

168 VDJ_call_RECON

Arguments

VDJ VDJ or VDJ.GEX.matrix[[1]] object, as obtained from the VDJ_GEX_matrix
function in Platypus.

recon.directory

directory containing recon executable. Defaults to working directory/Recon
feature.columns

vector of strings/ string - columns denoting the unique species for RECON -
e.g., could be the CDRH3s if feature.columns = ’VDJ_cdr3s_aa’. If more than
one column is provided (e.g. c("VDJ_cdr3s_aa","VJ_cdr3s_aa")) these columns
will be pasted together.

grouping.column

string - column determining the groups/ samples for the species observations.
Defaults to ’sample_id’ for per-repertoire analysis

VDJ.VJ.1chain boolean, defaults to TRUE. Whether to filter out aberrant cells (more than 1 VDJ
or VJ chain).

max.features integer or ’all’ - maximum number of features/species ot be considered for the
RECON estimation. If ’all’, will consider all species.

size.threshold integer - the size threshold parameter for the RECON tool, as specified by the
’-t’ parameter.

resample boolean - if T, will also perform and output a resample of the species frequen-
cies/sizes from the inferred parent distribution.

max.feature.size

integer - the maximum size of species/features to be considered in the resulting
plot (maximum number of elements on the x axis).

reticulate boolean - if T, will create a new environment to install python and run the RE-
CON tool, else, your environment must have a python version compatible with
RECON installed.

operating.system

string - operating system on which RECON will be run. ’Windows’ for Win-
dows, ’Linux’ for Linux, ’Darwin’ for MacOS.

Value

The resulting means and weights of the RECON-inferred distribution as a seprate dataframe or
appended to the VDJ, or a plot of resampled species sizes from the inferred distribution vs original
sizes/frequencies.

Examples

Not run:
VDJ_call_RECON(VDJ, recon.directory='./Recon',
feature.columns = 'VDJ_cdr3s_aa', grouping.column = 'VDJ_cdr3s_aa')

End(Not run)

VDJ_circos 169

VDJ_circos Plots a Circos diagram from an adjacency matrix.
Uses the Circlize chordDiagram function. Is called by
VDJ_clonotype_clusters_circos(), VDJ_alpha_beta_Vgene_circos()
and VDJ_VJ_usage_circos() functions or works on its own when
supplied with an adjacency matrix.

Description

Plots a Circos diagram from an adjacency matrix. Uses the Circlize chordDiagram function. Is
called by VDJ_clonotype_clusters_circos(), VDJ_alpha_beta_Vgene_circos() and VDJ_VJ_usage_circos()
functions or works on its own when supplied with an adjacency matrix.

Usage

VDJ_circos(
Adj_matrix,
platy.theme,
group,
grid.col,
label.threshold,
axis,
c.count.label,
arr.col,
arr.direction,
gene.label.size,
gene.label,
c.count.label.size

)

Arguments

Adj_matrix Adjacency matrix to be plotted. Rownames and Colnames correspond to genes
to be matched and entries determine the weight of the connection between the
genes (eg. number of clonotypes expressing these two genes).

platy.theme Allows plotting in the new "pretty" theme or the older "spiky" theme without
group labels and radial arrangement of gene.labels. Default = "pretty".

group Named list of genes, with list elements corresponding to group-names, and
element names being the gene-names. Is generated by VDJ_VJ_usage and
VDJ_alpha_beta_Vgene_circos.

grid.col Named list of genes, with list elements corresponding to color and element
names being gene-names. If not supplied it is generated randomly within the
function. Is also generated by VDJ_VJ_usage and VDJ_alpha_beta_Vgene_circos.

label.threshold

Genes are only labeled if the count is larger then the label.threshold. By default
all label.threshold = 0 (all genes are labeled).

170 VDJ_clonal_donut

axis Option to choose the count axis for each gene. "default", "percent" or "max"
possible. Default: "max".

c.count.label Boolean, lets the user decide if the gene and count labels should be plotted or
not. Default = T.

arr.col Data.frame with three columns where the first two indicate the names of genes,
clonotypes or clusters to be connected, and the third corresponds to the color of
the arrow. Default set to data.frame(c("dummy.clonotype"), c("dummy.cluster"),
c("dummy.color")), so no arrow is drawn.

arr.direction Either 1 or -1 and determines the direction of the arrow. Default=1.
gene.label.size

Determines the font size of the gene labels. By default the labelsize is automat-
ically adjusted to 0.7 for labels with two or less digits, 0.6 for labels between 2
and 6 digits, and 0.4 for all longer labels. A manually defined font size will be
the same for all labels!

gene.label Boolean, lets the user decide if the gene labels should be plotted or not.
c.count.label.size

Determines the font size of the gene labels. By default the font size for count
labels is 0.6.

Value

Returns a circos plot.

Examples

Not run:
manual replotting of Circos plot:
VDJ_circos(Adj_matrix = VDJ_alpha_beta_Vgene_circos_output[[2]][[1]],

grid.col = VDJ_alpha_beta_Vgene_circos_output[[3]],
group = VDJ_alpha_beta_Vgene_circos_output[[4]],
c.count.label.size = 0.4,
gene.label.size = 0.5,
arr.col = data.frame(c("TRBV10"),c("TRBJ2-7"), c("black")),
axis="percent")

End(Not run)

VDJ_clonal_donut Circular VDJ expansion plots

Description

Generate circular plots of clonal expansion per repertoire directly from the VDJ matrix of the
VDJ_GEX_matrix function

VDJ_clonal_donut 171

Usage

VDJ_clonal_donut(
VDJ,
counts.to.use,
label.size,
not.expanded.label.vjust,
not.expanded.label.hjust,
total.label.vjust,
total.label.hjust,
expanded.colors,
non.expanded.color

)

Arguments

VDJ VDJ dataframe generated using the VDJ_GEX_matrix function (VDJ_GEX_matrix.output[[1]]).
Plots will be made by sample and using the clonal frequencies specified by
counts.to.use

counts.to.use How to count clonotypes and cells. A column name of the VDJ matrix contain-
ing clonotype IDs. This defaults to "clonotype_id_10x", which reflects clono-
types by Cellranger in an unaltered VGM. To use counts from the VDJ_clonotype_v3
function set this parameter to the relevant column e.g. "clonotype_id_cdr.aa" or
"global_clonotype_id_cdr.aa" are two examples.

label.size Size of text labels. All parameters below are purely for graphical purposes and
optional. If necessary changes should be made in small (0.1) increments. ! It is
recommended to optimize these ONLY once a format for saving the plot is set.

not.expanded.label.vjust

Numeric. Regulates the vertical position of the label for non expanded cells

not.expanded.label.hjust

Numeric. Regulates the horizontal position of the label for non expanded cells

total.label.vjust

Numeric. Regulates the vertical position of the center label

total.label.hjust

Numeric. Regulates the horizontal position of the center label

expanded.colors

Character vector. Colors to use for expanded clones. Should be more than 3 for
better visibility. Defaults to a "darkorchid3"-based palette.

non.expanded.color

Character. Color to use for non expanded clones. Defaults to "black"

Value

Returns a list of circular plots showing proportions of expanded clones and non-expanded clones.
One plot is generated for each sample in the sample_id column

172 VDJ_clonal_expansion

Examples

VDJ_clonal_donut(VDJ = Platypus::small_vgm[[1]])

VDJ_clonal_expansion Flexible wrapper for clonal expansion barplots by isotype, GEX clus-
ter etc.

Description

Clonal frequency plot displaying clonal expansion for either T and B cells with Platypus v3 input.
Only available for Platypus "v3" available. For v2 plotting of B cell clonotype expansion and
isotypes please refer to VDJ_isotypes_per_clone.

Usage

VDJ_clonal_expansion(
VDJ,
celltype,
clones,
subtypes,
isotypes.to.plot,
species,
treat.incomplete.clones,
treat.incomplete.cells,
group.by,
color.by,
variant.plot

)

Arguments

VDJ VDJ dataframe generated using the VDJ_GEX_matrix function (VDJ_GEX_matrix.output[[1]])

celltype Character. Either "Tcells" or "Bcells". If set to Tcells bars will not be colored
by default and the parameters treat_incomplete_cells, treat_incomplete_clones,
subtypes and species are ignored. The color.by and group.by arguments work
identically for both celltypes. If none provided it will detect this param from the
celltype column.

clones numeric value indicating the number of clones to be considered for the clonal
expansion plot. Default value is 50. For a standard plot more than 50 is dis-
couraged. When showing only one - possibly rare - isotype via isotypes.to.plot
it may be useful to set this number higher (e.g. 100-200)

subtypes Logical indicating whether to display isotype subtypes or not.

VDJ_clonal_expansion 173

isotypes.to.plot

Character vector. Defaults to "all". This can be set to any number of specific
Isotypes, that are to be shown exclusively. For example, to show only clones
containing IgG, input "IGHG". If only wanting to check clones with IgA and
IgD input c("IGHA","IGHD"). Works equally if subtypes are set to TRUE. Is
ignored if color.by is not set to "isotype"

species Character indicating whether the samples are from "Mouse" or "Human". De-
fault is "Human".

treat.incomplete.clones

Character indicating how to proceed with clonotypes lacking a VDJC (in other
words, no cell within the clonotype has a VDJC). "exclude" removes these
clonotypes from the analysis. "include" keeps these clonotypes in the analysis.
In the plot they will appear has having an unknown isotype.

treat.incomplete.cells

Character indicating how to proceed with cells assigned to a clonotype but miss-
ing a VDJC. "proportional" to fill in the VDJ isotype according to the propor-
tions present in of clonotype (in case present proportions are not replicable in
the total number of cells e.g. 1/3 in 10 cells, values are rounded to the next full
integer and if the new counts exceed the total number of cells, 1 is subtracted
from the isotype of highest frequency. If the number is below the number of cell,
1 is added to the isotype with lowest frequency to preserve diversity), "exclude"
to exclude them from analysis and rank clonotypes only by the number of cells
with a heavy chain. This ranking may deviate from the frequency column in the
clonotype table. CAVE: if treat_incomplete_cells is set to "exclude", clonotypes
lacking a VDJC entierly will be removed from the analysis. This results in a
similar but not identical output as when treat_incomplete_clones is set to true.
The two parameters are thereby non-redundant.

group.by Character. Defaults to "sample_id". Column name of VDJ to split VDJ by. For
each unique entry in that column a plot will be generated. Therefore plots can
be generated by sample_id, group_id or any other metadata item.To get plots for
the whole repertoire set to "none"

color.by Character. Defaults to "isotype". If set to "isotype" bars are colored by the
respective IgH chain or in grey for T cells. This can alternatively be set to any
column name of the VDJ. This allows coloring clones by their V_gene usage or
by GEX clusters

variant.plot Logical indicating whether to plot the output showing the variants or not.

Value

Returns a nested list. out[[1]] are plots out[[2]] are raw datatables containing also barcode and
CDR3 information

Examples

#Standard B cell plot for platypus version v3
#Will generate one plot per sample (from sample_id column)
clonal_out <- VDJ_clonal_expansion(VDJ = Platypus::small_vgm[[1]],
celltype = "Bcells", clones = 30,subtypes = FALSE, species = "Mouse"

174 VDJ_clonal_expansion_abundances

,treat.incomplete.clones = "exclude"
,treat.incomplete.cells = "proportional")

#Regrouped and recolored plot in v3
#Will generate a plot for each sample.
#Bars are filled by the sample with the highest proportion of cells in a given clonotype
clonal_out <- VDJ_clonal_expansion(VDJ = Platypus::small_vgm[[1]]
, celltype = "Bcells", clones = 30,subtypes = FALSE, species = "Mouse"
,treat.incomplete.clones = "exclude"
,treat.incomplete.cells = "proportional"
,color.by = "seurat_clusters") #change grouping with group.by = "column name"
clonal_out[[1]] #list of plots
clonal_out[[2]] #list of source dataframes

#T cell plot with recoloring by vgene
#VDJ_clonal_expansion(VDJ = Platypus::small_vgm[[1]]
#,celltype = "Tcells", clones = 30, group.by = "sample_id"
#,color_by = "VDJ_vgene")

#Plotting only IgD clones. Increased the value for clones to scan more of the dataset
#VDJ_clonal_expansion(VDJ = Platypus::small_vgm[[1]]
#,celltype = "Bcells", clones = 150,subtypes = FALSE
#,species = "Mouse",treat.incomplete.clones = "include"
#,treat.incomplete.cells = "proportional", isotypes.to.plot = "IGHD")

#Plotting only clones containing cells with the IGHG2c isotype (For murine data only!)
#VDJ_clonal_expansion(VDJ = Platypus::small_vgm[[1]]
#,celltype = "Bcells", clones = 150,subtypes = TRUE, species = "Mouse"
#,treat.incomplete.clones = "exclude"
#,treat.incomplete.cells = "proportional", isotypes.to.plot = "IGHG2c")

VDJ_clonal_expansion_abundances

Wrapper function for VDJ_abundances to obtain ranked clonotype
barplots

Description

Wraps the VDJ_abundances function and output a barplot of clonotypes ranked by expansion (x
axis) with counts of the specific feature values per clonotype (y axis). For a more in-depth config-
uration of the barplots (e.g., including clonotypes with missing features, different strategies for NA
values, etc.), use the VDJ_abundances function with output.format=’plots’.

Usage

VDJ_clonal_expansion_abundances(
VDJ,
features,

VDJ_clonal_lineages 175

count.level,
max.clonotypes,
rank.clonotypes,
specific.feat.colors

)

Arguments

VDJ VDJ or VDJ.GEX.matrix[[1]] object, as obtained from the VDJ_GEX_matrix
function in Platypus.

features string or vector of strings, denoting the columns of the VDJ/VDJ.GEX.matrix[[1]]
object from which to extract the unique feature values.

count.level string, ’absolute’ will return the absolute counts, ’group.level.proportions’ will
return the counts divided by the total number or elements/values in the spe-
cific groups (group level proportions), ’sample.level.proportions’ will return the
counts divided by the total number of elements in the sample.

max.clonotypes integer or NULL, the maximum number of clonotypes for which to count fea-
tures. If NULL, it will count for all clonotypes.

rank.clonotypes

boolean, if T - clonotypes will be ranked and order according to their expansion.
specific.feat.colors

named list (or NULL) of specific colors to be used in the final barplots.

Value

Either a count dataframe with the following columns: group(=unique group value, e.g., ’clono-
type1’ if grouping.column=’clonotype_id’), sample, group_frequency, unique_feature_values, fea-
ture_value_counts, total_feature_names or a barplot of the counts/proportions per feature, per group.

Examples

Not run:
VDJ_clonal_expansion_abundances(VDJ = small_vgm[[1]],
features='VDJ_cgene',count.level='absolute',
max.clonotypes=30, rank.clonotypes=T, specific.feat.colors=NULL)

End(Not run)

VDJ_clonal_lineages Platypus V2 lineage utility

Description

Only Platypus V2 Organizes and extracts full-length sequences for clonal lineage inference. The
output sequence can either contain the germline sequence as determined by cellranger or can just
contain the sequences contained in each clonal family.

176 VDJ_clonal_lineages

Usage

VDJ_clonal_lineages(
VDJ,
VDJ_extract_germline.output,
as.nucleotide,
with.germline,
platypus.version

)

Arguments

VDJ For platypus v2 the output of the call_MIXCR function containing the full-
length VDJRegion sequences.For v3 the VDJ matrix output of the VDJ_GEX_matrix
function ran with trim.and.align = TRUE. (VDJ_GEX_matrix.output[[1]])

VDJ_extract_germline.output

The output from the VDJ_extract_germline function. This should have the
germline information. This needs to be supplied if the with.germline argument
is set to true.

as.nucleotide Logical determining whether the full-length VDJRegion sequence should use
nucleotide seqeunce. TRUE indicates nucleotide sequences and FALSE will
extract amino acid sequences.

with.germline Logical determining whether the germline sequence as determined by cellranger
should be included in the output list of sequences. If so, the germline will be
added to the last row of each dataframe object.

platypus.version

Default is "v3".

Value

returns a list containing the sequences for each clonal family as determined by the input clono-
typing strategy to call_MIXCR and VDJ_extract_germline. The outer list corresponds to distinct
repertoires supplied to the call_MIXCR function (e.g. VDJ.clonal.lineage.output[[i]][[j]] will con-
tain a dataframe of the j’th clone in the i’th repertoire)

Examples

Not run:
clonal_lineages <- VDJ_clonal_lineages(VDJ=call_MIXCR_output,
VDJ_extract_germline.output=VDJ_extract_germline_output,as.nucleotide=F,with.germline=T)

End(Not run)

VDJ_clonotype 177

VDJ_clonotype Platypus V3 clonotyping wrapper

Description

Updated clonotyping function based on implications for cells with different chain numbers than 1
VDJ 1 VJ chains.

This function offers two types of hierarchical clonotyping. The hierarchical option "single.chains"
only merges cell with a single chain into clonotypes composed of cells with 1 VDJ 1 VJ chain. This
is based on the assumption, that during mRNA capture and RT-PCR in GEMs, not all transcripts
are captured and therefore cells may result missing a VDJ or VJ chain. The hierarchical option
"double.and.single.chains" is based on the assumption, that cells with 1 VDJ and 2 VJ chains ex-
ist. For a review of the work concerning such cells as well as 2 VDJ 1 VJ cells please consult:
https://doi.org/10.4049/jimmunol.1800904. The user may set a threshold of occurrence number
above which cells with 1 VDJ 2 VJ chains are considered to be true and other cells with 1 VDJ 1
VJ, 1 VDJ 0 VJ and 0 VDJ 1 VDJ may be merged into the same clonotype by the strategy pro-
vided by the user. Cells with 2 VDJ chains are currently not considered in this process, as these
are reported to be much rarer and, if appearing in the dataset are more likely to be doublets. We
advice the user to carefully examine the output after hierarchical clonotyping before proceeding
with further analysis. We thank Prof. Vijayanand as well as Vicente and Emmanuel from his lab for
the discussions that have helped with improving the original Platypus clonotyping strategy.

Usage

VDJ_clonotype(
VDJ,
clone.strategy,
homology.threshold,
hierarchical,
triple.chain.count.threshold,
global.clonotype,
VDJ.VJ.1chain,
output.format,
platypus.version

)

Arguments

VDJ For platypus v2 output from VDJ_analyze function. This should be a list of
clonotype dataframes, with each list element corresponding to a single VDJ
repertoire. For platypus v3 VDJ output from the VDJ_GEX_matrix function
(VDJ_GEX_matrix.output[[1]])

clone.strategy (Updated keywords, previous format is also functional) String describing the
clonotyping strategy. Possible options are 10x.default, cdr3.nt, cdr3.aa, VDJJ.VJJ,
VDJJ.VJJ.cdr3length, VDJJ.VJJ.cdr3length.cdr3.homology, VDJJ.VJJ.cdr3length.VDJcdr3.homology,
cdr3.homology, VDJcdr3.homology. cdr3.aa will convert the default cell ranger

178 VDJ_clonotype

clonotyping to amino acid based. ’VDJJ.VJJ’ groups B cells with identical
germline genes (V and J segments for both heavy chain and light chain. Those
arguments including ’cdr3length’ will group all sequences with identical VDJ
and VJ CDR3 sequence lengths. Those arguments including ’cdr3.homology’
will additionally impose a homology requirement for CDRH3 and CDRL3 se-
quences.’CDR3.homology’,or ’CDRH3.homology’ will group sequences based
on homology only (either of the whole CDR3 sequence or of the VDJ CDR3
sequence respectively). All homology calculations are performed on the amino
acid level.

homology.threshold

Numeric value between 0 and 1 corresponding to the homology threshold forn
the clone.strategy arguments that require a homology threshold. Default value
is set to 70 percent sequence homology. For 70 percent homology, 0.3 should
be supplied as input.

hierarchical Character. Defaults to "none". This is an extention specifically for cells with
aberrant numbers of chains (i.e. 0VDJ 1VJ, 1VDJ 0VJ, 0VDJ 2VJ, 2VDJ 0VJ).
Cells with 2VDJ 2VJ are filtered out as these are most likely doublets. If set
to "none" aberrant cells are assigned to their own clonotypes. If set to "sin-
gle.chains" the function will proceed in two steps: 0. Prefiltering: cells with
2 VDJ 2 VJ chains as well as cells with 2 VDJ and any number of VJ chains
are filtered out. 1. define clonotypes classically with all cells containing ex-
actly 1VDJ 1VJ chains. 2. For cells with only a single chain (either VDJ or
VJ), check if any clone exists, which matches the clonotyping criteria for this
chain. If true, add this cell to that clone. If false, create a new clone containing
that cell. In case that more than 1 existing clone matches the aberrant cell, the
cell is assigned to the most frequent existing clone. Two reasons are behind this
decision: 2.1. The aberrant cells is numerically more likely to be a part of the
more frequent existing clone. 2.2 In case of a wrong assignment, the effect of
the error is lower, if an already expanded clone is increase by one count, rather
than a existing non-expanded clone being assigned a second entry and thereby
resulting as expanded. Cells If set to "double.and.single.chains" the function
will proceed as if set to "single.chains" but include two more steps 3. Check the
frequency of each cell 1 VDJ 2 VJ chain exact clone (by exact nucleotide CDR3
matching). Only if this count exceeds the triple.chain.count.threshold, the clone
is used as a "hub clone". This protects from merging clonotypes on the basis of
rare doublets. 4. Merge existing clonotypes into the 1 VDJ 2 VJ clonotypes as
they match with the assumption that e.g. a cell with 1 VDJ 1 VJ is part of that
same clonotype, but missing a VJ chain due to stochastical sampling

triple.chain.count.threshold

Minimal occurrance frequency for any cell with more than 2 of either VDJ or VJ
chain (e.g. 2 VDJ 1 VJ) for it to be considered as a trustworthy clone for hierar-
chical clonotyping ONLY when hierarchical is set to "double.and.single.chains".
Defaults to 3, meaning that, an exact combination of three chains needs to ap-
pear in the dataset at least 3 times for it to be considered as a clone, into which
other cells are merged. (For the counting of exact combination of chains CDR3
nucleotide string matching is used, even if clonotyping by homology)

global.clonotype

Logical specifying whether clonotyping should occur across samples or only

VDJ_contigs_to_vgm 179

within a single sample (grouping via sample_id column).

