Package 'RAEN'

October 12, 2022

Title Random Approximate Elastic Net (RAEN) Variable Selection Method

Version 0.2

Encoding UTF-8

Description The Proportional Subdistribution Hazard (PSH) model has been popular for estimating the effects of the covariates on the cause of interest in Competing Risks analysis. The fast accumulation of large scale datasets has posed a challenge to classical statistical methods. Current penalized variable selection methods show unsatisfactory performance in ultra-high dimensional data. We propose a novel method, the Random Approximate Elastic Net (RAEN), with a robust and generalized solution to the variable selection problem for the PSH model. Our method shows improved sensitivity for variable selection compared with current methods.

Author Han Sun and Xiaofeng Wang

Maintainer Han Sun <han.sunny@gmail.com>

URL https://github.com/saintland/RAEN

Imports boot, foreach, doParallel,glmnet, fastcmprsk Depends R(>= 3.5.0), lars Suggests testthat, knitr, rmarkdown License GPL (>= 2) RoxygenNote 7.1.1 VignetteBuilder knitr NeedsCompilation no Repository CRAN Date/Publication 2021-02-21 06:00:16 UTC

R topics documented:

deCorr .					 									 													2
grpselect	•	•			 	 •				•				 					•					•	•		2
lossTrans					 •	 •		•		•		•	•	 •					•				•	•	•	•	3
r2select	•	•				 •	•	•	•	•		•	•			•	•	•	•		•	•	•	•	•		3

grpselect

RAEN	4
RAEN-Package	5
toydata	5
	6

Index

```
deCorr
```

De-correlating variables

Description

Divide the highly correlated variables into exclusive groups

Usage

deCorr(x, rho = 0.7, ngrp = floor(15 * ncol(x)/nrow(x)))

Arguments

х	the predictor matrix
rho	the preset correlation threshold. Variables with correlation higher than rho will be separate into exclusive groups. Default is set to 0.7
ngrp	the number of blocks to separate variables

Value

a dataframe of variable names 'varname' and the variable subgroup membership 'grp'

|--|

Description

This is the split step, where variable in subgroups are selected

Usage

grpselect(fgrp, x, y, B = 50, parallel = TRUE)

Arguments

fgrp	the variable group object from 'deCorr"
х	the predictor matrix
У	a dataframe of time to event and event status. The primary outcome status is coded 1, the secondary outcome as 2, etc. The censored is coded as 0.
В	the number of bootstraps
parallel	whether to use multiple cores for parallel computing. Default is TRUE.

lossTrans

Value

a list of

- fselect: Names of the selected variables.
- prob: the generalized ridge variable importance.
- weight: the inverse of the ridge variable importance.

```
lossTrans
```

Linear Approximation of the object function

Description

Linear Approximation of the object function

Usage

mod_lsa(obj, n)

Arguments

obj	the regression object from R output
n	the sample size

r2select	Variable Selection with the candidate pool	
----------	--	--

Description

Perform variable selection with pooled candidates

Usage

```
r2select(x.tr, y.tr, B, weight, prob, parallel = TRUE, m = 8)
```

Arguments

x.tr	the predictor matrix
y.tr	the time and status object for survival
В	times of bootstrap
weight	variable weight
prob	variable selection probability
parallel	Logical TRUE or FALSE. Whether to use multithread computing, which can save consideratable amount of time for high dimensional data. Default is TRUE.
m	the number of variables to be randomly included in the model in this step. Default is 8.

Value

the estimates of variables with B bootstraps, which is a dataframe with B rows and 'ncol(x)' columns.

RAEN

Random Ensemble Variable Selection for High Dimensional Data

Description

Perform variable selection for high dimensional data

Usage

```
RAEN(
    x,
    y,
    B,
    ngrp = floor(15 * ncol(x)/nrow(x)),
    parallel = TRUE,
    family = "competing",
    ncore = 2
)
```

```
## S3 method for class 'RAEN'
predict(object, newdata, ...)
```

Arguments

x	the predictor matrix
У	the time and status object for survival
В	times of bootstrap
ngrp	the number of blocks to separate variables into. Default is 15*p/N, where p is the number of predictors and N is the sample size.
parallel	Logical TRUE or FALSE. Whether to use multithread computing, which can save consideratable amount of time for high dimensional data. Default is TRUE.
family	what family of data types. Default is 'competing'. Quantile regression for com- peting risks will be available through the developmental version on github
ncore	Number of cores used for parallel computing, if parallel=TRUE
object	the RAEN object containing the variable selection results
newdata	the predictor matrix for prediction
	other parameters to pass

RAEN-Package

Value

a dataframe with the variable names and the regression coefficients the linear predictor of the outcome risk

Examples

```
library(RAEN)
data(toydata)
x=toydata[,-c(1:2)]
y=toydata[,1:2]
fgrp<-deCorr(x, ngrp=20)</pre>
```

RAEN-Package

The Robust and Generalized Ensemble Approach for Variable Selection in High Dimensions

Description

We provide a novel solution to the variable selection problem in the ultra-high dimensional setting with a robust and generalized method

Author(s)

Han Sun and Xiaofeng Wang

toydata

Toy data for demonstration

Description

This simulated datasets contains 1000 predictors, of which X1-X20, X41-X60 are true predictors. The first two columns are time to event competing risks and status.

Format

A dataframe of 200 rows and 1002 columns.

Index

toydata, <mark>5</mark>