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AUTH_ANY Constants for identifying Authentication Schemes

Description

These variables are symbolic constants that allow use to specify different combinations of schemes
for HTTP authentication in a request to a Web server. We can combine them via the | operator to
indicate that libcurl should try them in order until one works.

Examples

AUTH_BASIC | AUTH_DIGEST

base64 Encode/Decode base64 content

Description

These functions encode and decode strings using base64 representations. base64 can be used as
a single entry point with an argument to encode or decode. The other two functions perform the
specific action.

Usage

base64(txt, encode = !inherits(txt, "base64"), mode = "character")

Arguments

txt character string to encode or decode

encode logical value indicating whether the desired action is to encode or decode the
object. If txt has (S3) class base64, the default is to decode this.

mode a character string which is either "raw" or "character". This controls the type
of vector that is returned. If this is "raw", a raw vector is created. Otherwise, a
character vector of length 1 is returned and its element is the text version of the
original data given in txt.

Details

This calls the routines in libcurl. These are not declared in the curl header files. So the support may
need to be handled carefully on some platforms, e.g. Microsoft Windows.

Value

If encode is TRUE, a character vector with a class named base64. If decode is TRUE, a simple string.
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Note

This is currently not vectorized.

We might extend this to work with raw objects.

Author(s)

Duncan Temple Lang

References

libcurl - https://curl.se/ Wikipedia’s explanation of base 64 encoding - https://en.wikipedia.
org/wiki/Base64

Examples

# encode and then decode a simple string.
txt = "Some simple text for base 64 to handle"
x = base64(txt)
base64(x)

# encode to a raw vector
x = base64("Simple text", TRUE, "raw")

# decode to a character string.
ans = base64Decode(x)
ans == txt

# decoded to a raw format.
ans = base64Decode(x, "raw")

# Binary data
# f = paste(R.home(), "doc", "html", "logo.jpg", sep = .Platform$file.sep)

f = system.file("examples", "logo.jpg", package = "RCurl")
img = readBin(f, "raw", file.info(f)[1, "size"])
b64 = base64Encode(img, "raw")
back = base64Decode(b64, "raw")
identical(img, back)

# alternatively, we can encode to a string and then decode back again
# to raw and see that we preserve the date.

enc = base64Encode(img, "character")
dec = base64Decode(enc, "raw")
identical(img, dec)

# The following would be the sort of computation we could do if we
# could have in-memory raw connections.
# We would save() some objects to such an in-memory binary/raw connection
# and then encode the resulting raw vector into a character vector.
# Then we can insert that into a message, e.g. an email message or

https://curl.se/
https://en.wikipedia.org/wiki/Base64
https://en.wikipedia.org/wiki/Base64
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# an XML document and when we receive it in a different R session
# we would get the string and reverse the encoding from the string to
# a raw vector
# In the absence of that in-memory connection facility in save(),
# we can use a file.

x = 1:10

# save two objects - a function and a vector
f = paste(tempfile(), "rda", sep = ".")
save(base64, x, file = f)

# now read the results back from that file as a raw vector
data = readBin(f, "raw", file.info(f)[1,"size"])

# base64 encode it
txt = base64Encode(data, "character")

if(require(XML)) {
tt = xmlTree("r:data", namespaces = c(r = "http://www.r-project.org"))
tt$addNode(newXMLTextNode(txt))
out = saveXML(tt)

doc = xmlRoot(xmlTreeParse(out, asText = TRUE))
rda = base64Decode(xmlValue(doc), "raw")
f = tempfile()
writeBin(rda, f)
e = new.env()
load(f, e)
objects(e)

}

# we'd like to be able to do
# con = rawConnection(raw(), 'r+')
# save(base64, x, file = con)
# txt = base64Encode(rawConnectionValue(con), "character")
# ... write and read xml stuff
# val = xmlValue(doc)
# rda = base64Decode(val, "raw")
# e = new.env()
# input = rawConnection(o, "r")
# load(input, e)

basicHeaderGatherer Functions for processing the response header of a libcurl request

Description

These two functions are used to collect the contents of the header of an HTTP response via the
headerfunction option of a curl handle and then processing that text into both the name: value
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pairs and also the initial line of the response that provides the status of the request. basicHeaderGatherer
is a simple special case of basicTextGatherer with the built-in post-processing step done by
parseHTTPHeader.

Usage

basicHeaderGatherer(txt = character(), max = NA)
parseHTTPHeader(lines, multi = TRUE)

Arguments

txt any initial text that we want included with the header. This is passed to basicTextGatherer.
Generally it should not be specified unless there is a good reason.

max This is passed directly to basicTextGatherer

lines the text as a character vector from the response header that parseHTTPHeader
will convert to a status and name-value pairs.

multi a logical value controlling whether we check for multiple HTTP headers in the
lines of text. This is caused by a Continue being concatenated with the actual
response. When this is TRUE, we look for the lines that start an HTTP header,
e.g. HTTP 200 ..., and we use the content from the last of these.

Value

The return value is the same as basicTextGatherer, i.e. a list with update, value and reset
function elements. The value element will invoke parseHTTPHeader on the contents read during
the processing of the libcurl request and return that value.