VDJ.VJ.1chain Logical specifying whether cells other than once with 1 VDJ and 1 VJ chains
should be considered.

output.format Parameter output.format is deprecated. If non VGM-style output is required
please refer to the function VDJ_clonotype. Output is VGM style VDJ by cell
dataframe

platypus.version

Only "v3" available

Value

Returns a VGM[[1]]-type dataframe. The columns clonotype_id and clonotype_frequency are up-
dated with the new clonotyping strategy. They represent the "active strategy" that downstream func-
tions will use. Furthermore extra columns are added with clonotyping information.New columns
are named by clonotyping strategy so to allow for multiple clonotyping identifiers to be present in
the same VDJ dataframe and make comparisons between these straighforward.

Examples

reclonotyped_vgm <- VDJ_clonotype(VDJ=Platypus::small_vgm[[1]],
clone.strategy="cdr3.nt",
hierarchical = "none", global.clonotype = TRUE)

reclonotyped_vgm <- VDJ_clonotype(VDJ=Platypus::small_vgm[[1]],
clone.strategy="cdr3.homology", homology.threshold = 0.5,
hierarchical = "single.chains", global.clonotype = TRUE)

VDJ_contigs_to_vgm Formats "VDJ_contigs_annotations.csv" files from cell ranger to
match the VDJ_GEX_matrix output using only cells with 1VDJ and
1VJ chain

Description

Formats "VDJ_contigs_annotations.csv" files from cell ranger to match the VDJ_GEX_matrix out-
put using only cells with 1VDJ and 1VJ chain

Usage

VDJ_contigs_to_vgm(directory, sample.names, celltype, FB, platypus.version)

Arguments

directory list containing paths to the "filtered_contig_annotations.csv" files from cell ranger.

sample.names vector specifying sample names.

celltype Character. Either "Tcells" or "Bcells".

180 VDJ_db_annotate

FB Integer specifying whether VGM should contain Feature Barcode columns or
not. Default set to FALSE.

platypus.version

Function based on VGM object from V3, no need to set this parameter.

Value

data frame with column names that match the VDJ_GEX_matrix output. Can be appended to the
VDJ_GEX_matrix output

Examples

Not run:
directory.list <- list()
directory.list[[1]] <- c("~/Dataset_1/filtered_contig_annotations.csv")
directory.list[[2]] <- c("~/Dataset_1/filtered_contig_annotations.csv")
filtered_contig_vgm <- VDJ_contigs_to_vgm(directory = directory.list,
sample.names = c(s3,s4), celltype = "Tcells")

End(Not run)

VDJ_db_annotate Wrapper function of VDJ_antigen_integrate function

Description

Wraps the VDJ_antigen_integrate function and uses it to annotate a VDJ dataframe with antigen
information. Needs to VDJ_db_load to be executed first, with preprocess=T and vgm.names=T to
obtain the same column names as in the VDJ (to allow for sequence matching).

Usage

VDJ_db_annotate(VDJ, db.list, database.features, match, homology, lv.distance)

Arguments

VDJ VDJ or VDJ.GEX.matrix[[1]] object, as obtained from the VDJ_GEX_matrix
function in Platypus.

db.list list of database dataframes or csv file paths, obtained from VDJ_db_load with .
database.features

list of features/column names to be integrated from the databases.

match string - sequences by which to match and integrate the antigen information.
Currently, only ’cdr3.aa’ and ’cdrh3.aa’ are supported, as all databases have
these two sequence types (’VJ_cdr3s_aa’,’VDJ_cdr3s_aa’).

homology string - ’exact’ for exact sequence matchings, ’homology’ for homology match-
ing.

lv.distance integer - maximum Levehnstein distance threshold for the homology matchings.

VDJ_db_load 181

Value

VDJ with new columns - antigen information integrated from the antigen databases.

Examples

Not run:
VDJ_db_annotate(VDJ=VDJ,db.list=db.list,database.features='Epitope',match='cdr3.aa',homology=FALSE)

End(Not run)

VDJ_db_load Load and preprocess a list of antigen-specific databases

Description

Preprocessing function for several antigen databases for both TCRs (VDJdb, McPAS-TCR, TBAdb)
and BCRs (TBAdb), saving them either at a specified path, or loading them as a database list for
downstream integration/analyses.

Usage

VDJ_db_load(
databases,
file.paths,
preprocess,
species,
filter.sequences,
remove.na,
vgm.names,
keep.only.common,
output.format,
saving.path

)

Arguments

databases list of databases to be processed and saved. Currently supported ones include:
VDJdb(=’vdjdb’), McPAS-TCR(=’mcpas’), TBAdb(=’tbdadb_tcr’ or ’tbadb_bcr’).

file.paths list of file paths for the specified databases (in the database parameter). If NULL,
will try to locally download the databases from the archived download links.

preprocess boolean - if T, will preprocess each database individually.

species string - either ’Human’ or ’Mouse’, the species for the processed database.
Needs preprocess=T.

filter.sequences

string - ’VDJ’ to remove rows with NA VDJ sequences, ’VJ’ to remove rows
with NA VJ sequences, ’VDJ.VJ’ to remove rows with both VDJ and VJ se-
quences missing. Needs preprocess=T.

182 VDJ_diversity

remove.na string or NULL - ’all’ will remove all rows with missing values from the database,
’common’ will remove only rows with missing values for the shared columns
among all databases (’VJ_cdr3s_aa’,’VDJ_cdr3s_aa’,’Species’,’Epitope’,’Antigen
species’), ’vgm’ will remove missing values for columns shared with the VDJ
object (specific to each database). Needs preprocess=T.

vgm.names boolean - if T, will change all column names of the shared columns (with VDJ)
to match those from VDJ. Use this to integrate the antigen data into VDJ using
VDJ_antigen_integrate or VDJ_db_annotate. Needs preprocess=T.

keep.only.common

boolean - if T, will only keep the columns shared between all databases (’VJ_cdr3s_aa’,’VDJ_cdr3s_aa’,’Species’,’Epitope’,’Antigen
species’) for each processed database. Needs preprocess=T.

output.format string - ’df.list’ to save all databases as a list, ’save’ to save them as csv files.

saving.path string - directory where the processed databases should be locally saved if out-
put.format=’save’.

Value

Processed antigen-specific databases for both TCRs and BCRs.

Examples

Not run:
VDJ_db_load(databases=list('vdjdb'),file.paths=NULL,
preprocess=TRUE,species='Mouse',filter.sequences='VDJ.VJ',
remove.na='vgm', vgm.names=TRUE, keep.only.common=TRUE,
output.format='df.list')

End(Not run)

VDJ_diversity Calculates and plots common diversity and overlap measures for
repertoires and alike. Requires the vegan package

Description

Calculates and plots common diversity and overlap measures for repertoires and alike. Requires the
vegan package

Usage

VDJ_diversity(
VDJ,
feature.columns,
grouping.column,
metric,
VDJ.VJ.1chain,
subsample.to.same.n

)

VDJ_diversity 183

Arguments

VDJ VDJ dataframe output from the VDJ_GEX_matrix function.

feature.columns

Character vector. One or more column names from the VDJ of which diversity
or overlap metrics are calculated. if more than one column is provided (e.g.
c("VDJ_cdr3s_aa","VJ_cdr3s_aa")) these columns will be pasted together be-
fore metric calculation.

grouping.column

Character. Column name of a column to group metrics by. This could be "sam-
ple_id" to calculate the metric for each sample. This column is required if metric
= "simpson". If so, the simpson overlap index will be calculated pairwise for all
combinations of elements in the grouping.column. Defaults to "none".

metric Character. Diversity or overlap metric to calculate. Can be c("richness", "berger-
parker", "simpson", "ginisimpson", "shannon", "shannonevenness", "jaccard").
Defaults to "shannon". If jaccard is selected, a heatmap with the pairwise com-
parisons between all groups is returned. If any of the others is selected, a dotplot
is returned

VDJ.VJ.1chain Boolean defaults to TRUE. Whether to filter out aberrant cells (more than 1 VDJ
or VJ chain).

subsample.to.same.n

Boolean defaults to TRUE. Whether to subsample larger groups down to the size
of the smallest group

Value

Returns a ggplot with the calculated metric for each group (if provided).

Examples

#Calculate shannon index for VDJ CDR3s by sample
plot <- VDJ_diversity(VDJ = Platypus::small_vgm[[1]],
,feature.columns = c("VDJ_cdr3s_aa"), grouping.column = "sample_id"
,metric = "shannon")

#Calculate Gini-simpson and Simpson index for VDJ and VJ CDR3s by sample
VDJ_diversity(VDJ = Platypus::small_vgm[[1]],
,feature.columns = c("VDJ_cdr3s_aa","VJ_cdr3s_aa"), grouping.column = "sample_id"
,metric = "ginisimpson")

#Calculate Jaccard index of J gene usage between two samples
VDJ_diversity(VDJ = Platypus::small_vgm[[1]],
,feature.columns = c("VDJ_jgene"), grouping.column = "sample_id"
,metric = "jaccard")

184 VDJ_dynamics

VDJ_dublets Platypus V2 annotation utility

Description

Only Platypus v2 Produces a matrix indicating either the number of cells or clones which contain
multiple heavy or light chains (or alpha/beta in the case of T cells).

Usage

VDJ_dublets(clonotype.list, clone.level)

Arguments

clonotype.list Output from VDJ_analyze function. This should be a list of clonotype dataframes,
with each list element corresponding to a single VDJ repertoire.

clone.level Logical indicating whether the matrix should display information on the clone
level. TRUE will result in matrices containing information about the number of
chains on the clonal level. FALSE will result in matrices depicting the numnber
of cells.

Value

Returns a list of matrices containing the number of heavy/light chains per either cell or clone de-
pending on the clone.level parameter. This can then be supplied to heatmap functions directly. Each
list element corresponds to each of the input list elements of clonotypes.

Examples

Not run:
example.vdj.analyze <- VDJ_dublets(clonotype.list = "VDJ.analyze.output", clone.level=T)

End(Not run)

VDJ_dynamics Tracks a specific VDJ column across multiple samples/timepoints.

Description

Track a VDJ column across multiple samples or timepoints. Tracking consists of creating a per
sample/timepoint dataframe of unique values for the VDJ column and their respective counts inside
that timepoints/repertoire. Also creates alluvial plots to show the temporal dynamics of the tracked
elements.

VDJ_dynamics 185

Usage

VDJ_dynamics(
VDJ,
columns.to.track,
starting.point.repertoire,
track.all.elements,
track.only.common,
max.elements.to.track,
specific.elements.to.track,
additional.grouping.column,
max.additional.groups,
specific.additional.groups,
timepoints.column,
proportions.level,
output.format,
ignore.legend

)

Arguments

VDJ VDJ or VDJ.GEX.matrix[[1]] object, as obtained from the VDJ_GEX_matrix
function in Platypus.

columns.to.track

string or list of strings - VDJ column with values to track (e.g., ’VDJ_cgene’
will track the changes in isotype counts/proportions across multiple timepoints,
defined by the timepoints.column). If two columns are provided and tracked,
then a new values will be created by combining the values from each column.

starting.point.repertoire

string or integer - the repertoire from which to start tracking (1 = will start at the
first repertoire, ’s3’ will start at repertoire ’s3’).

track.all.elements

boolean - if T (and track.only.common=F), it will track all elements across all
repertoires/timepoints.

track.only.common

boolean - if T (and track.all.elements=F), it will only track the common elements
across all repertoires/timepoints.

max.elements.to.track

integer or NULL - the maximum number of elements to track (elements are first
sorted by frequency/abundance). If NULL, it will track all elements.

specific.elements.to.track

vector of strings or NULL - specific elements we want tracked. If NULL, all
elements will be tracked.

additional.grouping.column

string or ’none’ - VDJ column for calculating the frequency/counts of elements
on a per-group level. If output.format=’plot’, each unique group will have its
own bar plot of timepoints/repertoires (x axis) and feature counts (y axis). If
NULL, no additional grouping will be done.

186 VDJ_enclone

max.additional.groups

integer or NULL - the maximum number of additional groups to consider (groups
are first ordered by their frequency = total number of cells in that group in the
VDJ matrix). If NULL, all groups will be considered.

specific.additional.groups

vector of strings or NULL - specific grouping factors we want to consider. If
NULL, all grouping factors will be considered.

timepoints.column

string - VDJ column with either timepoints or repertoires across which we want
to track our elements (usually ’sample_id’).

proportions.level

string - ’absolute.counts’ for absolute counts, ’group’ for per group proportions,
’repertoire’ for per repertoire/timepoint proportions.

output.format string - ’plot’ for alluvial barplots, ’df’ for count/proportions dataframes of the
tracked elements.

ignore.legend boolean - if T, the legend will not be included in the resulting ggplot object.

Value

Either a count dataframe of the tracked elements across multiple timepoints/repertoires, or alluvial
barplot.

Examples

VDJ_dynamics(VDJ = small_vgm[[1]],columns.to.track='clonotype_id', starting.point.repertoire=1,
max.elements.to.track=10, timepoints.column='sample_id',
output.format='plot')

VDJ_enclone Updated clonotyping function based on implications for cells with dif-
ferent chain numbers than 1 VDJ 1 VJ chains.

Description

This function offers two types of hierarchical clonotyping. The hierarchical option "single.chains"
only merges cell with a single chain into clonotypes composed of cells with 1 VDJ 1 VJ chain. This
is based on the assumption, that during mRNA capture and RT-PCR in GEMs, not all transcripts
are captured and therefore cells may result missing a VDJ or VJ chain. The hierarchical option
"double.and.single.chains" is based on the assumption, that cells with 1 VDJ and 2 VJ chains ex-
ist. For a review of the work concerning such cells as well as 2 VDJ 1 VJ cells please consult:
https://doi.org/10.4049/jimmunol.1800904. The user may set a threshold of occurrence number
above which cells with 1 VDJ 2 VJ chains are considered to be true and other cells with 1 VDJ 1
VJ, 1 VDJ 0 VJ and 0 VDJ 1 VDJ may be merged into the same clonotype by the strategy pro-
vided by the user. Cells with 2 VDJ chains are currently not considered in this process, as these
are reported to be much rarer and, if appearing in the dataset are more likely to be doublets. We

VDJ_enclone 187

advice the user to carefully examine the output after hierarchical clonotyping before proceeding
with further analysis. We thank Prof. Vijayanand as well as Vicente and Emmanuel from his lab for
the discussions that have helped with improving the original Platypus clonotyping strategy.

Usage

VDJ_enclone(
VDJ,
VDJ.directory,
clone.strategy,
samples.to.clonotype,
samples.to.combine,
homology.threshold,
hierarchical,
triple.chain.count.threshold,
global.clonotype,
VDJ.VJ.1chain,
same.origin,
platypus.version,
operating.system

)

Arguments

VDJ For platypus v2 output from VDJ_analyze function. This should be a list of
clonotype dataframes, with each list element corresponding to a single VDJ
repertoire. For platypus v3 VDJ output from the VDJ_GEX_matrix function
(VDJ_GEX_matrix.output[[1]])

VDJ.directory Cellranger output directory for VDJ files.

clone.strategy (Updated keywords, previous format is also functional) String describing the
clonotyping strategy. Possible options are 10x.default, cdr3.nt, cdr3.aa, VDJJ.VJJ,
VDJJ.VJJ.cdr3length, VDJJ.VJJ.cdr3length.cdr3.homology, VDJJ.VJJ.cdr3length.VDJcdr3.homology,
cdr3.homology, VDJcdr3.homology. cdr3.aa will convert the default cell ranger
clonotyping to amino acid based. ’VDJJ.VJJ’ groups B cells with identical
germline genes (V and J segments for both heavy chain and light chain. Those
arguments including ’cdr3length’ will group all sequences with identical VDJ
and VJ CDR3 sequence lengths. Those arguments including ’cdr3.homology’
will additionally impose a homology requirement for CDRH3 and CDRL3 se-
quences.’CDR3.homology’,or ’CDRH3.homology’ will group sequences based
on homology only (either of the whole CDR3 sequence or of the VDJ CDR3
sequence respectively). All homology calculations are performed on the amino
acid level.

samples.to.clonotype

Vector - lists the samples names which should be clonotyped. The unspecified
samples will keep their old clonotype defintions.

samples.to.combine

Vector or list of vectors - lists the samples which you wish to have their clono-
types merged (e.g., c(’s1’,’s2’) to only merge the first 2 samples, or list(c(’s1’,’s3’),

188 VDJ_enclone

c(’s2’, ’s4’)) to merge the first and third, second and fourth, respectively). global.clonotype
must be set to T!

homology.threshold

Numeric value between 0 and 1 corresponding to the homology threshold forn
the clone.strategy arguments that require a homology threshold. Default value
is set to 70 percent sequence homology. For 70 percent homology, 0.3 should
be supplied as input.

hierarchical Character. Defaults to "none". This is an extention specifically for cells with
aberrant numbers of chains (i.e. 0VDJ 1VJ, 1VDJ 0VJ, 0VDJ 2VJ, 2VDJ 0VJ).
Cells with 2VDJ 2VJ are filtered out as these are most likely doublets. If set
to "none" aberrant cells are assigned to their own clonotypes. If set to "sin-
gle.chains" the function will proceed in two steps: 0. Prefiltering: cells with
2 VDJ 2 VJ chains as well as cells with 2 VDJ and any number of VJ chains
are filtered out. 1. define clonotypes classically with all cells containing ex-
actly 1VDJ 1VJ chains. 2. For cells with only a single chain (either VDJ or
VJ), check if any clone exists, which matches the clonotyping criteria for this
chain. If true, add this cell to that clone. If false, create a new clone containing
that cell. In case that more than 1 existing clone matches the aberrant cell, the
cell is assigned to the most frequent existing clone. Two reasons are behind this
decision: 2.1. The aberrant cells is numerically more likely to be a part of the
more frequent existing clone. 2.2 In case of a wrong assignment, the effect of
the error is lower, if an already expanded clone is increase by one count, rather
than a existing non-expanded clone being assigned a second entry and thereby
resulting as expanded. Cells If set to "double.and.single.chains" the function
will proceed as if set to "single.chains" but include two more steps 3. Check the
frequency of each cell 1 VDJ 2 VJ chain exact clone (by exact nucleotide CDR3
matching). Only if this count exceeds the triple.chain.count.threshold, the clone
is used as a "hub clone". This protects from merging clonotypes on the basis of
rare doublets. 4. Merge existing clonotypes into the 1 VDJ 2 VJ clonotypes as
they match with the assumption that e.g. a cell with 1 VDJ 1 VJ is part of that
same clonotype, but missing a VJ chain due to stochastical sampling

triple.chain.count.threshold

Minimal occurrance frequency for any cell with more than 2 of either VDJ or VJ
chain (e.g. 2 VDJ 1 VJ) for it to be considered as a trustworthy clone for hierar-
chical clonotyping ONLY when hierarchical is set to "double.and.single.chains".
Defaults to 3, meaning that, an exact combination of three chains needs to ap-
pear in the dataset at least 3 times for it to be considered as a clone, into which
other cells are merged. (For the counting of exact combination of chains CDR3
nucleotide string matching is used, even if clonotyping by homology)

global.clonotype

Logical specifying whether clonotyping should occur across samples or only
within a single sample (grouping via sample_id column).

