
Package ‘ProTrackR’
October 12, 2022

Type Package

Title Manipulate and Play 'ProTracker' Modules

Version 0.3.7

Date 2020-02-03

Author Pepijn de Vries [aut, cre, dtc]

Maintainer Pepijn de Vries <pepijn.devries@outlook.com>

Description 'ProTracker' is a popular music tracker to sequence
music on a Commodore Amiga machine. This package offers the
opportunity to import, export, manipulate and play 'ProTracker'
module files. Even though the file format could be considered
archaic, it still remains popular to this date. This package
intends to contribute to this popularity and therewith
keeping the legacy of 'ProTracker' and the Commodore Amiga
alive.

License GPL-3

LazyData True

Depends audio, lattice, signal, tuneR (>= 1.0)

Imports graphics, methods, stats, utils, XML

Suggests AmigaFFH (>= 0.2.0)

RoxygenNote 7.0.2

NeedsCompilation no

Repository CRAN

Date/Publication 2020-02-03 16:00:02 UTC

R topics documented:
appendPattern . 3
as.character . 4
as.raw . 6
clearSamples . 8
clearSong . 9

1

2 R topics documented:

deletePattern . 10
effect . 11
fineTune . 12
fix.PTModule . 13
funk_table . 15
loopLength . 15
loopSample . 17
loopStart . 18
loopState . 19
mod.intro . 20
modArchive . 21
modLand . 26
MODPlugToPTPattern . 28
modToWave . 31
moduleSize . 33
name . 34
note . 36
noteToPeriod . 37
noteUp . 38
nybble . 41
nybbleToSignedInt . 42
octave . 43
pasteBlock . 45
patternLength . 46
patternOrder . 47
patternOrderLength . 49
paula_clock . 50
periodToChar . 51
period_table . 52
playingtable . 53
playMod . 55
playSample . 56
playWave . 58
plot . 59
print . 60
proTrackerVibrato . 61
ProTrackR . 62
PTBlock . 65
PTCell-class . 66
PTCell-method . 67
PTModule-class . 70
PTPattern-class . 72
PTPattern-method . 73
PTPatternToMODPlug . 75
PTSample-class . 76
PTSample-method . 78
PTTrack-class . 79
PTTrack-method . 81

appendPattern 3

rawToCharNull . 82
rawToPTModule . 84
rawToSignedInt . 85
rawToUnsignedInt . 86
read.module . 87
read.sample . 89
resample . 90
sampleLength . 91
sampleNumber . 92
sampleRate . 93
signedIntToNybble . 94
signedIntToRaw . 95
trackerFlag . 96
unsignedIntToRaw . 98
volume . 99
waveform . 100
write.module . 102
write.sample . 103

Index 105

appendPattern Append a PTPattern to a PTModule

Description

Appends a specified PTPattern to a PTModule.

Usage

S4 method for signature 'PTModule,PTPattern'
appendPattern(x, pattern)

Arguments

x A PTModule object to which a PTPattern is to be appended.
pattern A PTPattern object which is to be appended to the PTModule x.

Details

Depending on the trackerFlag, a ProTracker module can hold either 64 or 100 pattern tables. As
long as the number of pattern tables is below this maximum, new pattern tables can be added to the
module with this function.

The patternOrder table should hold the maximum index of the available pattern tables in a module,
otherwise, the module is not valid. As the maximum index increases, by appending a pattern table,
the patternOrder table should be updated. The appendPattern method does this automatically,
by replacing the first non-unique index in the order table, outside the current order table’s length,
with the new maximum index. If this is not possible, the highest element in the order table is set to
hold the maximum index.

4 as.character

Value

Returns a PTModule, to which the PTPattern is appended.

Note

As per ProTracker specification, the pattern indices stored in the PTModule and obtained with
patternOrder start at 0. Whereas R starts indexing at 1. Beware of this discrepancy.

Author(s)

Pepijn de Vries

See Also

Other pattern.operations: MODPlugToPTPattern(), PTPattern-class, PTPattern-method, PTPatternToMODPlug(),
deletePattern(), pasteBlock(), patternLength(), patternOrderLength(), patternOrder()

Other module.operations: PTModule-class, clearSamples(), clearSong(), deletePattern(),
fix.PTModule(), modToWave(), moduleSize(), patternLength(), patternOrderLength(), patternOrder(),
playMod(), playingtable(), rawToPTModule(), read.module(), trackerFlag(), write.module()

Examples

data("mod.intro")

append an empty pattern to mod.intro

mod.intro <- appendPattern(mod.intro, new("PTPattern"))

append a copy of pattern # 1 (this is pattern #0 in the
patternOrder table) to mod.intro

mod.intro <- appendPattern(mod.intro, PTPattern(mod.intro, 1))

as.character Character representation of ProTrackR objects

Description

Create a character representation of PTCell, PTTrack or PTPattern objects.

Usage

S4 method for signature 'PTCell'
as.character(x)

S4 method for signature 'PTTrack'
as.character(x)

as.character 5

S4 method for signature 'PTPattern'
as.character(x)

Arguments

x An object of any of the following classes: PTCell, PTTrack or PTPattern.

Details

A PTCell is an element of a PTTrack which in turn is an element of a PTPattern. A PTPattern
tells a tracker which sample to play at which frequency on which of the four audio channels and with
which effects. A PTCell in essence holds all this information as described at the documentation of
the PTCell-class.

Data in these objects are stored in these objects in a raw form, to save working memory and to
comply to the ProTracker file specifications. As the raw data is not easy to interpret, this method is
provided to make your life (and the interpretation of the objects) easier.

This method generates a character representation of each of the three objects. These character repre-
sentations can be coerced back to their original classes with the following methods: PTCell-method,
PTTrack-method and PTPattern-method.

Value

Returns a single character string when x is of class PTCell.

Returns a vector of length 64 of the type character when x is of class PTTrack.

Returns a 64 by 4 matrix of the type character when x is of class PTPattern.

Author(s)

Pepijn de Vries

See Also

Other character.operations: name, periodToChar(), rawToCharNull(), sampleRate

Other track.operations: PTTrack-method

Examples

data("mod.intro")

as.character(PTCell(mod.intro, 1, 1, 1))

as.character(PTTrack(mod.intro, 1, 1))

as.character(PTPattern(mod.intro, 1))

6 as.raw

as.raw Extract and replace raw data

Description

Information of PTCell, PTTrack and PTPattern objects are stored as raw values. This method can
be used to extract and replace this raw data. PTModule objects can also be converted to raw data but
not replaced by it.

Usage

S4 method for signature 'PTCell'
as.raw(x)

S4 replacement method for signature 'PTCell,raw'
as.raw(x) <- value

S4 method for signature 'PTTrack'
as.raw(x)

S4 replacement method for signature 'PTTrack,matrix'
as.raw(x) <- value

S4 method for signature 'PTPattern'
as.raw(x)

S4 replacement method for signature 'PTPattern,matrix'
as.raw(x) <- value

S4 method for signature 'PTModule'
as.raw(x)

Arguments

x A PTCell, PTTrack or PTPattern object, for which the raw data needs to ex-
tracted or replaced. A PTModule object is also allowed, but this object cannot be
replaced.

value raw data with which the raw data in object x needs to be replaced.
If x is a PTCell object, value should be a vector of four raw values (conform
specifications provided at the documentation of the PTCell-class).
If x is a PTTrack object, value should be a 64 by 4 matrix holding raw values
(conform specifications provided at the documentation of the PTTrack-class).
If x is a PTPattern object, value should be a 64 by 16 matrix holding raw val-
ues (conform specifications provided at the documentation of the PTPattern-class).

as.raw 7

Details

A PTCell is an element of a PTTrack which in turn is an element of a PTPattern. A PTPattern
tells a tracker which sample to play at which frequency on which of the four audio channels and with
which effects. A PTCell in essence holds all this information as described at the documentation of
the PTCell-class.

Data in these objects are stored in these objects in a raw form, to save working memory and to
comply to the ProTracker file specifications (see documentation of each of these classes for more
details). This method can be used to extract and replace raw data.

The PTModule object has a more complex structure but can also be converted into raw data (the way
it would be stored in a ProTracker module file). However, this object cannot be replaced by raw
data.

Value

For as.raw, a length 4 vector, 64 by 4 matrix or a 64 by 16 matrix of raw data is returned, when x
is of class PTCell, PTTrack or PTPattern, respectively.

If x is a PTModule object, the raw data returned will have the same format as the ProTracker file
format.

For as.raw<-, a copy of object x is returned in which the raw data is replaced by value.

Author(s)

Pepijn de Vries

See Also

Other raw.operations: nybbleToSignedInt(), nybble(), rawToCharNull(), rawToPTModule(),
rawToSignedInt(), rawToUnsignedInt(), signedIntToNybble(), signedIntToRaw(), unsignedIntToRaw()

Examples

data("mod.intro")

Get the raw data of the PTCell at
pattern #1, track #1 and row #1
of mod.intro:
as.raw(PTCell(mod.intro, 1, 1, 1))

idem for PTTrack #1 of pattern #1:
as.raw(PTTrack(mod.intro, 1, 1))

idem for PTPattern #1:
as.raw(PTPattern(mod.intro, 1))

replace raw data of PTCell 1, 1, 1
with that of PTCell 2, 1, 1:
as.raw(PTCell(mod.intro, 1, 1, 1)) <-

as.raw(PTCell(mod.intro, 2, 1, 1))

8 clearSamples

clearSamples Clear all samples from module

Description

Remove all PTSamples from a PTModule object.

Usage

S4 method for signature 'PTModule'
clearSamples(mod)

Arguments

mod A PTModule object from which all samples needs to be removed.

Details

Conform the original ProTracker, this method removes all patterns PTSamples from a module. You
keep all patterns (PTPattern) and patternOrder info.

Value

Returns a copy of object mod in which all samples are removed.

Author(s)

Pepijn de Vries

See Also

Other module.operations: PTModule-class, appendPattern(), clearSong(), deletePattern(),
fix.PTModule(), modToWave(), moduleSize(), patternLength(), patternOrderLength(), patternOrder(),
playMod(), playingtable(), rawToPTModule(), read.module(), trackerFlag(), write.module()

Examples

data(mod.intro)

'clear.mod' is a copy of 'mod.intro' without the
samples. It still holds all pattern tables and
pattern order info.
clear.mod <- clearSamples(mod.intro)

clearSong 9

clearSong Clear all pattern info from module

Description

Remove all patterns (PTPattern) and patternOrder info from a PTModule object.

Usage

S4 method for signature 'PTModule'
clearSong(mod)

Arguments

mod A PTModule object from which all pattern (order) info needs to be removed.

Details

Conform the original ProTracker, this method removes all patterns (PTPattern) and patternOrder
info from a module. You keep the audio PTSamples.

Value

Returns a copy of object mod in which all pattern (order) info is removed.

Author(s)

Pepijn de Vries

See Also

Other module.operations: PTModule-class, appendPattern(), clearSamples(), deletePattern(),
fix.PTModule(), modToWave(), moduleSize(), patternLength(), patternOrderLength(), patternOrder(),
playMod(), playingtable(), rawToPTModule(), read.module(), trackerFlag(), write.module()

Examples

data(mod.intro)

'clear.mod' is a copy of 'mod.intro' without the
pattern (order) info. It still has the audio samples.
clear.mod <- clearSong(mod.intro)

10 deletePattern

deletePattern Remove a PTPattern table from a PTModule object

Description

This method removes a PTPattern from a PTModule object and updates the patternOrder table
accordingly.

Usage

S4 method for signature 'PTModule,numeric'
deletePattern(x, index)

Arguments

x A PTModule from which a PTPattern needs to be removed.

index A numeric index of the PTPattern table that needs to be removed. The index
should be between 1 and patternLength. It’s not possible to delete multiple
patterns simultaneously with this method. A PTModule should always hold at
least 1 pattern table, therefore, the last PTPattern table cannot be deleted.

Details

This method safely removes a PTPattern from a PTModule object, guarding the validity of the
PTModule object. It therefore also updates the patternOrder table, by renumbering the indices
listed there. The index of the removed object is replaced with a zero in the patternOrder table.

Value

Returns a PTModule from which the selected PTPattern is deleted.

Note

As per ProTracker specification, the pattern indices stored in the PTModule and obtained with
patternOrder start at 0. Whereas R starts indexing at 1. Beware of this discrepancy.

Author(s)

Pepijn de Vries

See Also

Other pattern.operations: MODPlugToPTPattern(), PTPattern-class, PTPattern-method, PTPatternToMODPlug(),
appendPattern(), pasteBlock(), patternLength(), patternOrderLength(), patternOrder()

Other module.operations: PTModule-class, appendPattern(), clearSamples(), clearSong(),
fix.PTModule(), modToWave(), moduleSize(), patternLength(), patternOrderLength(), patternOrder(),
playMod(), playingtable(), rawToPTModule(), read.module(), trackerFlag(), write.module()

effect 11

Examples

data("mod.intro")
print(mod.intro)

delete pattern #2 from mod.intro:

mod.intro <- deletePattern(mod.intro, 2)
print(mod.intro)

effect Extract or replace effect/trigger codes

Description

The 3 right-hand symbols of a character representation of a PTCell represent an effect or trigger
code. This method can be used to extract or replace this code.

Usage

S4 method for signature 'PTCell'
effect(x)

S4 replacement method for signature 'PTCell,character'
effect(x) <- value

Arguments

x A PTCell from which the effect code needs to be extracted.

value A character string containing a three hexadecimal digit effect code. All hex-
adecimal codes are accepted, not all will produce meaningful effects.

Details

When a PTCell is represented by a character string, the last three symbols represent a hexadec-
imal effect or trigger code. In general the first of the three symbols indicates a type of effect or
trigger, whereas the latter two generally indicate a magnitude or a position for effects and triggers.

Effects can for instance be volume or frequency slides. The codes can also affect the module tempo
or cause position jumps.

When replacing this code, all three digit hexadecimal character strings are accepted, although not
all codes will represent a valid effect or trigger. See http://coppershade.org/articles/More!
/Topics/Protracker_Effect_Commands/ for a valid list of effect codes.

Value

For effect, a character string with the three hexadecimal digit effect code will be returned.

For effect<-, a copy of object x with effect code value will be returned.

http://coppershade.org/articles/More!/Topics/Protracker_Effect_Commands/
http://coppershade.org/articles/More!/Topics/Protracker_Effect_Commands/

12 fineTune

Author(s)

Pepijn de Vries

See Also

Other cell.operations: PTCell-class, PTCell-method, note(), sampleNumber()

Examples

data("mod.intro")

the PTCell in row #1, of pattern #1, track #1
has effect code "A08", which is a volume slide down (0xA)
with speed 0x8:
effect(PTCell(mod.intro, 1, 1, 1))

this is how you can change an effect:
cell <- PTCell("C-2 01 000")
effect(cell) <- "C20"

the above expression sets the volume (effect 0xC)
to 50% (0x20 which is halve of the maximum 0x40)

fineTune Fine tune a PTSample

Description

Extract or replace the fine tune value of a PTSample.

Usage

S4 method for signature 'PTSample'
fineTune(sample)

S4 replacement method for signature 'PTSample,numeric'
fineTune(sample) <- value

Arguments

sample A PTSample for which the fine tune value needs to be extracted or replace.

value A numeric value ranging from -8 up to 7, representing the fine tune.

Details

PTSamples can be tuned with their fine tune values. The values range from -8 up to 7 and affect the
playback sample rate of specific notes (see period_table). This method can be used to extract this
value, or to safely replace it.

fix.PTModule 13

Value

For fineTune the fine tune value, represented by an integer value ranging from -8 up to 7, is
returned.

For fineTune<- A PTSample sample, updated with the fine tune value, is returned.

Author(s)

Pepijn de Vries

See Also

Other sample.operations: PTSample-class, PTSample-method, loopLength(), loopSample(),
loopStart(), loopState(), name, playSample(), read.sample(), sampleLength(), volume(),
waveform(), write.sample()

Examples

data("mod.intro")

get the finetune of the first sample of mod.intro:

fineTune(PTSample(mod.intro, 1))

Let's tweak the finetune of the first sample of
mod.intro to -1:

fineTune(PTSample(mod.intro, 1)) <- -1

fix.PTModule Attempt to fix PTModule to ProTracker specs

Description

Try to fix non-valid PTModule objects in order to meet with ProTracker specs such that they pass
validity tests.

Usage

S4 method for signature 'PTModule,logical'
fix.PTModule(mod, verbose = T)

S4 method for signature 'PTModule,missing'
fix.PTModule(mod)

14 fix.PTModule

Arguments

mod A PTModule object which needs fixing.

verbose With the default value of TRUE, the method prints a progress report to the sink.
When set to FALSE, the progress report is suppressed.

Details

Almost any file can be read as a PTModule object (using read.module) when validity is ignored
and no unexpected end of file is reached. This package’s object validity are very strickly testing for
compliance with ProTracker specifications. As many modules could have been created with other
trackers (which often will play just as well in ProTracker) it is desirable to convert such object to
ProTracker specs. This method attempts to do so, by fixing each aspect, that is also tested in the
object validity functions. Note that the attempts are no guarantee for success, and ‘fixed’ modules
may not play as intended.

Value

Returns a copy of object mod in which all non-conformaties are attempted to be fixed. (Attempted)
fixes are listed printed in the progress report.

Note

In the current version, pattern data itself is not checked for non-conformaties nor is it fixed.

Author(s)

Pepijn de Vries

See Also

Other module.operations: PTModule-class, appendPattern(), clearSamples(), clearSong(),
deletePattern(), modToWave(), moduleSize(), patternLength(), patternOrderLength(),
patternOrder(), playMod(), playingtable(), rawToPTModule(), read.module(), trackerFlag(),
write.module()

Examples

Not run:
data("mod.intro")

Let's do something illegal and destroy mod.intro:
mod.intro@pattern.order <- mod.intro@pattern.order[1:9]

We should have used the 'patternOrder'-method to
change the pattern order. Now we have broken the
object:
validObject(mod.intro, TRUE)

No worries, we can fix it:
mod.intro <- fix.PTModule(mod.intro)

funk_table 15

See, it's all OK again:
validObject(mod.intro, TRUE)

End(Not run)

funk_table ProTracker Funk Table

Description

Small list of numbers used by an obscure audio effect in ProTracker

Format

A numeric vector of length 16 holding values to be used in ProTracker funk repeat effects.

Details

This dataset is included for completeness sake. It is not yet used by any class, method or function
in the ProTrackR package. It may very well be obsolete for recent ProTracker versions.

References

http://fossies.org/linux/uade/amigasrc/players/tracker/eagleplayers/mod32_protracker/
PTK_versions.txt

Examples

data("funk_table")

loopLength The loop length of a PTSample

Description

Extract or replace the loop length of a PTSample.

Usage

S4 method for signature 'PTSample'
loopLength(sample)

S4 replacement method for signature 'PTSample'
loopLength(sample) <- value

http://fossies.org/linux/uade/amigasrc/players/tracker/eagleplayers/mod32_protracker/PTK_versions.txt
http://fossies.org/linux/uade/amigasrc/players/tracker/eagleplayers/mod32_protracker/PTK_versions.txt

16 loopLength

Arguments

sample A PTSample for which the loop length needs to be extracted or replace.

value An even numeric value giving the loop length in samples ranging from 2 up to
131070 (It can be 0 when the sample is empty). The sum of the loopStart and
loopLength should not exceed the sampleLength.
Use a value of either character "off" or logical "FALSE", in order to turn
off the loop all together.

Details

PTSamples can have loops, marked by a starting position and length of the loop (in samples), for
more details see the PTSample-class. This method can be used to extract the loop length or safely
replace its value.

Value

For loopLength the loop length (in samples), represented by an even integer value ranging from
0 up to 131070, is returned.

For loopLength<- A PTSample sample, updated with the loop length ‘value’, is returned.

Author(s)

Pepijn de Vries

See Also

Other loop.methods: loopSample(), loopStart(), loopState()

Other sample.operations: PTSample-class, PTSample-method, fineTune(), loopSample(), loopStart(),
loopState(), name, playSample(), read.sample(), sampleLength(), volume(), waveform(),
write.sample()

Examples

data("mod.intro")

get the loop length of the
first sample of mod.intro:

loopLength(PTSample(mod.intro, 1))

Let's change the length of
the loop to 200

loopLength(PTSample(mod.intro, 1)) <- 200

Let's turn off the loop all together:

loopLength(PTSample(mod.intro, 1)) <- FALSE

loopSample 17

loopSample Looped waveform of a sample

Description

Generate a looped waveform of a PTSample object.

Usage

S4 method for signature 'PTSample'
loopSample(sample, times, n_samples)

Arguments

sample A PTSample object that needs to be looped.

times A positive integer value indicating the number of times a sample loop should
be repeated. This argument is ignored if n_samples is specified.

n_samples A positive integer value indicating the desired length of the looped waveform
in number of samples. This argument overrules the times argument.

Details

For playing routines, it can be useful to generate repeats of a sample loop. This method returns the
waveform of a PTSample where the loop is repeated ‘times’ times or has a length of ‘n_samples’.

Value

Returns a waveform represented by a numeric vector of values ranging from 0 up to 255. Has a
length of n_samples when that argument is specified.

Author(s)

Pepijn de Vries

See Also

Other loop.methods: loopLength(), loopStart(), loopState()

Other sample.operations: PTSample-class, PTSample-method, fineTune(), loopLength(), loopStart(),
loopState(), name, playSample(), read.sample(), sampleLength(), volume(), waveform(),
write.sample()

18 loopStart

Examples

data("mod.intro")

Loop sample number 4 10 times:
wform <- loopSample(PTSample(mod.intro, 4), times = 10)
plot(wform, type = "l")

Loop sample number 4, such that its
final length is 5000 samples:
wform <- loopSample(PTSample(mod.intro, 4), n_samples = 5000)
plot(wform, type = "l")

loopStart The loop start position of a PTSample

Description

Extract or replace the loop start position of a PTSample.

