
Package ‘ProbReco’
October 12, 2022

Type Package

Title Score Optimal Probabilistic Forecast Reconciliation

Version 0.1.0.1

Description Training of reconciliation weights for probabilistic forecasts to optimise total en-
ergy (or variogram) score using Stochastic Gradient Descent with automatically differenti-
ated gradients. See Panagiotelis, Gamakumara, Athanasopoulos and Hyndman, (2020) <https:
//www.monash.edu/business/ebs/research/publications/ebs/wp26-2020.pdf> for a de-
scription of the methods.

License GPL-3

URL https://github.com/anastasiospanagiotelis/ProbReco

Depends R (>= 3.5.0)

Imports Rcpp (>= 1.0.2), purrr(>= 0.3.2), mvtnorm, Rdpack

Suggests knitr, rmarkdown, fable, dplyr,tidyr, magrittr, stringi

LinkingTo Rcpp, RcppEigen, StanHeaders (>= 2.19.1), BH

RdMacros Rdpack

RoxygenNote 7.1.1

LazyData true

VignetteBuilder knitr

Encoding UTF-8

BugReports https://github.com/anastasiospanagiotelis/ProbReco/issues

NeedsCompilation yes

Author Anastasios Panagiotelis [aut, cre]
(<https://orcid.org/0000-0001-8678-7294>)

Maintainer Anastasios Panagiotelis <anastasios.panagiotelis@sydney.edu.au>

Repository CRAN

Date/Publication 2020-09-24 08:10:06 UTC

1

https://www.monash.edu/business/ebs/research/publications/ebs/wp26-2020.pdf
https://www.monash.edu/business/ebs/research/publications/ebs/wp26-2020.pdf
https://github.com/anastasiospanagiotelis/ProbReco
https://github.com/anastasiospanagiotelis/ProbReco/issues
https://orcid.org/0000-0001-8678-7294

2 checkinputs

R topics documented:

checkinputs . 2
inscoreopt . 3
scoreopt . 4
scoreopt.control . 6
sim_hierarchy . 7
total_score . 7

Index 9

checkinputs Check inputs to function.

Description

This function checks that the inputs for scoreopt and total_score are correctly setup. It is called
at the start of scoreopt.

Usage

checkinputs(data, prob, S, G, score = list(score = "energy", alpha = 1))

Arguments

data Past data realisations as vectors in a list. Each list element corresponds to a
period of training data.

prob List of functions to simulate from probabilistic forecasts. Each list element cor-
responds to a period of training data. The output of each function should be a
matrix.

S Matrix encoding linear constraints.

G Values of reconciliation parameters d and G where ỹ = S(d + Gŷ). The first
m elements correspond to translation vector d, while the remaining elements
correspond to the matrix G where the elements are filled in column-major order.

score Score to be used. This must be a list with two elements: score for the scoring
rule (currently only energy supported) and alpha, an additional parameter used
in the score (e.g. power in energy score, default is 1).

inscoreopt 3

inscoreopt In-Sample Score Optimisation by Stochastic Gradient Descent

Description

Function to find a reconciliation matrix that optimises total score using training data. Stochastic
gradient descent is used for optimisation with gradients found using automatic differentiation. This
function differs from scoreopt in two main ways. First, formulation of base probabilistic forecasts
is carried out from one of four options depending on whether dependence and/or Gaussianity is
assumed. Second, the optimistation is based on in-sample predictions rather than a rolling window
of out-of sample forecasts. For more flexibility use scoreopt.

Usage

inscoreopt(
y,
yhat,
S,
Ginit = c(rep(0, ncol(S)), as.vector(solve(t(S) %*% S, t(S)))),
control = list(),
basedep = "joint",
basedist = "gaussian",
Q = 500,
score = list(score = "energy", alpha = 1),
trace = FALSE

)

Arguments

y Matrix of data, each column responds to an observation, each row corresponds
to a variable.

yhat Matrix of predicted values, each column responds to an observation, each row
corresponds to a variable.

S Matrix encoding linear constraints.