VDJ.VJ.1chain Logical specifying whether cells other than once with 1 VDJ and 1 VJ chains
should be considered.

same.origin Logical - if the merged samples come from the same donor, with the same or
with different origins. If two datasets come from the same origin, enclone will
filter to remove certain artifacts.

VDJ_expand_aberrants 189

platypus.version

Only "v3" available
operating.system

Character - operating system on which enclone will be run. ’Windows’ for Win-
dows, ’Linux’ for Linux, ’Darwin’ for MacOS.

Value

Returns a VGM[[1]]-type dataframe. The columns clonotype_id and clonotype_frequency are up-
dated with the new clonotyping strategy. They represent the "active strategy" that downstream func-
tions will use. Furthermore extra columns are added with clonotyping information.New columns
are named by clonotyping strategy so to allow for multiple clonotyping identifiers to be present in
the same VDJ dataframe and make comparisons between these straighforward.

Examples

reclonotyped_vgm <- VDJ_clonotype(VDJ=Platypus::small_vgm[[1]],
clone.strategy="cdr3.nt",
hierarchical = "none", global.clonotype = TRUE)

reclonotyped_vgm <- VDJ_clonotype(VDJ=Platypus::small_vgm[[1]],
clone.strategy="cdr3.homology", homology.threshold = 0.5,
hierarchical = "single.chains", global.clonotype = TRUE)

VDJ_expand_aberrants Expand the aberrant cells in a VDJ dataframe by converting them into
additional rows

Description

Expand the aberrant cells in a VDJ dataframe by converting them into additional rows. Aberrant
cells consist of cells with more than 1 VDJ or VJ chain.

Usage

VDJ_expand_aberrants(
VDJ,
chain.to.expand,
add.barcode.prefix,
additional.VDJ.features,
additional.VJ.features,
add.CDR3aa,
add.expanded.number,
recalculate.clonotype.frequency

)

190 VDJ_extract_germline

Arguments

VDJ VDJ or VDJ.GEX.matrix[[1]] object, as obtained from the VDJ_GEX_matrix
function in Platypus.

chain.to.expand

string, ’VDJ’ to expand VDJ aberrants, ’VJ’ to expand VJ aberrants, ’VDJ.VJ’
for both.

add.barcode.prefix

boolean - if T, a new barcode will be added for each expanded aberrant.

additional.VDJ.features

vector of strings - VDJ_expand_aberrants will only expand across the sequence
columns of VDJ. If you have additional columns with aberrant cell features (e.g.,
both ’yes’ and ’no’ binders for a single sequence), where the aberrants are VDJ-
specific, include them here.

additional.VJ.features

vector of strings - VDJ_expand_aberrants will only expand across the sequence
columns of VDJ. If you have additional columns with aberrant cell features (e.g.,
both ’yes’ and ’no’ binders for a single sequence), where the aberrants are VJ-
specific, include them here.

add.CDR3aa boolean - if T, will create a new column ’CDR3aa’ with pasted VDJ_cdr3s_aa
and VJ_cdr3s_aa.

add.expanded.number

boolean - if T, will add the number of new cells resulting from an aberrant one.

recalculate.clonotype.frequency

boolean - if T, will recalculate the clonotype frequencies for the resulting, ex-
panded VDJ.

Value

Returns a VDJ format dataframe in which cells with more than one VDJ or VJ chain are split into
multiple rows each containing only one VDJ VJ chain combination.

Examples

VDJ_expand_aberrants(VDJ = small_vgm[[1]],
chain.to.expand='VDJ.VJ',
add.barcode.prefix=TRUE, recalculate.clonotype.frequency=FALSE)

VDJ_extract_germline Platypus V2 utility for full germline sequence via MiXCR

VDJ_extract_germline 191

Description

Only Platypus v2. Extracts the full-length germline sequence as determined by cellranger. This
function returns an object that now contains the reference germline for each of the clones. If multiple
clones (as determined by cellranger) have been merged using the VDJ_clonotype function then
these sequences may have distinct germline sequences despite being in the same clonal family
(nested list). This is particularly possible when homology thresholds were used to determine the
clonotypes.

Usage

VDJ_extract_germline(
VDJ.per.clone,
mixcr.directory,
extract.VDJRegion,
species

)

Arguments

VDJ.per.clone The output from the VDJ_per_clone function. This object should have informa-
tion regarding the contigs and clonotype_ids for each cell.

mixcr.directory

The directory containing an executable version of MiXCR. This must be down-
loaded separately and is under a separate license.

extract.VDJRegion

Default is TRUE. Future iterations will allow for distinct gene regions to be
extracted.

species Either "mus" or "hsa" for mouse and human respectively. Default is set to
mouse.

Value

Returns a dataframe containing repertoire information, such as isotype, CDR sequences, mean
number of UMIs. This output can be supplied to furhter packages VDJ_extract_sequences and
VDJ_GEX_integrate

Examples

Not run:
VDJ_extract_germline(VDJ.per.clone=VDJ.per.clone.output
,mixcr.directory="~/Downloads/mixcr-3.0.12/mixcr"
,extract.VDJRegion=T,species = "mmu")

End(Not run)

192 VDJ_get_public

VDJ_get_public Function to get shared/public elements across multiple repertoires

Description

Function to get shared elements across multiple repertoires, specified by the feature.columns param-
eter (a column of the VDJ matrix). If two columns are specified in feature.columns, the resulting
shared features will combine the values from each column (at a per-cell level).

Usage

VDJ_get_public(
VDJ,
feature.columns,
repertoire.column,
specific.repertoires,
find.public.all,
find.public.percentage,
treat.combined.features,
output.format

)

Arguments

VDJ VDJ or VDJ.GEX.matrix[[1]] object, as obtained from the VDJ_GEX_matrix
function in Platypus.

feature.columns

Character or character vector columns of features to be assayed
repertoire.column

string - the repertoire-defining column (default to ’sample_id’).
specific.repertoires

vector of strings or NULL - if only the shared elements from specific repertoires
should be taken into account. If NULL, will output the shared/public elements
across all repertoires.

find.public.all

boolean - if T, will look for the public elements across all repertoires
find.public.percentage

list - the first element denotes the percentage of repertoires to get shared ele-
ments for, the second element is the maximum number of repertoire combina-
tions to consider (can be NULL to consider all).

treat.combined.features

string - ’exclude’ will exclude combined features with one element missing,
’include’ will include and considers them as a new feature value.

output.format string - ’df’ to get a shared element dataframe (with columns = Repertoire and
Public), ’list’ for a list of shared elements.

VDJ_GEX_clonal_lineage_clusters 193

Value

Either a dataframe of public elements across multiple repertoires or a list.

Examples

VDJ_get_public(VDJ = small_vgm[[1]],
feature.columns='VDJ_cdr3s_aa', find.public.all=TRUE,
output.format='df')

VDJ_GEX_clonal_lineage_clusters

Platypus V2 lineage - GEX integration utility

Description

only Platypus v2 Integrates the transcriptional cluster information into the clonal lineages. This
requires that automate_GEX, VDJ_clonal_lineages, and VDJ_GEX_integrate have already been
ran. The transcriptional cluster will be added to the end of the Name for each sequence.

Usage

VDJ_GEX_clonal_lineage_clusters(
VDJ_GEX_integrate.output,
VDJ_clonal_lineages.output

)

Arguments

VDJ_GEX_integrate.output

The output from the VDJ_GEX_integrate function that is performed on the
VDJ_per_clone level. This involves a nested list where the outer list corre-
sponds to the repertoire and inner lists correspond to specific clones based on
the clonotyping strategy.

VDJ_clonal_lineages.output

Output from VDJ_clonal_lineages. This should be nested list, with the outer list
element corresponding to the individual repertoire and the inner list correspond-
ing to individual clonal lineages based on the initial clonotyping strategy in the
form of a dataframe with either Seq or Name. The Name currently contains the
barcode following the last "_".

Value

a nested list in the identical format to the VDJ_clonal_lineages.output but the name of each sequence
will have been changed to include the transcriptional cluster corresponding to that barcode from the
GEX library. This requires first running the

194 VDJ_GEX_clonotyme

Examples

Not run:
clonal_lineages <- VDJ_clonal_lineages(call_MIXCR.output=call_MIXCR_output
, VDJ_extract_germline.output=VDJ_extract_germline_output
,as.nucleotide=FALSE,with.germline=TRUE)

End(Not run)

VDJ_GEX_clonotyme Pseudotime analysis for scRNA and repertoire sequencing datasets

Description

Pseudotime analysis for scRNA and repertoire sequencing datasets

Usage

VDJ_GEX_clonotyme(
method,
version,
top.N.clonotypes,
vdj.gex.matrix.output,
vdj.analyze.output,
gex.automate.output,
exclude.clusters,
colors,
show.cells,
highlight.genes,
dropest.output.list,
velocyto.gex.merged,
velocyto.file.name,
velocyto.out.dir,
velocyto.save.rds,
velocyto.norm.scale.factor,
velocyto.n.variable.features,
velocyto.neighbor.dim,
velocyto.cluster.resolution,
velocyto.mds.dim,
velocyto.nCount_spliced,
velocyto.percent.mt,
velocyto.normalisation.method,
velocyto.selection.method,
velocyto.deltaT,
velocyto.kCells,
velocyto.fit.quantile,
velocyto.kGenes,

VDJ_GEX_clonotyme 195

root.selection,
root.marker,
ridgeline.separator,
genes.for.module.score,
root.nodes,
color.cells

)

Arguments

method Pseudotime analylysis method to be used. Possible parameters are monocle3 or
velocyto. monocle3 is being used as a default method. For velocyto analysis
please run on Cluster and it is only available for UNIX based systems.

version Platypus version to use "v2" or "v3". version 2 used by default.
top.N.clonotypes

How many clonotypes to show per sample in the Ridgeline plots and on the
Velocyto UMAP.

vdj.gex.matrix.output

If Platypus v3 is used, the input to this function has to be the output of the
VDJ_GEX_matrix function.

vdj.analyze.output

If Platypus v2 is used, the VDJ_analyze output has to be supplied.
gex.automate.output

If Platypus v2 is used, the GEX_automate output has to be supplied here.
exclude.clusters

Please enter a cluster number if you’d like to exclude a certain cluster from
analysis. Cluster will be assigned to different partition in Monocle3 analysis
and therefore pseudotime distance will be set to infinity. Cells from this cluster
will be deleted from the dataset in the Velocyto analysis.

colors Vector containing custom colors to be used for highlighting the clonotypes. If
left empty, default colors will be assigned.

show.cells Logical, should cells be shown in the Ridgeline plots. True by default.
highlight.genes

Vector containing gene names. The expressionlevels of these genes along pseu-
dotime will be plotted.

dropest.output.list

List containing the cell.counts.matrices.rds from the Dropest alignment for Ve-
locyto analysis.

velocyto.gex.merged

Logical whether samples should be shown in combined UMAP or sepeartely.
velocyto.file.name

String used as file name when saving the output pdf
velocyto.out.dir

Directory to save the output files. By default the current working directory.
velocyto.save.rds

If RDS objects should be saved as well. Default = F.

196 VDJ_GEX_clonotyme

velocyto.norm.scale.factor

Parameter for GEX analysis of the cell.count.matrices.
velocyto.n.variable.features

Parameter for GEX analysis of the cell.count.matrices.
velocyto.neighbor.dim

Parameter for GEX analysis of the cell.count.matrices.
velocyto.cluster.resolution

Parameter for GEX analysis of the cell.count.matrices.
velocyto.mds.dim

Parameter for GEX analysis of the cell.count.matrices.
velocyto.nCount_spliced

Cutoff threshold. cells with less spliced gene counts will be omitted. Filtering
of bad quality cells.

velocyto.percent.mt

Parameter for GEX analysis of the cell.count.matrices.
velocyto.normalisation.method

Parameter for GEX analysis of the cell.count.matrices.
velocyto.selection.method

Parameter for GEX analysis of the cell.count.matrices.
velocyto.deltaT

Parameter for Velocyto analysis
velocyto.kCells

Parameter for Velocyto analysis
velocyto.fit.quantile

Parameter for Velocyto analysis
velocyto.kGenes

Parameter for Velocyto analysis

root.selection Character. Method for root selection. Defaults to "manual"

root.marker Character. Marker to use as Root. Defaults to "SELL"
ridgeline.separator

Character. Variable to group ridgeline plots by. Defaults to "clonotype"
genes.for.module.score

List of vectors of genes. With module scores inferred via Seurat::AddModuleScore().
Default is set to NULL.

root.nodes Labeled node from trajectory plot to specify root nodes root nodes for pseudo-
time trajectory.

color.cells For the module score plot decide how the cells should be coloured (based on e.g.
group_id, seurat_clusters etc.). Default = ’seurat_clusters’

Value

If method=monocle3, the function returns a list element: [[1]] UMAP colored by Pseudotime, [[2]]
Ridgeline plots showing the density of each of the top.N.clonotypes per cluster along pseudotime.,
[[3]] Gene expression plots highlighting the gene expression across pseudotime colored by tran-
scriptional cluster, [[4]] Gene expression plots highlighting the gene expression across pseudotime
colored by colotype. If method=velocyto, plots and RDS will be saved to velocyto.out.dir.

VDJ_GEX_clonotyme 197

Examples

Not run:
#----Method=monocle3----

Version 2
vdj_repertoire_tcells <- VDJ_analyze(VDJ.out.directory =VDJ.out.directory.list,
filter.1HC.1LC = T)
gex_acute <- Platypus::GEX_automate(GEX.outs.directory.list = dir_to_gex[1:1],
integration.method = "scale.data", mito.filter = 20, cluster.resolution = 0.5,
VDJ.gene.filter = T)

clonotyme_output <- VDJ_GEX_clonotyme(vdj.analyze.output = vdj_repertoire_tcells,
gex.analyze.output = gex_acute, version="v2", exclude.clusters=7, highlight.genes="sell",
colors = c("blue", "red", "black", "orange")

clonotyme_output[[4]]

Version 3
VGM <-
readRDS("C:/Users/rapha/Downloads/TEMPLATE_VDJ_GEX_mat_Bcells_r2_150521.rds")

clonotyme_output <- VDJ_GEX_clonotyme(vdj.gex.matrix.output = VGM, version="v3",
highlight.genes="sell", top.N.clonotypes = 1)

#---Method=velocyto----

#Dropest Alignment: Run on EULER CLUSTER
#env2lmod
#module load gcc/4.8.5 python/3.7.4
#module load gcc/4.8.5 dropest/0.8.6
#module load gcc/4.8.5 r/4.0.2
#module load gcc/4.8.5 hdf5/1.10.1
#module load gcc/4.8.5 openmpi/4.0.2
#module load gcc/4.8.5 r/4.0.2
#bsub -W 2880 -R 'rusage[mem=20000]'
/cluster/home/rakuhn/dropEst/dropest -V -C 6000 -f -g
/cluster/scratch/rakuhn/mm10-2020-A/refdata-gex-mm10-2020-A/genes/genes.gtf
-c /cluster/home/rakuhn/dropEst/configs/10x.xml
/cluster/scratch/rakuhn/cellranger_v5/g1/outs/possorted_genome_bam.bam

#Load required VDJ.analyze.output on EULER CLUSTER

vdj_repertoire_tcells
<- readRDS("/cluster/home/rakuhn/RPII/vdj_repertoire_tcells.rds")
vdj_repertoire_tcells
<- head(vdj_repertoire_tcells,2)
#Only select the first two repertoires since we only want to analyze these two.

Load the two corresponding Dropest cell.count.matrices.rds

dropest.output.list <- list()
dropest.output.list[[1]]

198 VDJ_GEX_clonotype_clusters_circos

<- readRDS("/cluster/home/rakuhn/RPII/old_bam/gex1/cell.counts.matrices.rds")
dropest.output.list[[2]]
<- readRDS("/cluster/home/rakuhn/RPII/old_bam/gex2/cell.counts.matrices.rds")

Run Velocyto using Clonotyme

VDJ_GEX_clonotyme(method = "velocyto", version = "v2",
vdj.analyze.output = vdj_repertoire_tcells,
dropest.output.list = dropest.output.list,
top.N.clonotypes = 3, exclude.clusters = 8, highlight.genes = "sell",
velocyto.gex.merged = T, velocyto.out.dir = ".", velocyto.save.rds = F)

End(Not run)

VDJ_GEX_clonotype_clusters_circos

Makes a Circos plot from the VDJ_GEX_integrate output. Connects
the clonotypes with the corresponding clusters.

Description

Makes a Circos plot from the VDJ_GEX_integrate output. Connects the clonotypes with the corre-
sponding clusters.

Usage

VDJ_GEX_clonotype_clusters_circos(
VGM,
topX,
label.threshold,
axis,
c.threshold,
c.count.label,
c.count.label.size,
n_cluster,
platypus.version,
gene.label,
gene.label.size,
arr.col,
arr.direction,
platy.theme,
clonotype.column

)

VDJ_GEX_clonotype_clusters_circos 199

Arguments

VGM The output of the VDJ_GEX_matrix function (VDJ_GEX_matrix.output[[1]])
has to be supplied. For Platypus v2: The output of the VDJ_GEX_integrate
function (Platypus platypus.version v2). A list of data frames for each sample
containing the clonotype information and cluster membership information.

topX Filters for the top X clonotypes and only plots the respective gene combinations
or cluster memberships.

label.threshold

Genes are only labeled if the count is larger then the label.threshold. By default
all label.threshold = 0 (all genes are labeled).

axis Character. Axis scaling. Defaults to "max". Passed to VDJ_circos

c.threshold Only clonotypes are considered with a frequency higher then c.threshold. Al-
lows to filter for only highly expanded clonotypes.

c.count.label Boolean, lets the user decide if the gene and count labels should be plotted or
not. Default = T.

c.count.label.size

Determines the font size of the gene labels. By default the font size for count
labels is 0.6.

n_cluster Integer. No default.
platypus.version

Input version to use. Defaults to "v3" for VDJ_GEX_matrix input

gene.label Boolean, lets the user decide if the gene labels should be plotted or not.
gene.label.size

Determines the font size of the gene labels. By default the labelsize is automat-
ically adjusted to 0.7 for labels with two or less digits, 0.6 for labels between 2
and 6 digits, and 0.4 for all longer labels. A manually defined font size will be
the same for all labels!

arr.col Data.frame with three columns where the first two indicate the names of genes,
clonotypes or clusters to be connected, and the third corresponds to the color of
the arrow. Default set to data.frame(c("dummy.clonotype"), c("dummy.cluster"),
c("dummy.color")), so no arrow is drawn.

arr.direction Either 1 or -1 and determines the direction of the arrow. Default=1.

platy.theme Allows plotting in the new "pretty" theme or the older "spiky" theme without
group labels and radial arrangement of gene.labels. Default = "pretty".

clonotype.column

Which column in VGM contains the clonotyping information? Default="clonotype_id_10X".

Value

Returns a circos plot and a list object with the following elememts for N samples: [[1 to N]] The
first N listelements corresponds to the recorded circos plots for N beeing the number or samples in
the VGM. Since Circlize uses the R base plotting funciton, this is not a ggplot object but can still
be replotted by calling the first list element. [[N+1]] Adjacency matrix forwarded to VDJ_circos().
This Matrix contains the counts and can be used for manual replotting using VDJ_circos directly.

200 VDJ_GEX_expansion

[[N+2]] Contains a named list with colors for each connection drawn and can be used for manual
replotting using VDJ_circos directly. [[N+3]] Contains a named list with grouping information and
can be used for manual replotting using VDJ_circos directly.