Usage

S4 method for signature 'PTSample'
loopStart(sample)

S4 replacement method for signature 'PTSample'
loopStart(sample) <- value

Arguments

sample A PTSample for which the loop start position needs to be extracted or replace.

value An even numeric value giving the loop starting position in samples ranging
from 0 up to 131070. The sum of the loopStart and loopLength should not
exceed the sampleLength.
Use a value of either character "off" or logical "FALSE", in order to turn
off the loop all together.

Details

PTSamples can have loops, marked by a starting position and length of the loop (in samples), for
more details see the PTSample-class. This method can be used to extract the loop starting position
or safely replace its value.

Value

For loopStart the loop start position (in samples), represented by an even integer value ranging
from 0 up to 131070, is returned.

For loopStart<- A PTSample sample, updated with the loop start position ‘value’, is returned.

loopState 19

Author(s)

Pepijn de Vries

See Also

Other sample.operations: PTSample-class, PTSample-method, fineTune(), loopLength(), loopSample(),
loopState(), name, playSample(), read.sample(), sampleLength(), volume(), waveform(),
write.sample()

Other loop.methods: loopLength(), loopSample(), loopState()

Examples

data("mod.intro")

get the loop start position of the
first sample of mod.intro:

loopStart(PTSample(mod.intro, 1))

Let's change the starting position of
the loop to 500

loopStart(PTSample(mod.intro, 1)) <- 500

Let's turn off the loop all together:

loopStart(PTSample(mod.intro, 1)) <- FALSE

loopState Get PTSample loop state

Description

Determines whether a loop is specified for a PTSample object.

Usage

S4 method for signature 'PTSample'
loopState(sample)

Arguments

sample A PTSample object for which the loop state needs to be determined.

Details

The loop state is not explicitly stored in a PTSample object. It can be derived from the loopStart
position and loopLength. This method is provided as a convenient method to get the state. Use
either loopStart or loopLength to change the state.

20 mod.intro

Value

Returns a logical value indicating whether a loop is (TRUE) or isn’t (FALSE) specified for the
sample.

Author(s)

Pepijn de Vries

See Also

Other loop.methods: loopLength(), loopSample(), loopStart()

Other sample.operations: PTSample-class, PTSample-method, fineTune(), loopLength(), loopSample(),
loopStart(), name, playSample(), read.sample(), sampleLength(), volume(), waveform(),
write.sample()

Examples

data("mod.intro")

Get the loop status of sample number 1
(it has a loop):
loopState(PTSample(mod.intro, 1))

Get the loop status of sample number 2
(it has no loop):
loopState(PTSample(mod.intro, 2))

mod.intro Example of a PTModule object

Description

A PTModule object included in the package as example.

Format

A PTModule object containing 4 PTSample objects (and 27 empty PTSample objects, adding up to
the 31 samples a PTModule should hold) and 4 PTPattern objects.

Details

This PTModule object is based on an original ProTracker module file I’ve composed in the late
nineteen nineties. It is used as example for many of the ProTrackR methods and you can use it to
test your own code. It can also be exported back to the original ProTracker module file by using
write.module.

Author(s)

Pepijn de Vries

modArchive 21

Examples

data("mod.intro")
print(mod.intro)
plot(mod.intro)

Not run:
playSample(mod.intro)

Save as an original module file,
which can be played with ProTracker (or several modern audio players):
write.module(mod.intro, "intro.mod")

End(Not run)

modArchive ModArchive helper functions

Description

http://ModArchive.org is on of the largest online archive of module files. These functions will
assist in accessing this archive.

Usage

modArchive.info(mod.id, api.key)

modArchive.download(mod.id, ...)

modArchive.search.mod(
search.text,
search.where = c("filename_or_songtitle", "filename_and_songtitle", "filename",

"songtitle", "module_instruments", "module_comments"),
format.filter = c("unset", "669", "AHX", "DMF", "HVL", "IT", "MED", "MO3", "MOD",

"MTM", "OCT", "OKT", "S3M", "STM", "XM"),
size.filter = c("unset", "0-99", "100-299", "300-599", "600-1025", "1025-2999",

"3072-6999", "7168-100000"),
genre.filter = "deprecated",
page,
api.key

)

modArchive.request.count(api.key)

modArchive.max.requests(api.key)

modArchive.view.by(
view.query,

http://ModArchive.org

22 modArchive

view.by = c("view_by_list", "view_by_rating_comments", "view_by_rating_reviews",
"view_modules_by_artistid", "view_modules_by_guessed_artist"),

format.filter = c("unset", "669", "AHX", "DMF", "HVL", "IT", "MED", "MO3", "MOD",
"MTM", "OCT", "OKT", "S3M", "STM", "XM"),

size.filter = c("unset", "0-99", "100-299", "300-599", "600-1025", "1025-2999",
"3072-6999", "7168-100000"),

page,
api.key

)

modArchive.search.genre(
genre.filter = c("unset", "Alternative", "Gothic", "Grunge", "Metal - Extreme",
"Metal (general)", "Punk", "Chiptune", "Demo Style", "One Hour Compo", "Chillout",
"Electronic - Ambient", "Electronic - Breakbeat", "Electronic - Dance",
"Electronic - Drum and Bass", "Electronic - Gabber", "Electronic - Hardcore",
"Electronic - House", "Electronic - IDM", "Electronic - Industrial",
"Electronic - Jungle", "Electronic - Minimal", "Electronic - Other",
"Electronic - Progressive", "Electronic - Rave", "Electronic - Techno",
"Electronic (general)", "Trance - Acid", "Trance - Dream", "Trance - Goa",

"Trance - Hard", "Trance - Progressive", "Trance - Tribal", "Trance (general)",
"Big Band", "Blues", "Jazz - Acid", "Jazz - Modern", "Jazz (general)", "Swing",
"Bluegrass", "Classical", "Comedy", "Country", "Experimental", "Fantasy", "Folk",
"Fusion", "Medieval", "New Ages", "Orchestral", "Other", "Piano", "Religious",
"Soundtrack", "Spiritual", "Video Game", "Vocal Montage", "World", "Ballad", "Disco",
"Easy Listening", "Funk", "Pop - Soft", "Pop - Synth", "Pop (general)",

"Rock - Hard", "Rock - Soft", "Rock (general)", "Christmas", "Halloween", "Hip-Hop",
"R and B", "Reggae", "Ska", "Soul"),

format.filter = c("unset", "669", "AHX", "DMF", "HVL", "IT", "MED", "MO3", "MOD",
"MTM", "OCT", "OKT", "S3M", "STM", "XM"),

size.filter = c("unset", "0-99", "100-299", "300-599", "600-1025", "1025-2999",
"3072-6999", "7168-100000"),

page,
api.key

)

modArchive.search.artist(search.artist, page, api.key)

modArchive.search.hash(search.hash, api.key)

modArchive.random.pick(
genre.filter = c("Alternative", "Gothic", "Grunge", "Metal - Extreme",
"Metal (general)", "Punk", "Chiptune", "Demo Style", "One Hour Compo", "Chillout",
"Electronic - Ambient", "Electronic - Breakbeat", "Electronic - Dance",
"Electronic - Drum and Bass", "Electronic - Gabber", "Electronic - Hardcore",
"Electronic - House", "Electronic - IDM", "Electronic - Industrial",
"Electronic - Jungle", "Electronic - Minimal", "Electronic - Other",
"Electronic - Progressive", "Electronic - Rave", "Electronic - Techno",
"Electronic (general)", "Trance - Acid", "Trance - Dream", "Trance - Goa",

modArchive 23

"Trance - Hard", "Trance - Progressive", "Trance - Tribal", "Trance (general)",
"Big Band", "Blues", "Jazz - Acid", "Jazz - Modern", "Jazz (general)", "Swing",
"Bluegrass", "Classical", "Comedy", "Country", "Experimental", "Fantasy", "Folk",
"Fusion", "Medieval", "New Ages", "Orchestral", "Other", "Piano", "Religious",
"Soundtrack", "Spiritual", "Video Game", "Vocal Montage", "World", "Ballad", "Disco",
"Easy Listening", "Funk", "Pop - Soft", "Pop - Synth", "Pop (general)",

"Rock - Hard", "Rock - Soft", "Rock (general)", "Christmas", "Halloween", "Hip-Hop",
"R and B", "Reggae", "Ska", "Soul"),

format.filter = c("unset", "669", "AHX", "DMF", "HVL", "IT", "MED", "MO3", "MOD",
"MTM", "OCT", "OKT", "S3M", "STM", "XM"),

size.filter = c("unset", "0-99", "100-299", "300-599", "600-1025", "1025-2999",
"3072-6999", "7168-100000"),

api.key
)

Arguments

mod.id An integer code used as module identifier in the ModArchive database. A
mod.id can be obtained by performing a search with modArchive.search.mod.
When downloading a module, make sure that the identifier represents a MOD
file, as other types will result in an error.

api.key Most ModArchive functions require a personal secret API key. This key can
be obtained from the ModArchive forum. See ‘ModArchive API Key’ section
below for instructions on how to obtain such a key.

... arguments that are passed on to read.module.

search.text A character string to be used as terms to search in the ModArchive.

search.where A character string indicating where in the module files to search for the search.text.
See usage section for the available options.

format.filter File format filter to be used in a search in the ModArchive. See the usage section
for all possible options. Default is "unset" (meaning that it will search for any
file format). Note that only the ‘MOD’ format is supported by this package.

size.filter File size filter to be used in a search in the ModArchive. Needs to be a character
string representation of a file size category as specified on ModArchive.org. See
the usage section for all possible options. Default is "unset" (meaning that it will
search for any file size). Note that the maximum file size of a module is approx-
imately 4068 kilobytes, meaning that the largest file size category is irrelevant
for ‘MOD’ files. Also note that the category names are inconsistant, these are
the literal catagories used by ModArchive

genre.filter Genre filter to be used in some of the overviews from the ModArchive. Needs to
be a character string representation of a genre as specified on ModArchive.org.
See the usage section for all possible options. This argument is deprecated in the
function modArchive.search since ProTrackR version 0.3.4, other functions
will still accept this argument.

page Many of the ModArchive returns paginated tables. When this argument is omit-
ted, the first page is returned. Use an integer value to return a specific page.
The total number of pages of a search or view is returned as an attribute to the
returned data.frame.

24 modArchive

view.query A query to be used in combination with the view.by argument. Use the queries
in combination with view.by as follows:

• view_by_list: Use a single capital starting letter to browse modules by
name

• view_by_rating_comments: Provide a (user) rating by which you wish to
browse the modules

• view_by_rating_reviews: Provide a (reviewer) rating by which you wish
to browse the modules

• view_modules_by_artistid: Provide an artist id number for whom you
wish to browse his/her modules

• view_modules_by_guessed_artist: Provide an artist guessed name for
whom you wish to browser his/her modules

view.by Indicate how the modArchive.view.by function should sort the overview tables
of modules. See ‘usage’ section for the possible options.

search.artist A character string representing the (guessed) artist name or id number that you
ar looking for in the archive.

search.hash The MD5 hash code of the specific module you are looking for. See http:
//modarchive.org/?xml-api-usage-level3 for details.

Details

The modArchive.info function will retrieve info on a specific module from the ModArchive. The
modArchive.search.mod, modArchive.search.genre and modArchive.search.hash functions
can be used to find specific modules in the archive. Use modArchive.random.pick to get module
info on a random module in the archive.

Use the modArchive.view.by function to browse the archive by specific aspects. Note that the
ModArchive also contains file formats other than ProTracker’s MOD format. This package can
only handle the MOD format.

The modArchive.download function will download a module from the archive.

Use modArchive.search.artist to find artist details in the archive.

Use modArchive.request.count to determine how many request you have made in the current
month with the specified key (see ‘ModArchive API key’ section for details). Use modArchive.max.requests
to determine how many request you are allowed to make each month with the provided key (see
‘ModArchive API key’ section for details).

Value

modArchive.info, modArchive.search.genre, modArchive.search.hash, modArchive.random.pick
and modArchive.view.by will return a data.frame containing information on modules in the
ModArchive. Note that this data.frame is formatted differently since ProTrackR 0.3.4, which may
cause backward compatibility issues.

modArchive.download will download a module and return it as a PTModule object.

modArchive.search.artist will return a data.frame containing information on artists on the
ModArchive.

http://modarchive.org/?xml-api-usage-level3
http://modarchive.org/?xml-api-usage-level3

modArchive 25

modArchive.request.count returns the number of ModArchive API request that are left for this
month, for the provided key.

modArchive.max.requests returns the maximum monthly requests for the provided key.

ModArchive API key

Since ProTrackR 0.3.4, the ModArchive helper functions have changed. In earlier version, a labile
html scraper was used, in 0.3.4 and later, this is replaced by functions that more robustly use the
Application Programming Interface (API) provided by ModArchive. There are some downsides to
this new approach: a personal API key needs to be obtained from the ModArchive team; and the
ProTrackR package relies on yet another package (XML) to parse the XML files that are returned
by the API.

So why is this switch? Well, first of all, this approach is better supported by ModArchive. The
personal API key is used to avoid excessive access by imposing a monthly request limit (keep in
mind that ModArchive provides free services and is run by volunteers). The upside is that the XML
files are a lot lighter than the html files returned by the regular website. Therefore, the new functions
are faster, and they reduce the load on the ModArchive servers. The XML files also allow for easier
access to more of the ModArchive functionality as implemented in the ModArchive helper functions
described here.

So how do you get your personal API key? First, you need to register at the ModArchive Forums.
Then follow the instructions provided in this topic on the forum. For more info, see also the API
page on ModArchive.

If you want to search for module files without an API key, one could make use of to the modLand
collection instead.

Author(s)

Pepijn de Vries

Examples

Not run:
most of the example below will fail as they require a
real modArchive API key. The key used in these example
is just a dummy. See details on how to get a key
in the section 'ModArchive API Key' in the manual.

Search for the module that is also used as
an example in this package:
search.results <- modArchive.search.mod("*_-_intro.mod",

size.filter = "0-99",
format.filter = "MOD",
api.key = "<your key here>")

apparently there are multiple modules in
database that have '_-_intro' in their
file name or title. Select the wanted
module from the list (the one with the
word 'protrackr' in the instrument names):

https://modarchive.org/forums/
https://modarchive.org/forums/index.php?topic=1950.0
http://modarchive.org/?xml-api
http://modarchive.org/?xml-api

26 modLand

search.select <- subset(search.results,
grepl("protrackr", search.results$instruments))

get the same details, but now only for
the specific module based on its ModArchive ID:
modArchive.info(search.select$id, api.key = "<your key here>")

download the selected module from ModArchive.org:
mod <- modArchive.download(search.select$id)

here's a randomly picked module from the ModArchive:
info.random <- modArchive.random.pick(api.key = "<your key here>")

use modArchive.view.by to list the 2nd page
of MOD files that start with the letter 'A'
info.list <- modArchive.view.by("A", "view_by_list", "MOD",

page = 2,
api.key = "<your key here>")

list the modules of the artist with id number 89200:
artist.mods <- modArchive.view.by("89200", "view_modules_by_artistid",

format.filter = "MOD",
api.key = "<your key here>")

here's how you can list MOD files of a
specific genre:
list.genre <- modArchive.search.genre("Chiptune", "MOD",

api.key = "<your key here>")

get module info for a specific hash code
mod.hash <- modArchive.search.hash("8f80bcab909f700619025bd7f2975749",

"<your key here>")

find modarchive artist info, search for artist name
or artist id:
artist.list <- modArchive.search.artist("89200",

api.key = "<your key here>")

How many requests did I make this month?:
modArchive.request.count("<your key here>")

How many requests am I allowed to make each month?:
modArchive.max.requests("<your key here>")

End(Not run)

modLand ModLand helper functions

modLand 27

Description

http://modland.com is on of the largest online archive of module files. These functions will assist
in accessing this archive.

Usage

modLand.search.mod(search.text)

modLand.download.mod(
format,
author,
title,
mirror = c("modland.com", "ftp.modland.com", "antarctica.no", "ziphoid.com",
"exotica.org.uk"),

...
)

Arguments

search.text A single length character vector, containing search text. Provided search pat-
tern is searched in all fields (mod format, author and title). Prefixes can be added
to keywords for inclusive or exclusive searches. For details see https://www.
exotica.org.uk/wiki/Modland#Searching. Note that modLand contains a
wide range of tracker files, only mod-files are supported by the ProTrackR pack-
age. It is therefore advisable to add the keyword ‘mod’ to the search string.

format A single length character vector, indicating the tracker file format. ‘Protracker’
is the option that is most likely to work in this package.

author A single length character vector, indicating the module author name. Can be
obtained from a modLand.search.mod.

title A single length character vector, indicating the module title. Can be obtained
from a modLand.search.mod.

mirror A single length character vector. Should contain one of the mirrors listed in
the ‘usage’ section. Select a mirror site from which the module file needs to be
downloaded.

... Argument that are passed on to read.module.

Details

Like the http://modarchive.org, modland provides access to a large collection of module files.
Compared to the modArchive, modLand provides limited searching features. However, it does not
require an API key.

The functions documented here are provided as a convenience and depend on third party services.
Note that continuity of these services cannot be guaranteed.

Use modLand.search.mod to search through the modLand collection.

Use modLand.download.mod to download a specific mod file as an S4 object.

http://modland.com
https://www.exotica.org.uk/wiki/Modland#Searching
https://www.exotica.org.uk/wiki/Modland#Searching
http://modarchive.org

28 MODPlugToPTPattern

Value

modLand.search.mod returns a data.frame. The data.frame contains a search result in each
row. The data.frame contains a number of columns, each containing character strings. The col-
umn ‘title’ contains the mod file name; The column named ‘author’ contains the author name;
the column named ‘format’ contains the tracker file format (only ‘Protracker’ is supported by
this package); The collumn ‘collect’ contains modLand collections in which the mod is included;
the column named ‘url’ contains a download link for the ‘ogg’-file generated on the modLand
server from the mod file. Note that ogg-files are not supported by the ProTrackR package. Use
modLand.download.mod to download the mod file.

modLand.download.mod attempts to download the specified mod file and return it as a PTModule
object. It will throw errors when the mod file is not available or when there are network problems...

Author(s)

Pepijn de Vries

Examples

Not run:
Search for a funky tune:

modland <- modLand.search.mod("elekfunk mod")

The ogg file can be downloaded (in this case to the tempdir()),
but it is not supported by the ProTrackR package...

utils::download.file(modland$url[1], tempdir())

Instead, use the following approach to download the module:

mod <- modLand.download.mod(modland$format[1],
modland$author[1],
modland$title[1])

End(Not run)

MODPlugToPTPattern Convert MODPlug pattern into a PTPattern object

Description

Convert pattern data from text or clipboard, originating from the modern MODPlug tracker and
convert it into a PTPattern or PTBlock object.

Usage

MODPlugToPTPattern(text = NULL, what = c("PTPattern", "PTBlock"))

MODPlugToPTPattern 29

Arguments

text A vector of characters, representing MOD pattern data obtained from Open-
MPT. If set to NULL (default), the text will be read from the system’s clipboard.

what A character string that indicates what type of object should be returned. Can
be "PTPattern" or "PTBlock".

Details

The Open MODPlug Tracker (https://www.openmpt.org) is a modern music tracker that is for
free. It too can handle ProTracker modules. This function assists in moving pattern data from Open
MPT to R.

Simply select and copy the pattern data to the system’s clipboard and use this function to import it
to R as a PTPattern or PTBlock object.

Value

Depending on the value of the argument what, it will return either a PTPattern or PTBlock object.