Ginit Initial values of reconciliation parameters d and G where ỹ = S(d + Gŷ).
The first m elements correspond to translation vector d, while the remaining
elements correspond to the matrix G where the elements are filled in column-
major order. Default is least squares.

control Tuning parameters for SGD. See scoreopt.control for more details

basedep Should base distributions be assumed to be dependent (joint) or independent?
Default is "joint", set to "independent" for independence.

basedist Should base distributions be assumed to be Gaussian or bootstrapped? Default
is "gaussian" set to "bootstrap" for bootstrapping.

Q Number of Monte Carlo iterations used to estimate score

4 scoreopt

score Score to be used. This must be a list with two elements: score for the scoring
rule (currently only energy supported) and alpha, an additional parameter used
in the score (e.g. power in energy score, default is 1).

trace Flag to keep details of SGD. Default is FALSE

Value

Optimised reconciliation parameters.

d Translation vector for reconciliation.

G Reconciliation matrix (G).

val The estimated optimal total score.

Gvec_store A matrix of Gvec (d and G vectorised) where each column corresponds to an
iterate of SGD (only produced when trace=TRUE).

val_store A vector where each element gives the value of the objective function for each
iterate of SGD (only produced when trace=TRUE).

See Also

Other ProbReco functions: scoreopt.control(), scoreopt(), total_score()

Examples

#Define S matrix
S<-matrix(c(1,1,1,0,0,1),3,2, byrow = TRUE)
#Set data (only 10 training observations used for speed)
y<-S%*%(matrix(rnorm(20),2,10)+1)
#Set point forecasts (chosen randomly from (0,1))
yhat<-matrix(runif(nrow(y)*ncol(y)),nrow(y),ncol(y))
#Find weights by SGD (Q set to 20 so that example runs quickly)
out<-inscoreopt(y,yhat,S,Q=20)

scoreopt Score optimisation by Stochastic Gradient Descent

Description

Function to find a reconciliation matrix that optimises total score using training data. Stochastic
gradient descent is used for optimisation with gradients found using automatic differentiation.

Usage

scoreopt(
data,
prob,
S,
Ginit = c(rep(0, ncol(S)), as.vector(solve(t(S) %*% S, t(S)))),

scoreopt 5

control = list(),
score = list(score = "energy", alpha = 1),
trace = FALSE,
matches = FALSE

)

Arguments

data Past data realisations as vectors in a list. Each list element corresponds to a
period of training data.

prob List of functions to simulate from probabilistic forecasts. Each list element cor-
responds to a period of training data. The output of each function should be a
matrix.

S Matrix encoding linear constraints.

Ginit Initial values of reconciliation parameters d and G where ỹ = S(d + Gŷ).
The first m elements correspond to a translation vector d, while the remaining
elements correspond to the matrix G where the elements are filled in column-
major order. Default is least squares.

control Tuning parameters for SGD. See scoreopt.control for more details

score Score to be used. This must be a list with two elements: score for the scoring
rule (currently only energy score and variogram score supported) and alpha, an
additional parameter used in the score (e.g. power in energy score, default is 1).

trace Flag to keep details of SGD. Default is FALSE

matches A flag that checks for exact matches between samples from reconciled distribu-
tion. This causes NaNs in the automatic differentiation. For approaches that rely
on bootstrapping set to TRUE. Otherwise set to FALSE (the default) to speed up
code.

Value

Optimised reconciliation parameters.

d Translation vector for reconciliation.

G Reconciliation matrix.

val The estimated optimal total score.

Gvec_store A matrix of Gvec (d and G vectorised) where each column corresponds to an
iterate of SGD (only produced when trace=TRUE).

val_store A vector where each element gives the value of the objective function for each
iterate of SGD (only produced when trace=TRUE).

See Also

Other ProbReco functions: inscoreopt(), scoreopt.control(), total_score()

6 scoreopt.control

Examples

#Use purr library to setup
library(purrr)
#Define S matrix
S<-matrix(c(1,1,1,0,0,1),3,2, byrow = TRUE)
#Set data (only 10 training observations used for speed)
data<-map(1:10,function(i){S%*%(c(1,1)+rnorm(2))})
#Set list of functions to generate 50 iterates from probabilistic forecast
prob<-map(1:10,function(i){f<-function(){matrix(rnorm(3*50),3,50)}})
#Find weights by SGD (will take a few seconds)
out<-scoreopt(data,prob,S)

scoreopt.control Tuning parameters for score optimisation by Stochastic Gradient De-
scent

Description

Function to set tuning parameters for stochastic gradient descent used to find a reconciliation matrix
that optimises total score. The defaults are those of Kingma and Ba (2014) and more details on the
tuning parameters can be found therein.