Examples

Not run:
clonotype.clusters <- VDJ_GEX_clonotype_clusters_circos(vgm[[1]], n_cluster=8, topX = 20)
print circos plot:
clonotype.clusters[[1]]

End(Not run)

VDJ_GEX_expansion Platypus V2 utility

Description

only Platypus v2 Integrates VDJ and gene expression libraries by providing cluster membership
seq_per_vdj object. Output will plot which transcriptional cluster (GEX) that the cells of a given
clonotype are found in.

Usage

VDJ_GEX_expansion(
GEX.list,
VDJ.GEX.integrate.list,
highlight.isotype,
highlight.number

)

Arguments

GEX.list The output of the automate_GEX function.
VDJ.GEX.integrate.list

Output from VDJ_GEX_integrate function. This object needs to have the GEX
and VDJ information combined and integrated. This should be on the CLONAL
level from the VDJ_GEX_integrate function.

highlight.isotype

(Optional) isotype to plot, choose between ["None","A","E","M","G","G1","G2A","G2B","G2C","G3"].
Default is None.

highlight.number

A vector corresponding to the rank of the clones that should be specified. Default
is set to "20", which will present the cluster distribution for the top 20 clones.

Value

ggplot2 plot that breaks down clonotype membership per cluster for the specified input clones.

VDJ_GEX_integrate 201

Examples

Not run:
vdj.gex.expansion <- VDJ_GEX_expansion(GEX.list=GEX.list.output[[1]]
,VDJ.GEX.integrate.list=vdj.gex.integrate.output
,highlight.isotype = "None",highlight.number=1:20)

End(Not run)

VDJ_GEX_integrate only Platypus v2 Integrates VDJ and gene expression libraries by pro-
viding cluster membership seq_per_vdj object and the index of the cell
in the Seurat RNA-seq object.

Description

only Platypus v2 Integrates VDJ and gene expression libraries by providing cluster membership
seq_per_vdj object and the index of the cell in the Seurat RNA-seq object.

Usage

VDJ_GEX_integrate(GEX.object, clonotype.list, VDJ.per.clone, clonotype.level)

Arguments

GEX.object A single seurat object from automate_GEX function. This will likely be sup-
plied as automate_GEX.output[[1]].

clonotype.list Output from either VDJ_analyze or VDJ_clonotype functions. This list should
correspond to a single GEX.list object, in which each list element in clono-
type.list is found in the GEX.object. Furthermore, these repertoires should be
found in the automate_GEX library.

VDJ.per.clone Output from the VDJ_per_clone function. Each element in the list should be
found in the output from the automate_GEX function.

clonotype.level

Logical specifying whether the integration should occur on the cellular level
(VDJ_per_clone) or on the clonotype level (e.g. output from VDJ_analyze or
VDJ_clonotype). TRUE specifies that the clonotype level will be selected -
e.g. the clonotype.list object will now contain information from the GEX object
regarding clonal membership.

Value

Returns a nested list containing information corresponding to either the clonal level or the sequence
level, depending on the input argument "clonotype.level". This function essentially will update the
output of the analyze_VDJ or the VDJ_per_clone functions.

202 VDJ_GEX_matrix

Examples

Not run:
testing_integrate <- VDJ_GEX_integrate(GEX.object = automate.gex.output[[1]]
,clonotype.list = VDJ.analyze.output
,VDJ.per.clone = VDJ.per.clone.output,clonotype.level = TRUE)

End(Not run)

VDJ_GEX_matrix VDJ GEX processing and integration wrapper

Description

This function is designed as a common input to the Platypus pipeline. Integration of datasets as well
as VDJ and GEX information is done here. Please check the Platypus V3 vignette for a detailed
walkthrough of the output structure. In short: output[[1]] = VDJ table, output[[2]] = GEX Seurat
object and output[[3]] = statistics [FB] Feature barcode (FB) technology is getting increasingly
popular, which is why Platypus V3 fully supports their use as sample delimiters. As of V3, Platpyus
does not support Cite-seq data natively, also the VDJ_GEX_matrix function is technically capable
of loading a Cite-seq matrix and integrating it with VDJ. For details on how to process sequencing
data with FB data and how to supply this information to the VDJ_GEX_matrix function, please
consult the dedicated vignette on FB data.

Usage

VDJ_GEX_matrix(
VDJ.out.directory.list,
GEX.out.directory.list,
FB.out.directory.list,
Data.in,
Seurat.in,
group.id,
GEX.read.h5,
VDJ.combine,
GEX.integrate,
integrate.GEX.to.VDJ,
integrate.VDJ.to.GEX,
exclude.GEX.not.in.VDJ,
filter.overlapping.barcodes.GEX,
filter.overlapping.barcodes.VDJ,
get.VDJ.stats,
append.raw.reference,
select.excess.chains.by.umi.count,
excess.chain.confidence.count.threshold,
trim.and.align,
parallel.processing,
numcores,

VDJ_GEX_matrix 203

gap.opening.cost,
gap.extension.cost,
exclude.on.cell.state.markers,
exclude.on.barcodes,
integration.method,
VDJ.gene.filter,
mito.filter,
norm.scale.factor,
n.feature.rna,
n.count.rna.min,
n.count.rna.max,
n.variable.features,
cluster.resolution,
neighbor.dim,
mds.dim,
FB.count.threshold,
FB.ratio.threshold,
FB.exclude.pattern,
subsample.barcodes,
verbose

)

Arguments

VDJ.out.directory.list

List containing paths to VDJ output directories from cell ranger. This pipeline
assumes that the output file names have not been changed from the default 10x
settings in the /outs/ folder. This is compatible with B and T cell repertoires.
! Neccessary files within this folder: filtered_contig_annotations.csv, clono-
types.csv, concat_ref.fasta, all_contig_annotations.csv (only if trim.and.align
== T) and metrics_summary.csv (Optional, will be appended to stats table if
get.VDJ.stats == T)

GEX.out.directory.list

List containing paths the outs/ directory of each sample or directly the raw or
filtered_feature_bc_matrix folder. Order of list items must be the same as for
VDJ. These may be paths to cellranger aggr or cellranger multi output directo-
ries. In that case, additional matrices found, will be loaded as either GEX or FB
(Feature barcodes) depending on the number of features in the matrix.

FB.out.directory.list

[FB] List of paths pointing at the outs/ directory of output from the Cellranger
counts function which contain Feature barcode counts. ! Single list elements can
be a path or "PLACEHOLDER", if the corresponding input in the VDJ or GEX
path does not have any adjunct FB data. This is only the case when integrating
two datasets of which only one has FB data. See examples for details. Any
input will overwrite potential FB data loaded from the GEX input directories.
This may be important, if wanting to input unfiltered FB data that will cover
also cells in VDJ not present in GEX.

Data.in Input for R objects from either the PlatypusDB_load_from_disk or the Platy-

204 VDJ_GEX_matrix

pusDB_fetch function. If provided, input directories should not be specified. If
you wish to integrate local and downloaded data, please load them via load_from_disk
and fetch and provide as a list (e.g. Data.in = list(load_from_disk.output, fetch.output))

Seurat.in Alternative to GEX.out.directory.list. A seurat object. VDJ.integrate has to
be set to TRUE. In metadata the column of the seurat object, sample_id and
group_id must be present. sample_id must contain ids in the format "s1", "s2"
... "sn" and must be matching the order of VDJ.out.directory.list. No process-
ing (i.e. data normalisation and integration) will be performed on these objects.
They will be returned as part of the VGM and with additional VDJ data if inte-
grate.VDJ.to.GEX = T. Filtering parameters such as overlapping barcodes, ex-
clude.GEX.not.in.VDJ and exclude.on.cell.state.markers will be applied to the
Seurat.in GEX object(s).

group.id vector with integers specifying the group membership. c(1,1,2,2) would spec-
ify the first two elements of the input VDJ/GEX lists are in group 1 and the
third/fourth input elements will be in group 2.

GEX.read.h5 Boolean. defaults to FALSE. Whether to read GEX data from an H5 file. If set
to true, please provide the each directory containing a cellranger H5 output file
or a direct path to a filtered_feature_bc_matrix.h5 as one GEX.out.directory.list
element.

VDJ.combine Boolean. Defaults to TRUE. Whether to integrate repertoires. A sample identi-
fier will be appended to each barcode both in GEX as well as in VDJ. Recom-
mended for all later functions

GEX.integrate Boolean. Defaults to TRUE. Whether to integrate GEX data. Default settings
use the seurat scale.data option to integrate datasets. Sample identifiers will be
appended to each barcode both in GEX and VDJ This is helpful when analysing
different samples from the same organ or tissue, while it may be problematic
when analysing different tissues.

integrate.GEX.to.VDJ

Boolean. defaults to TRUE. Whether to integrate GEX metadata (not raw counts)
into the VDJ output dataframe ! Only possible, if GEX.integrate and VDJ.combine
are either both FALSE or both TRUE

integrate.VDJ.to.GEX

Boolean. defaults to TRUE. Whether to integrate VDJ data into GEX seurat
object as metadata. ! Only possible, if GEX.integrate and VDJ.combine are
either both FALSE or both TRUE

exclude.GEX.not.in.VDJ

Boolean. defaults to FALSE. Whether to delete all GEX cell entries, for which
no VDJ information is available. Dependent on data quality and sequencing
depth this may reduce the GEX cell count by a significant number

filter.overlapping.barcodes.GEX

Boolean. defaults to TRUE. Whether to remove barcodes which are shared
among samples in the GEX analysis. Shared barcodes normally appear at a
very low rate.

filter.overlapping.barcodes.VDJ

Boolean. defaults to TRUE. Whether to remove barcodes which are shared
among samples in the GEX analysis. Shared barcodes normally appear at a
very low rate.

VDJ_GEX_matrix 205

get.VDJ.stats Boolean. defaults to TRUE. Whether to generate general statistics table for VDJ
repertoires. This is appended as element [[3]] of the output list.

append.raw.reference

Boolean. Defaults to TRUE. This appends the raw reference sequence for each
contig even if trim.and.align is set to FALSE.

select.excess.chains.by.umi.count

Boolean. Defaults to FALSE. There are several methods of dealing with cells
containing reads for more than 1VDJ and 1VJ chain. While many analyses just
exclude such cells, the VGM is designed to keep these for downstream evalua-
tion (e.g. in VDJ_clonotype). This option presents an evidenced-based way of
selectively keeping or filtering only one of the present VDJ and VJ chains each.
This works in conjunction with the parameter excess.chain.confidence.count.threshold
(below) Idea source: Zhang W et al. Sci Adv. 2021 (10.1126/sciadv.abf5835)

excess.chain.confidence.count.threshold

Interger. Defaults to 1000. This sets a umi count threshold for keeping excessive
chains in a cell (e.g. T cells with 2 VJ and 1 VDJ chain) and only has an effect
if select.excess.chains.by.umi.count is set to TRUE. For a given cell with chains
and their UMI counts: VDJ1 = 3, VDJ2 = 7, VJ1 = 6. If count.threshold is kept at
default (1000), the VDJ chain with the most UMIs will be kept (VDJ2), while the
other is filtered out (VDJ1), leaving the cell as VDJ2, VJ1. If the count.threshold
is set to 3, both chains VDJ chains of this cell are kept as their UMI counts are
equal or greater to the count.threshold and therefore deemed high confidence
chains. In the case of UMI counts being equal for two chains AND below the
count.threshold, the first contig entry is kept, while the second is filtered. To
avoid filtering excess chains, set select.excess.chains.by.umi.count to FALSE.
For further notes on the implication of these please refer to the documentation
of the parameter hierarchical in the function VDJ_clonotype_v3.

trim.and.align Boolean. Defaults to FALSE. Whether to trim VJ/VDJ seqs, align them to the
10x reference and trim the reference. This is useful to get full sequences for
antibody expression or numbers of somatic hypermutations. !Setting this to
TRUE significantly increases computational time

parallel.processing

Character string. Can be "parlapply" for Windows system, "mclapply" for unix
and Mac systems or "none" to use a simple for loop (slow!). Default is "none" for
compatibility reasons. For the parlapply option the packages parallel, doParallel
and the dependency foreach are required

numcores Number of cores used for parallel processing. Defaults to number of cores avail-
able. If you want to chek how many cores are available use the library Parallel
and its command detectCores() (Not setting a limit here when running this func-
tion on a cluster may cause a crash)

gap.opening.cost

Argument passed to Biostrings::pairwiseAlignment during alignment to refer-
ence. Defaults to 10

gap.extension.cost

Argument passed to Biostrings::pairwiseAlignment during alignment to refer-
ence. Defaults to 4

206 VDJ_GEX_matrix

exclude.on.cell.state.markers

Character vector. If no input is provided or input is "none", no cells are ex-
cluded. Input format should follow: Character vector containing the gene names
for each state. ; is used to use multiple markers within a single gene state. Dif-
ferent vector elements correspond to different states. Example: c("CD4+;CD44-
","CD4+;IL7R+;CD44+"). All cells which match any of the given states (in the
example case any of the 2) are excluded. This is useful in case different and non
lymphocyte cells were co-sequenced. It should give the option to e.g. exclude
B cells in the analysis of T cells in a dataset.

exclude.on.barcodes

Character vector. Provide a list of 10x barcodes WITHOUT the terminal id (-1
, -2 etc.) to exclude from GEX and VDJ prior to processing.

integration.method

String specifying which data normalization and integration pipeline should be
used. Default is "scale.data", which correspondings to the ScaleData function in-
ternal to harmony package. ’anchors’ scales data individually and then finds and
align cells in similar states as described here: https://satijalab.org/seurat/articles/integration_introduction.html.
’sct’specifies SCTransform from the Seurat package. "harmony" should be speci-
ficied to perform harmony integration. This method requires the harmony pack-
age from bioconductor.

VDJ.gene.filter

Logical indicating if variable genes from the b cell receprot and t cell receptor
should be removed from the analysis. True is highly recommended to avoid
clonal families clustering together.

mito.filter Numeric specifying which percent of genes are allowed to be composed of mito-
chondrial genes. This value may require visual inspection and can be specific to
each sequencing experiment. Users can visualize the percentage of genes corre-
sponding to mitochondrial genes using the function "investigate_mitochondial_genes".

norm.scale.factor

Scaling factor for the standard Seurat pipeline. Default is set to 10000 as re-
ported in Seurat documentation.

n.feature.rna Numeric that specifies which cells should be filtered out due to low number of
detected genes. Default is set to 0. Seurat standard pipeline uses 2000.

n.count.rna.min

Numeric that specifies which cells should be filtered out due to low RNA count.Default
is set to 0. Seurat standard pipeline without VDJ information uses 200.

n.count.rna.max

Numeric that specifies which cells should be filtered out due to high RNA count.Default
is set to infinity. Seurat standard pipeline without VDJ information uses 2500.

n.variable.features

Numeric specifying the number of variable features. Default set to 2000 as
specified in Seurat standard pipeline.

cluster.resolution

Numeric specifying the resolution that will be supplied to Seurat’s FindClusters
function. Default is set to 0.5. Increasing this number will increase the number
of distinct Seurat clusters. Suggested to examine multiple parameters to ensure
gene signatures differentiating clusters remains constant.

VDJ_GEX_matrix 207

neighbor.dim Numeric vector specifying which dimensions should be supplied in the Find-
Neighbors function from Seurat. Default input is ’1:10’.

mds.dim Numeric vector specifying which dimensions should be supplied into dimen-
sional reduction techniques in Seurat and Harmony. Default input is ’1:10’.

FB.count.threshold

Numeric. Defaults to 10. For description of Feature Barcode assignment see
parameter FB.ratio.threshold above

FB.ratio.threshold

Numeric. Defaults to 2 Threshold for assignment of feature barcodes by counts.
A feature barcode is assigned to a cell if its counts are >FB.count.threshold and
if its counts are FB.ratio.threshold-times higher than the counts of the feature
barcode with second most counts.

FB.exclude.pattern

Character (regex compatible). If a feature barcode matches this pattern it will
be excluded from the hashing sample assignments. This may be neccessary if
CITE-seq barcodes and hashing barcodes are sequenced in the same run.

subsample.barcodes

For development purposes only. If set to TRUE the function will run on 100
cells only to increase speeds of debugging

verbose if TRUE prints runtime info to console. Defaults to TRUE

Value

Single cell matrix including VDJ and GEX info. Format is a list with out[[1]] = a VDJ dataframe (or
list of dataframes if VDJ.combine == F, not recommended) containing also selected GEX informa-
tion of integrate.GEX.to.VDJ = T. out[[2]] = GEX Seurat object with the metadata also containing
GEX information if integrate.VDJ.to.GEX = T. out[[3]] = Dataframe with statistics on GEX and
VDJ. out[[4]] = runtime parameters. out[[5]] = session info

Examples

Not run:

#FOR EXAMPLES see Platypus vignette at https://alexyermanos.github.io/Platypus/index.html

#Run from local directory input. For run from PlatypusDB input see
#PlatypusDB vignette
VDJ.out.directory.list <- list()
VDJ.out.directory.list[[1]] <- c("~/VDJ/S1/")
VDJ.out.directory.list[[2]] <- c("~/VDJ/S2/")
GEX.out.directory.list <- list()
GEX.out.directory.list[[1]] <- c("~/GEX/S1/")
GEX.out.directory.list[[2]] <- c("~/GEX/S2/")
VGM <- VDJ_GEX_matrix(
VDJ.out.directory.list = VDJ.out.directory.list
,GEX.out.directory.list = GEX.out.directory.list
,GEX.integrate = T
,VDJ.combine = T
,integrate.GEX.to.VDJ = T

208 VDJ_GEX_matrix

,integrate.VDJ.to.GEX = T
,exclude.GEX.not.in.VDJ = F
,filter.overlapping.barcodes.GEX = F
,filter.overlapping.barcodes.VDJ = F
,get.VDJ.stats = T
,parallel.processing = "none"
,subsample.barcodes = F
,trim.and.align = F
,group.id = c(1,2))

With Feature Barcodes
Option 1: Cellranger multi or Cellranger count with --libraries output
VDJ.out.directory.list <- list()
VDJ.out.directory.list[[1]] <- "~/VDJ/S1/" #point to outs or per_sample_outs directory content
VDJ.out.directory.list[[2]] <- "~/VDJ/S2/"
GEX.out.directory.list <- list()
GEX.out.directory.list[[1]] <- "~/GEX/S1/"
GEX.out.directory.list[[2]] <- "~/GEX/S2/" #These directories contain two matrices (GEX and FB)
VGM <- VDJ_GEX_matrix(
VDJ.out.directory.list = VDJ.out.directory.list
,GEX.out.directory.list = GEX.out.directory.list,
FB.ratio.threshold = 2)

##Option 2: Separate input of FB data from separate Cellranger count run
VDJ.out.directory.list <- list()
VDJ.out.directory.list[[1]] <- "~/VDJ/S1/"
VDJ.out.directory.list[[2]] <- "~/VDJ/S2/"
GEX.out.directory.list <- list()
GEX.out.directory.list[[1]] <- "~/GEX/S1/"
GEX.out.directory.list[[2]] <- "~/GEX/S2/"
GEX.out.directory.list <- list()
FB.out.directory.list[[1]] <- "~FB/S1/"
FB.out.directory.list[[2]] <- "~FB/S1/"
VGM <- VDJ_GEX_matrix(
VDJ.out.directory.list = VDJ.out.directory.list,
GEX.out.directory.list = GEX.out.directory.list,
FB.out.directory.list = FB.out.directory.list,
FB.ratio.threshold = 2)

##Option 3: FB input for two datasets of which only one contains FB data
VDJ.out.directory.list <- list()
VDJ.out.directory.list[[1]] <- "~/study1/VDJ/S1/"
VDJ.out.directory.list[[2]] <- "~/study2/VDJ/S1/"
VDJ.out.directory.list[[3]] <- "~/study2/VDJ/S2/"
GEX.out.directory.list <- list()
GEX.out.directory.list[[1]] <- "~/study1/GEX/S1/"
GEX.out.directory.list[[2]] <- "~/study2/GEX/S1/"
GEX.out.directory.list[[2]] <- "~/study2/GEX/S2/"
GEX.out.directory.list <- list()
FB.out.directory.list[[1]] <- "PLACEHOLDER" #Study 1 does not contain FB data
FB.out.directory.list[[2]] <- "~/study2/FB/S1/"
FB.out.directory.list[[3]] <- "~/study2/FB/S2/"
VGM <- VDJ_GEX_matrix(

VDJ_GEX_overlay_clones 209

VDJ.out.directory.list = VDJ.out.directory.list,
GEX.out.directory.list = GEX.out.directory.list,
FB.out.directory.list = FB.out.directory.list,
FB.ratio.threshold = 2)

End(Not run)

VDJ_GEX_overlay_clones

Overlay clones on GEX projection

Description

Highlights the cells belonging to any number of top clonotypes or of specifically selected clonotypes
from one or more samples or groups in a GEX dimensional reduction.