Author(s)

Pepijn de Vries

See Also

Other MODPlug.operations: PTPatternToMODPlug()

Other pattern.operations: PTPattern-class, PTPattern-method, PTPatternToMODPlug(), appendPattern(),
deletePattern(), pasteBlock(), patternLength(), patternOrderLength(), patternOrder()

Examples

Not run:
This is what Mod Plug Pattern data looks like on
the system's clipboard:
modPlugPattern <- c("ModPlug Tracker MOD",

"|C-601...A08|C-602...C40|A#403...F06|A#504......",
"|...01...A08|C-602...C30|........A01|........A02",
"|...01...A08|C-602......|........A01|C-604......",
"|...........|C-602......|........A02|........A02",
"|...01...A08|C-602......|........120|D-604......",
"|...........|A#504...C08|........A02|........A02",
"|...01...A08|C-602......|........220|D#604......",
"|...........|A#504...C08|........A01|........A02",
"|...01...A08|C-602......|........A01|F-604......",
"|...........|A#604...C08|........A01|........A02",
"|...01...A08|C-602......|........A01|D#604......",
"|...........|G-604...C08|........A01|........A02",
"|G-601......|C-602......|........A01|D-604......",
"|........A08|F-604...C08|...........|........A02",
"|F-601......|C-602......|...........|C-604......",
"|........A08|A#504...C08|...........|........A02",

https://www.openmpt.org

30 MODPlugToPTPattern

"|C-601...A08|C-602...C40|A#403...F06|A#504......",
"|...01...A08|C-602...C30|........A01|........A02",
"|...01...A08|C-602......|........A01|D-604......",
"|...........|C-602......|........A02|........A02",
"|...01...A08|C-602......|........120|F-504......",
"|...........|A#504...C08|........A02|........A02",
"|...01...A08|C-602......|........220|G-504......",
"|...........|A#504...C08|........A01|........A02",
"|...01...A08|C-602......|........A01|A#504......",
"|...........|A#604...C08|........A01|........A01",
"|...01...A08|C-602......|........A01|...........",
"|...........|G-604...C08|........A01|........A01",
"|G-501......|C-602......|........A01|...........",
"|........A08|F-504...C08|...........|........A01",
"|A-501......|C-602......|...........|...........",
"|........A08|G-504...C08|...........|........A01",
"|E-601...A08|C-602...C40|D-503......|D-604......",
"|...01...A08|C-602...C30|........A01|........A02",
"|...01...A08|C-602......|........A01|E-604......",
"|...........|C-602......|........A02|........A02",
"|...01...A08|C-602......|........126|F#604......",
"|...........|D-604...C08|........A02|........A02",
"|...01...A08|C-602......|........226|G-604......",
"|...........|E-604...C08|........A01|........A02",
"|...01...A08|C-602......|........A01|A-604......",
"|...........|D-604...C08|........A01|........A02",
"|...01...A08|C-602......|........A01|G-604......",
"|...........|D-604...C08|........A01|........A02",
"|B-601......|C-602......|........A01|F#604......",
"|........A08|D-604...C08|...........|........A02",
"|A-601......|C-602......|...........|E-604......",
"|........A08|E-504...C08|...........|........A02",
"|D-601...A08|C-602...C40|C-503......|C-604......",
"|...01...A08|C-602...C30|........A01|........A02",
"|...01...A08|C-602......|........A01|D-604......",
"|...........|C-602......|........A02|........A02",
"|...01...A08|C-602......|........12B|E-604......",
"|...........|G-604...C08|........A02|........A02",
"|...01...A08|C-602......|........22B|F-604......",
"|...........|G-604...C08|........A01|........A02",
"|...01...A08|C-602......|........A01|G-604......",
"|...........|E-604...C08|........A01|........A02",
"|...01...A08|C-602......|........A01|F-604......",
"|...........|C-604...C08|........A01|........A02",
"|A-601......|C-602......|........A01|E-604......",
"|........A08|G-604...C08|...........|........A02",
"|G-601......|F-604...C08|...........|D-604......",
"|........A08|C-604...C08|...........|........A02")

You could read it directly from the clipboard,
by leaving text NULL (default). Here we provide
the text specified above:
pat <- MODPlugToPTPattern(modPlugPattern, "PTPattern")

modToWave 31

look it is a "PTPattern" object now:
class(pat)

we can also only import the first 10 lines as a
PTBlock:
blk <- MODPlugToPTPattern(modPlugPattern[1:10], "PTBlock")

End(Not run)

modToWave Convert a PTModule object into an audio Wave object

Description

Converts a PTModule object into a Wave object, which can be played, further analysed, modified
and saved.

Usage

S4 method for signature 'PTModule'
modToWave(
mod,
video = c("PAL", "NTSC"),
target.rate = 44100,
target.bit = 16,
stereo.separation = 1,
low.pass.filter = TRUE,
tracks = 1:4,
mix = TRUE,
...

)

Arguments

mod An object of class PTModule

video The video mode of a Commodore Amiga affects timing routines and the play-
back sample rate. This mode can be specified with this argument and is repre-
sented by a character string that can have either the value ‘PAL’ or ‘NTSC’.
PAL is used by default.

target.rate A positive integer sample rate for the target Wave. Should be at least 2000.
Default value is 44100 Hz, which is conform CD quality. 22050 Hz will also
produce a decent sound quality and saves you some working memory.

target.bit Number of bits for the target Wave. Should be a numeric value of either 8, 16,
24 or 32. Default is 16, which is conform CD quality (the quality doesn’t really
improve at higher bit values, as the original samples are of 8 bit quality).

https://en.wikipedia.org/wiki/PAL
https://en.wikipedia.org/wiki/NTSC

32 modToWave

stereo.separation

A numeric value between 0 and 1. When set to 1 (default), stereo channels
(Amiga channels 1 and 4 on left, and channels 2 and 3 on right) are completely
separated. When set to less than 1, stereo channels are mixed, where the number
gives the fraction of separation of the channels. When set to 0, both channels
are completely mixed and a mono Wave is returned.

low.pass.filter

A logical value indicating whether low pass filters should be applied when
generating wave data. The Commodore Amiga had hardware audio filters. One
(low pass 6 db/Oct tuned at 4.9 kHz) that filters all audio and one (low pass 12
db/Oct tuned at approximately 3.3 kHz) that can be turned on and off at will
with effect command E00/E01 (see also ProTrackR documentation, section on
effect commands). These filters are only applied when the low.pass.filter
argument is set to TRUE and the target.rate is set to values > 4.9 kHz. If
you don’t want to simulate this typical Amiga sound, turn the filters off to save
processing time.

tracks Either logical or numeric values indicating which of the 4 PTTracks are to be
converted. By default all 4 tracks are selected.

mix A logical value indicating whether the 4 Amiga channels should be mixed to the
2 (stereo) output channels. When set to TRUE (default) a stereo Wave object is
returned. When set to FALSE a multi-channel WaveMC object is returned. The
stereo.separation argument is ignored in the latter case.

... Additional arguments that are passed to playingtable.

Details

Before the PTModule object can be converted into a Wave object, the rows of the PTPattern objects
in the module need to be put in the right order. This method does that by calling playingtable.

Once the rows of the pattern tables are in the right order, all selected PTTrack objects of the module
are looped by this function and the routines described below are applied to each track.

On the Commodore Amiga the chip responsible for audio output (Paula), the audio playback of
samples can be controlled by the user in two ways: the playback rate of the sample can be changed
by specifying ‘period’ values (see e.g. periodToSampleRate) and specifying a volume which is
linearly scaled between 0 (silent) and 64 (maximum).

So, for each track, the correct period and volume values are determined based on the note, effect
command and sample information in the module.

Then, the PTSample objects are resampled, using the period values and volume values as determined
in the previous step.

Next audio filters are applied to mimic original Commodore Amiga sound. Finaly, the wave data
for each separate track is mixed to one (mono) or two (stereo) of the output channels.

Converting ProTracker modules into wave objects can be time consuming. The time required to
convert an object obviously depends on your machine’s capacities and the length of the module but
also the complexity of the module. To speed up the conversion you could reduce the target sample
rate or turn off the low pass filter. On modern machines, the time required for conversion should
generally be less than the playback time of the module.

You can save the resulting Wave object by calling writeWave.

moduleSize 33

Value

A Wave object, generated from the mod object is returned. A WaveMC object is returned when the
mix argument is set to FALSE.

Note

As audio can be mixed with this package at frequencies much greater than the Commodore Amiga’s
audio output rate, some aliasing of the sound could occur. This results in high frequency audio, that
would not be produced on an Amiga. The current version of this package does not filter out these
artefacts. This should not be a problem if you’re not concerned with producing an accurate Amiga
timbre.

Author(s)

Pepijn de Vries

See Also

Other module.operations: PTModule-class, appendPattern(), clearSamples(), clearSong(),
deletePattern(), fix.PTModule(), moduleSize(), patternLength(), patternOrderLength(),
patternOrder(), playMod(), playingtable(), rawToPTModule(), read.module(), trackerFlag(),
write.module()

Examples

Not run:
data(mod.intro)
wav <- modToWave(mod.intro)

End(Not run)

moduleSize Get module file size

Description

Get the file size in bytes of a PTModule object, when it is to be saved as an original module file with
write.module.

Usage

S4 method for signature 'PTModule'
moduleSize(x)

Arguments

x A PTModule object for which the file size is to be calculated.

34 name

Details

The ProTracker module has a 1084 byte sized header containing all (meta) information on the
patterns, their order and the audio samples. Each pattern holds exactly 1 Kb of information and
the length of the audio samples corresponds with the size in bytes, as they are of 8 bit quality in
mono. This function calculates the file size of the PTModule object when it is to be saved with
write.module.

Value

Returns potential uncompressed module file size in bytes represented by a number of class object_size.

Author(s)

Pepijn de Vries

See Also

Other module.operations: PTModule-class, appendPattern(), clearSamples(), clearSong(),
deletePattern(), fix.PTModule(), modToWave(), patternLength(), patternOrderLength(),
patternOrder(), playMod(), playingtable(), rawToPTModule(), read.module(), trackerFlag(),
write.module()

Examples

Calculate the file size for the example module 'mod.intro':

data("mod.intro")
moduleSize(mod.intro)

Note that this is not the same as the size the object
requires in R working memory:

object.size(mod.intro)

In working memory it takes more memory to store the module, than in a
file. This is because the S4 structure of the object consumes some
memory. In addition, samples are of 8 bit quality, corresponding with
a byte per sample. In the PTSample object it is stored as a
vector of integer values. In R, integer values are 32 bit, which
costs 4 times as much memory as the original 8 bit.

name Obtain or replace the name of a PTModule or PTSample

Description

The name of both a PTModule and PTSample are stored as raw data. This method returns the name
as a character string, or it can be used to assign a new name to a PTModule or PTSample.

name 35

Usage

S4 method for signature 'PTSample'
name(x)

S4 replacement method for signature 'PTSample,character'
name(x) <- value

S4 method for signature 'PTModule'
name(x)

S4 replacement method for signature 'PTModule,character'
name(x) <- value

Arguments

x A PTModule or a PTSample object for which to obtain or replace the name.

value A character string which should be used to replace the name of PTModule or
PTSample x.

Details

The name of a PTModule and PTSample is stored as a vector of raw data with a length of 20 or
22 respectively. This method provides the means for getting the name as a character string or to
safely redefine the name of a PTModule or PTSample object. To do so, the provided name (value) is
converted to a raw vector of length 20 or 22 respectively. Long names may therefore get clipped.

Value

For name, the name of the PTModule or PTSample object as a character string is returned.

For name<-, object x with an updated name is returned.

Author(s)

Pepijn de Vries

See Also

Other character.operations: as.character(), periodToChar(), rawToCharNull(), sampleRate

Other sample.operations: PTSample-class, PTSample-method, fineTune(), loopLength(), loopSample(),
loopStart(), loopState(), playSample(), read.sample(), sampleLength(), volume(), waveform(),
write.sample()

Examples

data("mod.intro")

get the name of mod.intro:
name(mod.intro)

36 note

I don't like the name, let's change it:
name(mod.intro) <- "I like this name better"

Note that the provided name was too long and is truncated:
name(mod.intro)

print all sample names in the module:
unlist(lapply(as.list(1:31), function(x)

name(PTSample(mod.intro, x))))

note Extract or replace a note

Description

Obtain a note from a period value or extract or replace a note of a PTCell object.

Usage

S4 method for signature 'numeric'
note(x)

S4 method for signature 'PTCell'
note(x)

S4 replacement method for signature 'PTCell,character'
note(x) <- value

Arguments

x Either a (vector of) numeric value(s), representing a period value. It can also
be a PTCell object.

value A character string representing the chromatic scale note with wich the cur-
rent note needs to be replaced. Should have any of the folling values: "C-",
"C#", "D-", "D#", "E-", "F-", "F#", "G-", "G#", "A-", "A#", "B-", or "--". Right-
hand dashes can be omitted from these strings. Both upper and lower case are
accepted.
If an octave is not yet specified for PTCell x, it will be set to 1.
Assigning a value of "--" will remove both the note and octave from object x.

Details

Period values are used by ProTracker to set a playback sample rate and in essence determine the
key in which a sound is played. This method can be used to obtain the note (key) associated with a
period value (according to the ProTracker period_table, assuming zero fineTune). If the period
value is not in the period_table, the note associated with the period closest to this value in the
table is returned.

The note can also be obtained or replaced for a PTCell object.

noteToPeriod 37

Value

For note, a character string representing the note is returned.

For note<-, a copy of PTCell object x in which the note is replaced by value is returned.

Author(s)

Pepijn de Vries

See Also

Other period.operations: noteToPeriod(), octave(), periodToChar(), period_table, sampleRate

Other note.and.octave.operations: noteToPeriod(), noteUp(), octave(), periodToChar(), sampleRate

Other cell.operations: PTCell-class, PTCell-method, effect(), sampleNumber()

Examples

data("mod.intro")

get the note of PTCell at pattern #3, track #2,
row #1 from mod.intro (which is note "C-"):

note(PTCell(mod.intro, 1, 2, 3))

replace the note of PTCell at pattern #3, track #2,
row #1 from mod.intro with "A-":

note(PTCell(mod.intro, 1, 2, 3)) <- "A-"

get the notes associated with the period
values 200 up to 400:

note(200:400)

noteToPeriod Extract period value for a specific note

Description

Extracts the ProTracker period value for a specific note.

Usage

noteToPeriod(note = "C-3", finetune = 0)

38 noteUp

Arguments

note character string representing a note and octave for which the ProTracker pe-
riod value needs to be determined

finetune integer value ranging from -8 up to 7. A value used to tune an audio sample.

Details

ProTracker uses a period_table to link period values to certain octaves and notes. This function
serves to look up corresponding period values for specific notes and octaves.

Value

Returns the numeric ProTracker period value for a corresponding note, octave and fineTune. Re-
turns 0 if a note could not be found in the table.

Author(s)

Pepijn de Vries

See Also

Other period.operations: note(), octave(), periodToChar(), period_table, sampleRate

Other note.and.octave.operations: noteUp(), note(), octave(), periodToChar(), sampleRate

Examples

Determine the period value corresponding with note 'A-3':
noteToPeriod("A-3")

get the period values for notes 'A-3' and 'A#3' with finetune at -1:
noteToPeriod(c("A-3", "A#3"), -1)

get the period values for note 'A-3' with finetune at 0 and 1:
noteToPeriod("A-3", 0:1)

noteUp Raise or lower notes and octaves

Description

Methods to raise or lower notes in PTCell, PTTrack and PTPattern objects.

noteUp 39

Usage

S4 method for signature 'PTCell'
noteUp(x, sample.nr = "all")

S4 method for signature 'PTCell'
noteDown(x, sample.nr = "all")

S4 method for signature 'PTCell'
octaveUp(x, sample.nr = "all")

S4 method for signature 'PTCell'
octaveDown(x, sample.nr = "all")

S4 method for signature 'PTTrack'
noteUp(x, sample.nr = "all")

S4 method for signature 'PTTrack'
noteDown(x, sample.nr = "all")

S4 method for signature 'PTTrack'
octaveUp(x, sample.nr = "all")

S4 method for signature 'PTTrack'
octaveDown(x, sample.nr = "all")

S4 method for signature 'PTPattern'
noteUp(x, sample.nr = "all")

S4 method for signature 'PTPattern'
noteDown(x, sample.nr = "all")

S4 method for signature 'PTPattern'
octaveUp(x, sample.nr = "all")

S4 method for signature 'PTPattern'
octaveDown(x, sample.nr = "all")

Arguments

x A PTCell, PTTrack or PTPattern object for which the notes need to be lowered
or raised.

sample.nr A single positive integer value, or a vector of positive integers, listing
the indices of samples, for which the notes need to be lowered or raised. A
character string equal to "all" is also allowed (this is in fact the default), in
which case notes of all sample indices are raised or lowered.

40 noteUp

Value

Returns an object of the same class as object x, in which the notes for samples selected with
sample.nr are raised or lowered.

In case raised or lowered notes would lead to notes that are out of ProTracker’s range, the returned
notes remain unchanged.

Author(s)

Pepijn de Vries

See Also

Other note.and.octave.operations: noteToPeriod(), note(), octave(), periodToChar(), sampleRate

Examples

raise note from C-2 to C#2:
noteUp(PTCell("C-2 01 000"))

lower note from C-2 to B-1:
noteDown(PTCell("C-2 01 000"))

raise note from octave 2 to octave 3:
octaveUp(PTCell("C-2 01 000"))

lower note from octave 2 to octave 1:
octaveDown(PTCell("C-2 01 000"))

data("mod.intro")

Raise the notes of all cells in pattern
number 2 of mod.intro:
noteUp(PTPattern(mod.intro, 2))

Raise only the notes of sample number 4
in pattern number 2 of mod.intro:
noteUp(PTPattern(mod.intro, 2), 4)

Raise only the notes of samples number 2 and 4
in pattern number 2 of mod.intro:
noteUp(PTPattern(mod.intro, 2), c(2, 4))

nybble 41

nybble Get the high or low nybble of a raw value

Description

Get the high or low nybble of a raw value and return as integer value [0,15].

Usage

nybble(raw_dat, which = c("low", "high"))

loNybble(raw_dat)

hiNybble(raw_dat)

Arguments

raw_dat A vector of class raw from which the high or low nybble value needs to be
extracted.

which A character string indicating whether the high or low nybble should be returnd.
It should either be "low" (default) or "high".

Details

A raw is basically a byte, composed of 8 bits (zeros and ones). A nybble is a 4 bit value. Hence, a
raw value (or byte) is composed of two nybbles. The leftmost nybble of a raw value is refered to as
the high nybble, the rightmost nybble is referred to as the low nybble. These functions return either
the high or low nybbles of raw data as integer values [0,15]. As ProTracker stores some information
as nybbles this function can be used to retrieve this info.

Value

A vector of the same length as raw_dat holding integer values.

Author(s)

Pepijn de Vries

See Also

Other nybble.functions: nybbleToSignedInt(), signedIntToNybble()

Other raw.operations: as.raw(), nybbleToSignedInt(), rawToCharNull(), rawToPTModule(),
rawToSignedInt(), rawToUnsignedInt(), signedIntToNybble(), signedIntToRaw(), unsignedIntToRaw()

Other integer.operations: nybbleToSignedInt(), rawToSignedInt(), rawToUnsignedInt(), signedIntToNybble(),
signedIntToRaw(), unsignedIntToRaw(), waveform()

42 nybbleToSignedInt

Examples

this will return 0x0f:
hiNybble(as.raw(0xf3))

which is the same as:
nybble(as.raw(0xf3), "high")

this will return 0x03:
loNybble(as.raw(0xf3))

which is the same as:
nybble(as.raw(0xf3), "low")

nybbleToSignedInt Get signed integer values from nybbles

Description

Get signed integer values from one or more nybble.

Usage

nybbleToSignedInt(raw_dat, which = c("low", "high"))

Arguments

raw_dat raw data (either a single value or a vector), from which a nybble will be ex-
tracted and converted.

which A character string indicating whether the "low" (default) or "high" nybble of
raw_dat needs to be converted into a signed integer.

Details

Nybbles are 4 bit values, where each byte (8 bits) holds two nybbles. A high nybble (left-hand side
of a byte) and a low nybble (right-hand side of a byte). This function extracts a nybble from raw
data and converts it into a signed integer value ranging from -8 up to 7.

Value

Returns integer values of the same length as raw_dat, ranging from -8 up to 7.

Author(s)

Pepijn de Vries

octave 43

See Also

Other nybble.functions: nybble(), signedIntToNybble()

Other raw.operations: as.raw(), nybble(), rawToCharNull(), rawToPTModule(), rawToSignedInt(),
rawToUnsignedInt(), signedIntToNybble(), signedIntToRaw(), unsignedIntToRaw()

Other integer.operations: nybble(), rawToSignedInt(), rawToUnsignedInt(), signedIntToNybble(),
signedIntToRaw(), unsignedIntToRaw(), waveform()

Examples

generate some raw data:

rdat <- as.raw(255*runif(100))

get signed integers of low nybbles:

sintl <- nybbleToSignedInt(rdat)

get signed integers of high nybbles:

sinth <- nybbleToSignedInt(rdat, "high")

octave Extract or replace an octave

Description

Obtain an octave number from a period value or extract or replace a note of a PTCell object.

Usage

S4 method for signature 'numeric'
octave(x)

S4 method for signature 'PTCell'
octave(x)

S4 replacement method for signature 'PTCell,numeric'
octave(x) <- value

Arguments

x Either a (vector of) numeric value(s), representing a period value. It can also
be a PTCell object.

44 octave

value A numeric value representing the octave number with which that of object x
needs to be replaced. 0, 1 and 3 are valid octave numbers. Use zero to disable
both the note and octave for object x.
Note that the octave can only be set for PTCells for which a note is already
defined.

Details

Period values are used by ProTracker to set a playback sample rate and in essence determine the key
and octave in which a sound is played. This method can be used to obtain the octave number asso-
ciated with a period value (according to the ProTracker period_table, assuming zero fineTune).
If the period value is not in the period_table, the octave number associated with the period closest
to this value in the table is returned.

The octave number can also be obtained or replaced for a PTCell object.

Value

For octave, a numeric value representing the octave number is returned.

For octave<-, a copy of PTCell object x in which the octave number is replaced by value is
returned.

Author(s)

Pepijn de Vries

See Also

Other period.operations: noteToPeriod(), note(), periodToChar(), period_table, sampleRate

Other note.and.octave.operations: noteToPeriod(), noteUp(), note(), periodToChar(), sampleRate

Examples

data("mod.intro")

get the octave number of PTCell at pattern #3, track #2,
row #1 from mod.intro (which is number 3):

octave(PTCell(mod.intro, 1, 2, 3))

replace the octave number of PTCell at pattern #3, track #2,
row #1 from mod.intro with 2:

octave(PTCell(mod.intro, 1, 2, 3)) <- 2

get the octave numbers associated with the period
values 200 up to 400:

octave(200:400)

pasteBlock 45

pasteBlock Paste a block of PTCell data into a PTPattern

Description

Paste a block of PTCell data into a PTPattern at a specified location.

Usage

S4 method for signature 'PTPattern,matrix,numeric,numeric'
pasteBlock(pattern, block, row.start, track.start)

Arguments

pattern A PTPattern object into which the block needs to be pasted.

block A PTBlock holding the PTCell data that needs to be pasted into the pattern.

row.start A positive integer value (ranging from 1 up to 64) indicating the starting posi-
tion (row) in the pattern to paste the block into.

track.start A positive integer value (ranging from 1 up to 4) indicating the starting posi-
tion (track) in the pattern to paste the block into.

Details

A PTBlock is not a formal S4 class. It is a matrix where each element holds a list of a single
PTCell object. As explained at the PTBlock method documentation, this allows for a flexible
approach of manipulating PTCell objects. The pasteBlock method allows you to paste a PTBlock
back into a PTPattern.