Usage

scoreopt.control(
eta = 0.001,
beta1 = 0.9,
beta2 = 0.999,
maxIter = 500,
tol = 1e-04,
epsilon = 1e-08

)

Arguments

eta Learning rate. Deafult is 0.001

beta1 Forgetting rate for mean. Default is 0.9.

beta2 Forgetting rate for variance. Default is 0.999.

maxIter Maximum number of iterations. Default is 500

tol Tolerance for stopping criterion. Algorithm stops when the change in all param-
eter values is less than this amount. Default is 0.0001.

epsilon Small constant added to denominator of step size. Default is 1e-8

References

Kingma DP, Ba J (2014). “Adam: A method for stochastic optimization.” arXiv preprint. https:
//arxiv.org/abs/1412.6980.

https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980

sim_hierarchy 7

See Also

Other ProbReco functions: inscoreopt(), scoreopt(), total_score()

Examples

#Change Maximum Iterations to 1000
scoreopt.control(maxIter=1000)

sim_hierarchy Synthetic hierarchical data from stationary Gaussian ARMA models.

Description

A synthetic 7-variable hierachy. The series AA and AB aggregate to A, the series BA and BB
aggregate to B, the series A and B aggregate to Tot. All bottom level series are simulated from
ARMA models. There are 1506 observations generated.

Usage

sim_hierarchy

Format

A tibble with a time index Time and one column for each of the seven variables in the hierarchy

total_score Total score (and gradient) for reconciled forecast

Description

Function to find an estimate of the total energy score for a linearly reconciled probabilistic forecast.
Also finds the gradient by automatic differentiation.

Usage

total_score(data, prob, S, Gvec, scorecode = 1, alpha = 1, matches = FALSE)

8 total_score

Arguments

data Past data realisations as vectors in a list. Each list element corresponds to a
period of training data.

prob List of functions to simulate from probabilistic forecasts. Each list element cor-
responds to a period of training data. The output of each function should be a
matrix.

S Matrix encoding linear constraints.

Gvec Reconciliation parameters d and G where ỹ = S(d+Gŷ). The first m elements
correspond to translation vector d, while the remaining elements correspond to
the matrix G where the elements are filled in column-major order.

scorecode Code that indicates score to be used. This is set to 1 for the energy score and 2
for the variogram score. Default is 1 (energy score)

alpha An additional parameter used for scoring rule. Default is 1 (power used in en-
ergy score).

matches A flag that indicates whether to check for exact matches between samples from
reconciled distribution. This causes NaNs in the automatic differentiation. For
approaches that rely on bootstrapping set to T. Otherwise set to F (the default)
to speed up code.

Value

Total score and gradient w.r.t (d,G).

grad The estimate of the gradient.

value The estimated total score.

See Also

Other ProbReco functions: inscoreopt(), scoreopt.control(), scoreopt()

Examples

#Use purr library to setup
library(purrr)
#Define S matrix
S<-matrix(c(1,1,1,0,0,1),3,2, byrow = TRUE)
#Randomly set a value of reconciliation parameters
Gvec<-as.matrix(runif(8))
#Set data (only 10 training observations used for speed)
data<-map(1:10,function(i){S%*%(c(1,1)+rnorm(2))})
#Set list of functions generating from probabilistic forecast
prob<-map(1:10,function(i){f<-function(){matrix(rnorm(3*50),3,50)}})
#Compute total score
out<-total_score(data,prob,S,Gvec)

Index

∗ ProbReco functions
inscoreopt, 3
scoreopt, 4
scoreopt.control, 6
total_score, 7

∗ datasets
sim_hierarchy, 7

checkinputs, 2

inscoreopt, 3, 5, 7, 8

scoreopt, 2–4, 4, 7, 8
scoreopt.control, 3–5, 6, 8
sim_hierarchy, 7

total_score, 2, 4, 5, 7, 7

9

	checkinputs
	inscoreopt
	scoreopt
	scoreopt.control
	sim_hierarchy
	total_score
	Index