Usage

VDJ_GEX_overlay_clones(
GEX,
reduction,
n.clones,
clones.to.plot,
by.sample,
by.other.group,
ncol.facet,
pt.size,
clone.colors,
others.color,
split.plot.and.legend,
platypus.version

)

Arguments

GEX A single seurat object from VDJ_GEX_matrix, which also includes VDJ infor-
mation in the metadata (set integrate.VDJ.to.GEX to TRUE in the VDJ_GEX_matrix
function) (VDJ_GEX_matrix.output[[2]]) ! Clone ids and frequencies are drawn
from the columns "clonotype_id" and "clonotype_frequency"

reduction Character. Defaults to "umap". Name of the reduction to overlay clones on. Can
be "pca", "umap", "tsne"

n.clones Integer. Defaults to 5. To PLOT TOP N CLONES. Number of Top clones to
plot. If either by.sample or by.group is TRUE, n.clones clones from each sample
or group will be overlayed

210 VDJ_GEX_overlay_clones

clones.to.plot Character. Alternative to n.clones. TO PLOT SPECIFIC CLONES. Must ref-
erence a column in the GEX@meta.data filled with TRUE and FALSE. En-
tries with TRUE label are plotted. Such a column may be generated using
GEX@metadata$clones_to_plot_column <- GEX@metadata$Some_cell_identifier
== "Interesting"

by.sample Boolean. Defaults to FALSE. Whether to overlay clones by sample. If set to
TRUE this will generate a facet_wrap plot with as many facets as samples.

by.other.group Character string. Defaults to "none". Must be a valid column name of the meta-
data of the input seurat object. If so, this will generate a facet_wrap plot with as
many facets unique entries in the specified column. This may be useful to plot
cell type specific clones

ncol.facet Integer. Defaults to 2. Number of columns in the facet_wrap plot if by.sample
or by.group is TRUE

pt.size Numeric. Defaults to 1. Size of points in DimPlot. Passed to Seurat::DimPlot

clone.colors Character vector. Defaults to rainbow(n.clones). Colors to use for individual
clones. One can provide either a vector of length n.clones or a of length Nr. of
samples/groups * n.clones. In case that a vector of length n.clones is provided
and by.group or by.sample is TRUE, colors are repeated for each sample/group

others.color Character. Color for cells that are not selected i.e. not part of the overlayed
clonotypes. Defaults to "grey80". To hide the rest of the umap set to "white"

split.plot.and.legend

Boolean. Defaults to FALSE. Whether to return the plot and the legend sep-
arately as a list. This can be useful if legends get large and distort the actual
plots. The packages gridExtra and cowplot are required for this. If set to TRUE
a list is returned where out[[1]] is the plot which can be printed just by executing
out[[1]]; out[[2]] is the legend, which can be printed either using plot(out[[2]])
or grid.arrange(out[[2]])

platypus.version

Character. At the moment this function runs only on the output of the VDJ_GEX_matrix
function meaning that it is exclusively part of Platypus "v3". With further up-
dates the functionality will be extended.

Value

A ggplot object or a list of a ggplot and a gtable legend (if split.plot.and.legend \=\= TRUE).
Theme, colors etc. may be changed directly by adding new elements to this output (e.g. out \+
theme_minimal())

Examples

#To return a single plot with top clones across samples
overlay_clones_plot <- VDJ_GEX_overlay_clones(
GEX = Platypus::small_vgm[[2]], reduction = "umap"
,n.clones = 5, by.sample = FALSE
,by.other.group = "none", pt.size = 1,split.plot.and.legend = FALSE)

VDJ_GEX_stats 211

#To return a facet plot with top clones for each sample
overlay_clones_plot <- VDJ_GEX_overlay_clones(
GEX = Platypus::small_vgm[[2]], reduction = "umap"
,n.clones = 5, by.sample = TRUE, by.other.group = "none"
,pt.size = 1,ncol.facet = 2, split.plot.and.legend = FALSE)

#To return a facet plot and the legend separately with top clones for each group
overlay_clones_plot <- VDJ_GEX_overlay_clones(
GEX = Platypus::small_vgm[[2]], reduction = "umap"
,n.clones = 5, by.sample = TRUE, by.other.group = "group_id", pt.size = 1
,ncol.facet = 2, split.plot.and.legend = TRUE)

#To print both:
#overlay_clones_plot[[1]] #Plot
#gridExtra::grid.arrange(overlay_clones_plot[[2]]) #Legend
#To save, ggsave() is applicable to both

#To return a single plot with selected clones
#add a clonotype_to_plot column
#GEX@meta.data$clonotype_to_plot <- GEX$VJ_vgene == "TRAV5-1"
#Column with TRUE for all clones with a particular V gene
#overlay_clones_plot <- VDJ_GEX_overlay_clones(GEX = GEX, reduction = "umap"
#, clones.to.plot = "clonotype_to_plot", by.sample = TRUE, by.other.group = "none"
#, split.plot.and.legend = FALSE, pt.size = 1.5)

VDJ_GEX_stats Standalone VDJ and GEX statistics.

Description

Gives stats on number and quality of reads. This function is integrated into the VDJ_GEX_matrix.
Before running, please check list element [[3]] of VDJ_GEX_matrix output for already generated
statistics.

Usage

VDJ_GEX_stats(
VDJ.out.directory,
GEX.out.directory,
sample.names,
metrics10x,
save.csv,
filename

)

212 VDJ_isotypes_per_clone

Arguments

VDJ.out.directory

List of paths with each element containing the path to the output of cellranger
VDJ runs. This pipeline assumes that the output file names have not been
changed from the default 10x settings in the /outs/ folder. This is compatible
with B and T cell repertoires (both separately and simultaneously).

GEX.out.directory

OPTIONAL list of paths with each element containing the path to the output
of cellranger GEX runs. This pipeline assumes that the output file names have
not been changed from the default 10x settings in the /outs/ folder. This is
compatible with B and T cell repertoires (both separately and simultaneously).

sample.names OPTIONAL: an array of the same length as the input VDJ.out.directory list with
custom names for each sample. If not provided samples will be numbered by
processing order

metrics10x Whether to append metrics_summary.csv information provided by Cellranger
for both VDJ and GEX. Defaults to T

save.csv Boolean. Defaults to TRUE. Whether to directly save the resuts as a comma
delimited .csv file in the current working directory.

filename Character ending in .csv. Filename to save .csv as.

Value

returns a single matrix where the rows are individual cells and the columns are repertoire features.

Examples

Not run:
stats <- VDJ_GEX_stats(VDJ.out.directory = VDJ.out.directory.list
,GEX.out.directory = GEX.out.directory.list,sample.names = c(1:4)
,metrics10x = TRUE,save.csv = TRUE ,filename = "stats.csv")

End(Not run)

VDJ_isotypes_per_clone

Platypus V2 clonal utility

Description

Only for Platypus v2 Clonal frequency plot displaying the isotype usage of each clone. ! For
platypus v3 use VDJ_clonal_expansion

VDJ_isotypes_per_clone 213

Usage

VDJ_isotypes_per_clone(
VDJ_clonotype_output,
VDJ_per_clone_output,
clones,
subtypes,
species,
sample.names,
treat.incomplete.clones,
treat.incomplete.cells,
platypus.version,
VDJ.matrix

)

Arguments

VDJ_clonotype_output

list of dataframes based on the VDJ_clonotype function output.
VDJ_per_clone_output

list of dataframes based on the VDJ_per_clone function output.

clones numeric value indicating the number of clones to be displayed on the clonal
expansion plot. Can take values between 1-50. Default value is 50.

subtypes Logical indicating whether to display isotype subtypes or not.

species Character indicating whether the samples are from mouse or human. Default is
set to human. #’ @param sample.names Character vector with the same length
of the VDJ.GEX.matrix.out list. If a VDJ table is provided, length of samples
names must be one. These names are used as references to the output and as title
for the plots

sample.names Vector. Names for samples in the order of the VDJ_GEX_matrix or the VDJ.analyze.output.
Defaults to 1-n

treat.incomplete.clones

Character indicating how to proceed with clonotypes lacking a VDJC (in other
words, no cell within the clonotype has a VDJC). "exclude" removes these
clonotypes from the analysis. This may result in a different frequency ranking of
clonotypes than in the output of the VDJ_analyse function with filter.1HC.1LC
= FALSE. "include" keeps these clonotypes in the analysis. In the plot they will
appear has having an unknown isotype.

treat.incomplete.cells

Character indicating how to proceed with cells assigned to a clonotype but miss-
ing a VDJC. "proportional" to fill in the VDJ isotype according to the propor-
tions present in of clonotype (in case present proportions are not replicable in
the total number of cells e.g. 1/3 in 10 cells, values are rounded to the next full
integer and if the new counts exceed the total number of cells, 1 is subtracted
from the isotype of highest frequency. If the number is below the number of cell,
1 is added to the isotype with lowest frequency to preserve diversity), "exclude"
to exclude them from analysis and rank clonotypes only by the number of actual

214 VDJ_kmers

contigs of there heavy chain. This ranking may deviate from the frequency col-
umn in the clonotype table. CAVE: if treat_incomplete_cells is set to "exclude",
clonotypes lacking a VDJC entierly will be removed from the analysis. This
results in a similar but not identical output as when treat_incomplete_clones is
set to true. The two parameters are thereby non-redundant.

platypus.version

Defaults to "v3". For a more flexible analysis in v3 use VDJ_clonal_expansion()

VDJ.matrix The VDJ table output of the VDJ_GEX_matrix function. (VDJ_GEX_matrix.output[[1]])

Value

returns a list containing plots with the percentages of isotypes for each clone on the cell level.

Examples

Not run:
VDJ.isotype.per.clone <- VDJ_isotypes_per_clone(
VDJ_clonotype_output = VDJ.analyze.output
,VDJ_per_clone_output = VDJ.per.clone.output, clones = 30)

End(Not run)

VDJ_kmers Calculates and plots kmers distributions and frequencies.

Description

Calculates and plots kmers distributions and frequencies.

Usage

VDJ_kmers(
VDJ,
sequence.column,
grouping.column,
kmer.k,
max.kmers,
specific.kmers,
plot.format,
as.proportions

)

Arguments

VDJ VDJ dataframe output from the VDJ_GEX_matrix function.

vdj_length_prob 215

sequence.column

Character vector. One or more sequence column names from the VDJ for kmer
counting. if more than one column is provided (e.g. c("VDJ_cdr3s_aa","VJ_cdr3s_aa"))
these columns will be pasted together before counting the kmers.

grouping.column

Character. Column name of a column to group kmer counting by. This could be
"sample_id" to group each kmer by the sample.

kmer.k Integer. Length k of each kmer.

max.kmers Integer. Maximum number of kmers to be plotted in the output barplots.

specific.kmers Character vector. Specific kmers to be plotted in the output barplots.

plot.format Character. The output plot format: ’barplot’ for barplots of kmer frequency per
group, ’pca’ for group-level PCA reduction across the kmer vectors, ’density’
for kmer count density plots.

as.proportions Boolean. If TRUE, will return the kmer barplot as proportions instead of abso-
lute counts.

Value

Returns a ggplot with the kmer analysis depedning on the plot.format parameter

Examples

Not run:
#Calculate the 3-kmer frequency for CDRH3s and plot the 20 most abundant kmers.
VDJ_kmers(VDJ = Platypus::small_vgm[[1]],

,sequence.columns = c("VDJ_cdr3s_aa"), grouping.column = "sample_id", kmer.k = 3, max.kmers = 20)

End(Not run)

vdj_length_prob vdj_length_prob A list dataframe specifying lengths and probabilities
of bases deleted or inserted at each junction site of VDJ recombination
event.

Description

vdj_length_prob A list dataframe specifying lengths and probabilities of bases deleted or inserted
at each junction site of VDJ recombination event.

Usage

data("vdj_length_prob")

216 VDJ_logoplot_vector

Format

a dataframe:

v3_deletion length and probability of deleted bases at 3’ end of V segment

d5_deletion length and probability of deleted bases at 5’ end of D segment

d3_deletion length and probability of deleted bases at 3’ end of D segment

j5_deletion length and probability of deleted bases at 5’ end of J segment

dj_insertion length and probability of inserted bases between D-J segment

vj_insertion length and probability of inserted bases between V-J segment for light or alpha chains

VDJ_logoplot_vector Flexible logoplot wrapper

Description

Plots a logoplot of the CDR3 aminoacid region

Usage

VDJ_logoplot_vector(cdr3.vector, length_cdr3, seq_type)

Arguments

cdr3.vector A character vector of aa sequences. This is to increase flexibility of this function.
Such a sequence vector may be retrieved from the VDJ_analyse function output
on a clonotype level or from the VDJ_GEX_matrix function output on a per cell
level. Additionally, any length of sequence may be used (e.g. HCDR3 only or
H and LCDR3 pasted together)

length_cdr3 Integer or character. Defaults to "auto". Sets the length of the CDR3 regions that
are selected to be plotted. If set to auto, the most frequently appearing length in
the vector will be used

seq_type passed to ggseqlogo. Can be set to "aa", "dna", "rna" or "other"

Value

Returns the logo plot.

Examples

VDJ_logoplot_vector(
cdr3.vector = Platypus::small_vgm[[1]]$VDJ_cdr3s_aa
,length_cdr3 = "auto",seq_type = "auto")

VDJ_network 217

VDJ_network Similarity networks based on CDR3 regions

Description

Creates a similarity network where clones with similar CDR3s are connected.

Usage

VDJ_network(
VDJ,
distance.cutoff,
per.sample,
platypus.version,
known.binders,
hcdr3.only,
is.bulk

)

Arguments

VDJ Either (for platypus version "v2") output from VDJ_analyze function. This
should be a list of clonotype dataframes, with each list element corresponding
to a single VDJ repertoire, OR (for platypus version "v3") the the VDJ matrix
output of the VDJ_GEX_matrix() function (VDJ.GEX.matrix.output[[1]])

distance.cutoff

The threshold Levenshtein distance for which two nodes will be connected on
the similarity network.

per.sample logical value indicating if a single networks should be produced for each mouse.

platypus.version

Character. Defaults to "v3". Can be "v2" or "v3" dependent on the input format

known.binders Either a character vector with cdr3s of known binders or a data frame with cdr3s
in the first and the corresponding specificity in the second column. If this pa-
rameter is defined, the output will be a network with only edges between known
binders and the repertoire nodes and edges between the known binders that have
at least one edge to a repertoire node

hcdr3.only logical value indicating if the network is based on heavy chain cdr3s (hcdr3.only
= T) or pasted heavy and light chain cdr3s (hcdr3.only = F), works for platy-
pus.version 3 only

is.bulk logical value indicating whether the VDJ input was generated from bulk-sequencing
data using the bulk_to_vgm function. If is.bulk = T, the VDJ_network function
is compatible for use with bulk data. Defaults to False (F).

218 VDJ_ordination

Value

returns a list containing networks and network information. If per.sample is set to TRUE then
the result will be a network for each repertoire. If per.sample ==F, output[[1]] <- will contain the
network, output[[2]] will contain the dataframe with information on each node, such as frequency,
mouse origin etc. output[[3]] will contain the connected index - these numbers indicate that the
nodes are connected to at least one other node. output[[4]] contains the paired graph - so the graph
where only the connected nodes are drawn.

Examples

#Platypus v2
#network_out <- VDJ_network(VDJ = VDJ_analyze.out[[1]],per.sample = TRUE,distance.cutoff = 2)
#Platypus v3
network_out <- VDJ_network(VDJ = Platypus::small_vgm[[1]],per.sample = FALSE,distance.cutoff = 2)

VDJ_ordination Performs ordination/dimensionality reduction for a species incidence
matrix, depending on the species selected in the feature.columns pa-
rameter.

Description

Performs ordination/dimensionality reduction for a species incidence matrix, depending on the
species selected in the feature.columns parameter.

Usage

VDJ_ordination(
VDJ,
feature.columns,
grouping.column,
method,
reduction.level,
VDJ.VJ.1chain,
umap.n.neighbours,
tsne.perplexity

)

Arguments

VDJ VDJ dataframe output from the VDJ_GEX_matrix function.
feature.columns

Character vector. One or more column names from the VDJ to indicate the
unique species for the incidence/count matrix. if more than one column is pro-
vided (e.g. c("VDJ_cdr3s_aa","VJ_cdr3s_aa")) these columns will be pasted
together before metric calculation.

VDJ_overlap_heatmap 219

grouping.column

Character. Column name of a column to group the ordination by. This could
be "sample_id" to reduce across each sample. Indicative of ’sites’ in a typical
community data matrix/incidence matrix used in community ecology analyses
(species by sites).

method Character. The ordination method; choose from either: PCA - ’pca’, t-SNE -
’tsne’, UMAP - ’umap’, PCOA/MDS - ’mds’, DCA - ’dca’.

reduction.level

Character. Whether to reduce across groups (’groups’), features/sequences (’fea-
tures’), or both (’both’).

VDJ.VJ.1chain Boolean defaults to TRUE. Whether to filter out aberrant cells (more than 1 VDJ
or VJ chain).

umap.n.neighbours

Integer. Control the t-SNE perplexity when method = ’tsne’.
tsne.perplexity

Integrer. Defaults to 1

Value

Returns a ggplot with the ordination analysis performer across features, groups, or both

Examples

#PCA dimensionality reduction across samples for CDRH3
plot <- VDJ_ordination(VDJ = Platypus::small_vgm[[1]],
,feature.columns = c("VDJ_cdr3s_aa"), grouping.column = "sample_id"
,method = "pca", reduction.level = 'groups')

VDJ_overlap_heatmap Wrapper to determine and plot overlap between VDJ features across
groups

Description

Yields overlap heatmap and datatable of features or combined features for different samples or
groups

Usage

VDJ_overlap_heatmap(
VDJ,
feature.columns,
grouping.column,
jaccard,
plot.type,

220 VDJ_overlap_heatmap

pvalues.label.size,
axis.label.size,
add.barcode.table

)

Arguments

VDJ VDJ output of the VDJ_GEX_matrix function (VDJ_GEX_matrix.output[[1]])

feature.columns

A character array of column names of which the overlap should be displayed.
The content of these columns is pasted together (separated by "/"). E.g. if the
overlap in cells germline gene usage is desired, the input could be c("VDJ_jgene","VDJ_dgene","VDJ_vgene").
These columns would be pasted and compared across the grouping variable.

grouping.column

A column which acts as a grouping variable. If repertoires are to be compared
use the sample_id column.

jaccard Boolean. Defaults to FALSE. If set to TRUE, the overlap will be reported as
jaccard index. If set to FALSE the overlap will be repored as absolute counts

plot.type Character. Either "ggplot" or "pheatmap". Defaults to Pheatmap

pvalues.label.size

Numeric. Defaults to 4. Is passed on to ggplot theme

axis.label.size

Numeric. Defaults to 4. Is passed on to ggplot theme

add.barcode.table

Boolean. Defaults to T. Whether to generate a dataframe with frequencies and
barcodes of cells with overlapping features. This is useful to e.g. analyze defer-
entially expressed genes between cells of two samples or groups expressing the
same VDJ or VJ chain

Value

A list of a ggplot (out[[1]]), the source table or matrix for the plot out[[2]] and a table containing
additional information in case that add.barcode.table was set to TRUE (out[[3]])

Examples

#To test the overlap of CDR3s between multiple samples
overlap <- VDJ_overlap_heatmap(VDJ = Platypus::small_vgm[[1]]
,feature.columns = c("VDJ_cdr3s_aa"),
grouping.column = "sample_id", axis.label.size = 15
, plot.type = "ggplot")

VDJ_per_clone 221

VDJ_per_clone VDJ_per_clone

Description

only Platypus v2 Analyzes and processes the repertoire sequencing data from cellranger vdj. This
provides information on the single-cell level for each clone, as opposed to the output from VDJ_analyze.