The PTBlock will be pasted at the specified location and will span the number of tracks and rows
that are included in the PTBlock. The PTCells in the pattern will be replaced by those of the
block. Elements of the bock that are out of the range of the pattern are not included in the
pattern.

Value

Returns a copy of pattern into which block is pasted.

Author(s)

Pepijn de Vries

See Also

Other block.operations: PTBlock()

Other pattern.operations: MODPlugToPTPattern(), PTPattern-class, PTPattern-method, PTPatternToMODPlug(),
appendPattern(), deletePattern(), patternLength(), patternOrderLength(), patternOrder()

46 patternLength

Examples

data("mod.intro")

block <- PTBlock(PTPattern(mod.intro, 1), 1:16, 1)

Do some operations using lapply (the effect
code is set to "C10"):
block <- matrix(lapply(block, function(x) {(effect(x) <- "C10"); x}),

nrow(block), ncol(block), byrow = TRUE)

Paste block back on the same position:
PTPattern(mod.intro, 1) <-

pasteBlock(PTPattern(mod.intro, 1), block, 1, 1)

You can also paste the block anywhere you like:
PTPattern(mod.intro, 1) <-

pasteBlock(PTPattern(mod.intro, 1), block, 49, 2)

patternLength Get the number of PTPattern tables in a PTModule

Description

Get the number of PTPattern tables in a PTModule object.

Usage

S4 method for signature 'PTModule'
patternLength(x)

Arguments

x A PTModule object for which the number of PTPattern tables need to be re-
turned.

Details

The number of PTPattern tables in a PTModule object should range from 1 up to either 64 or 100.
The maximum depends on the trackerFlag of the PTModule object.

Value

Returns a numeric value representing the number of PTPattern tables in object x.

Author(s)

Pepijn de Vries

patternOrder 47

See Also

Other pattern.operations: MODPlugToPTPattern(), PTPattern-class, PTPattern-method, PTPatternToMODPlug(),
appendPattern(), deletePattern(), pasteBlock(), patternOrderLength(), patternOrder()

Other module.operations: PTModule-class, appendPattern(), clearSamples(), clearSong(),
deletePattern(), fix.PTModule(), modToWave(), moduleSize(), patternOrderLength(), patternOrder(),
playMod(), playingtable(), rawToPTModule(), read.module(), trackerFlag(), write.module()

Examples

data("mod.intro")

Get the number of pattern tables in mod.intro:
patternLength(mod.intro)

patternOrder Get the pattern order table

Description

The pattern order table is a vector of numeric indices of PTPattern tables, which determines in
which order the patterns need to be played. This method returns this vector.

Usage

S4 method for signature 'PTModule'
patternOrder(x, full = FALSE)

S4 replacement method for signature 'PTModule,ANY,numeric'
patternOrder(x, full = FALSE) <- value

Arguments

x A PTModule object for which the pattern order table needs to be returned or
modified.

full A logical value indicating whether the full (TRUE, default), or only the visible
(FALSE) part of the pattern order table should be returned. This argument will
also affect how new pattern order tables are assigned (see value).

value A numeric vector (maximum length: 128) holding PTPattern indices minus
1 for the new pattern order table.
When full = TRUE, the vector will be padded with zeros to a length of 128,
and the patternOrderLength will be set to the length of value. When full =
FALSE, value will only repplace the part of the order table up to the length of
value. The remainder of the table is not changed. The patternOrderLength is
also not modified in this case.

48 patternOrder

Details

The actual length of the vector containing the pattern order is 128 as per ProTracker standards.
Only part of this vector is ‘visible’ and will be used to determine in which order pattern tables are
to be played. This method can be used to return either the visible or full (all 128) part of the table.
It can also be used to assign a new patter order table.

Note that PTPattern indices start at 0, as per ProTracker standards, whereas R start indices at 1.
Hence, add 1 to the indices obtained with patternOrder, in order to extract the correct PTPattern
from a PTModule.

The maximum index plus 1 in the full pattern order table should equal the number of pattern tables
(see patternLength) in the PTModule. Is you assign a new pattern order, with a lower maximum,
PTPattern objects will get lost (see also examples)!

Value

For patternOrder, a vector of numeric PTPattern indices is returned.

For patternOrder<-, an updated version of object x is returned, in which the pattern order table is
modified based on value.

Note

The maximum number of PTPatterns cannot exceed either 64 or 100 (depending on the trackerFlag).
This means that values in the order table should also not exceed these values minus 1.

Author(s)

Pepijn de Vries

See Also

Other pattern.operations: MODPlugToPTPattern(), PTPattern-class, PTPattern-method, PTPatternToMODPlug(),
appendPattern(), deletePattern(), pasteBlock(), patternLength(), patternOrderLength()

Other module.operations: PTModule-class, appendPattern(), clearSamples(), clearSong(),
deletePattern(), fix.PTModule(), modToWave(), moduleSize(), patternLength(), patternOrderLength(),
playMod(), playingtable(), rawToPTModule(), read.module(), trackerFlag(), write.module()

Examples

data("mod.intro")

get the visible part of the patternOrder table:
patternOrder(mod.intro)

get the full patternOrder table:
patternOrder(mod.intro, full = TRUE)

add 1 to get extract the right PTPattern from
mod.intro:
first.pattern.played <-

(PTPattern(mod.intro, patternOrder(mod.intro)[1] + 1))

patternOrderLength 49

set a different playing order:
patternOrder(mod.intro) <- c(0:3, 0:3, 0:3)

The assignment above uses a value that
longer than the patternOrderLength.
This means that a part ends up in the
'invisible' part of the order table:
patternOrder(mod.intro)
patternOrder(mod.intro, full = TRUE)

Let's do the same assignment, but update
the visible part of the table as well:
patternOrder(mod.intro, full = TRUE) <- c(0:3, 0:3, 0:3)

note that the maximum of the order table plus 1
equals the patternLength of mod.intro (always the case
for a valid PTModule object):
max(patternOrder(mod.intro, full = TRUE) + 1) ==

patternLength(mod.intro)

Let's do something dangerous. If the replacement
indices do not hold a maximum value that equals
the patternLength minus 1, PTPatterns will get lost,
in order to maintain the validity of mod.intro:
patternOrder(mod.intro) <- rep(0, 12)

patternOrderLength Get the length of the pattern order table

Description

The pattern order table is a vector of numeric indices of PTPattern tables, which determines in
which order the patterns need to be played. This method returns the visible length of this vector.

Usage

S4 method for signature 'PTModule'
patternOrderLength(x)

S4 replacement method for signature 'PTModule,numeric'
patternOrderLength(x) <- value

Arguments

x A PTModule object for which the length of the visible part of the pattern order
table is to be returned.

value A numeric value which is to be used to set the visible length of the pattern order
table.

50 paula_clock

Details

The actual length of the vector containing the pattern order is 128 as per ProTracker standards.
Only part of this vector is ‘visible’ and will be used to determine in which order pattern tables are
to be played. The length returned by this method is the length of this visible part of the pattern order
table. The length of this visible part can also be set with this method.

Value

For patternOrderLength the visible length of the pattern order table of PTModule x is returned as
a numeric value, ranging from 1 up to 128.

For patternOrderLength<- an updated version of object x is returned, in which the visible length
of the pattern order table is set to value. Note that this does not change the pattern order table itself,
only which part is ‘visible’.

Author(s)

Pepijn de Vries

See Also

Other pattern.operations: MODPlugToPTPattern(), PTPattern-class, PTPattern-method, PTPatternToMODPlug(),
appendPattern(), deletePattern(), pasteBlock(), patternLength(), patternOrder()

Other module.operations: PTModule-class, appendPattern(), clearSamples(), clearSong(),
deletePattern(), fix.PTModule(), modToWave(), moduleSize(), patternLength(), patternOrder(),
playMod(), playingtable(), rawToPTModule(), read.module(), trackerFlag(), write.module()

Examples

data("mod.intro")

get the length of the pattern order table:
patternOrderLength(mod.intro)

set the length of the pattern order table to 1:
patternOrderLength(mod.intro) <- 1

note that the pattern order table remained intact:
patternOrder(mod.intro, full = TRUE)

paula_clock Paula clock table

Description

Table that provides audio output frequencies for the Commodore Amiga original chipset.

periodToChar 51

Format

a data.frame with two columns:

• ‘frequency’ A numeric value representing Paula’s output rate in Hz.

• ‘video’ A character string representing the two video modes.

Details

Paula was one of the custom chips on the original Commodore Amiga. This chip was dedicated
(amongst other tasks) to controlling audio playback. The chip’s output rate depended on the video
mode used: either ‘PAL’ or ‘NTSC’. This table provides the output rate for both video modes that
can be used in calculating sample rates.

References

https://en.wikipedia.org/wiki/Original_Chip_Set#Paula

Examples

data("paula_clock")

periodToChar Get the note and octave from period table

Description

These functions return the note and octave that is closest to the provided period value.

Usage

periodToChar(period)

Arguments

period integer value of a period value.

Details

ProTracker uses a period_table to link period values to certain octaves and notes. This function
serves to look up corresponding notes and octaves for specific period values.

Value

periodToChar returns a character representing the combination of octave and note that is closest
to period in the ProTracker period table.

Author(s)

Pepijn de Vries

https://en.wikipedia.org/wiki/PAL
https://en.wikipedia.org/wiki/NTSC
https://en.wikipedia.org/wiki/Original_Chip_Set#Paula

52 period_table

See Also

Other character.operations: as.character(), name, rawToCharNull(), sampleRate

Other period.operations: noteToPeriod(), note(), octave(), period_table, sampleRate

Other note.and.octave.operations: noteToPeriod(), noteUp(), note(), octave(), sampleRate

Examples

Note C# in octave 3 is closest to a period of 200 in the table:
periodToChar(200)
try with a range of period values:
periodToChar(200:400)

period_table ProTracker Period Table

Description

Table of ProTracker period values and corresponding, octave, tone and fine tune

Format

a data.frame with fourteen columns:

• The column named ‘octave’: integer value [1,3]

• The column named ‘finetune’: integer value [-8, 7] used to tune a sample

• The columns named ‘C-’ to ‘B-’: represent the twelve (semi)tones. The values in these
columns are the period values for the corresponding tone, octave and finetune.

Details

Table of ProTracker period values used in calculating the playback sampling rate of samples for
specific tones. These are the values that are actually used by ProTracker, they cannot be calculated
directly due to undocumented rounding inconsistencies. This lookup table is therefore a require-
ment.

See Also

Other period.operations: noteToPeriod(), note(), octave(), periodToChar(), sampleRate

Examples

data("period_table")

playingtable 53

playingtable Generate a table for playing a PTModule object

Description

This method generates a table (data.frame) in which information from the pattern tables are put
in the right order and in a comprehensive format.

Usage

S4 method for signature 'PTModule'
playingtable(
mod,
starting.position = 1,
max.duration = 2 * 60,
speed = 6,
tempo = 125,
video = c("PAL", "NTSC"),
play.once = T,
verbose = T

)

Arguments

mod An object of class PTModule.
starting.position

A numeric starting position index. Determines where in the patternOrder
table of the module to start generating the playingtable.

max.duration A numeric value indicating the maximum length in seconds of the pattern infor-
mation returned. By default set to 120 seconds (2 minutes). As some modules
can be very long, or contain infinite loops or position jumps, the maximum du-
ration is required to break out of the routine for generating the table.

speed Default speed to use when it is not specified in the pattern data. See ProTrackR
documentation for more info on ‘speed’ and ‘tempo’.

tempo Default tempo to use when it is not specified in the pattern data. See ProTrackR
documentation for more info on ‘speed’ and ‘tempo’.

video The video mode of a Commodore Amiga affects timing routines. This mode can
be specified with this argument and is represented by a character string that
can have either the value ‘PAL’ or ‘NTSC’. PAL is used by default.

play.once A logical value. When set to TRUE, the routine will stop adding data to the table
when the starting position (starting.position) is reach once again. Warning:
may not work correctly when the last pattern contains a pattern break. Will be
overruled when the maximum.duration is reached before the end of the song.

verbose A logical value. Suppresses a progress report from being printed to the sink
when set to FALSE. The default value is TRUE.

https://en.wikipedia.org/wiki/PAL
https://en.wikipedia.org/wiki/NTSC

54 playingtable

Details

This method generates a table (data.frame) in which information from the pattern tables (PTPattern)
are put in the right order, taking into account pattern breaks, position jumps and pattern loops (see
also ProTrackR documentation, section on effect commands). The information is put in a compre-
hensive format in a data.frame, with the following columns:

row Row number index of the original PTPattern object.

filter A logical value indicating whether the Amiga hardware audio filter was either turned on
or off using effect command E00/E01 (see also ProTrackR documentation, section on effect
commands).

speed Number of ‘ticks’ per row as set with the Fxy effect commands in the module.

tempo The tempo as specified by the Fxy commands in the module.

delay The delay that should be applied to the row as specified with the EEx effect command in the
module.

effect.track1..4 The effect code (raw) as specified in each of the 4 tracks in the module.

effect.mag.track1..4 The effect magnitude (raw) as specified for each of the 4 tracks in the module.

sample.nr.track1..4 The sample index number (numeric) as specified for each of the 4 tracks in
the module.

note.track1..4 The note (factor) as specified for each of the four tracks in the module.

position The positions index number (numeric) from the patternOrder table in the module.

duration Playback duration of the corresponding row in seconds.

cum_duration Cumulative playback duration of the corresponding row in seconds.

Value

Returns a data.frame with pattern rows put in the right order. Information contained in the returned
table is described in the ’Details’ section

Author(s)

Pepijn de Vries

See Also

Other module.operations: PTModule-class, appendPattern(), clearSamples(), clearSong(),
deletePattern(), fix.PTModule(), modToWave(), moduleSize(), patternLength(), patternOrderLength(),
patternOrder(), playMod(), rawToPTModule(), read.module(), trackerFlag(), write.module()

Examples

Not run:
data(mod.intro)
pt <- playingtable(mod.intro)

End(Not run)

playMod 55

playMod Play PTModule objects

Description

Converts PTModule objects into audio Waves, and plays them.

Usage

S4 method for signature 'PTModule'
playMod(mod, wait = T, ...)

Arguments

mod A PTModule object to be played.

wait A logical value. When set to TRUE the playing routine will wait with executing
any code until the playing is finished. When set to FALSE, subsequent R code
will be executed while playing.

... Arguments that are passed on to modToWave.

Details

Unfortunately, it was not feasible to create a routine that can directly interpret PTModule objects
and play them simultaneously. Instead, the audio first needs to be rendered after which it can be
played. This method therefore first calls modToWave and then playWave. Rendering may take some
time and requires some balance between speed, quality and accuracy. See the documentation of the
modToWave method for the control you have on these aspects.

Value

A Wave object, generated from the mod object, is returned.

Author(s)

Pepijn de Vries

See Also

Other play.audio.routines: playSample(), playWave()

Other module.operations: PTModule-class, appendPattern(), clearSamples(), clearSong(),
deletePattern(), fix.PTModule(), modToWave(), moduleSize(), patternLength(), patternOrderLength(),
patternOrder(), playingtable(), rawToPTModule(), read.module(), trackerFlag(), write.module()

56 playSample

Examples

Not run:
data("mod.intro")

play the module and capture the audio Wave
wav <- playMod(mod.intro)

End(Not run)

playSample Play audio samples

Description

Method to play PTSamples or all such samples from PTModule objects as audio.

Usage

S4 method for signature 'PTSample'
playSample(x, silence = 0, wait = T, note = "C-3", loop = 1, ...)

S4 method for signature 'PTModule'
playSample(x, silence = 0, wait = T, note = "C-3", loop = 1, ...)

Arguments

x Either a PTSample or a PTModule object. In the latter case, all samples in the
module will be played in order.

silence Especially for short samples, the play routine can be a bit buggy: playing audi-
ble noise, ticks or parts from other samples at the end of the sample. By adding
silence after the sample, this problem is evaded. Use this argument to specify
the duration of this silence in seconds. When, x is a PTModule object, the silence
will also be inserted in between samples.

wait A logical value. When set to TRUE the playing routine will wait with executing
any code until the playing is finished. When set to FALSE, subsequent R code
will be executed while playing.

note A character string specifying the note to be used for calculating the playback
sample rate (using noteToSampleRate). It should start with the note (ranging
from ‘A’ up to ‘G’) optionally followed by a hash sign (‘#’) if a note is sharp
(or a dash (‘-’) if it’s not) and finally the octave number (ranging from 1 up to
3). A valid notation would for instance be ‘F#3’. The fineTune as specified for
the sample will also be used as an argument for calculating the playback rate. A
custom finetune can also be passed as an argument to noteToSampleRate.

loop A positive numeric indicating the duration of a looped sample in seconds. A
looped sample will be played at least once, even if the specified duration is less
than the sum of loopStart position and the loopLength. See loopStart and
loopLength for details on how to set (or disable) a loop.

playSample 57

... Further arguments passed on to noteToSampleRate. Can be used to change the
video mode, or finetune argument for the call to that method.

Details

This method plays PTSamples and such samples from PTModule objects, using the play method
from the audio package. Default fineTune and volume as specified for the PTSample will be
applied when playing the sample.

Value

Returns nothing but plays the sample(s) as audio.

Author(s)

Pepijn de Vries

See Also

Other sample.operations: PTSample-class, PTSample-method, fineTune(), loopLength(), loopSample(),
loopStart(), loopState(), name, read.sample(), sampleLength(), volume(), waveform(),
write.sample()

Other sample.rate.operations: sampleRate

Other play.audio.routines: playMod(), playWave()

Examples

Not run:
data("mod.intro")

play all samples in mod.intro:
playSample(mod.intro, 0.2, loop = 0.5)

play a chromatic scale using sample number 3:
for (note in c("A-2", "A#2", "B-2", "C-3", "C#3",

"D-3", "D#3", "E-3", "F-3", "F#3",
"G-3", "G#3"))

{
playSample(PTSample(mod.intro, 3), note = note, silence = 0.05, loop = 0.4)

}

play the sample at a rate based on a specific
video mode and finetune:
playSample(PTSample(mod.intro, 3), video = "NTSC", finetune = -5)

End(Not run)

58 playWave

playWave Play Wave objects

Description

Use the command line play function from the audio package to play Wave objects.

Usage

S4 method for signature 'Wave'
playWave(wave, wait = T)

S4 method for signature 'WaveMC'
playWave(wave, wait = T)

Arguments

wave An object of class Wave or WaveMC. Note that the playing routine implemented
here can only play stereo waves. Multi-channel waves are therefore converted
to stereo before playing.

wait A logical value. When set to TRUE the playing routine will wait with executing
any code until the playing is finished. When set to FALSE, subsequent R code
will be executed while playing.

Details

As the tuneR package play-function relies on external players, this method is provided as a conve-
nient approach to play samples in the R console, using the audio package. Wave objects are played
at the rate as specified in the object. Of course you can also play the Wave objects with the tuneR
implementation of tuneR{play}, by calling tuneR::play(wave).

Value

Returns an $.audioInstance.

Author(s)

Pepijn de Vries

See Also

Other play.audio.routines: playMod(), playSample()

plot 59

Examples

Not run:
data(mod.intro)

PTSample objects can also be
played with this function as they
are a child of the Wave object:
playWave(PTSample(mod.intro, 2))

End(Not run)

plot Plot a PTModule object

Description

Plots the waveforms of the (non-empty) PTSamples in a PTModule object.

Usage

S4 method for signature 'PTModule,missing'
plot(x, y, plot.loop.positions = T, ...)

Arguments

x A PTModule object for which the waveforms of the PTSamples need to be plot-
ted.

y missing. Argument from the generic plotting method, don’t use.
plot.loop.positions

A logical value indicating whether loop positions need to be visualised. For
looped samples, the starting and ending positions are marked by a vertical green
and red line, respectively.

... Arguments that are passed on to xyplot.

Details

A plotting routine based on the xyplot from the lattice-package. Plots each (non-empty) waveform
in a separate panel. Use arguments of the xyplot function to customise the plot.

Value

Returns an object of class trellis. See documentation of xyplot for more details.

Author(s)

Pepijn de Vries

60 print

Examples

get the example PTModule provided with the ProTrackR package
data("mod.intro")

The most basic way to plot the module samples:
plot(mod.intro)

By using xyplot arguments, we can make it look nicer:
plot(mod.intro, type = "l", layout = c(1,4),

scales = list(x = list(relation = "free")))

print Print ProTrackR objects

Description

A method to print ProTrackR S4 class objects.

Usage

S4 method for signature 'PTCell'
print(x, ...)

S4 method for signature 'PTTrack'
print(x, ...)

S4 method for signature 'PTPattern'
print(x, ...)

S4 method for signature 'PTSample'
print(x, ...)

S4 method for signature 'PTModule'
print(x, ...)

Arguments

x Either a PTModule, PTPattern, PTTrack, PTCell or PTSample object.

... further arguments passed to or from other methods

Value

Depending on the class of x, returns either nothing (NULL) or a character representation of object
x.

Author(s)

Pepijn de Vries

proTrackerVibrato 61

Examples

data("mod.intro")
print(mod.intro)
print(PTPattern(mod.intro, 1))
print(PTTrack(mod.intro, 1, 1))
print(PTCell (mod.intro, 1, 1, 1))
print(PTSample (mod.intro, 1))

proTrackerVibrato Get the vibrato table used by ProTracker

Description

Gets the vibrato table as used by ProTracker in vibrato effects.

Usage

proTrackerVibrato(x)

Arguments

x integer representing the table index ranging from 0 up to 31. Values outside
this range can be used, but will produce results that are not valid in the context
of ProTracker.

Details

As the old Commodore Amiga computer didn’t have built-in mathematical functions, many pro-
grams on that machine used their own data tables. As did ProTracker for vibrato effects for which a
sine function was used. As there was no sine function that could be called, sine values were stored
in a table.

This function returns the integer sine values (ranging from 0 up to 255) as a function of the table
index (ranging from 0 up to 31).

Value

Returns an integer sine value ranging from 0 up to 255 when a valid table index (x) is provided.
It will otherwise return a sine value ranging from -255 up to 255.

Author(s)

Pepijn de Vries

Examples

this will return the table as used in ProTracker
proTrackerVibrato(0:31)

62 ProTrackR

ProTrackR Manipulate and play ProTracker Modules. A description of the pack-
age, ProTracker effect commands and test cases.

Description

The ProTrackR package can import and export module files from the music tracker ProTracker from
the Commodore Amiga machine. This package can also render and play module files. Furthermore,
the package provides the means to manipulate and analyse the modules.

Details

ProTracker is a popular music tracker to sequence music on a Commodore Amiga machine. This
package offers the opportunity to import, export, manipulate an play ProTracker module files. Even
though the file format could be considered archaic, it still remains popular to this date. This package
intends to contribute to this popularity and therewith keeping the legacy of ProTracker and the
Commodore Amiga alive.

Some experience with ProTracker (or any other music tracker) will promote the ease of use of this
package. However, the provided documentation and exernal links should help you, when you’re
starting from scratch. A good place to start reading this manual would be the documentation of the
PTModule-class, which describes the structure of a ProTracker module and how it is implemented
in this package. You should also have a look at the documentation of the PTPattern, PTTrack,
PTCell and PTSample classes, which are all elements of the PTModule.

Current issues and future developments

This package is far from perfect, but it is in such a state that it can be useful to others, and have
therefore published it. There’s much room for improvement and I intend to work on that. However,
as I’m working on this project in my spare time, developments may not move forwards as fast as
I’d like them to, or may eventually even come to a halt. Keeping this disclaimer in mind, there are
some minor revisions I will try to work on the coming time.

Currently, not all effect commands are implemented, although most common ones are. I will work
on implementing the remaining effect commands (see also section below). ProTracker also has
specific interpretations that are currently not all implemented correctly. I will also try to fix this in
future versions.

Sample switching (that is when a module switches from one sample number to another, without
specifying a new note) is also something that is implemented differently by varying module players.
This package currently does not implement such switches conform ProTracker specs. This will also
be addressed in future versions.

Period values, which dictate at which fequency samples should be played, are censored both by
Amiga hardware and software coded limits in the original ProTracker. Documentation on these
limits are ambiguous. I’ve made a first attempt to implement these bounds in the current version
of the package after consulting with Olav Sørensen (who created a ProTracker clone for modern
machines: http://16-bits.org/pt.php). I’m really greatful for his input and doing some checks
on an actual Amiga.

http://16-bits.org/pt.php

ProTrackR 63

I also realise that the documentation of this package may be a bit cryptic at some points. I would
like to improve it where I can, but for that I need a fresh perspective from the users. So please feel
free to provide constructive feedback such that I can improve the quality of this package.

ProTracker Effect Commands

As explained before, effect commands are composed of a three hexadecimal digits. The first digit
indicates the type of effect, trigger or jump that should be applied, the latter two digits indicate
the magnitude of the effect. An exception are commands starting with the digit ‘E’, for which the
first two digits specify the type of effect and only the last digit represents the magnitude. Below
all available effect commands (or codes if you will) are listed with the magnitudes labelled ‘x’ or
‘xy’. The overview shows which commands are used for which kind of effect and whether it is
implemented (between brackets) in the playing routines of this package.

But first a few words on speed and tempo in ProTracker. Both are two sides of the same coin, both
affect the overall speed with which patterns are played. Speed is defined as the number of ‘ticks’ per
pattern row and tempo sets the duration of each tick. So by increasing the speed value, or decreasing
the tempo, the overall playing speed of the pattern table is reduced. At the default tempo of 125, the
duration of a tick equals the vertical blank period of the monitor (1/50 seconds for PAL and 1/60
seconds NTSC video systems). They can be set with the Fxy command.

On the Commodore Amiga the chip responsible for audio output (Paula), the audio playback of
samples can be controlled by the user in two ways: the playback rate of the sample can be changed
by specifying ‘period’ values (see e.g. periodToSampleRate) and specifying a volume which is
linearly scaled between 0 (silent) and 64 (maximum). Period and volumes can only be changed at
the start of each tick. This is why the effects will be affected by the speed setting, but not the tempo.

And now, without further ado, the overview of effect commands:

Code Effect Description Status
0xy Arpeggio This effect alternates the pitch each tick to simulate a chord. xy needs to be greater then 00. First the specified note is played, then the pitch is increased with x semitones, then with y semitones. Partly implemented
1xy Porta up Decrease the period value with xy every tick but the first. Implemented
2xy Porta down Increase the period value with xy every tick but the first. Implemented
3xy Porta to note Change the period value with xy every tick but the first, untill the specified target note is reached. Implemented
4xy Vibrato Oscillate the pitch with magnitude x. Where y relates to the oscillation frequency. Implemented
5xy Porta to note + Volume slide A combination of effects 3xy and Axy. Implemented
6xy Vibrato + Volume slide A combination of effects 4xy and Axy. Implemented
7xy Tremolo Oscillate the volume with magnitude x. Where y relates to the oscillation frequency. Implemented
8xy Not implemented This effect command is not implemented in ProTracker, nor will it be in this package. Not implemented
9xy Set sample offset This effect causes the note to start playing at an offset (of 256 times xy samples) into the sample, instead of just from the start. Implemented
Axy Volume slide Change the volume every but the first tick: increase with x, decrease with y. Implemented
Bxy Position jump Jump to position xy of the patternOrder table. Implemented
Cxy Set volume Set the volume with xy. Implemented
Dxy Pattern break Break to row xy in the next pattern. Note: xy is (even though it is a hexadecimal) interpreted as a decimal. Implemented
E0x Turn filter on/off If x is even, the (emulated) hardware filter is turned on (for all tracks). It is turned off if x is odd. Implemented
E1x Porta up (fine) The period value is decreased with x, at the first tick. Implemented
E2x Porta down (fine) The period value is increased with x, at the first tick. Implemented
E3x Glissando Control This effect causes a change in the effect 3xy (porta to note). It toggles whether to do a smooth slide or whether to slide in jumps of semitones. When x is 0 it uses a smooth slide, non-zero values will result in jumps. Not yet implemented
E4x Vibrato Waveform This effect sets the waveform for the vibrato command to follow. With x modulo 4 equals 0, a sine wave is used, with 1 ramp down, with 2 or 3 a square wave. Values greater than 4 causes the ossicating waveform not to retrigger it when a new note is played. Implemented
E5x Set finetune Set the finetune with x, where x is interpreted as a signed nybble. Partly implemented
E6x Pattern loop Set pattern loop start with E60, and loop x times when x is non-zero. Implemented

64 ProTrackR

E7x Tremolo waveform Same as E4x, but this controls the wave form for the tremolo effect (7xy) rather then the vibrato effect. Implemented
E8x Not implemented According to official documentation this command is not implemented in ProTracker, but it is. Applies a filter on a looped sample, therewith destroying the original sample data. Not implemented
E9x Retrigger note Retrigger the note every x-th tick. Implemented
EAx Volume slide up (fine) Increase the volume with x at the first tick. Implemented
EBx Volume slide down (fine) Decrease the volume with x at the first tick. Implemented
ECx Cut note Cut the volume of the note to zero after x ticks. Implemented
EDx Delay note The note is triggered with a delay of x ticks. Implemented
EEx Pattern delay The duration of the row in ticks is multiplied by (x + 1). Implemented
EFx Not implemented According to official documentation this command is not implemented in ProTracker, but it is. It flips sample data in a looped sample, therewith destroying the original sample data. Not implemented
Fxy Set speed or tempo When xy is smaller then 32, it sets the speed in ticks per row. When xy is greater then 31, it will set the tempo, wich is inversely related to the duration of each tick. Speed and tempo can be defined in combination. Implemented

Test cases

The interpretation of the effect commands can be tedious. They often vary between module players.
Even ProTracker can have a quirky (and unexpected) ways of handling the effect commands. This
package aims at staying as close to ProTracker ‘standards’ as possible.

The current version already implements most effect commands and common quirks when it comes
to their interpretation. My subjective estimate is that it will correctly play roughly 95% of the
ProTracker modules on ModArchive. Some Less common unexpected behaviour is documented by
the team behind OpenMPT, for which they developed several test cases. The table below shows
which test cases this package passes and which it does not. It is the intention to pass more of the
tests in future versions.

Test module Status
AmigaLimitsFinetune.mod Fail
ArpWraparound.mod Fail
DelayBreak.mod Pass
finetune.mod Fail
PatLoop-Break.mod Pass
PatternJump.mod Pass
PortaSmpChange.mod Fail
PortaTarget.mod Pass
PTInstrSwap.mod Fail
ptoffset.mod Pass
PTSwapEmpty.mod Fail
VibratoReset.mod Pass

Author(s)

Pepijn de Vries

References

Some basic information on ProTracker: https://en.wikipedia.org/wiki/Protracker

Some basic information on music trackers in general: https://en.wikipedia.org/wiki/Music_
tracker

A tutorial on ProTracker on YouTube: https://www.youtube.com/playlist?list=PLVoRT-Mqwas9gvmCRtOusCQSKNQNf6lTc

http://www.modarchive.org
http://wiki.openmpt.org/Main_Page
http://wiki.openmpt.org/Development:_Test_Cases/MOD%23AmigaLimitsFinetune.mod
http://wiki.openmpt.org/Development:_Test_Cases/MOD%23ArpWraparound.mod
http://wiki.openmpt.org/Development:_Test_Cases/MOD%23DelayBreak.mod
http://wiki.openmpt.org/Development:_Test_Cases/MOD%23finetune.mod
http://wiki.openmpt.org/Development:_Test_Cases/MOD%23PatLoop-Break.mod
http://wiki.openmpt.org/Development:_Test_Cases/MOD%23PatternJump.mod
http://wiki.openmpt.org/Development:_Test_Cases/MOD%23PortaSmpChange.mod
http://wiki.openmpt.org/Development:_Test_Cases/MOD%23PortaTarget.mod
http://wiki.openmpt.org/Development:_Test_Cases/MOD%23PTInstrSwap.mod
http://wiki.openmpt.org/Development:_Test_Cases/MOD%23ptoffset.mod
http://wiki.openmpt.org/Development:_Test_Cases/MOD%23PTSwapEmpty.mod
http://wiki.openmpt.org/Development:_Test_Cases/MOD%23VibratoReset.mod
https://en.wikipedia.org/wiki/Protracker
https://en.wikipedia.org/wiki/Music_tracker
https://en.wikipedia.org/wiki/Music_tracker
https://www.youtube.com/playlist?list=PLVoRT-Mqwas9gvmCRtOusCQSKNQNf6lTc

PTBlock 65

Some informal but extensive technical documentation on ProTracker: ftp://ftp.modland.com/
pub/documents/format_documentation/Protracker%20effects%20(FireLight)%20(.mod).txt
http://www.chemie.fu-berlin.de/chemnet/doc/tracker-4.31/technotes

PTBlock Select and copy a range of PTCells into a PTBlock

Description

Select and copy a range of PTCells from a PTPattern into a PTBlock. This allows a more flexible
approach to select and modify PTCells and paste the modified cells back into a PTPattern.

Usage

S4 method for signature 'PTPattern,numeric,numeric'
PTBlock(pattern, row, track)

Arguments

pattern A PTPattern object from which the PTBlock needs to be selected.

row A numeric index or indices of rows that needs to be copied from the pattern
into the PTBlock.

track A numeric index or indices of tracks that needs to be copied from the pattern
into the PTBlock.

Details

Most objects in this ProTrackR package are very strict in the operations that are allowed, in order
to guarantee validity and compatibility with the original ProTracker. This makes those objects not
very flexible.

This PTBlock is not a formal S4 object, in fact you can hardly call it an object at all. It is just a
matrix, where each element holds a list with a single PTCell.

This matrix is very flexible and makes it easier to select and modify the cells. This flexibility comes
at a cost as validity is only checked at the level of the PTCells. The PTBlock can be pasted back
into a PTPattern with the pasteBlock method. At which point validity will be checked again. If
your modifications resulted in violation of ProTracker standards, you should not be able to paste the
block into a pattern.

Value

Returns a matrix from the selected rows and tracks from the pattern. Each element in the matrix
is a list holding a single PTCell.

Author(s)

Pepijn de Vries

ftp://ftp.modland.com/pub/documents/format_documentation/Protracker%20effects%20(FireLight)%20(.mod).txt
ftp://ftp.modland.com/pub/documents/format_documentation/Protracker%20effects%20(FireLight)%20(.mod).txt
http://www.chemie.fu-berlin.de/chemnet/doc/tracker-4.31/technotes

66 PTCell-class

See Also

Other block.operations: pasteBlock()

Examples

data("mod.intro")

in most ProTrackR methods you can only select a single row or track.
with a PTBlock your selection is more flexible.

select rows 4 up to 8 and tracks 2 up to 4, from the first
pattern table in mod.intro:

block <- PTBlock(PTPattern(mod.intro, 1), 4:8, 2:4)

'block' is now a matrix with in each a list with a PTCell.
These can now easily be accessed and modified:

cell1 <- block[1, 1][[1]]

print(cell1)

PTCell-class The PTCell class

Description

The PTCell class is the smallest possible element of a PTPattern table. It holds all information on
which note to play, at which frequency, with which effect and what kind of triggers or jumps should
be applied.

Details

The PTCell class consists of a vector of four raw values, as specified in the ‘Slots’ section. A cell
will tell which PTSample is to be played at which frequency (corresponding to a note and octave).
If no octave or note is specified, nothing will be played, or if a sample was started to play on the
same PTTrack, this sample will continue playing. The PTCell can also hold effect codes which
can be used to add audio effects to the sample being played, change the speed/tempo at which
patterns are played, or trigger jumps to other positions within a PTPattern or to other positions in
the patternOrder table.

Slots

data A vector of class "raw" of length 4. The raw data is stored identical to the way it is stored
in a ProTracker module file. The character representation is easier to understand, and with
the ProTrackR package it shouldn’t be necessary to manipulate the raw data directly.
The structure is illustrated with an example. Let’s start with a character representation of a
PTCell as an example: "C-3 1B A08". The left-hand part of this string shows that this cell will

PTCell-method 67

play note "C" in octave 3. The middle part shows that PTSample number 0x1B = 27 will be
played. The right-hand part of the string shows that effect "A08" will be applied (which is a
volume slide down).
The raw representation of this example would be "10 d6 ba 08", or when I replace the actual
values with symbols: "sp pp se ee". Where "ss" represents the sample number, "eee" repre-
sents the effect code and "ppp" represents the period value. The correct note and octave can
be derived by looking up the period value in the period_table (which is also implemented
in the following methods: note, octave and periodToChar). The period value 0x0d6 = 214
corresponds with note "C" in octave 3.

Author(s)

Pepijn de Vries

See Also

Other cell.operations: PTCell-method, effect(), note(), sampleNumber()

Examples

data("mod.intro")

get the PTCell from mod.intro at
PTPattern #1, PTTrack #1 and row #1:

cell <- PTCell(mod.intro, 1, 1, 1)

get the note of this cell:
note(cell)

get the octave of this cell:
octave(cell)

get the sampleNumber of this cell:
sampleNumber(cell)

get the effect code of this cell:
effect(cell)

get the raw data of this cell:
as.raw(cell)

get the character representation of this cell:
as.character(cell)

PTCell-method Coerce to or replace PTCell

68 PTCell-method

Description

This method will coerce a set of objects to a PTCell object. It can also be used to select specific
cells from PTModule, PTPattern and PTTrack objects and replace the selected PTCell.

Usage

S4 method for signature 'raw,missing,missing,missing'
PTCell(x)

S4 method for signature 'character,missing,missing,missing'
PTCell(x)

S4 method for signature 'PTModule,numeric,numeric,numeric'
PTCell(x, row, track, pattern)

S4 replacement method for signature 'PTModule,numeric,numeric,numeric,PTCell'
PTCell(x, row, track, pattern) <- value

S4 method for signature 'PTPattern,numeric,numeric,missing'
PTCell(x, row, track)

S4 replacement method for signature 'PTPattern,numeric,numeric,missing,PTCell'
PTCell(x, row, track) <- value

S4 method for signature 'PTTrack,numeric,missing,missing'
PTCell(x, row)

S4 replacement method for signature 'PTTrack,numeric,missing,missing,PTCell'
PTCell(x, row) <- value

Arguments

x Object (any of raw data, a character string, a PTTrack, a PTPattern or a
PTModule) to coerce to a PTCell. See details below for the required format of
x.

row When x is a PTTrack, a PTPattern, or a PTModule, provide an index [1,64] of
the row that needs to be coerced to a PTCell.

track When x is a PTPattern, or a PTModule, provide an index [1,4] of the track that
needs to be coerced to a PTCell.

pattern When x is a PTModule, provide an index of the pattern that needs to be coerced
to a PTCell. Note that ProTracker uses indices for patterns that start at zero,
whereas R uses indices that start at one. Hence add one to an index obtained
from a PTModule object (e.g., x$pattern.order)

value An object of PTCell with which the PTCell object at the specified indices in
object x needs to be replaced.

PTCell-method 69

Details

Method to coerce x to class PTCell.

When x is raw data, it should consist of a vector of 4 elements, formatted as specified in the
PTCell-class.

When x is a character string, it should be formatted as follows: "NNO SS EEE", where NN is the
note (for instance "C-" or "A#", where the dash has no particular meaning and may be omitted, the
hash sign indicates a sharp note). Use a dash if the cell holds no note. O is the octave (with a value
of 0, or a dash, if a note is missing, otherwise any of 1, 2 or 3). SS is the sample index number,
formatted as two hexadecimal digits (for example ‘1A’). EEE is a three hexadecimal digit effect
or trigger code (for more details see the PTCell-class). The method is not case sensitive, so you
can use both upper and lower case. White spaces are ignored, you can use as many as you would
like. A correct character input for x would be for example: "A#2 01 A0F". An ‘blank’ character
representation would look like this: "--- 00 000".

When x is of class PTTrack, PTPattern, or PTModule, the PTCell at the specified indices (row,
track and pattern) is returned, or can be replaced.

Value

When PTCell is used, a PTCell object based on x is returned.

When PTCell<- is used, object x is returned in which the selected PTCell is replaced with value.

Author(s)

Pepijn de Vries

See Also

Other cell.operations: PTCell-class, effect(), note(), sampleNumber()

Examples

This will create an empty PTCell (equivalent
to new("PTCell"):
PTCell(raw(4))

Use a character representation to create
a new PTCell object. A cell with note
B in octave 2, sample number 10 and with
effect '105':
cell <- PTCell("B-2 0A 105")

data("mod.intro")

replace PTCell at pattern number 1, track
number 2, and row number 3:
PTCell(mod.intro, 3, 2, 1) <- cell

70 PTModule-class

PTModule-class The PTModule class

Description

The PTModule class provides a container to store and modify and use ProTracker module files.

Details

MOD is a computer file format used primarily to represent music. A MOD file contains a set of
instruments in the form of samples, a number of patterns indicating how and when the samples are
to be played, and a list of what patterns to play in what order. The simplified structure of a module
class is visualised in the scheme below. Details are given in the slot descriptions below.

ProTrackerModule meta−data

pattern table
play order

list

list

pattern tables

audio samples

This class is designed to hold all relevant information of a ProTracker module (MOD) for which
ProTracker 2.3a documentation was used. The ProTrackR package may be compatible with earlier
or later versions, but this was not tested. Use read.module and write.module to import and export
objects of class PTModule.

Slots

name A vector of length 20 of class "raw", representing the name of the PTModule. The name of
a module can be extracted or replaced with the name method.

PTModule-class 71

pattern.order A vector of length 128 of class "raw". The raw values represent the indices of
PTPattern tables and indicate in which order these patterns need to be played. Note that the
raw values are conform the indices used in ProTracker, starting at zero. In R, indices of objects
start at one. Users need to compensate for this discrepancy theirselves.
The pattern order table can be extracted or replaced with the patternOrder method.

pattern.order.length A single value of class "raw". Indicates the length of the visible (and
playable) part of the pattern order table.
Use the patternOrderLength method to extract or replace the length of a pattern order table
of a module.

tracker.byte A single "raw" value. Gives an indication of which Tracker was used to produce a
module file. In ProTracker modules, this byte is set to 0x7f, which is also used in PTModule
objects. This value should not be changed.

tracker.flag A vector of length 4 of class "raw", indicates the version of a module, which
basically reflects how many patterns the module can hold. For details, and extracting and
replacing this flag see the trackerFlag method.

samples List of length 31 of class "PTSample".

patterns List of class "PTPattern" (the pattern tables). The list should have at least 1 element,
and can have a maximum of 64 or 100 elements (depending on the state of the trackerFlag).

Author(s)

Pepijn de Vries

References

https://en.wikipedia.org/wiki/MOD_(file_format)

http://wiki.multimedia.cx/index.php?title=Protracker_Module

http://coppershade.org/articles/More!/Topics/Protracker_File_Format/

See Also

Other module.operations: appendPattern(), clearSamples(), clearSong(), deletePattern(),
fix.PTModule(), modToWave(), moduleSize(), patternLength(), patternOrderLength(), patternOrder(),
playMod(), playingtable(), rawToPTModule(), read.module(), trackerFlag(), write.module()

Examples

create an empty PTModule class object:
mod.empty <- new("PTModule")

get an example PTModule class object
provided with the ProTrackR package:
data("mod.intro")

https://en.wikipedia.org/wiki/MOD_(file_format)
http://wiki.multimedia.cx/index.php?title=Protracker_Module
http://coppershade.org/articles/More!/Topics/Protracker_File_Format/

72 PTPattern-class

PTPattern-class The PTPattern class

Description

The PTPattern (or simply pattern) is a table that determines which samples are played at which
notes in which octave, in which order and with which effects.