Usage

VDJ_per_clone(
clonotype.list,
VDJ.out.directory,
contig.list,
fasta.list,
reference.list,
filtered.contigs,
annotations.json,
JSON

)

Arguments

clonotype.list Output from either VDJ_analyze or VDJ_clonotype functions. This list should
correspond to a single GEX.list object, in which each list element in clono-
type.list is found in the GEX.object. Furthermore, the i’th entry in the directory
supplied to GEX.list should correspond to the i’th element in the clonotype.list
object.

VDJ.out.directory

Character vector with each element containing the path to the output of cell-
ranger vdj runs. This corresponds to the same object used for the VDJ_analyze
function. Multiple repertoires to be integrated in a single transcriptome should
be supplied as multiple elements of the character vector. This can be left blank
if supplying the clonotypes and contig files directly as input. This pipeline as-
sumes that the output file names have not been changed from the default 10x
settings in the /outs/ folder. This is compatible with B and T cell repertoires
(both separately and simultaneously).

contig.list List of dataframe based on the all_contigs.csv file from cellranger vdj output. If
10x sequencing was not used then this object should be formatted with the same
columns as the 10x object.

fasta.list Contains the full-length sequence information in the same format as filtered_contig.fasta
file from the output of cellranger.

reference.list Contains the reference sequence information in the same format as concat_ref.fasta
file from the output of cellranger.

222 VDJ_phylogenetic_trees

filtered.contigs

Logical indicating if the filtered contigs file should be used. TRUE will read
VDJ information from only the filtered output of cellranger. FALSE will read
the all contigs file from cellranger. Default set to TRUE (filtered output)

annotations.json

Optional input from loaded all_contig_annotations.json. Will be read in auto-
matically if not provided

JSON Boolean. Defaults to FALSE. Whether to load all_contig_annotations.json

Details

Platypus V2 data frame utility

Value

Returns a list of dataframes containing

Examples

Not run:
VDJ_per_clone_out <- VDJ_per_clone(clonotype.list = output.from.VDJ_analyze
,VDJ.out.directory = "path/to/cellranger/outs/")

End(Not run)

VDJ_phylogenetic_trees

Creates phylogenetic trees from a VDJ dataframe

Description

Creates phylogenetic trees as tidytree dataframes from an input VDJ dataframe. The resulting phy-
logenetic trees can be plotted using VDJ_phylogenetic_trees_plot. Both of these functions require
the tidytree and ggtree packages.

Usage

VDJ_phylogenetic_trees(
VDJ,
sequence.type,
as.nucleotide,
trimmed,
include.germline,
global.clonotype,
VDJ.VJ.1chain,
additional.feature.columns,
filter.na.columns,
maximum.lineages,

VDJ_phylogenetic_trees 223

minimum.sequences,
maximum.sequences,
tree.algorithm,
tree.level,
n.trees.combined,
germline.scale.factor,
output.format,
parallel

)

Arguments

VDJ VDJ or VDJ.GEX.matrix[[1]] object, as obtained from the VDJ_GEX_matrix
function in Platypus.

sequence.type string - sequences which will be used when creating the phylogenetic trees.
’cdr3’ for CDR3s of both VDJs and VJs, ’cdrh3’ for VDJ CDR3s, ’VDJ.VJ’
for pasted full sequences of both VDJ and VJ, ’VDJ’ for full VDJ sequences,
’VJ’ for full VJ.

as.nucleotide boolean - if T, will only consider the DNA sequences specified by sequence.type,
else it will consider the amino acid ones.

trimmed boolean - in the case of full VDJ or VJ nt sequences, if the trimmed sequences
should be consider (trimmed=T), or raw ones. You need to call MIXCR first on
the VDJ dataframe using VDJ_call_MIXCR().

include.germline

boolean - if T, a germline sequence will be included in the trees (root), obtained
by pasting the VDJ_trimmed_ref and VJ_trimmed_ref sequences. You need to
call MIXCR first on the VDJ dataframe using VDJ_call_MIXCR().

global.clonotype

boolean - if T, will ignore samples from the sample_id column, creating global
clonotypes.

VDJ.VJ.1chain boolean - if T, will remove aberrant cells from the VDJ matrix.
additional.feature.columns

list of strings or NULL - VDJ column names which will comprise the per-
sequence features to be included in the tidytree dataframe, which will be used to
label nodes/ determines their color/ size etc. See also the VDJ_phylogenetic_trees_plot
function.

filter.na.columns

list of strings - VDJ columns names: if a phylogenetic tree/tidytree dataframe
has all elements = NA in that feature, that tree will be completely removed.

maximum.lineages

integer or ’all’ - maximum number of clonotypes to create trees for. If ’all’, will
create trees for all clonotypes.

minimum.sequences

integer - lower bound of sequences for a tree. Defaults to 3. Trees with a lower
number will be automatically removed.

224 VDJ_phylogenetic_trees_plot

maximum.sequences

integer - upper bound of sequences for a tree. Additional sequences will be
removed, after being ordered by their total frequency.

tree.algorithm string - the algorithm used when constructing the phylogenetic trees. ’nj’ for
Neighbour-Joining, ’bionj’, ’fastme.bal’, and ’fastme.ols’

tree.level string - level at which to build phylogenetic trees. ’intraclonal’ - tree per clono-
type, per sample, ’global.clonotype’ - global clonotype trees (include.germline
must be F), irrespective of sample, ’combine.first.trees’ will combine the trees
for the most expanded clonotypes, per sample (include.germline must be F).

n.trees.combined

integer - number of trees to combine if tree.level=’combine.first.trees’.

germline.scale.factor

numeric - as germlines are incredibly distant from their closest neighbours (in
the tree), this controls the scale factor for the germline tree branch length for
more intelligible downstream plotting.

output.format string - ’tree.df.list’ returns a nested list of tidytree dataframes, per clonotype
and per sample; ’lineage.df.list’ returns a list of lineage dataframes - unique
sequences per clonotype,

parallel string - parallelization method to be used to accelerate computations, ’none’,
’mclapply’, or ’parlapply’.

Value

Nested list of tidytree dataframes or lineage dataframes.

Examples

Not run:
VDJ_phylogenetic_trees(VDJ=VDJ, sequence.type='VDJ.VJ',
trimmed=TRUE, as.nucleotide=TRUE, include.germline=TRUE,
additional.feature.columns=NULL, tree.level='intraclonal',
output.format='tree.df.list')

End(Not run)

VDJ_phylogenetic_trees_plot

Phylogenetic tree plotting

Description

Function to plot phylogenetic trees obtained from VDJ_phylogenetic_trees

!Requires the ggtree package to be loaded! Plots trees from function VDJ_phylogenetic_trees

VDJ_plot_SHM 225

Usage

VDJ_phylogenetic_trees_plot(
tree.dfs,
color.by,
size.by,
shape.by,
specific.leaf.colors,
specific.leaf.shapes

)

Arguments

tree.dfs nested list of tidytree dataframes obtained from VDJ_phylogenetic_trees with
output.format=’tree.df.list’. tree.dfs[[1]][[2]] represent a tree dataframe for the
first sample, second clonotype.

color.by string - VDJ or tree df column name which will be used to color the tree nodes.

size.by string or NULL - VDJ or tree df column name which determines the node size.
If NULL, node sizes will be equal.

shape.by string or NULL - VDJ or tree df column name which determines the node shape.
If NULL, node sizes will be equal.

specific.leaf.colors

named list or NULL - if NULL, colors will be automatically selected for each
node according to its color.by value.

specific.leaf.shapes

named list or NULL - if NULL, shapes will be automatically selected for each
node according to its shape.by value.

Value

nested list of ggtree plot objects for each sample and each clonotype.

Examples

Not run:
VDJ_phylogenetic_trees_plot(tree.dfs,color.by='clonotype_id', size.by='sequence_frequency')

End(Not run)

VDJ_plot_SHM Plotting of somatic hypermutation counts

Description

Plots for SHM based on MIXCR output generated using the VDJ_call_MIXCR function and ap-
pended to the VDJ.GEX.matrix.output

226 VDJ_plot_SHM

Usage

VDJ_plot_SHM(
VDJ.mixcr.matrix,
group.by,
quantile.label,
point.size,
mean.line.color,
stats.to.console,
platypus.version

)

Arguments

VDJ.mixcr.matrix

Output dataframe from the VDJ_call_MIXCR function or a dataframe generated
using the VDJ_GEX_matrix function and supplemented with MIXCR informa-
tion

group.by Character. Defaults to "sample_id". Column name of VDJ.matrix to split VDJ.matrix
by. For each unique entry in that column a set of plots will be generated. This
can be useful to plot SHM by expansion or by transcriptomics-derived clusters

quantile.label Numeric. Defaults to 0.9. Which points to label in the SHM scatterplot. If set
to 0.9, the top 10% of cells by SHM number will be labelled. If ggrepel throws
a warning, concerning overlap it is recommended to attempt to lable less points
to avoid cluttering

point.size Size of points in plots. Passed to geom_jitter()
mean.line.color

Color of mean bar in dotplots. Passed to geom_errorbar()
stats.to.console

Boolean. Defaults to FALSE. Prints basic statistics (AOV \+ post hoc test) to
console

platypus.version

Character. Only "v3" available.

Value

Returns a list of ggplot objects. out\[\[1\]\] is a boxplot comparing SHM by group.by. out\[\[2\]\]
to out\[\[n\]\] are plots for each group that visualize VDJ and VJ SHM distribution for each group.
Data for any plot can be accessed via out \[\[any\]\]$data

Examples

#Simulating SHM data
small_vgm <- Platypus::small_vgm
small_vgm[[1]]$VDJ_SHM <- as.integer(rnorm(nrow(small_vgm[[1]]), mean = 5, sd = 3))
small_vgm[[1]]$VJ_SHM <- as.integer(rnorm(nrow(small_vgm[[1]]), mean = 5, sd = 3))

#Standard plots
SHM_plots <- VDJ_plot_SHM(VDJ = small_vgm[[1]]

VDJ_public 227

, group.by = "sample_id", quantile.label = 0.9)

#Group by transcriptional cluster and label only top 1\%
SHM_plots <- VDJ_plot_SHM(VDJ = small_vgm[[1]]
, group.by = "seurat_clusters", quantile.label = 0.99)

VDJ_public Function to get shared/public elements across multiple repertoires

Description

Function to get shared elements across multiple repertoires, specified by the feature.columns param-
eter (a column of the VDJ matrix). If two columns are specified in feature.columns, the resulting
shared features will combine the values from each column (at a per-cell level).

Usage

VDJ_public(
VDJ,
feature.columns,
grouping.column,
specific.groups,
find.public.all,
find.public.percentage,
treat.combined.features,
output.format

)

Arguments

VDJ VDJ or VDJ.GEX.matrix[[1]] object, as obtained from the VDJ_GEX_matrix
function in Platypus.

feature.columns

Character or character vector columns of features to be assayed
grouping.column

string - the repertoire/group-defining column (default to ’sample_id’).
specific.groups

vector of strings or NULL - if only the shared elements from specific repertoires
should be taken into account. If NULL, will output the shared/public elements
across all repertoires.

find.public.all

boolean - if T, will look for the public elements across all repertoires
find.public.percentage

list - the first element denotes the percentage of repertoires to get shared ele-
ments for, the second element is the maximum number of repertoire combina-
tions to consider (can be NULL to consider all).

228 VDJ_rarefaction

treat.combined.features

string - ’exclude’ will exclude combined features with one element missing,
’include’ will include and considers them as a new feature value.

output.format string - ’df’ to get a shared element dataframe (with columns = Repertoire and
Public), ’list’ for a list of shared elements.

Value

Either a dataframe of public elements across multiple repertoires or a list.

Examples

VDJ_get_public(VDJ = small_vgm[[1]],
feature.columns='VDJ_cdr3s_aa', find.public.all=TRUE,
output.format='df')

VDJ_rarefaction Plots rarefaction curves for species denoted in the feature.columns pa-
rameter across groups determined by grouping.columns

Description

Plots rarefaction curves for species denoted in the feature.columns parameter across groups deter-
mined by grouping.columns

Usage

VDJ_rarefaction(
VDJ,
feature.columns,
grouping.column,
VDJ.VJ.1chain,
rarefaction.type,
hill.numbers,
number.resamples,
sample.sizes,
endpoint

)

Arguments

VDJ VDJ dataframe output from the VDJ_GEX_matrix function.
feature.columns

Character vector. One or more column names from the VDJ to indicate the
unique species for the rarefaction (to rarefy across). If more than one column is
provided (e.g. c("VDJ_cdr3s_aa","VJ_cdr3s_aa")) these columns will be pasted
together.

VDJ_reclonotype_list_arrange 229

grouping.column

Character. Column name of a column to group the rarefaction by. This could be
"sample_id" for rarefaction curves for each sample.

VDJ.VJ.1chain Boolean defaults to TRUE. Whether to filter out aberrant cells (more than 1 VDJ
or VJ chain).

rarefaction.type

Character. Options for the iNEXT rarefaction - ’sample.size’,’coverage.based’,
or ’sample.completeness’.

hill.numbers Integer/ vector of integers. The Hill numbers to be plotted out (0 - species rich-
ness, 1 - Shannon diversity, 2 - Simpson diversity)

number.resamples

Integer. Number of bootstrap replications.
sample.sizes Vector if integers. The sample size points at which rarefaction should be per-

formed. Defaults to NULL
endpoint Integer. The maximum sample size for rarefaction extrapolation. Defaults to

NULL = 2 times the sample size for each sample.

Value

Returns a ggplot with the ordination analysis performer across features, groups, or both

Examples

Not run:
#Rarefaction analysis of CDRH3 across samples
plot <- VDJ_diversity(VDJ = Platypus::small_vgm[[1]],
,feature.columns = c("VDJ_cdr3s_aa"), grouping.column = "sample_id")

End(Not run)

VDJ_reclonotype_list_arrange

Platypus V2 dataframe utility

Description

Only Platypus v2 Organizes the top N genes that define each Seurat cluster and converts them into
a single dataframe. This can be useful for obtaining insight into cluster-specific phenotypes.

Usage

VDJ_reclonotype_list_arrange(
VDJ_clonotype.output,
VDJ_analyze.output,
Platypus_list.object

)

230 VDJ_select_clonotypes

Arguments

VDJ_clonotype.output

The output object from the VDJ_clonotype function. The column of the merged
nucleotide clonotype IDs will be used to rearrange the new object.

VDJ_analyze.output

The output from the initial VDJ_analyze, containing clonotype information based
on nucleotide sequence.

Platypus_list.object

The new list object from one of Platypus functions (for example, clonal lineages,
VDJ_per_clne, etc) that should be merged based on the VDJ_clonotype output
structure. nested list structure, where outer list corresponds to repertoire and the
inner list corresponds to clones (on the nucleotide level).

Value

Returns a dataframe in which the top N genes defining each cluster based on differential expression
are selected.

Examples

Not run:
checking_vdj_reclono <- VDJ_reclonotype_list_arrange(
VDJ_clonotype.output = repertoire_reclonotype
,VDJ_analyze.output = repertoire_list
,Platypus_list.object = repertoire_vdj_per_clone)

End(Not run)

VDJ_select_clonotypes Select clonotypes

Description

For prediction of antibody structures from a big data set it might be of interest to select the most
expanded clonotypes for prediction. This function can select the top most expanded clonotypes
based on the desired clone strategy. Among the most expanded clonotypes the cells are ranked
according to the UMI count and then the top unique sequences are selected to use for prediction.
The function’s input is the Platypus VGM object. In order to integrate UMI counts to the data, the
raw data which is the output of the PlatypusDB_fetch() function is needed in addition. From the
selected clonotypes the germline reference sequences are obtained by calling MIXCR. This requires
a local installation of MIXCR on your computer. !FOR WINDOWS USERS THE EXECUTABLE
MIXCR.JAR HAS TO PRESENT IN THE CURRENT WORKING DIRECTORY !

The output of the VDJ_select_clonotypes function can directly be used for structure prediction by
the AlphaFold_prediction() function.

VDJ_select_clonotypes 231

Usage

VDJ_select_clonotypes(
VGM,
raw.data,
clone.strategy,
VDJ.VJ.1chain,
donut.plot,
clonotypes.per.sample,
top.clonotypes,
seq.per.clonotype,
mixcr.directory,
species,
platypus.version,
operating.system,
simplify

)

Arguments

VGM The platypus vgm object his used as an input for the function.
raw.data In order to integrate the UMI counts per cell, the raw data has to be specified

as a second input to the function which is the output of the PlatypusDB_fetch()
function.

clone.strategy The desired clone strategy can be specified as a string. Possible options are
10x.default, cdr3.nt, cdr3.aa, VDJJ.VJJ, VDJJ.VJJ.cdr3length, VDJJ.VJJ.cdr3length.cdr3.homology,
VDJJ.VJJ.cdr3length.VDJcdr3.homology, cdr3.homology, VDJcdr3.homology.
10x.default is used as default. cdr3.aa will convert the default cell ranger clono-
typing to amino acid bases. ’VDJJ.VJJ’ groups B cells with identical germline
genes (V and J segments for both heavy chain and light chain. Those argu-
ments including ’cdr3length’ will group all sequences with identical VDJ and VJ
CDR3 sequence lengths. Those arguments including ’cdr3.homology’ will addi-
tionally impose a homology requirement for CDRH3 and CDRL3 sequences.’CDR3.homology’,or
’CDRH3.homology’ will group sequences based on homology only (either of
the whole CDR3 sequence or of the VDJ CDR3 sequence respectively). All
homology calculations are performed on the amino acid level.

VDJ.VJ.1chain If the VDJ.VJ.1chain argument is set to TRUE only cells with one VDJ and one
VJ sequences are included in the selection.

donut.plot If set to TRUE a donut plot for visualization of the clonotypes is returned.
clonotypes.per.sample

By default the top clonotypes are selected per sample. If the top clonotypes
over all samples are desired the clonotypes.per.sample argument can be set to
FALSE.

top.clonotypes Specify the number of top clonotypes that will be selected either per sample if
clonotypes.per.sample = T or over all if clonotypes.per.sample = F.

seq.per.clonotype

Specify the number of unique sequences per clonotype that are selected. The
clonotypes are ordered according to UMI expression.

232 VDJ_structure_analysis

mixcr.directory

The path to the directory containing an executable version of MIXCR.

species Either "mmu" for mouse or "hsa" for human. These use the default germline
genes for both species contained in MIXCR. Default is set to "hsa".

platypus.version

Character. Defaults to "v3". Can be "v2" or "v3" dependent on the input format
operating.system

Can be either "Windows", "Darwin" (for MAC) or "Linux". If left empty this is
detected automatically

simplify Only relevant when platypus.version = "v3". Boolean. Defaults to TRUE. If
FALSE the full MIXCR output and computed SHM column is appended to the
VDJ If TRUE only the framework and CDR3 region columns and computed
SHM column is appended. To discriminate between VDJ and VJ chains, prefixes
are added to all MIXCR output columns

Value

ADD DESCRIPTION OF RETURN VALUE HERE

Examples

Not run:

ADD EXAMPLE CODE HERE

End(Not run)

VDJ_structure_analysis

Analysis of antibody structures

Description

VDJ_structure_analysis is a Platypus function for the analysis of 3d structures of antibodies. The
function is designed in a way to be a follow up of the alphafold_prediction function of the Platypus
package. The input of this function is a list that has the VDJ MIXCR output in its first element
and a list of structures in its second element. This is the output format of the alphafold_prediction
function. The function can also be used to visualize structures from PDB files directly.

The function can visualize the structures of proteins and is especially designed for visualization
of antibodies, where the framework and CDR regions are automatically annotated. If the antibody
was predicted together with a antigen, the function can visualize binding interaction and detect the
binding site residues. Furthermore, it can determine binding site metrics as average distance and
model accuracy. The function has a variety of arguments to create the desired visualization.