Details

When a PTPattern table (or simply pattern) is played, each of the 64 rows (see the green mark in
the illustration below for an example of a row) are played subsequently at a specified speed/tempo.

Note that ProTracker uses row indices that start at zero. However, this package uses indices starting
at one, conform R language definitions.

row index

1

2

3

4

5

6

7

8

...

61

62

63

64

track 1

C−3 01 A08

−−− 01 A08

−−− 01 A08

−−− 00 000

−−− 01 A08

−−− 00 000

−−− 01 A08

−−− 00 000

...

A−3 01 000

−−− 00 A08

G−3 01 000

−−− 00 A08

track 2

C−3 02 C40

C−3 02 C30

C−3 02 000

C−3 02 000

C−3 02 000

A#2 04 C08

C−3 02 000

A#2 04 C08

...

C−3 02 000

G−3 04 C08

F−3 04 C08

C−3 04 C08

track 3

A#1 03 F06

−−− 00 A01

−−− 00 A01

−−− 00 A02

−−− 00 120

−−− 00 A02

−−− 00 220

−−− 00 A01

...

−−− 00 A01

−−− 00 000

−−− 00 000

−−− 00 000

track 4

A#2 04 000

−−− 00 A02

C−3 04 000

−−− 00 A02

D−3 04 000

−−− 00 A02

D#3 04 000

−−− 00 A02

...

E−3 04 000

−−− 00 A02

D−3 04 000

−−− 00 A02

The table has four columns (see the purple outline in the illustration above as an example of a
column), representing the four audio channels (PTTrack) of the Commodore Amiga. Samples listed
in the same row at different tracks will be played simultaneously.

An element at a specific row and track will be referred to as a PTCell (or simply cell). The cell
determines which sample needs to be played at which note and octave and what kind of effect or
trigger should be applied.

With the PTPattern-method, objects can be coerced to a pattern table. This method can also be
used to extract or replace patterns in PTModule objects.

PTPattern-method 73

Slots

data A matrix (64 rows, 16 columns) of class "raw". Each row contains the raw concatenated
data of 4 PTCell objects, representing each of the 4 audio channels/tracks (as each PTCell
object holds 4 raw values, each row holds 4 x 4 = 16 raw values). The raw data is formatted
conform the specifications given in the PTCell documentation.

Author(s)

Pepijn de Vries

See Also

Other pattern.operations: MODPlugToPTPattern(), PTPattern-method, PTPatternToMODPlug(),
appendPattern(), deletePattern(), pasteBlock(), patternLength(), patternOrderLength(),
patternOrder()

PTPattern-method Coerce to or replace PTPattern

Description

This method will coerce a set of objects to a PTPattern object. It can also be used to select specific
patterns from PTModule objects and replace the selected PTPattern.

Usage

S4 method for signature 'raw,missing'
PTPattern(x)

S4 method for signature 'matrix,missing'
PTPattern(x)

S4 method for signature 'PTModule,numeric'
PTPattern(x, pattern)

S4 replacement method for signature 'PTModule,numeric,PTPattern'
PTPattern(x, pattern) <- value

Arguments

x Object (any of raw data, a 64 by 16 matrix of raw data, a 64 by 4 matrix of
character strings, or a PTModule) to coerce to a PTPattern. See details below
for the required format of x.

pattern When x is a PTModule, provide an index of the pattern that needs to be coerced
to a PTPattern. Note that ProTracker uses indices for patterns that start at zero,
whereas R uses indices that start at one. Hence add one to an index obtained
from a PTModule object (e.g., x$pattern.order).

74 PTPattern-method

value An object of PTPattern with which the PTPattern object at the specified index
in object x needs to be replaced.

Details

Method to coerce x to class PTPattern.

When x is a 64 by 16 matrix of raw data, each row implicitly represents the PTCell objects of each
of the four tracks. Each PTCell consists of four raw values. The values in each row are format-
ted accordingly, where the values of the cells of each track are concatenated. See PTCell-class
documentation for more details on the raw format of a PTCell object.

When x is a 64 by 16 matrix of character representations of PTCell objects, the character
representation must be conform the specifications as documented at the PTCell-class.

When x is of class PTModule, the PTPattern at the specified index (pattern) is returned, or can be
replaced.

Value

When PTPattern is used, a PTPattern object based on x is returned.

When PTPattern<- is used, object x is returned in which the selected PTPattern is replaced with
value.

Author(s)

Pepijn de Vries

See Also

Other pattern.operations: MODPlugToPTPattern(), PTPattern-class, PTPatternToMODPlug(),
appendPattern(), deletePattern(), pasteBlock(), patternLength(), patternOrderLength(),
patternOrder()

Examples

This will create an 'empty' PTPattern with
all 0x00 values, which is equivalent to
new("PTPattern"):
PTPattern(as.raw(0x00))

Create a PTPattern based on repeated
PTCell character representations:
pat <- PTPattern(matrix("F#2 1A 20A", 64, 4))

data("mod.intro")

Replace the first pattern in the patternOrder
table in mod.intro with 'pat' (don't forget to
add one (+1) to the index):
PTPattern(mod.intro,

patternOrder(mod.intro)[1] + 1) <- pat

PTPatternToMODPlug 75

PTPatternToMODPlug Convert PTPattern data into a MODPlug pattern

Description

Use a PTPattern or PTBlock to create a pattern table with a MODPlug flavour.

Usage

PTPatternToMODPlug(x, to.clipboard = T)

Arguments

x Either a PTPattern object or a PTBlock object from which an Open MODPlug
Tracker pattern should be created.

to.clipboard A logical value, indicating whether the result should be copied to the system’s
clipboard (TRUE) or should be returned as a vector of characters (FALSE).

Details

The Open MODPlug Tracker (https://www.openmpt.org) is a modern music tracker that is for
free. It too can handle ProTracker modules. This function assists in moving pattern data from R to
Open MPT.

Value

Returns an invisible NULL when argument to.clipboard is set to TRUE. Returns an Open MODPlug
Tracker flavoured pattern table as a vector of characters when it is set to FALSE.

Author(s)

Pepijn de Vries

See Also

Other MODPlug.operations: MODPlugToPTPattern()

Other pattern.operations: MODPlugToPTPattern(), PTPattern-class, PTPattern-method, appendPattern(),
deletePattern(), pasteBlock(), patternLength(), patternOrderLength(), patternOrder()

Examples

Not run:
get some pattern data

pattern <- PTPattern(mod.intro, 1)

Now create a MODPlug pattern from this.
The result is placed on the system clipboard.

https://www.openmpt.org

76 PTSample-class

You can check by pasting it into a text
editor, or better yet, the MODPlug Tracker.

PTPatternToMODPlug(pattern)

If you want to handle the pattern data
in R:

patModPlug <- PTPatternToMODPlug(pattern, F)

We can do the same with a block:

block <- PTBlock(pattern, 1:10, 2:3)
PTPatternToMODPlug(block)

End(Not run)

PTSample-class The PTSample class

Description

This class holds audio fragments with meta-information, to be used in PTModule objects.

Details

This class holds audio fragments with meta-information (so-called samples), to be used in PTModule
objects. This class extends the Wave class from tuneR. It therewith inherits all properties and cool
methods available from the tuneR package. This allows you, for instance, to generate power spectra
(powspec) of them. You can also plot the waveform with the plot-Wave method. See tuneR for
all possibilities with Wave objects. If you want you can also explicitly coerce PTSample to Wave
objects like this: as(new("PTSample"), "Wave").

The PTSample class has some slots that are additional to the Wave class, as ProTracker requires
additional information on the sample with respect to its name, fine tune, volume and loop positions.
The PTSample class restricts the enherited Wave class such that it will only hold 8 bit, mono, pcm
waves with a maximum of 2*0xffff = 131070 samples, as per ProTracker standards. The length
should always be even.

PTSamples can be imported and exported using the read.sample ans write.sample methods re-
spectively. Wave objects and raw data can be coerced to PTSamples with the PTSample-method.

Slots

name A vector of length 22 of class "raw", representing the name of the PTSample. It is often used
to include descriptive information in a PTModule. The name of a sample can be extracted or
replaced with the name method.

PTSample-class 77

finetune Single value of class "raw". The loNybble of the raw value, represents the sample fine
tune value ranging from -8 up to 7. This value is used to tweak the playback sample rate,
in order to tune it. Negative values will lower the sample rate of notes, positive values will
increase the sample rate of notes. Period values corresponding to specific notes and fine tune
values are stored in the period_table. The fine tune value can be extracted or replace with
the fineTune method.

volume Single value of class "raw". The raw data corresponds with the default playback volume
of the sample. It ranges from 0 (silent) up to 64 (maximum volume). The volume value can
be extracted or replaced with the volume method.

wloopstart A vector of length 2 of class "raw". The raw data represent a single unsigned number
representing the starting position of a loop in the sample. It should have a value of 0 when
there is no loop. Its value could range from 0 up to 0xffff. To get the actual position in bytes
the value needs to be multiplied with 2 and can therefore only be can only be even. The sum
of the loop start position and the loop length should not exceed the sampleLength. Its value
can be extracted or replaced with the loopStart method.

wlooplen A vector of length 2 of class "raw". The raw data represent a single unsigned number
representing the length of a loop in the sample. To get the actual length in bytes, this value
needs to be multiplied by 2 and can therefore only be even. It should have a value of 2 when
there is no loop. Its value could range from 2 up to 2*0xffff (= 131070) and can only be
even (it can be 0 when the sample is empty). The sum of the loop start position and the loop
length should not exceed the sampleLength. Its value can be extracted or replaced with the
loopLength method.

left Object of class "numeric" representing the waveform of the left channel. Should be integer
values ranging from 0 up to 255. It can be extracted or replaced with the waveform method.

right Object of class "numeric" representing the right channel. This slot is inherited from the
Wave class and should be numeric(0) for all PTSamples, as they are all mono.

stereo Object of class "logical" whether this is a stereo representation. This slot is inherited
from the Wave class. As PTSamples are always mono, this slot should have the value FALSE.

samp.rate Object of class "numeric" representing the sampling rate.

bit Object of class "numeric" representing the bit-wise quality. This slot is inherited from the
Wave class. As PTSamples are always of 8 bit quality, the value of this slot should always be
8.

pcm Object of class "logical" indicating whether wave format is PCM. This slot is inherited from
the Wave class, for PTSamples its value should always be TRUE.

Author(s)

Pepijn de Vries

See Also

Other sample.operations: PTSample-method, fineTune(), loopLength(), loopSample(), loopStart(),
loopState(), name, playSample(), read.sample(), sampleLength(), volume(), waveform(),
write.sample()

78 PTSample-method

PTSample-method Coerce to or replace PTSample

Description

This method will coerce a set of objects to a PTSample object. It can also be used to select specific
samples from PTModule objects and replace the selected PTSample.

Usage

S4 method for signature 'Wave,missing'
PTSample(x)

S4 method for signature 'raw,missing'
PTSample(x)

S4 method for signature 'PTModule,numeric'
PTSample(x, index)

S4 replacement method for signature 'PTModule,numeric,PTSample'
PTSample(x, index) <- value

Arguments

x Object (any of class Wave, a vector of raw data, or of class PTModule) that
needs to be coerced to a PTSample object. In the latter case, the object can also
be replaced.

index A positive integer index of the sample in PTModule x that needs to be returned
or replaced.

value An object of PTSample with which the PTSample object at the specified index
in object x needs to be replaced.

Details

Method to coerce x to class PTSample.

When x is a Wave object, this method will not resample it. However, the sample rate will be adjusted
and samples exeeding the maximum length of 2*0xffff = 131070 will be clipped to this maximum
length. When x is a stereo sample, it will be converted to mono, by averaging the left and right
channel.

When x is a vector of raw data, it will be truncated if the maximum length of 2*0xffff = 131070
is exceeded. The raw will be converted with rawToSignedInt in order to represent an 8 bit mono
waveform.

As samples must have an even length (as per ProTracker specifications), a 0x00 value is appended
if the length is odd.

When x is of class PTModule, the PTSample at the specified index is returned, or will be replaced.

PTTrack-class 79

Value

When PTSample is used, a PTSample object based on x is returned.

When PTSample<- is used, object x is returned in which the selected PTSample is replaced with
value.

Author(s)

Pepijn de Vries

See Also

Other sample.operations: PTSample-class, fineTune(), loopLength(), loopSample(), loopStart(),
loopState(), name, playSample(), read.sample(), sampleLength(), volume(), waveform(),
write.sample()

Examples

Create a raw data sine wave:
raw_sine <- signedIntToRaw(round(sin(2*pi*(0:275)/276)*127))

data("mod.intro")

Replace sample number 1 from mod.intro
with the sine wave:
PTSample(mod.intro, 1) <-

PTSample(raw_sine)

Note that the replacement above
could also (maybe more efficiently)
be done with the 'waveform' method

Restore the loop in sample number 1:
loopLength(PTSample(mod.intro, 1)) <- 276

PTTrack-class The PTTrack class

Description

The four audio channels of the Commodore Amiga are represented as tracks (the PTTrack class) in
a PTPattern.

80 PTTrack-class

Details

The Commodore Amiga original chipset supported four audio channels. Meaning that audio could
be played simultaneously and independently on each of these channels. Two channels (2 and 3)
were hardware-mixed fully to the right stereo outputs and the other two (1 and 4) fully to the left
stereo outputs.

This class represents such a single channel, reffered to as a track. A PTPattern is composed of four
such channels. As a ProTracker pattern consists of 64 rows, a PTTrack object is also (implicitly)
composed of 64 PTCell objects.

Use the PTTrack-method to construct or coerce objects to a PTTrack-class object, or to replace
such an object.

Slots

data A matrix (64 rows, 4 columns) of class "raw". Each row implicetely represents a PTCell
object, where the raw data is formatted as specified at the PTCell-class documentation. Use
the PTCell-method to make an element of a PTTrack object explictly of class PTCell. Row
numbers correspond with the row numbers of PTPattern objects.

Author(s)

Pepijn de Vries

Examples

data("mod.intro")

Get track number 2 from pattern
number 1 of mod.intro:
chan1 <- PTTrack(mod.intro, 2, 1)

Create a blank track:
chan2 <- new("PTTrack")

Get two more tracks:
chan3 <- PTTrack(mod.intro, 1, 2)
chan4 <- PTTrack(mod.intro, 4, 3)

combine the four tracks in a
new PTPattern:
patt <- PTPattern(cbind(

as.character(chan1),
as.character(chan2),
as.character(chan3),
as.character(chan4)

))

PTTrack-method 81

PTTrack-method Coerce to or replace PTTrack

Description

This method will coerce a set of objects to a PTTrack object. It can also be used to select specific
tracks from PTModule and PTPattern objects and replace the selected PTTrack.

Usage

S4 method for signature 'raw,missing,missing'
PTTrack(x)

S4 method for signature 'matrix,missing,missing'
PTTrack(x)

S4 method for signature 'character,missing,missing'
PTTrack(x)

S4 method for signature 'PTModule,numeric,numeric'
PTTrack(x, track, pattern)

S4 replacement method for signature 'PTModule,numeric,numeric,PTTrack'
PTTrack(x, track, pattern) <- value

S4 method for signature 'PTPattern,numeric,missing'
PTTrack(x, track)

S4 replacement method for signature 'PTPattern,numeric,missing,PTTrack'
PTTrack(x, track) <- value

Arguments

x Object (any of raw data, a 64 by 4 matrix of raw data, a vector of character
strings, a PTPattern or a PTModule) to coerce to a PTTrack. See details below
for the required format of x

track When x is a PTPattern, or a PTModule, provide an index [1,4] of the track that
needs to be coerced to a PTTrack.

pattern When x is a PTModule, provide an index of the pattern that needs to be coerced
to a PTTrack. Note that ProTracker uses indices for patterns that start at zero,
whereas R uses indices that start at one. Hence add one to an index obtained
from a PTModule object (e.g., x$pattern.order)

value An object of PTTrack with which the PTTrack object at the specified indices in
object x needs to be replaced.

82 rawToCharNull

Details

Method to coerce x to class PTTrack.

When x is a 64 by 4 matrix of raw data, each row implicitly represents a PTCell object and should
be formatted accordingly. See PTCell-class documentation for more details.

When x is a 64 element vector of character representation of PTCell objects, the character
representation must be conform the specifications as documented at the PTCell-class.

When x is of class PTPattern, or PTModule, the PTTrack at the specified indices (track and
pattern) is returned, or can be replaced.

Value

When PTTrack is used, a PTTrack object based on x is returned.

When PTTrack<- is used, object x is returned in which the selected PTTrack is replaced with value.

Author(s)

Pepijn de Vries

See Also

Other track.operations: as.character()

Examples

This will create an 'empty' PTTrack with all nul
values, which is equivalent to new("PTTrack"):
PTTrack(as.raw(0x00))

This will generate a PTTrack from a repeated
character representation of a PTCell:
chan <- PTTrack(rep("C-3 01 C20", 64))

data("mod.intro")

This will replace the PTTrack at pattern
number 1, track number 2 of mod.intro with chan:
PTTrack(mod.intro, 2, 1) <- chan

rawToCharNull Convert raw vectors into a character string

Description

A function that converts raw data into a character string.

rawToCharNull 83

Usage

rawToCharNull(raw_dat)

Arguments

raw_dat A vector of class raw to be converted into a character.

Details

The function rawToChar will fail on vectors of raw data with embedded 0x00 data. This function
will not fail on embedded 0x00 values. Instead, it will replace embedded 0x00 data with white
spaces. Note that leading and trailing 0x00 data will be omitted from the result.

Value

A character string based on the raw data

Author(s)

Pepijn de Vries

See Also

Other raw.operations: as.raw(), nybbleToSignedInt(), nybble(), rawToPTModule(), rawToSignedInt(),
rawToUnsignedInt(), signedIntToNybble(), signedIntToRaw(), unsignedIntToRaw()

Other character.operations: as.character(), name, periodToChar(), sampleRate

Examples

generate some raw data with an embedded 0x00:
some.raw.data <- as.raw(c(0x68, 0x65, 0x6c, 0x6c, 0x6f, 0x00,

0x77, 0x6f, 0x72, 0x6c, 0x64, 0x21))
Not run:
this will fail:
try(rawToChar(some.raw.data))

End(Not run)

this will succeed:
rawToCharNull(some.raw.data)

84 rawToPTModule

rawToPTModule Convert a vector of raw data into a PTModule object

Description

This method treats a vector of raw data as if it where a file, and converts it into a PTModule-class
object.

Usage

S4 method for signature 'raw'
rawToPTModule(x, ignore.validity = F)

Arguments

x A vector of raw data, conform ProTracker file specs.

ignore.validity

A logical value. When set as TRUE this method will attempt to decode the raw
data (x), even when it is invalid. When set to FALSE (default) validity is checked
and an error is thrown when invalidity occurs.

Details

Data is read from a vector of raw data as if it where a file and converted into a PTModule-class
object. This method can be useful for module files stored on virtual Amiga Disk Files (adf), which
can be read as raw data, using the AmigaFFH package.

Use as.raw to achieve the inverse.

Value

returns a PTModule-class object.

Author(s)

Pepijn de Vries

See Also

Other module.operations: PTModule-class, appendPattern(), clearSamples(), clearSong(),
deletePattern(), fix.PTModule(), modToWave(), moduleSize(), patternLength(), patternOrderLength(),
patternOrder(), playMod(), playingtable(), read.module(), trackerFlag(), write.module()

Other raw.operations: as.raw(), nybbleToSignedInt(), nybble(), rawToCharNull(), rawToSignedInt(),
rawToUnsignedInt(), signedIntToNybble(), signedIntToRaw(), unsignedIntToRaw()

rawToSignedInt 85

Examples

Not run:
convert the example mod into raw data
data("mod.intro")
mod.raw <- as.raw(mod.intro)

restore it as a PTModule-class object
mod.restored <- rawToPTModule(mod.raw)

In this case the result is identical to the original:
identical(mod.restored, mod.intro)

End(Not run)

rawToSignedInt Convert a raw vector into signed integers (short)

Description

This function converts a vector of raw data into signed integer values.

Usage

rawToSignedInt(raw_dat)

Arguments

raw_dat A vector of raw data.

Details

This function converts a vector of raw data into signed integer values [-128,127]. To convert un-
signed integers into raw data use as.raw(x). For the inverse of this function see signedIntToRaw(int_dat).

Value

A vector of the same length as raw_dat, holding signed integer values.

Author(s)

Pepijn de Vries

See Also

Other raw.operations: as.raw(), nybbleToSignedInt(), nybble(), rawToCharNull(), rawToPTModule(),
rawToUnsignedInt(), signedIntToNybble(), signedIntToRaw(), unsignedIntToRaw()

Other integer.operations: nybbleToSignedInt(), nybble(), rawToUnsignedInt(), signedIntToNybble(),
signedIntToRaw(), unsignedIntToRaw(), waveform()

86 rawToUnsignedInt

Examples

generate some raw data:
some.raw.data <- as.raw(c(0x68, 0x65, 0x6c, 0x6c, 0x6f, 0x90))

convert the raw data into a vector of signed intgers:
rawToSignedInt(some.raw.data)

rawToUnsignedInt Convert raw vector into a single unsigned integer value

Description

This function converts raw data into an unsigned integer

Usage

rawToUnsignedInt(raw_dat)

Arguments

raw_dat A vector of class raw to be converted into an unsigned integer

Details

This function converts a vector of raw data into a single unsigned integer. for conversion of raw data
into a vector of unsigned integers [0,255] use ‘as.integer(x)’. For an inverse of this function see
unsignedIntToRaw.