VDJ_structure_analysis 233

Usage

VDJ_structure_analysis(
VDJ.structure,
cells.to.vis,
rank,
rank.list,
overlay,
PDB.file,
spin.speed,
color.frameworks,
color.cdr3,
color.cdr2,
color.cdr1,
VDJ.anno,
label,
label.size,
bk.opac,
font.opac,
font.col,
anno.seq,
color.molecule,
color.sheets,
color.helix,
angle.x,
angle.y,
angle.z,
r3dmol.code,
plddt.plot,
structure.plot,
antigen.interaction,
binding.site.cutoff,
dist.mat,
SASA,
hydrophobicity,
charge,
metrics.plot,
BindingResidues.plot,
binding.residue.barplot,
binding.residue.barplot.style

)

Arguments

VDJ.structure The VDJ.structure is a list object with the VDJ MIXCR out data frame as its first
element containing the germline reference sequences. The second list element
contains a list for every predicted structures with the top ranked predictions in
pdb format read in by the bio3d:read_pdb() function.

cells.to.vis In the cells.to.vis argument, the barcodes of the cells that should be analyzed can

234 VDJ_structure_analysis

be specified. It can be a single barcode or a list of barcodes. If all the elements
of the VDJ.structure object shall be included, the cells.to.vis argument can be
set to "ALL" (cells.to.vis = "ALL).

rank AlphaFold predicts multiple models for a given structure which are then ranked
according to model’s confidence with ranked_0.pdb as the best fit. By default
the function uses the ranked_0 model but if a different rank is desired this can
be specified in teh rank argument (rank = "ranked_5.pdb").

rank.list The function can also be used to analyze multiple ranked models per structure.
This can be done by specifying the rank.list argument. rank.list = list("ranked_0.pdb",
"ranked_1.pdb", "ranked_2.pdb") would use the top three most confident models
per structure that are specified in the cells.to.vis argument.

overlay Multiple antibody structures are by default visualized separately. In case an
overlay is desired this can be done by setting overlay to TRUE (overlay = T).

PDB.file Instead of visualizing the structure form the VDJ.structure object, the function
can accept a path to a pdb.file as well.

spin.speed Protein animations can spin around an internal axis. By default the spin speed
is set to 0. To start rotation the spin.speed argument can be set to the desired
rotation speed.

color.frameworks

The color of the frameworks can be changed by specifying the color.frameworks
argument with a the desired color in HEX format (color.frameworks = "#eb4034")

color.cdr3 The color of the cdr3 can be changed by specifying the color.cdr3 argument with
a the desired color in HEX format (color.cdr3 = "#eb4034")

color.cdr2 The color of the cdr2 can be changed by specifying the color.cdr2 argument with
a the desired color in HEX format (color.cdr2 = "#eb4034")

color.cdr1 The color of the cdr1 can be changed by specifying the color.cdr1 argument with
a the desired color in HEX format (color.cdr1 = "#eb4034")

VDJ.anno When using a VDJ structure object as an input, the regions of the antibody are
by default annotated based on the MIXCR columns. If annotation is not desired
the VDJ.anno argument can be set to FALSE.

label By default the annotated regions are labeled. The label can be disabled by setting
the label argument to FASLE.

label.size The label size can be adjusted by specifying the label.size argument. By default
the label size is set to 12.

bk.opac The label background opacity can be defined with the bk.opac argument. The
default opacity is 0.8.

font.opac The opacity of the label’s font can be set by specifying the font.opac argument.
The default opacity is 1.

font.col The color of the font can be set by the font.col argument. It has to be in a HEX
format.

anno.seq By the anno.seq argument any residues of the structure can be annotated. Every
domain of the structure is handled as a separate chain, named alphabetically
from A-Z, according to the order in the FASTA file. So for an anybody the HC
is Chain A, the LC Chain B and the Antigen Chain C. The format of the anno.seq

VDJ_structure_analysis 235

argument is a vector with the index of the starting residue as its first element, the
index of the end residue as second element, the chain in the third element and the
color in HEX format as the fourth element. Optionally a label can be added by
specifying the text in the fifth element anno.seq = c(4,12,"C","#9900ff","label").
For annotating multiple sequences at once, a list of vectors can be used anno.seq
= list(c(4,12,"C","#9900ff","label1"),c(4,12,"B","#9350ff","label2"),...)

color.molecule The color of the non annotated residues can be set by the color.molecule argu-
ment in HEX format.

color.sheets The color of beta sheets can be set by specifying the color.sheets argument with
the desired color in HEX format.

color.helix The color of alpha helices can be set by specifying the color.helix argument with
the desired color in HEX format.

angle.x The molecule can be rotated around the x-axis by setting the angle.x argument
in degree.

angle.y The molecule can be rotated around the y-axis by setting the angle.y argument
in degree.

angle.z The molecule can be rotated around the z-axis by setting the angle.z argument
in degree.

r3dmol.code Additional r3dmol code to modify appearance of the final structure. Defaults to
"". Character input is run via eval(parse(x))

plddt.plot AlphaFold has a pLDDT confidence score for every residue of the structure. An
additional plot of the structure colored according to the pLDDT score will be
returned by setting the plddt.plot to TRUE.

structure.plot By default the structure is visualized. However, if the function is only used to
get binding site metrics, the structure.plot argument can be set to FALSE. Like
this nos structures are plotted.

antigen.interaction

If the antibody is predicted together with the antigen the antigen.interaction ar-
gument can be set to TRUE in order to get some binding site metrics. The func-
tion will determine the binding site residues based on the bio3d::binding.site()
function as well as the average minimal distance of every binding site residue
from the antibody to the antigen. Furthermore, the mean confidence (pLDDT)
of the binding site residues is calculated. All the results are summarized in a
data frame.

binding.site.cutoff

Cutoff for the bio3d::binding.site() function. Default is 5.

dist.mat If set to TRUE, the binding residues distance matrix for every structure will
be returned as a list. Default = FALSE, so only the minimal distances in the
summary data frame is returned.

SASA if set to TRUE the Solvent Accessible Surface Area will be calculated for every
Structure

hydrophobicity If set to TRUE, the per residue hydrophobicity will be calculated.

charge If set to TRUE, the per residue charge will be calculated.

metrics.plot If set to TRUE, a structure plot colored according to the metrics will be shown.

236 VDJ_tree

BindingResidues.plot

If the antigen.interaction is enabled, the binding site residues can be visualized
on the structure by setting the BindingResidues.plot argument to TRUE.

binding.residue.barplot

The binding.residue.bar plot can be set to TRUE to get a bar plot visualizing to
which regions of the antibody the binding site residues belong too. A bar plot is
produced for every structure separately as well as one summary bar plot over all
analyzed structures.

binding.residue.barplot.style

There are two styles available for the binding site residue bar plot. By default
all regions are listed separately. By setting the binding.residue.barplot.style to
"FR_CDR", only framework and CDR is distinguished.

Value

ADD DESCRIPTION OF RETURN VALUE HERE

Examples

Not run:

ADD EXAMPLE CODE HERE

End(Not run)

VDJ_tree Platypus V2 phylogenetic trees.

Description

Please refer tp VDJ_phylogenetic_tree for Platypus V3. Produces neighbor joining phylogenetic
trees from the output of VDJ_clonal_lineages

Usage

VDJ_tree(
clonal.lineages,
with.germline,
min.sequences,
max.sequences,
normalize.germline.length,
unique.sequences

)

VDJ_variants_per_clone 237

Arguments

clonal.lineages

Output from VDJ_clonal_lineages. This should be nested list, with the outer list
element corresponding to the individual repertoire and the inner list correspond-
ing to individual clonal lineages based on the initial clonotyping strategy in the
form of a dataframe with either Seq or Name.

with.germline Logical specifying if the germline should be set as outgroup. Default is set to
TRUE.

min.sequences integer value specifying the minimum number of sequences to be allowed for
clonal lineages. Default is 3.

max.sequences integer value specifying the maximum number of sequences to be allowed for
clonal lineages. Default is 500

normalize.germline.length

Logical determining whether or not the branch length separating the germline
from the first internal node should be normalized. Potentially useful for visual-
ization if the remainder tips are far from the root. Default is TRUE.

unique.sequences

Logical indicating if those cells containing identical VDJRegion sequences should
be merged into single nodes and have their variant added as the tip label. Default
is TRUE.

Value

Returns a nested list of phylogenetic trees. The output[[i]][[j]] corresponds to the j’th clone in the
i’th input repertoire. plot(output[[i]][[j]]) should display the phylogenetic tree if the ape package is
loaded.

Examples

Not run:
vdj.tree <- VDJ_tree(clonal.lineages = VDJ.clonal.lineage.output
,with.germline=TRUE,min.sequences = 5
,max.sequences = 30,unique.sequences = TRUE)

End(Not run)

VDJ_variants_per_clone

Wrapper for variant analysis by clone

Description

Returns statistics and plots to examine diversity of any sequence or metadata item within clones on
a by sample level or global level

238 VDJ_variants_per_clone

Usage

VDJ_variants_per_clone(
VDJ,
variants.of,
clonotypes.col,
stringDist.method,
split.by,
platypus.version

)

Arguments

VDJ VDJ output of the VDJ_GEX_matrix (VDJ_GEX_matrix.output[[1]]). VDJ
matrix supplemented with with MIXCR information is also valid

variants.of Character vector. Defaults to c("VDJ_cdr3s_aa", "VJ_cdr3s_aa"). Column
name(s) of VDJ to examine variants of. If more than one name is given, these
columns will be pasted together. The default will therefore return statistics on
the number of variants of VDJ and VJ cdr3s in every clone

clonotypes.col Column name of the VDJ column containing clonotype information. Defaults
to "clonotype_id_10x". This is useful if alternative clonotyping strategies have
been used and are stored in other columns

stringDist.method

Character. Passed to Biostrings::strinDist. Method to calculate distance between
variants of a clone. Defaults to "levenshtein". Other options are "hamming",
"quality". If "hamming" variants of a clone will be shortened from the end to
the shortest variant to make all input sequences the same length.

split.by Character. Defaults to "sample_id". Column name of VDJ to split the analy-
sis by. This is necessary, if clonotyping was done on a per sample level (e.g.
"clonotype1" in sample 1 is not the same sequence as "clonotype1" in sample
2). If clonotyping was done across samples and no splitting is necessary input
"none"

platypus.version

Character. Only "v3" available.

Value

Returns a list of dataframes. Each dataframe contains the statistics of one split.by element (by
default: one sample)

Examples

variants_per_clone <- VDJ_variants_per_clone(VDJ = Platypus::small_vgm[[1]]
,variants.of = c("VDJ_cdr3s_aa", "VJ_cdr3s_aa"),
stringDist.method = "levenshtein", split.by = "sample_id")

VDJ_Vgene_usage 239

VDJ_Vgene_usage V(D)J gene usage stacked barplots

Description

Produces a matrix counting the number of occurences for each VDJ and VJ Vgene combinations
for each list enty in VDJ.clonotype.output or for each sample_id in VDJ.matrix

Usage

VDJ_Vgene_usage(VDJ, group.by, platypus.version)

Arguments

VDJ For platypus.version = "v2" output from VDJ_analyze function. This should
be a list of clonotype dataframes, with each list element corresponding to a
single VDJ repertoire. For platypus.version = "v3" output VDJ dataframe from
VDJ_GEX_matrix function (VDJ_GEX_matrix.output[[1]])

group.by Character. Defaults to "sample_id". Column name of VDJ to group plot by.

platypus.version

Character. Defaults to "v3". Can be "v2" or "v3" dependent on the input format

Value

Returns a list of matrices containing the number of Vgene heavy/light chain combinations per reper-
toire.

Examples

example.vdj.vgene_usage <- VDJ_Vgene_usage(VDJ =
Platypus::small_vgm[[1]], platypus.version = "v3")

VDJ_Vgene_usage_barplot

V(D)J gene usage barplots

Description

Produces a barplot with the most frequently used IgH and IgK/L Vgenes.

240 VDJ_Vgene_usage_barplot

Usage

VDJ_Vgene_usage_barplot(
VDJ,
group.by,
HC.gene.number,
LC.Vgene,
LC.gene.number,
platypus.version,
is.bulk

)

Arguments

VDJ Either (for platypus version "v2") output from VDJ_analyze function. This
should be a list of clonotype dataframes, with each list element corresponding
to a single VDJ repertoire, OR (for platypus version "v3") the the VDJ matrix
output of the VDJ_GEX_matrix() function (VDJ.GEX.matrix.output[[1]])

group.by Character. Defaults to "sample_id". Column name of VDJ to group plot by.

HC.gene.number Numeric value indicating the top genes to be dispayed. If this number is higher
than the total number of unique HC V genes in the VDJ repertoire, then this
number is equal to the number of unique HC V genes.

LC.Vgene Logical indicating whether to make a barplot of the LC V genes distribution.
Default is set to FALSE.

LC.gene.number Numeric value indicating the top genes to be dispayed. If this number is higher
than the total number of unique LC V genes in the VDJ repertoire, then this
number is equal to the number of unique LC V genes.

platypus.version

Character. Defaults to "v3". Can be "v2" or "v3" dependent on the input format

is.bulk logical value indicating whether the VDJ input was generated from bulk-sequencing
data using the bulk_to_vgm function. If is.bulk = T, the VDJ_Vgene_usage_barplot
function is compatible for use with bulk data. Defaults to False (F).

Value

Returns a list of ggplot objects which show the distribution of IgH and IgK/L V genes for the most
used V genes.

Examples

Not run:
VDJ_Vgene_usage_barplot(VDJ = Platypus::small_vgm[[1]],
HC.gene.number = 2, platypus.version = "v3")

End(Not run)

VDJ_Vgene_usage_stacked_barplot 241

VDJ_Vgene_usage_stacked_barplot

V(D)J gene usage stacked barplots

Description

Produces a stacked barplot with the fraction of the most frequently used IgH and IgK/L Vgenes.
This function can be used in combination with the VDJ_Vgene_usage_barplot to vizualize V gene
usage per sample and among samples.

Usage

VDJ_Vgene_usage_stacked_barplot(
VDJ,
group.by,
HC.gene.number,
Fraction.HC,
LC.Vgene,
LC.gene.number,
Fraction.LC,
platypus.version,
is.bulk

)

Arguments

VDJ Either (for platypus version "v2") output from VDJ_analyze function. This
should be a list of clonotype dataframes, with each list element corresponding to
a single VDJ repertoire, OR (for platypus version "v3") the the VDJ matrix out-
put of the VDJ_GEX_matrix() function (normally VDJ.GEX.matrix.output[[1]])

group.by Character. Defaults to "sample_id". Column name of VDJ to group plot by.

HC.gene.number Numeric value indicating the top genes to be dispayed. If this number is higher
than the total number of unique HC V genes in the VDJ repertoire, then this
number is equal to the number of unique HC V genes.

Fraction.HC Numeric value indicating the minimum fraction of clones expressing a particular
HC V gene. If the usage of a particular gene is below this value, then this gene
is excluded. If the usage of a particular gene is above this value even in one
sample, then this gene is included in the analysis. Default value is set to 0, thus
all genes are selected.

LC.Vgene Logical indicating whether to make a barplot of the LC V gene distribution.
Default is set to FALSE.

LC.gene.number Numeric value indicating the top genes to be dispayed. If this number is higher
than the total number of unique LC V genes in the VDJ repertoire, then this
number is equal to the number of unique LC V genes.

242 VDJ_VJ_usage_circos

Fraction.LC Numeric value indicating the minimum fraction of clones expressing a particular
LC V gene. If the usage of a particular gene is below this value, then this gene
is excluded. If the usage of a particular gene is above this value even in one
sample, then this gene is included in the analysis. Default value is set to 0, thus
all genes are selected.

platypus.version

Set according to input format to either "v2" or "v3". Defaults to "v3"

is.bulk logical value indicating whether the VDJ input was generated from bulk-sequencing
data using the bulk_to_vgm function. If is.bulk = T, the VDJ_Vgene_usage_stacked_barplot
function is compatible for use with bulk data. Defaults to False (F).

Value

Returns a list of ggplot objects which show the stacked distribution of IgH and IgK/L V genes for
the most used V genes. Returns an empty plot if the Fraction.HC or Fraction.LC that were selected
were too high, resulting in the exclusion of all the genes.

Examples

#Platypus v3
example.vdj.vgene_usage <- VDJ_Vgene_usage_stacked_barplot(
VDJ = Platypus::small_vgm[[1]], LC.Vgene = TRUE
,HC.gene.number = 15, Fraction.HC = 1, platypus.version = "v3")

VDJ_VJ_usage_circos Makes a Circos plot from the VDJ_analyze output. Connects the V
gene with the corresponding J gene for each clonotype.

Description

Makes a Circos plot from the VDJ_analyze output. Connects the V gene with the corresponding J
gene for each clonotype.

Usage

VDJ_VJ_usage_circos(
VGM,
VDJ.or.VJ,
label.threshold,
cell.level,
c.threshold,
clonotype.per.gene.threshold,
c.count.label,
c.count.label.size,
platypus.version,
filter1H1L,

VDJ_VJ_usage_circos 243

gene.label,
gene.label.size,
arr.col,
arr.direction,
topX,
platy.theme,
clonotype.column

)

Arguments

VGM The output of the VDJ_GEX_matrix function (VDJ_GEX_matrix.output[[1]])
has to be supplied. For Platypus v2: The output of the VDJ_GEX_integrate
function (Platypus platypus.version v2). A list of data frames for each sample
containing the clonotype information and cluster membership information.

VDJ.or.VJ Determines whether to plot the V J gene pairing of the alpha or beta chain.
"VDJ", "VJ" or "both" as possible inputs. Default: "both".

label.threshold

Genes are only labeled if the count is larger then the label.threshold. By default
all label.threshold = 0 (all genes are labeled).

cell.level Logical, defines whether weight of connection should be based on number of
clonotypes of number of cells. Default: number of clonotypes.

c.threshold Only clonotypes are considered with a frequency higher then c.threshold. Al-
lows to filter for only highly expanded clonotypes.

clonotype.per.gene.threshold

How many clonotypes are required to plot a sector for a gene. Filters the rows
and colums of the final adjacency matrix.

c.count.label Boolean, lets the user decide if the gene and count labels should be plotted or
not. Default = T.

c.count.label.size

Determines the font size of the gene labels. By default the font size for count
labels is 0.6.

platypus.version

Which platypus.version of platypus is being used. Default = v3. Set to v3 if
VDJ_GEX_matrix.output[[1]] is used

filter1H1L Whether to filter the input VGM in "v3" to only include cells with 1 VDJ and 1
VJ chain. Defaults to TRUE

gene.label Boolean, lets the user decide if the gene labels should be plotted or not.
gene.label.size

Determines the font size of the gene labels. By default the labelsize is automat-
ically adjusted to 0.7 for labels with two or less digits, 0.6 for labels between 2
and 6 digits, and 0.4 for all longer labels. A manually defined font size will be
the same for all labels!

arr.col Data.frame with three columns where the first two indicate the names of genes,
clonotypes or clusters to be connected, and the third corresponds to the color of
the arrow. Default set to data.frame(c("dummy.clonotype"), c("dummy.cluster"),
c("dummy.color")), so no arrow is drawn.

244 VGM_expanded_clones

arr.direction Either 1 or -1 and determines the direction of the arrow. Default=1.
topX Filters for the top X clonotypes and only plots the respective gene combinations

or cluster memberships.
platy.theme Allows plotting in the new "pretty" theme or the older "spiky" theme without

group labels and radial arrangement of gene.labels. Default = "pretty".
clonotype.column

Which column in VGM contains the clonotyping information? Default="clonotype_id_10X".

Value

Returns a circos plot and a list object with the following elememts for N samples: [[1 to N]] The
first N listelements corresponds to the recorded circos plots for N beeing the number or samples in
the VGM. Since Circlize uses the R base plotting funciton, this is not a ggplot object but can still
be replotted by calling the first list element. [[N+1]] Adjacency matrix forwarded to VDJ_circos().
This Matrix contains the counts and can be used for manual replotting using VDJ_circos directly.
[[N+2]] Contains a named list with colors for each connection drawn and can be used for manual
replotting using VDJ_circos directly. [[N+3]] Contains a named list with grouping information and
can be used for manual replotting using VDJ_circos directly.

Examples

Not run:
usage_circos_VDJVJ <- VDJ_VJ_usage_circos(vgm[[1]])

print plot:
usage_circos_VDJVJ[[1]]

End(Not run)

VGM_expanded_clones VDJ utility for T/F column for clonal expansion

Description

Adds discrete columns containing TRUE / FALSE on whether a given cell is part of a expanded or
not-expanded clonotype. Threshold frequency can be set.