Value

A single unsigned integer value based on the provided raw data

Author(s)

Pepijn de Vries

See Also

Other raw.operations: as.raw(), nybbleToSignedInt(), nybble(), rawToCharNull(), rawToPTModule(),
rawToSignedInt(), signedIntToNybble(), signedIntToRaw(), unsignedIntToRaw()

Other integer.operations: nybbleToSignedInt(), nybble(), rawToSignedInt(), signedIntToNybble(),
signedIntToRaw(), unsignedIntToRaw(), waveform()

read.module 87

Examples

generate some raw data:
some.raw.data <- as.raw(c(0x01, 0x1e, 0x3f))

convert raw data into an unsigned integer:
rawToUnsignedInt(some.raw.data)

note the difference with
as.integer(some.raw.data)

read.module Read a ProTracker module file

Description

Reads a ProTracker module file and coerces it to a PTModule object.

Usage

S4 method for signature 'character,logical'
read.module(file, ignore.validity = F)

S4 method for signature 'ANY,missing'
read.module(file, ignore.validity = F)

S4 method for signature 'ANY,missing'
read.module(file, ignore.validity = F)

S4 method for signature 'ANY,logical'
read.module(file, ignore.validity = F)

Arguments

file either a filename or a file connection, that allows reading binary data (see e.g.,
file or url).

ignore.validity

A logical value indicating whether the validity of the PTModule should be
ignored. When set to FALSE (default), the validity of the read object is checked;
an error is thrown when the object is not valid. When this argument is set to
TRUE, the validity of the object will not be checked and a potentially invalid
object is returned. As the validity check of PTModule objects is very strict, it can
be useful to ignore this check. This way you can try to read a broken module file,
try to fix it such that it becomes valid and save (with write.module) it again.

88 read.module

Details

The routine to read ProTracker modules is based on the referenced version of ProTracker 2.3A.
This means that the routine may not be able to read files produced with later ProTracker versions,
or earlier versions with back-compatibility issues. So far I’ve successfully tested this method on all
modules I’ve composed with ProTracker version 2.3A (which I believe was one of the more popular
versions of ProTracker back in the days).

It should also be able to read most of the .mod files in The Mod Archive.

Value

Returns a PTModule object read from the provided ProTracker file

Author(s)

Pepijn de Vries

References

http://wiki.multimedia.cx/index.php?title=Protracker_Module

http://coppershade.org/articles/More!/Topics/Protracker_File_Format/

See Also

Other io.operations: read.sample(), write.module(), write.sample()

Other module.operations: PTModule-class, appendPattern(), clearSamples(), clearSong(),
deletePattern(), fix.PTModule(), modToWave(), moduleSize(), patternLength(), patternOrderLength(),
patternOrder(), playMod(), playingtable(), rawToPTModule(), trackerFlag(), write.module()

Examples

Not run:

first create an module file from example data:
data("mod.intro")
write.module(mod.intro, "intro.mod")

read the module:
mod <- read.module("intro.mod")

or create a connection yourself:
con <- file("intro.mod", "rb")

note that you can also read from URL connections!
mod2 <- read.module(con)

don't forget to close the file:
close(con)

End(Not run)

http://modarchive.org/
http://wiki.multimedia.cx/index.php?title=Protracker_Module
http://coppershade.org/articles/More!/Topics/Protracker_File_Format/

read.sample 89

read.sample Read an audio file and coerce to a PTSample object

Description

Reads audio files from "wav" and "mp3" files, using tuneR methods. Commodore Amiga native
formats "8svx" and "raw" can also be read.

Usage

S4 method for signature 'character'
read.sample(filename, what = c("wav", "mp3", "8svx", "raw"))

Arguments

filename A character string representing the filename to be read.

what A character string indicating what type of file is to be read. Can be one of
the following: "wav" (default), "mp3", "8svx" or "raw". The AmigaFFH package
needs to be installed in order to read 8svx files.

Details

This method provides a wrapper for the readWave and readMP3 methods from tuneR. It also pro-
vides the means to import audio from file formats native to the Commodore Amiga. Simple 8svx
files (also known as "iff" files) can be read. This uses the read.iff method from the AmigaFFH
package. It was also common practice to store audio samples as raw data on the Commodore
Amiga, where each byte simply represented a signed integer value of the waveform.

All audio will be coerced to 8 bit mono with a maximum length of 2*0xffff = 131070 bytes (=
samples) as per ProTracker standards.

Value

Returns a PTSample object based on the file read.

Note

As per ProTracker standards, a sample should have an even length (in bytes). If a sample file has an
odd length, a raw 0x00 value is added to the end.

Author(s)

Pepijn de Vries

https://en.wikipedia.org/wiki/8SVX

90 resample

See Also

Other sample.operations: PTSample-class, PTSample-method, fineTune(), loopLength(), loopSample(),
loopStart(), loopState(), name, playSample(), sampleLength(), volume(), waveform(),
write.sample()

Other io.operations: read.module(), write.module(), write.sample()

Examples

Not run:
data("mod.intro")

create an audio file which we can then read:
write.sample(PTSample(mod.intro, 2), "snaredrum.iff", "8svx")

read the created sample:
snare <- read.sample("snaredrum.iff", "8svx")
print(snare)

End(Not run)

resample Resample data

Description

Resample numeric data to a different rate.

Usage

resample(x, source.rate, target.rate, ...)

Arguments

x A numeric vector that needs to be resampled.

source.rate The rate at which x was sampled in Hz (or another unit, as long as it is in the
same unit as target.rate).

target.rate The desired target sampling rate in Hz (or another unit, as long as it is in the
same unit as source.rate).

... Arguments passed on to approx. To simulate the Commodore Amiga hardware,
it’s best to use ’method = "constant" for resampling 8 bit samples.

Details

This function resamples numeric data (i.e., audio data) from a source sample rate to a target sample
rate. At the core it uses the approx function.

sampleLength 91

Value

Returns a resampled numeric vector of length round(length(x) * target.rate / source.rate)
based on x.

Author(s)

Pepijn de Vries

Examples

some.data <- 1:100

assume that the current (sample) rate
of 'some.data' is 100, and we want to
resample this data to a rate of 200:
resamp.data <- resample(some.data, 100, 200, method = "constant")

sampleLength Get the length of a PTSample

Description

Gets the length (in samples = bytes) of an audio fragment stored as a PTSample.

Usage

S4 method for signature 'PTSample'
sampleLength(sample)

Arguments

sample A PTSample object for which the length needs to be returned.

Details

PTSamples are 8 bit mono audio fragments. This method returns the length of this fragment ex-
pressed as number of samples (which also equals the number of bytes).

Value

Returns a numeric value representing the number of samples (bytes) the PTSample object sample
is composed of.

Author(s)

Pepijn de Vries

92 sampleNumber

See Also

Other sample.operations: PTSample-class, PTSample-method, fineTune(), loopLength(), loopSample(),
loopStart(), loopState(), name, playSample(), read.sample(), volume(), waveform(), write.sample()

Examples

data("mod.intro")

Show the length of the second sample in mod.intro
sampleLength(PTSample(mod.intro, 2))

sampleNumber Extract or replace a sample number

Description

Extract or replace a PTSample index number from a PTCell object.

Usage

S4 method for signature 'PTCell'
sampleNumber(x)

S4 replacement method for signature 'PTCell,numeric'
sampleNumber(x) <- value

Arguments

x A PTCell object from which the PTSample index number needs to be be ex-
tracted or replaced.

value A numeric replacement value for the index. Valid indices range from 1 up to
31. A value of 0 can also be assigned, but will not play any sample.

Details

The PTSample index number in a PTCell object, indicates which sample from a PTModule object
needs to be played. This method can be used to extract or replace this index from a PTCell object.

Value

For sampleNumber, a numeric value representing the sample index number of object x is returned.

For sampleNumber<-, an copy of object x is returned in which the sample index number is replaced
with value.

Author(s)

Pepijn de Vries

sampleRate 93

See Also

Other cell.operations: PTCell-class, PTCell-method, effect(), note()

Examples

data("mod.intro")

get the sample index number of PTCell at pattern #3,
track #2, row #1 from mod.intro (which is 2):

sampleNumber(PTCell(mod.intro, 1, 2, 3))

replace the sample index number of PTCell at pattern #3,
track #2, row #1 from mod.intro with 1:

sampleNumber(PTCell(mod.intro, 1, 2, 3)) <- 1

sampleRate Calculate the sample rate for a note or period value

Description

Calculate the sample rate for a note or a ProTracker period value.

Usage

noteToSampleRate(note = "C-3", finetune = 0, video = c("PAL", "NTSC"))

periodToSampleRate(period, video = c("PAL", "NTSC"))

Arguments

note A character string representing a note for which the sample rate is to be cal-
culated.

finetune An integer value ranging from -8 up to 7. A value used to tune an audio
sample.

video The video mode used to calculate the sample rate. A character string that can
have either the value ‘PAL’ or ‘NTSC’. PAL is used by default.

period A ProTracker integer value of a period value for which the sample rate is to be
calculated.

Details

The timing on a Commodore Amiga depends on the video mode, which could be either ‘PAL’ or
‘NTSC’. Therefore sample rates also depend on these modes. As the PAL is mostly used in Europe,
and the Amiga was most popular in Europe, PAL is used by default.

https://en.wikipedia.org/wiki/PAL
https://en.wikipedia.org/wiki/NTSC
https://en.wikipedia.org/wiki/PAL
https://en.wikipedia.org/wiki/NTSC

94 signedIntToNybble

Value

Returns the sample rate in samples per seconds.

Author(s)

Pepijn de Vries

See Also

Other character.operations: as.character(), name, periodToChar(), rawToCharNull()

Other period.operations: noteToPeriod(), note(), octave(), periodToChar(), period_table

Other sample.rate.operations: playSample()

Other note.and.octave.operations: noteToPeriod(), noteUp(), note(), octave(), periodToChar()

Examples

calculate the sample rate for a ProTracker period value of 200
periodToSampleRate(200)

calculate the sample rate for a sample at note 'A-3'
noteToSampleRate("A-3")

note that the NTSC video system gives a slightly different rate:
noteToSampleRate("A-3", video = "NTSC")

fine tuning a sample will also give a slightly different rate:
noteToSampleRate("A-3", finetune = -1)

signedIntToNybble Convert a signed integer to a nybble in raw data.

Description

This function converts a signed integer ranging from -8 up to 7 into either the high or low nybble of
a byte, represented by raw data.

Usage

signedIntToNybble(int_dat, which = c("low", "high"))

Arguments

int_dat A singleintger value or a vector of integer data ranging from -8 up to 7.

which A character string indicating whether the nybble should be set to the "low" (de-
fault) or "high" position of the raw data that is returned.

signedIntToRaw 95

Details

Nybbles are 4 bit values, where each byte (8 bits) holds two nybbles. A high nybble (left-hand side
of a byte) and a low nybble (right-hand side of a byte). This function converts a signed integer
value ranging from -8 up to 7 to a nybble and sets it as either a high or a low nybble in raw data.

Value

Returns raw data of the same length as int_dat. The returned raw data holds either low or high
nybbles (as specified by which) based on the provided signed integers.

Author(s)

Pepijn de Vries

See Also

Other nybble.functions: nybbleToSignedInt(), nybble()

Other raw.operations: as.raw(), nybbleToSignedInt(), nybble(), rawToCharNull(), rawToPTModule(),
rawToSignedInt(), rawToUnsignedInt(), signedIntToRaw(), unsignedIntToRaw()

Other integer.operations: nybbleToSignedInt(), nybble(), rawToSignedInt(), rawToUnsignedInt(),
signedIntToRaw(), unsignedIntToRaw(), waveform()

Examples

generate some integers in the right range:

dati <- sample(-8:7, 100, replace = TRUE)

Set the low nybbles of rawl based on dati:

rawl <- signedIntToNybble(dati)

Set the high nybbles of rawl based on dati:

rawh <- signedIntToNybble(dati, "high")

signedIntToRaw Convert signed integers (short) into a raw vector

Description

This function converts signed integer values into a vector of raw data.

Usage

signedIntToRaw(int_dat)

96 trackerFlag

Arguments

int_dat A vector of integer values, ranging from -128 up to 127.

Details

This function converts signed integer values [-128,127] into a vector of raw data. The function will
fail on values that are out of range (< -128 or > 127). To convert raw data into a vector of unsigned
integers use as.integer(x). For the inverse of this function see rawToSignedInt(raw_dat).

Value

A vector of the same length as int_dat, holding raw data.

Author(s)

Pepijn de Vries

See Also

Other raw.operations: as.raw(), nybbleToSignedInt(), nybble(), rawToCharNull(), rawToPTModule(),
rawToSignedInt(), rawToUnsignedInt(), signedIntToNybble(), unsignedIntToRaw()

Other integer.operations: nybbleToSignedInt(), nybble(), rawToSignedInt(), rawToUnsignedInt(),
signedIntToNybble(), unsignedIntToRaw(), waveform()

Examples

generate some signed integers:
some.integers <- c(-100, 40, 0, 30, -123)

convert the signed integers into a vector of raw data:
signedIntToRaw(some.integers)

trackerFlag Tracker flag indicating version compatibility

Description

Method to obtain a tracker flag, which indicates the version compatibility of a ProTracker module
(PTModule object).

Usage

S4 method for signature 'PTModule'
trackerFlag(x)

S4 replacement method for signature 'PTModule'
trackerFlag(x) <- value

trackerFlag 97

Arguments

x A PTModule object for which the flag needs to returned or replaced.

value A character string representing the tracker flag with which that of object x
needs to be replaced with. Should either be "M.K." or "M!K!". Note that if a
current flag "M!K!" is replaced by "M.K.", PTPatterns may get lost as the latter
supports less patterns.

Details

ProTrackR supports two tracker flags: "M.K." and "M!K!". M.K. are presumably the initials of
programmers Mahony and Kaktus, unfortunately documentation on this matter is ambiguous. In
any case, modules with the flag "M.K." can hold up to 64 patterns, whereas modules with the flag
"M!K!" can hold up to 100 patterns. Use this method to obtain or replace the tracker flag of a
PTModule.

Value

For trackerFlag, the tracker flag of object x is returned.

For trackerFlag<-, a copy of object x with an updated tracker flag is returned.

Author(s)

Pepijn de Vries

See Also

Other module.operations: PTModule-class, appendPattern(), clearSamples(), clearSong(),
deletePattern(), fix.PTModule(), modToWave(), moduleSize(), patternLength(), patternOrderLength(),
patternOrder(), playMod(), playingtable(), rawToPTModule(), read.module(), write.module()

Examples

data("mod.intro")

the current trackerFlag of mod.intro is "M.K.",
meaning that it can hold a maximum of 64 patterns:
trackerFlag(mod.intro)

patternOrder(mod.intro, full = TRUE) <- 0:63

If we upgrade the trackerFlag of mod.intro to "M!K!"
it can hold a maximum of 100 patterns!:
trackerFlag(mod.intro) <- "M!K!"

patternOrder(mod.intro, full = TRUE) <- 0:99

Now let's do something dangerous:
current flag is "M!K!", by setting it
back to "M.K.", patterns 65:100 are lost...
trackerFlag(mod.intro) <- "M.K."

98 unsignedIntToRaw

unsignedIntToRaw Convert unsigned integer into a raw vector

Description

This function converts an unsigned integer into a vector of raw data.

Usage

unsignedIntToRaw(int_dat, length.out = 1)

Arguments

int_dat A single integer value. If a list or vector of values. is provided, only the first
element is evaluated. Input data are converted to absolute integer values.

length.out Required length of the vector that will hold the resulting. raw data. Defaults to 1.
If the value of int_dat is to large to convert into raw data of length length.out,
data will be clipped.

Details

This function converts an unsigned integer value into a vector (with a specified length, namely
length.out) of raw data. For the inverse of this function use rawToUnsignedInt(raw_dat)

Value

A vector of length length.out, holding raw data.

Author(s)

Pepijn de Vries

See Also

Other raw.operations: as.raw(), nybbleToSignedInt(), nybble(), rawToCharNull(), rawToPTModule(),
rawToSignedInt(), rawToUnsignedInt(), signedIntToNybble(), signedIntToRaw()

Other integer.operations: nybbleToSignedInt(), nybble(), rawToSignedInt(), rawToUnsignedInt(),
signedIntToNybble(), signedIntToRaw(), waveform()

volume 99

Examples

generate some unsigned integer:
some.integer <- 43251

convert the unsigned integer into raw data:
unsignedIntToRaw(some.integer, length.out = 4)

Not run:
note that the integer is too large to store as raw with length.out = 1:
unsignedIntToRaw(some.raw.data, length.out = 1)

End(Not run)

volume Default playback volume of PTSample

Description

Extract or replace the default volume of a PTSample.

Usage

S4 method for signature 'PTSample'
volume(sample)

S4 replacement method for signature 'PTSample,numeric'
volume(sample) <- value

Arguments

sample A PTSample for which the default volume needs to be extracted or replace.

value A numeric value ranging from 0 up to 64, representing the volume level.

Details

PTSamples have a default playback volume, ranging from 0 (silent) up to 64 (maximum volume).
This method can be used to extract this value, or to safely replace it.

Value

For volume the volume value, represented by an integer value ranging from 0 up to 64, is returned.

For volume<- A PTSample sample, updated with the volume value, is returned.

Author(s)

Pepijn de Vries

100 waveform

See Also

Other sample.operations: PTSample-class, PTSample-method, fineTune(), loopLength(), loopSample(),
loopStart(), loopState(), name, playSample(), read.sample(), sampleLength(), waveform(),
write.sample()

Examples

data("mod.intro")

get the volume of the first sample of mod.intro:

volume(PTSample(mod.intro, 1))

Let's lower the volume of this sample to 32
(or as a hexadecimal: 0x20):

volume(PTSample(mod.intro, 1)) <- 0x20

waveform Extract or replace a PTSample waveform

Description

Extract or replace the waveform of a PTSample object. The waveform is represented by a vector
of numeric values ranging from 0 up to 255.

Usage

S4 method for signature 'PTSample'
waveform(sample, start.pos = 1, stop.pos = sampleLength(sample), loop = TRUE)

S4 replacement method for signature 'PTSample'
waveform(sample) <- value

Arguments

sample A PTSample object from which the waveform needs to be extracted or replaced.
start.pos A numeric starting index, giving the starting position for the waveform to be

returned. Default value is 1. This index should be greater than zero.
stop.pos A numeric stopping index, giving the stopping position for the waveform to be

returned. Default value is sampleLength(sample) This index should be greater
than start.pos.

loop A logical value indicating whether the waveform should be modulated be-
tween the specified loop positions (see loopStart and loopLength), or the
waveform should stop at the end of the sample (padded with NA values beyond
the sample length). Will do the first when set to TRUE and the latter when set to
FALSE.

waveform 101

value A vector of numeric values ranging from 0 up to 255, representing the wave-
form that should be used to replace that of object sample. The length should be
even and not exceed 2*0xffff = 131070. loopStart and loopLength will be
adjusted automatically when they are out of range for the new waveform.
Use NA to generate an empty/blank PTSample object.

Details

Sample waveforms are stored as 8 bit signed short integer values ranging from -128 up to +127 in
original ProTracker files. However, as the PTSample class extends the Wave class, the waveforms
are represented by integer values ranging from 0 up to 255 in the ProTrackR package. As per
ProTracker specifications, samples are of 8 bit mono quality and can only have an even length with
a maximum of 2*0xffff = 131070. This method can be used to extract a waveform or replace it.

Value

For waveform, the waveform of sample is returned as a vector of numeric values ranging from 0
up to 255. If ’loop’ is set to FALSE and the starting position is beyond the sample length, NA values
are returned. If ’loop’ is set to TRUE and the starting position is beyond the sample loop (if present,
see loopState), the waveform is modulated between the loop positions.

For waveform<-, a copy of object sample is returned in which the waveform has been replaced with
value.

Author(s)

Pepijn de Vries

See Also

Other integer.operations: nybbleToSignedInt(), nybble(), rawToSignedInt(), rawToUnsignedInt(),
signedIntToNybble(), signedIntToRaw(), unsignedIntToRaw()

Other sample.operations: PTSample-class, PTSample-method, fineTune(), loopLength(), loopSample(),
loopStart(), loopState(), name, playSample(), read.sample(), sampleLength(), volume(),
write.sample()

Examples

data("mod.intro")

Loop sample #1 of mod.intro beyond it's
length of 1040 samples:
wav1 <- waveform(PTSample(mod.intro, 1),

1, 5000)

get the waveform from sample #2
of mod.intro:
wav2 <- waveform(PTSample(mod.intro, 2))

create an echo effect using
the extracted waveform:

102 write.module

wav2 <- c(wav2, rep(128, 1000)) +
c(rep(128, 1000), wav2)*0.25 - 25

assign this echoed sample to
sample #2 in mod.intro:
waveform(PTSample(mod.intro, 2)) <- wav2

Blank out sample #1 in mod.intro:
waveform(PTSample(mod.intro, 1)) <- NA

write.module Export an PTModule object as a ProTracker module file

Description

Export an PTModule object as a ProTracker module file, conform ProTracker 2.3A specifications.

Usage

S4 method for signature 'PTModule,ANY'
write.module(mod, file)

S4 method for signature 'PTModule,character'
write.module(mod, file)

Arguments

mod A valid PTModule object to be saved as a ProTracker *.mod file

file either a filename to write to, or a file connection, that allows to write binary data
(see file).

Details

The routine to write ProTracker modules is based on the referenced version of ProTracker 2.3A.
This means that the routine may not be able to write files that ar compatible with later or earlier
ProTracker versions.

Value

Writes to a module file but returns nothing.