Usage

VGM_expanded_clones(VGM, add.to.VDJ, add.to.GEX, expansion.threshold)

Arguments

VGM Output object from the VDJ_GEX_matrix function (VDJ_GEX_matrix.output)
add.to.VDJ Boolean. Whether to add expanded columns to VDJ matrix. Defaults to TRUE
add.to.GEX Boolean. Whether to add expanded columns to GEX matrix. Defaults to TRUE
expansion.threshold

Integer. Defaults to 1. Cells in clonotypes above this threshold will be marked
as expanded = TRUE.

VGM_expand_featurebarcodes 245

Value

An output object from the VDJ_GEX_matrix function with added columns containing TRUE /
FALSE values based on clonotype frequency.

Examples

#Add info to whole VGM object
VGM <- VGM_expanded_clones(
VGM = Platypus::small_vgm, add.to.VDJ = TRUE, add.to.GEX = TRUE,
expansion.threshold = 1)

VGM_expand_featurebarcodes

Utility for feature barcode assignment including clonal information

Description

The VGM_expand_featurebarcodes function function can be used to trace back the cell origin of
each sample after using cell hashing for single-cell sequencing. Replaces the original sample_id
column of a vgm object with a pasted version of the original sample_id and the last digits of the
feature barcode.
The original sample_id is stored in a new column called original_sample_id. Additionally, a second
new column is created containing final barcode assignment information. Those barcodes match
the origin FB_assignment if by.majority.barcodes is set to FALSE (default). However, if this input
parameter is set to TRUE, the majority barcode assignment in stored in this colum.
Note: The majority barcode of a cell is the feature barcode which is most frequently assigned to the
cells clonotype (10x default clonotype). The majority barcode assignment can be used under the
assumption that all cells which are assigned to the same clonotype (within one sample), originate
from the same donor organ or at least the same donor depending on the experimental setup.
For example: The original sample_id of a cell is "s1", the cell belongs to "clonotype1" and the
feature barcode assigned to it is "i1-TotalSeq-C0953". If by.majority.barcodes default (FALSE) is
used, the resulting new sample_id would be "s1_0953". However, if majority barcode assignment
is used AND "i1-TotalSeq-C0953" is not the most frequently occurring barcode in "clonotype1" but
rather barcode "i1-TotalSeq-C0951", the new sample_id would be "s1_0951". –> e.g., if 15 cells
belong to clonotype1: 3 cells have no assigned barcode, 2 are assigned to "i1-TotalSeq-C0953" and
10 are assigned to "i1-TotalSeq-C0951" –> all 15 cells will have the new sample_id "s1_0951".

Usage

VGM_expand_featurebarcodes(
vgm,
by.majority.barcodes,
integrate.in.gex,
vdj.only,
platypus.version

)

246 VGM_expand_featurebarcodes

Arguments

vgm VGM output of VDJ_GEX_matrix function (Platypus V3)
by.majority.barcodes

Logical. Default is FALSE. Indicated whether strict barcode assignment or ma-
jority barcode assignment should be used to create the new sample_id. If TRUE,
for each clonotype the most frequent feature barcode will be chosen and as-
signed to each cell, even if that cell itself does not have this particular barcode
assigned.

integrate.in.gex

Logical. Default is FALSE. If TRUE, the newly created sample_id’s are inte-
grated into gex component as well. Not recommended if no further gex analysis
is done due to much longer computational time.

vdj.only Logical. Defines if only vdj information is provided as input. Default is set to
FALSE. If set to TRUE a vdj dataframe has to be provided as input (vgm = vdj).
Also, integrate.in.gex is automatically set to FALSE since no gex (vgm[[2]])
information is provided.

platypus.version

This function works with "v3" only, there is no need to set this parameter.

Value

This function returns a vgm with new sample_id’s in case vdj.only is set to FALSE (default). If
vdj.only is set to true only the vdj dataframe with new sample_id’s is returned. Note: If vdj.only is
set to default (FALSE), VDJ information in the metadata of the GEX object is necessary. For this
set integrate.VDJ.to.GEX to TRUE in the VDJ_GEX_matrix function

Examples

#For Platypus version 3

1. If only vdj data (vgm[[1]]) and
#strict feature barcode assignment is used:
vgm_expanded_fb <- VGM_expand_featurebarcodes(
vgm = small_vgm[[1]],
by.majority.barcodes = FALSE,
integrate.in.gex=FALSE, vdj.only= TRUE)

2. If whole vgm and strict fb assignment is used
#(gex and vdj - necessary if gene expression analysis
of sub-samples is desired):
vgm_expanded_fb <- VGM_expand_featurebarcodes(
vgm = small_vgm,
by.majority.barcodes = FALSE,
integrate.in.gex=TRUE, vdj.only= FALSE)

3. If whole vgm and majority barcode assignement is used
#(gex and vdj) - necessary if gene expression analysis
#of sub-samples is desired):
vgm_expanded_fb <- VGM_expand_featurebarcodes(vgm = small_vgm,

VGM_integrate 247

by.majority.barcodes = TRUE,
integrate.in.gex=TRUE, vdj.only= FALSE)

#Note: Majority barcode assignment is recommended
#if the assumption that all cells within one clonotype
#originate from the same sample sub-group is feasible.

VGM_integrate Utility for VDJ GEX matrix to integrated VDJ and GEX objects after
addition of data to either

Description

(Re)-intergrated VDJ and GEX of one or two separate VGM objects. This can be used as a simple
"updating" utility function, if metadata has been added to the VDJ dataframe and is also needed in
the GEX matrix or the reverse. Entries are integrated by barcode. If barcodes have been altered
(barcode column in VDJ and cell names in GEX), the function will not yield results

Usage

VGM_integrate(VGM, columns.to.transfer, genes.to.VDJ, seurat.slot)

Arguments

VGM Output object from the VDJ_GEX_matrix function (VDJ_GEX_matrix.output)
columns.to.transfer

Optional. Character Vector. Column names of either the VDJ matrix or GEX
meta.data that should be transferred to the corresponding other matrix. if not
provided all columns missing from one will be integrated into the other matrix

genes.to.VDJ Character vector of gene names in GEX. In many cases it is useful to extract ex-
pression values for a gene to metadata. This is done via SeuratObject::FetchData(vars
= genes,slot = seurat.slot) function. The VGM integrate takes gene ids, extracts
these and adds them to the VDJ dataframe. If provided, no other columns are
integrated between VDJ and GEX and columns.to.transfer is ignored.

seurat.slot GEX object data slot to pull from. Can be ’counts’, ’data’, or ’scale.data’

Value

An output object from the VDJ_GEX_matrix function with added columns in VDJ or GEX

Examples

#Adding a new clonotyping method to VDJ
small_vgm[[1]] <- VDJ_clonotype(VDJ=Platypus::small_vgm[[1]],
clone.strategy="cdr3.nt",
hierarchical = "single.chains", global.clonotype = TRUE)

248 VGM_integrate

small_vgm <- VGM_integrate(
VGM = small_vgm,
columns.to.transfer = NULL) #transfer all new columns
#and update clonotype_id and clonotype_frequency column
#(as does VDJ_clonotype_v3 in VDJ)

small_vgm <- VGM_integrate(
VGM = small_vgm,
columns.to.transfer = c("global_clonotype_id_cdr3.nt"))
#transfer only selected columns

#Pull genes from GEX and add as metadata column to VDJ

small_vgm <- VGM_integrate(
small_vgm, genes.to.VDJ = c("CD19","CD24A"),seurat.slot = "counts")

Index

∗ datasets
Bcell_sequences_example_tree, 56
Bcell_tree_2, 57
class_switch_prob_hum, 61
class_switch_prob_mus, 61
colors, 65
hotspot_df, 108
hum_b_h, 109
hum_b_l, 110
hum_t_h, 110
hum_t_l, 111
iso_SHM_prob, 112
mus_b_h, 112
mus_b_l, 113
mus_b_trans, 113
mus_t_h, 114
mus_t_l, 115
one_spot_df, 116
pheno_SHM_prob, 117
small_vgm, 132
special_v, 149
trans_switch_prob_b, 149
trans_switch_prob_t, 150
vdj_length_prob, 215

AbForests_AntibodyForest, 6
AbForests_CompareForests, 9
AbForests_ConvertStructure, 11
AbForests_CsvToDf, 12
AbForests_ForestMetrics, 13
AbForests_PlotGraphs, 15
AbForests_PlyloToMatrix, 16
AbForests_RemoveNets, 17
AbForests_SubRepertoiresByCells, 19
AbForests_SubRepertoiresByUniqueSeq,

20
AbForests_UniqueAntibodyVariants, 22
AlphaFold_prediction, 24
AntibodyForests, 27
AntibodyForests_communities, 32

AntibodyForests_dynamics, 34
AntibodyForests_embeddings, 35
AntibodyForests_expand_intermediates,

37
AntibodyForests_heterogeneous, 38
AntibodyForests_infer_ancestral, 39
AntibodyForests_join_trees, 40
AntibodyForests_kernels, 41
AntibodyForests_label_propagation, 42
AntibodyForests_metrics, 43
AntibodyForests_node_transitions, 45
AntibodyForests_overlap, 46
AntibodyForests_paths, 47
AntibodyForests_phylo, 49
AntibodyForests_plot, 50
AntibodyForests_plot_metrics, 53
automate_GEX, 54

Bcell_sequences_example_tree, 56
Bcell_tree_2, 57

call_MIXCR, 57
CellPhoneDB_analyse, 58
class_switch_prob_hum, 61
class_switch_prob_mus, 61
clonofreq, 62
clonofreq.isotype.data, 62
clonofreq.isotype.plot, 63
clonofreq.trans.data, 63
clonofreq.trans.plot, 64
cluster.id.igraph, 65
colors, 65

dot_plot, 66

Echidna_simulate_repertoire, 67
Echidna_vae_generate, 72

get.avr.mut.data, 73
get.avr.mut.plot, 73
get.barplot.errorbar, 74

249

250 INDEX

get.elbow, 75
get.n.node.data, 75
get.n.node.plot, 76
get.seq.distance, 76
get.umap, 77
get.vgu.matrix, 77
GEX_clonotype, 78
GEX_cluster_genes, 79
GEX_cluster_genes_heatmap, 80
GEX_cluster_membership, 81
GEX_coexpression_coefficient, 82
GEX_DEgenes, 83
GEX_DEgenes_persample, 85
GEX_dottile_plot, 87
GEX_gene_visualization, 88
GEX_GOterm, 89
GEX_GSEA, 90
GEX_heatmap, 92
GEX_lineage_trajectories, 93
GEX_pairwise_DEGs, 94
GEX_phenotype, 95
GEX_phenotype_per_clone, 96
GEX_projecTILS, 97
GEX_proportions_barplot, 98
GEX_pseudobulk, 99
GEX_pseudotime_trajectory_plot, 101
GEX_scatter_coexpression, 102
GEX_topN_DE_genes_per_cluster, 102
GEX_trajectories, 103
GEX_visualize_clones, 105
GEX_volcano, 106

hotspot_df, 108
hum_b_h, 109
hum_b_l, 110
hum_t_h, 110
hum_t_l, 111

iso_SHM_prob, 112

mus_b_h, 112
mus_b_l, 113
mus_b_trans, 113
mus_t_h, 114
mus_t_l, 115

no.empty.node, 115

one_spot_df, 116

pheno_SHM_prob, 117
PlatypusDB_AIRR_to_VGM, 117
PlatypusDB_fetch, 118
PlatypusDB_find_CDR3s, 121
PlatypusDB_list_projects, 121
PlatypusDB_load_from_disk, 122
PlatypusDB_VGM_to_AIRR, 123
PlatypusML_balance, 125
PlatypusML_classification, 126
PlatypusML_feature_extraction_GEX, 127
PlatypusML_feature_extraction_VDJ, 129

select.top.clone, 131
small_vgm, 132
Spatial_celltype_plot, 132
Spatial_cluster, 133
Spatial_density_plot, 135
Spatial_evolution_of_clonotype_plot,

136
Spatial_marker_expression, 138
Spatial_module_expression, 140
Spatial_nb_SHM_compare_to_germline_plot,

141
Spatial_scaling_parameters, 142
Spatial_selection_expanded_clonotypes,

143
Spatial_selection_of_cells_on_image,

144
Spatial_VDJ_assignment, 145
Spatial_VDJ_plot, 146
Spatial_vgm_formation, 148
special_v, 149

trans_switch_prob_b, 149
trans_switch_prob_t, 150

umap.top.highlight, 150

VDJ_abundances, 151
VDJ_alpha_beta_Vgene_circos, 153
VDJ_analyze, 156
VDJ_antigen_integrate, 157
VDJ_assemble_for_PnP, 159
VDJ_bulk_to_vgm, 161
VDJ_call_enclone, 163
VDJ_call_MIXCR, 164
VDJ_call_MIXCR_full, 166
VDJ_call_RECON, 167
VDJ_circos, 169

INDEX 251

VDJ_clonal_donut, 170
VDJ_clonal_expansion, 172
VDJ_clonal_expansion_abundances, 174
VDJ_clonal_lineages, 175
VDJ_clonotype, 177
VDJ_contigs_to_vgm, 179
VDJ_db_annotate, 180
VDJ_db_load, 181
VDJ_diversity, 182
VDJ_dublets, 184
VDJ_dynamics, 184
VDJ_enclone, 186
VDJ_expand_aberrants, 189
VDJ_extract_germline, 190
VDJ_get_public, 192
VDJ_GEX_clonal_lineage_clusters, 193
VDJ_GEX_clonotyme, 194
VDJ_GEX_clonotype_clusters_circos, 198
VDJ_GEX_expansion, 200
VDJ_GEX_integrate, 201
VDJ_GEX_matrix, 202
VDJ_GEX_overlay_clones, 209
VDJ_GEX_stats, 211
VDJ_isotypes_per_clone, 212
VDJ_kmers, 214
vdj_length_prob, 215
VDJ_logoplot_vector, 216
VDJ_network, 217
VDJ_ordination, 218
VDJ_overlap_heatmap, 219
VDJ_per_clone, 221
VDJ_phylogenetic_trees, 222
VDJ_phylogenetic_trees_plot, 224
VDJ_plot_SHM, 225
VDJ_public, 227
VDJ_rarefaction, 228
VDJ_reclonotype_list_arrange, 229
VDJ_select_clonotypes, 230
VDJ_structure_analysis, 232
VDJ_tree, 236
VDJ_variants_per_clone, 237
VDJ_Vgene_usage, 239
VDJ_Vgene_usage_barplot, 239
VDJ_Vgene_usage_stacked_barplot, 241
VDJ_VJ_usage_circos, 242
VGM_expand_featurebarcodes, 245
VGM_expanded_clones, 244
VGM_integrate, 247

	AbForests_AntibodyForest
	AbForests_CompareForests
	AbForests_ConvertStructure
	AbForests_CsvToDf
	AbForests_ForestMetrics
	AbForests_PlotGraphs
	AbForests_PlyloToMatrix
	AbForests_RemoveNets
	AbForests_SubRepertoiresByCells
	AbForests_SubRepertoiresByUniqueSeq
	AbForests_UniqueAntibodyVariants
	AlphaFold_prediction
	AntibodyForests
	AntibodyForests_communities
	AntibodyForests_dynamics
	AntibodyForests_embeddings
	AntibodyForests_expand_intermediates
	AntibodyForests_heterogeneous
	AntibodyForests_infer_ancestral
	AntibodyForests_join_trees
	AntibodyForests_kernels
	AntibodyForests_label_propagation
	AntibodyForests_metrics
	AntibodyForests_node_transitions
	AntibodyForests_overlap
	AntibodyForests_paths
	AntibodyForests_phylo
	AntibodyForests_plot
	AntibodyForests_plot_metrics
	automate_GEX
	Bcell_sequences_example_tree
	Bcell_tree_2
	call_MIXCR
	CellPhoneDB_analyse
	class_switch_prob_hum
	class_switch_prob_mus
	clonofreq
	clonofreq.isotype.data
	clonofreq.isotype.plot
	clonofreq.trans.data
	clonofreq.trans.plot
	cluster.id.igraph
	colors
	dot_plot
	Echidna_simulate_repertoire
	Echidna_vae_generate
	get.avr.mut.data
	get.avr.mut.plot
	get.barplot.errorbar
	get.elbow
	get.n.node.data
	get.n.node.plot
	get.seq.distance
	get.umap
	get.vgu.matrix
	GEX_clonotype
	GEX_cluster_genes
	GEX_cluster_genes_heatmap
	GEX_cluster_membership
	GEX_coexpression_coefficient
	GEX_DEgenes
	GEX_DEgenes_persample
	GEX_dottile_plot
	GEX_gene_visualization
	GEX_GOterm
	GEX_GSEA
	GEX_heatmap
	GEX_lineage_trajectories
	GEX_pairwise_DEGs
	GEX_phenotype
	GEX_phenotype_per_clone
	GEX_projecTILS
	GEX_proportions_barplot
	GEX_pseudobulk
	GEX_pseudotime_trajectory_plot
	GEX_scatter_coexpression
	GEX_topN_DE_genes_per_cluster
	GEX_trajectories
	GEX_visualize_clones
	GEX_volcano
	hotspot_df
	hum_b_h
	hum_b_l
	hum_t_h
	hum_t_l
	iso_SHM_prob
	mus_b_h
	mus_b_l
	mus_b_trans
	mus_t_h
	mus_t_l
	no.empty.node
	one_spot_df
	pheno_SHM_prob
	PlatypusDB_AIRR_to_VGM
	PlatypusDB_fetch
	PlatypusDB_find_CDR3s
	PlatypusDB_list_projects
	PlatypusDB_load_from_disk
	PlatypusDB_VGM_to_AIRR
	PlatypusML_balance
	PlatypusML_classification
	PlatypusML_feature_extraction_GEX
	PlatypusML_feature_extraction_VDJ
	select.top.clone
	small_vgm
	Spatial_celltype_plot
	Spatial_cluster
	Spatial_density_plot
	Spatial_evolution_of_clonotype_plot
	Spatial_marker_expression
	Spatial_module_expression
	Spatial_nb_SHM_compare_to_germline_plot
	Spatial_scaling_parameters
	Spatial_selection_expanded_clonotypes
	Spatial_selection_of_cells_on_image
	Spatial_VDJ_assignment
	Spatial_VDJ_plot
	Spatial_vgm_formation
	special_v
	trans_switch_prob_b
	trans_switch_prob_t
	umap.top.highlight
	VDJ_abundances
	VDJ_alpha_beta_Vgene_circos
	VDJ_analyze
	VDJ_antigen_integrate
	VDJ_assemble_for_PnP
	VDJ_bulk_to_vgm
	VDJ_call_enclone
	VDJ_call_MIXCR
	VDJ_call_MIXCR_full
	VDJ_call_RECON
	VDJ_circos
	VDJ_clonal_donut
	VDJ_clonal_expansion
	VDJ_clonal_expansion_abundances
	VDJ_clonal_lineages
	VDJ_clonotype
	VDJ_contigs_to_vgm
	VDJ_db_annotate
	VDJ_db_load
	VDJ_diversity
	VDJ_dublets
	VDJ_dynamics
	VDJ_enclone
	VDJ_expand_aberrants
	VDJ_extract_germline
	VDJ_get_public
	VDJ_GEX_clonal_lineage_clusters
	VDJ_GEX_clonotyme
	VDJ_GEX_clonotype_clusters_circos
	VDJ_GEX_expansion
	VDJ_GEX_integrate
	VDJ_GEX_matrix
	VDJ_GEX_overlay_clones
	VDJ_GEX_stats
	VDJ_isotypes_per_clone
	VDJ_kmers
	vdj_length_prob
	VDJ_logoplot_vector
	VDJ_network
	VDJ_ordination
	VDJ_overlap_heatmap
	VDJ_per_clone
	VDJ_phylogenetic_trees
	VDJ_phylogenetic_trees_plot
	VDJ_plot_SHM
	VDJ_public
	VDJ_rarefaction
	VDJ_reclonotype_list_arrange
	VDJ_select_clonotypes
	VDJ_structure_analysis
	VDJ_tree
	VDJ_variants_per_clone
	VDJ_Vgene_usage
	VDJ_Vgene_usage_barplot
	VDJ_Vgene_usage_stacked_barplot
	VDJ_VJ_usage_circos
	VGM_expanded_clones
	VGM_expand_featurebarcodes
	VGM_integrate
	Index