Author(s)

Pepijn de Vries

write.sample 103

References

http://wiki.multimedia.cx/index.php?title=Protracker_Module

http://coppershade.org/articles/More!/Topics/Protracker_File_Format/

See Also

Other io.operations: read.module(), read.sample(), write.sample()

Other module.operations: PTModule-class, appendPattern(), clearSamples(), clearSong(),
deletePattern(), fix.PTModule(), modToWave(), moduleSize(), patternLength(), patternOrderLength(),
patternOrder(), playMod(), playingtable(), rawToPTModule(), read.module(), trackerFlag()

Examples

Not run:
get the PTModule object provided with the ProTrackR package
data("mod.intro")

save the object as a valid ProTracker module file:
write.module(mod.intro, "intro.mod")

or create the connection yourself:
con <- file("intro2.mod", "wb")
write.module(mod.intro, con)

don't forget to close the connection after you're done:
close(con)

End(Not run)

write.sample Write a PTSample object to an audio file

Description

Write a PTSample as a "wav", "8svx" or "raw" audio file.

Usage

S4 method for signature 'PTSample,character'
write.sample(sample, filename, what = c("wav", "8svx", "raw"))

Arguments

sample A PTSample object that needs to be exported to an audio file.
filename A character string representing the filename to which the audio needs to be

saved.
what A character string indicating what type of file is to be exported. Can be one of

the following: "wav" (default), "8svx" or "raw". The AmigaFFH package needs
to be installed in order to write 8svx files.

http://wiki.multimedia.cx/index.php?title=Protracker_Module
http://coppershade.org/articles/More!/Topics/Protracker_File_Format/

104 write.sample

Details

This method provides a wrapper for the writeWave method from tuneR. It also provides the means
to export audio to file formats native to the Commodore Amiga. PTSamples can be exported as
simple (uncompressed) 8svx files also known as "iff" files). In addition they can be exported as raw
data, where each byte simply represents a signed integer value of the waveform.

Value

Saves the audio to a file, but returns nothing.

Author(s)

Pepijn de Vries

See Also

Other sample.operations: PTSample-class, PTSample-method, fineTune(), loopLength(), loopSample(),
loopStart(), loopState(), name, playSample(), read.sample(), sampleLength(), volume(),
waveform()

Other io.operations: read.module(), read.sample(), write.module()

Examples

Not run:
data("mod.intro")

Export the second sample of mod.intro as a wav file:
write.sample(PTSample(mod.intro, 2), "snaredrum.wav", "wav")

Export the second sample of mod.intro as an 8svx file:
write.sample(PTSample(mod.intro, 2), "snaredrum.iff", "8svx")

Export the second sample of mod.intro as a raw file:
write.sample(PTSample(mod.intro, 2), "snaredrum.raw", "raw")

End(Not run)

https://en.wikipedia.org/wiki/8SVX

Index

∗ MODPlug.operations
MODPlugToPTPattern, 28
PTPatternToMODPlug, 75

∗ block.operations
pasteBlock, 45
PTBlock, 65

∗ cell.operations
effect, 11
note, 36
PTCell-class, 66
PTCell-method, 67
sampleNumber, 92

∗ character.operations
as.character, 4
name, 34
periodToChar, 51
rawToCharNull, 82
sampleRate, 93

∗ integer.operations
nybble, 41
nybbleToSignedInt, 42
rawToSignedInt, 85
rawToUnsignedInt, 86
signedIntToNybble, 94
signedIntToRaw, 95
unsignedIntToRaw, 98
waveform, 100

∗ io.operations
read.module, 87
read.sample, 89
write.module, 102
write.sample, 103

∗ loop.methods
loopLength, 15
loopSample, 17
loopStart, 18
loopState, 19

∗ module.operations
appendPattern, 3

clearSamples, 8
clearSong, 9
deletePattern, 10
fix.PTModule, 13
modToWave, 31
moduleSize, 33
patternLength, 46
patternOrder, 47
patternOrderLength, 49
playingtable, 53
playMod, 55
PTModule-class, 70
rawToPTModule, 84
read.module, 87
trackerFlag, 96
write.module, 102

∗ note.and.octave.operations
note, 36
noteToPeriod, 37
noteUp, 38
octave, 43
periodToChar, 51
sampleRate, 93

∗ nybble.functions
nybble, 41
nybbleToSignedInt, 42
signedIntToNybble, 94

∗ pattern.operations
appendPattern, 3
deletePattern, 10
MODPlugToPTPattern, 28
pasteBlock, 45
patternLength, 46
patternOrder, 47
patternOrderLength, 49
PTPattern-class, 72
PTPattern-method, 73
PTPatternToMODPlug, 75

∗ period.operations

105

106 INDEX

note, 36
noteToPeriod, 37
octave, 43
period_table, 52
periodToChar, 51
sampleRate, 93

∗ play.audio.routines
playMod, 55
playSample, 56
playWave, 58

∗ raw.operations
as.raw, 6
nybble, 41
nybbleToSignedInt, 42
rawToCharNull, 82
rawToPTModule, 84
rawToSignedInt, 85
rawToUnsignedInt, 86
signedIntToNybble, 94
signedIntToRaw, 95
unsignedIntToRaw, 98

∗ sample.operations
fineTune, 12
loopLength, 15
loopSample, 17
loopStart, 18
loopState, 19
name, 34
playSample, 56
PTSample-class, 76
PTSample-method, 78
read.sample, 89
sampleLength, 91
volume, 99
waveform, 100
write.sample, 103

∗ sample.rate.operations
playSample, 56
sampleRate, 93

∗ track.operations
as.character, 4
PTTrack-method, 81

$.audioInstance, 58

AmigaFFH, 89
appendPattern, 3, 3, 8–10, 14, 29, 33, 34, 45,

47, 48, 50, 54, 55, 71, 73–75, 84, 88,
97, 103

appendPattern,PTModule,PTPattern-method
(appendPattern), 3

approx, 90
as.character, 4, 35, 52, 82, 83, 94
as.character,PTCell-method

(as.character), 4
as.character,PTPattern-method

(as.character), 4
as.character,PTTrack-method

(as.character), 4
as.integer, 86, 96
as.raw, 6, 41, 43, 83–86, 95, 96, 98
as.raw,PTCell-method (as.raw), 6
as.raw,PTModule-method (as.raw), 6
as.raw,PTPattern-method (as.raw), 6
as.raw,PTTrack-method (as.raw), 6
as.raw<- (as.raw), 6
as.raw<-,PTCell,raw-method (as.raw), 6
as.raw<-,PTPattern,matrix-method

(as.raw), 6
as.raw<-,PTTrack,matrix-method

(as.raw), 6

clearSamples, 4, 8, 9, 10, 14, 33, 34, 47, 48,
50, 54, 55, 71, 84, 88, 97, 103

clearSamples,PTModule-method
(clearSamples), 8

clearSong, 4, 8, 9, 10, 14, 33, 34, 47, 48, 50,
54, 55, 71, 84, 88, 97, 103

clearSong,PTModule-method (clearSong), 9

data.frame, 23, 24
deletePattern, 4, 8, 9, 10, 14, 29, 33, 34, 45,

47, 48, 50, 54, 55, 71, 73–75, 84, 88,
97, 103

deletePattern,PTModule,numeric-method
(deletePattern), 10

effect, 11, 37, 66, 67, 69, 72, 93
effect,PTCell-method (effect), 11
effect<- (effect), 11
effect<-,PTCell,character-method

(effect), 11
EffectCommands (ProTrackR), 62

file, 87, 102
fineTune, 12, 16, 17, 19, 20, 35, 36, 38, 44,

56, 57, 77, 79, 90, 92, 100, 101, 104
fineTune,PTSample-method (fineTune), 12

INDEX 107

fineTune<- (fineTune), 12
fineTune<-,PTSample,numeric-method

(fineTune), 12
fix.PTModule, 4, 8–10, 13, 33, 34, 47, 48, 50,

54, 55, 71, 84, 88, 97, 103
fix.PTModule,PTModule,logical-method

(fix.PTModule), 13
fix.PTModule,PTModule,missing-method

(fix.PTModule), 13
funk_table, 15

hiNybble (nybble), 41

loNybble, 77
loNybble (nybble), 41
loopLength, 13, 15, 16–20, 35, 56, 57, 77, 79,

90, 92, 100, 101, 104
loopLength,PTSample-method

(loopLength), 15
loopLength<- (loopLength), 15
loopLength<-,PTSample-method

(loopLength), 15
loopSample, 13, 16, 17, 19, 20, 35, 57, 77, 79,

90, 92, 100, 101, 104
loopSample,PTSample-method

(loopSample), 17
loopStart, 13, 16–18, 18, 19, 20, 35, 56, 57,

77, 79, 90, 92, 100, 101, 104
loopStart,PTSample-method (loopStart),

18
loopStart<- (loopStart), 18
loopStart<-,PTSample-method

(loopStart), 18
loopState, 13, 16, 17, 19, 19, 35, 57, 77, 79,

90, 92, 100, 101, 104
loopState,PTSample-method (loopState),

19

mod.intro, 20
modArchive, 21, 27
modLand, 25, 26
MODPlugToPTPattern, 4, 10, 28, 45, 47, 48,

50, 73–75
modToWave, 4, 8–10, 14, 31, 34, 47, 48, 50, 54,

55, 71, 84, 88, 97, 103
modToWave,PTModule-method (modToWave),

31
moduleSize, 4, 8–10, 14, 33, 33, 47, 48, 50,

54, 55, 71, 84, 88, 97, 103

moduleSize,PTModule-method
(moduleSize), 33

name, 5, 13, 16, 17, 19, 20, 34, 52, 57, 70, 76,
77, 79, 83, 90, 92, 94, 100, 101, 104

name,PTModule-method (name), 34
name,PTSample-method (name), 34
name<- (name), 34
name<-,PTModule,character-method

(name), 34
name<-,PTSample,character-method

(name), 34
note, 12, 36, 38, 40, 44, 52, 67, 69, 93, 94
note,numeric-method (note), 36
note,PTCell-method (note), 36
note<- (note), 36
note<-,PTCell,character-method (note),

36
noteDown (noteUp), 38
noteDown,PTCell-method (noteUp), 38
noteDown,PTPattern-method (noteUp), 38
noteDown,PTTrack-method (noteUp), 38
noteToPeriod, 37, 37, 40, 44, 52, 94
noteToSampleRate, 56, 57
noteToSampleRate (sampleRate), 93
noteUp, 37, 38, 38, 44, 52, 94
noteUp,PTCell-method (noteUp), 38
noteUp,PTPattern-method (noteUp), 38
noteUp,PTTrack-method (noteUp), 38
nybble, 7, 41, 43, 83–86, 95, 96, 98, 101
nybbleToSignedInt, 7, 41, 42, 83–86, 95, 96,

98, 101

octave, 36–38, 40, 43, 52, 67, 94
octave,numeric-method (octave), 43
octave,PTCell-method (octave), 43
octave<- (octave), 43
octave<-,PTCell,numeric-method

(octave), 43
octaveDown (noteUp), 38
octaveDown,PTCell-method (noteUp), 38
octaveDown,PTPattern-method (noteUp), 38
octaveDown,PTTrack-method (noteUp), 38
octaveUp (noteUp), 38
octaveUp,PTCell-method (noteUp), 38
octaveUp,PTPattern-method (noteUp), 38
octaveUp,PTTrack-method (noteUp), 38

pasteBlock, 4, 10, 29, 45, 47, 48, 50, 65, 66,
73–75

108 INDEX

pasteBlock,PTPattern,matrix,numeric,numeric-method
(pasteBlock), 45

patternLength, 4, 8–10, 14, 29, 33, 34, 45,
46, 48, 50, 54, 55, 71, 73–75, 84, 88,
97, 103

patternLength,PTModule-method
(patternLength), 46

patternOrder, 3, 4, 8–10, 14, 29, 33, 34, 45,
47, 47, 50, 53–55, 63, 66, 71, 73–75,
84, 88, 97, 103

patternOrder,PTModule-method
(patternOrder), 47

patternOrder<- (patternOrder), 47
patternOrder<-,PTModule,ANY,numeric-method

(patternOrder), 47
patternOrderLength, 4, 8–10, 14, 29, 33, 34,

45, 47, 48, 49, 54, 55, 71, 73–75, 84,
88, 97, 103

patternOrderLength,PTModule-method
(patternOrderLength), 49

patternOrderLength<-
(patternOrderLength), 49

patternOrderLength<-,PTModule,numeric-method
(patternOrderLength), 49

paula_clock, 50
period_table, 12, 36–38, 44, 51, 52, 52, 67,

77, 94
periodToChar, 5, 35, 37, 38, 40, 44, 51, 52,

67, 83, 94
periodToSampleRate, 32, 63
periodToSampleRate (sampleRate), 93
play, 56–58
playingtable, 4, 8–10, 14, 32–34, 47, 48, 50,

53, 55, 71, 84, 88, 97, 103
playingtable,PTModule-method

(playingtable), 53
playMod, 4, 8–10, 14, 33, 34, 47, 48, 50, 54,

55, 57, 58, 71, 84, 88, 97, 103
playMod,PTModule-method (playMod), 55
playSample, 13, 16, 17, 19, 20, 35, 55, 56, 58,

77, 79, 90, 92, 94, 100, 101, 104
playSample,PTModule-method

(playSample), 56
playSample,PTSample-method

(playSample), 56
playWave, 55, 57, 58
playWave,Wave-method (playWave), 58
playWave,WaveMC-method (playWave), 58

plot, 59
plot,PTModule,missing-method (plot), 59
powspec, 76
print, 60
print,PTCell-method (print), 60
print,PTModule-method (print), 60
print,PTPattern-method (print), 60
print,PTSample-method (print), 60
print,PTTrack-method (print), 60
proTrackerVibrato, 61
ProTrackR, 15, 20, 32, 53, 54, 60, 62, 65, 66,

101
PTBlock, 29, 45, 65, 65, 75
PTBlock,PTPattern,numeric,numeric-method

(PTBlock), 65
PTCell, 4–7, 11, 36, 38, 39, 43–45, 60, 62, 65,

68, 69, 72–74, 80, 82, 92
PTCell (PTCell-class), 66
PTCell,character,missing,missing,missing-method

(PTCell-method), 67
PTCell,PTModule,numeric,numeric,numeric-method

(PTCell-method), 67
PTCell,PTPattern,numeric,numeric,missing-method

(PTCell-method), 67
PTCell,PTTrack,numeric,missing,missing-method

(PTCell-method), 67
PTCell,raw,missing,missing,missing-method

(PTCell-method), 67
PTCell-class, 66, 69
PTCell-method, 67
PTCell<- (PTCell-method), 67
PTCell<-,PTModule,numeric,numeric,numeric,PTCell-method

(PTCell-method), 67
PTCell<-,PTPattern,numeric,numeric,missing,PTCell-method

(PTCell-method), 67
PTCell<-,PTTrack,numeric,missing,missing,PTCell-method

(PTCell-method), 67
PTCell<-,PTTrack,numeric,missing,missing-method

(PTCell-method), 67
PTModule, 3, 4, 6, 8–10, 13, 14, 20, 24, 28,

31–35, 46–50, 53, 55–57, 59, 60, 62,
69, 72, 74, 76, 78, 82, 87, 92, 96, 97,
102

PTModule (PTModule-class), 70
PTModule-class, 70
PTPattern, 3–10, 20, 29, 32, 38, 39, 45–48,

54, 60, 62, 65, 66, 69, 71, 73–75, 79,
80, 82, 97

INDEX 109

PTPattern (PTPattern-class), 72
PTPattern,matrix,missing-method

(PTPattern-method), 73
PTPattern,PTModule,numeric-method

(PTPattern-method), 73
PTPattern,raw,missing-method

(PTPattern-method), 73
PTPattern-class, 72
PTPattern-method, 73
PTPattern<- (PTPattern-method), 73
PTPattern<-,PTModule,numeric,PTPattern-method

(PTPattern-method), 73
PTPatternToMODPlug, 4, 10, 29, 45, 47, 48,

50, 73, 74, 75
PTSample, 8, 9, 12, 13, 15–20, 32, 34, 35, 56,

57, 59, 60, 62, 66, 67, 71, 76, 78, 91,
92, 99–101

PTSample (PTSample-class), 76
PTSample,PTModule,numeric-method

(PTSample-method), 78
PTSample,raw,missing-method

(PTSample-method), 78
PTSample,Wave,missing-method

(PTSample-method), 78
PTSample-class, 76
PTSample-method, 78
PTSample<- (PTSample-method), 78
PTSample<-,PTModule,numeric,PTSample-method

(PTSample-method), 78
PTTrack, 4–7, 32, 38, 39, 60, 62, 66, 69, 72,

81, 82
PTTrack (PTTrack-class), 79
PTTrack,character,missing,missing-method

(PTTrack-method), 81
PTTrack,matrix,missing,missing-method

(PTTrack-method), 81
PTTrack,numeric,missing-method

(PTTrack-method), 81
PTTrack,PTModule,numeric,numeric-method

(PTTrack-method), 81
PTTrack,PTPattern,numeric,missing-method

(PTTrack-method), 81
PTTrack,raw,missing,missing-method

(PTTrack-method), 81
PTTrack-class, 79
PTTrack-method, 81
PTTrack<- (PTTrack-method), 81
PTTrack<-,numeric,missing,PTTrack-method

(PTTrack-method), 81
PTTrack<-,PTModule,numeric,numeric,PTTrack-method

(PTTrack-method), 81
PTTrack<-,PTPattern,numeric,missing,PTTrack-method

(PTTrack-method), 81

rawToChar, 83
rawToCharNull, 5, 7, 35, 41, 43, 52, 82,

84–86, 94–96, 98
rawToPTModule, 4, 7–10, 14, 33, 34, 41, 43,

47, 48, 50, 54, 55, 71, 83, 84, 85, 86,
88, 95–98, 103

rawToPTModule,raw-method
(rawToPTModule), 84

rawToSignedInt, 7, 41, 43, 78, 83, 84, 85, 86,
95, 96, 98, 101

rawToUnsignedInt, 7, 41, 43, 83–85, 86, 95,
96, 98, 101

read.iff, 89
read.module, 4, 8–10, 14, 23, 27, 33, 34, 47,

48, 50, 54, 55, 70, 71, 84, 87, 90, 97,
103, 104

read.module,ANY,logical-method
(read.module), 87

read.module,ANY,missing-method
(read.module), 87

read.module,character,logical-method
(read.module), 87

read.module,character,missing-method
(read.module), 87

read.sample, 13, 16, 17, 19, 20, 35, 57, 76,
77, 79, 88, 89, 92, 100, 101, 103, 104

read.sample,character-method
(read.sample), 89

readMP3, 89
readWave, 89
resample, 90

sampleLength, 13, 16–20, 35, 57, 77, 79, 90,
91, 100, 101, 104

sampleLength,PTSample-method
(sampleLength), 91

sampleNumber, 12, 37, 67, 69, 92
sampleNumber,PTCell-method

(sampleNumber), 92
sampleNumber<- (sampleNumber), 92
sampleNumber<-,PTCell,numeric-method

(sampleNumber), 92

110 INDEX

sampleRate, 5, 35, 37, 38, 40, 44, 52, 57, 83,
93

signedIntToNybble, 7, 41, 43, 83–86, 94, 96,
98, 101

signedIntToRaw, 7, 41, 43, 83–86, 95, 95, 98,
101

sink, 14, 53

trackerFlag, 3, 4, 8–10, 14, 33, 34, 46–48,
50, 54, 55, 71, 84, 88, 96, 103

trackerFlag,PTModule-method
(trackerFlag), 96

trackerFlag<- (trackerFlag), 96
trackerFlag<-,PTModule-method

(trackerFlag), 96
tuneR, 58, 76, 89, 104

unsignedIntToRaw, 7, 41, 43, 83–86, 95, 96,
98, 101

url, 87

volume, 13, 16, 17, 19, 20, 35, 57, 77, 79, 90,
92, 99, 101, 104

volume,PTSample-method (volume), 99
volume<- (volume), 99
volume<-,PTSample,numeric-method

(volume), 99

Wave, 31–33, 55, 58, 76–78, 101
waveform, 13, 16, 17, 19, 20, 35, 41, 43, 57,

77–79, 85, 86, 90, 92, 95, 96, 98,
100, 100, 104

waveform,PTSample-method (waveform), 100
waveform<- (waveform), 100
waveform<-,PTSample-method (waveform),

100
WaveMC, 32, 33, 58
write.module, 4, 8–10, 14, 20, 33, 34, 47, 48,

50, 54, 55, 70, 71, 84, 87, 88, 90, 97,
102, 104

write.module,PTModule,ANY-method
(write.module), 102

write.module,PTModule,character-method
(write.module), 102

write.sample, 13, 16, 17, 19, 20, 35, 57, 76,
77, 79, 88, 90, 92, 100, 101, 103, 103

write.sample,PTSample,character-method
(write.sample), 103

writeWave, 32, 104

xyplot, 59

	appendPattern
	as.character
	as.raw
	clearSamples
	clearSong
	deletePattern
	effect
	fineTune
	fix.PTModule
	funk_table
	loopLength
	loopSample
	loopStart
	loopState
	mod.intro
	modArchive
	modLand
	MODPlugToPTPattern
	modToWave
	moduleSize
	name
	note
	noteToPeriod
	noteUp
	nybble
	nybbleToSignedInt
	octave
	pasteBlock
	patternLength
	patternOrder
	patternOrderLength
	paula_clock
	periodToChar
	period_table
	playingtable
	playMod
	playSample
	playWave
	plot
	print
	proTrackerVibrato
	ProTrackR
	PTBlock
	PTCell-class
	PTCell-method
	PTModule-class
	PTPattern-class
	PTPattern-method
	PTPatternToMODPlug
	PTSample-class
	PTSample-method
	PTTrack-class
	PTTrack-method
	rawToCharNull
	rawToPTModule
	rawToSignedInt
	rawToUnsignedInt
	read.module
	read.sample
	resample
	sampleLength
	sampleNumber
	sampleRate
	signedIntToNybble
	signedIntToRaw
	trackerFlag
	unsignedIntToRaw
	volume
	waveform
	write.module
	write.sample
	Index