Author(s)

Duncan Temple Lang

References

Curl homepage https://curl.se/

See Also

basicTextGatherer curlPerform curlSetOpt

Examples

if(url.exists("https://www.omegahat.net/RCurl/index.html")) withAutoprint({
h = basicHeaderGatherer()
getURI("https://www.omegahat.net/RCurl/index.html",

headerfunction = h$update)
names(h$value())
h$value()

})

https://curl.se/
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basicTextGatherer Cumulate text across callbacks (from an HTTP response)

Description

These functions create callback functions that can be used to with the libcurl engine when it passes
information to us when it is available as part of the HTTP response.

basicTextGatherer is a generator function that returns a closure which is used to cumulate text
provided in callbacks from the libcurl engine when it reads the response from an HTTP request.

debugGatherer can be used with the debugfunction libcurl option in a call and the associated
update function is called whenever libcurl has information about the header, data and general mes-
sages about the request.

These functions return a list of functions. Each time one calls basicTextGatherer or debugGatherer,
one gets a new, separate collection of functions. However, each collection of functions (or instance)
shares the variables across the functions and across calls. This allows them to store data persistently
across the calls without using a global variable. In this way, we can have multiple instances of the
collection of functions, with each instance updating its own local state and not interfering with those
of the others.

We use an S3 class named RCurlCallbackFunction to indicate that the collection of funcions can
be used as a callback. The update function is the one that is actually used as the callback function
in the CURL option. The value function can be invoked to get the current state that has been
accumulated by the update function. This is typically used when the request is complete. One can
reuse the same collection of functions across different requests. The information will be cumulated.
Sometimes it is convenient to reuse the object but reset the state to its original empty value, as it
had been created afresh. The reset function in the collection permits this.

multiTextGatherer is used when we are downloading multiple URIs concurrently in a single
libcurl operation. This merely uses the tools of basicTextGatherer applied to each of several
URIs. See getURIAsynchronous.

Usage

basicTextGatherer(txt = character(), max = NA, value = NULL,
.mapUnicode = TRUE)

multiTextGatherer(uris, binary = rep(NA, length(uris)))
debugGatherer()

Arguments

txt an initial character vector to start things. We allow this to be specified so that
one can initialize the content.

max if specified as an integer this controls the total number of characters that will be
read. If more are read, the function tells libcurl to stop!

uris for multiTextGatherer, this is either the number or the names of the uris being
downloaded and for which we need a separate writer function.
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value if specified, a function that is called when retrieving the text usually after the
completion of the request and the processing of the response. This function
can be used to convert the result into a different format, e.g. parse an XML
document, read values from table in the text.

.mapUnicode a logical value that controls whether the resulting text is processed to map com-
ponents of the form \uxxxx to their appropriate Unicode representation.

binary a logical vector that indicates which URIs yield binary content

Details

This is called when the libcurl engine finds sufficient data on the stream from which it is reading
the response. It cumulates these bytes and hands them to a C routine in this package which calls the
actual gathering function (or a suitable replacement) returned as the update component from this
function.

Value

Both the basicTextGatherer and debugGatherer functions return an object of class RCurlCallbackFunction.
basicTextGatherer extends this with the class RCurlTextHandler and debugGatherer extends
this with the class RCurlDebugHandler. Each of these has the same basic structure, being a list of
3 functions.

update the function that is called with the text from the callback routine and which
processes this text by accumulating it into a vector

value a function that returns the text cumulated across the callbacks. This takes an
argument collapse (and additional ones) that are handed to paste. If the value
of collapse is given as NULL, the vector of elements containing the different
text for each callback is returned. This is convenient when debugging or if one
knows something about the nature of the callbacks, e.g. the regular size that
causes iit to identify records in a natural way.

reset a function that resets the internal state to its original, empty value. This can be
used to reuse the same object across requests but to avoid cumulating new input
with the material from previous requests.

multiTextGatherer returns a list with an element corresponding to each URI. Each element is an
object obtained by calling basicTextGatherer, i.e. a collection of 3 functions with shared state.

Author(s)

Duncan Temple Lang

References

Curl homepage https://curl.se/

See Also

getURL dynCurlReader

https://curl.se/
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Examples

if(url.exists("https://www.omegahat.net/RCurl/index.html")) withAutoprint({
txt = getURL("https://www.omegahat.net/RCurl/index.html", write = basicTextGatherer())

h = basicTextGatherer()
txt = getURL("https://www.omegahat.net/RCurl/index.html", write = h$update)
## Cumulate across pages.

txt = getURL("https://www.omegahat.net/index.html", write = h$update)

headers = basicTextGatherer()
txt = getURL("https://www.omegahat.net/RCurl/index.html",

header = TRUE, headerfunction = headers$update)

## Now read the headers.
cat(headers$value())
headers$reset()

## Debugging callback
d = debugGatherer()
x = getURL("https://www.omegahat.net/RCurl/index.html", debugfunction = d$update, verbose = TRUE)
cat(names(d$value()))
d$value()[["headerIn"]]

## This hung on Solaris
## 2022-02-08 philosophy.html is malformed UTF-8

uris = c("https://www.omegahat.net/RCurl/index.html",
"https://www.omegahat.net/RCurl/philosophy.html")

## Not run:
g = multiTextGatherer(uris)
txt = getURIAsynchronous(uris, write = g)
names(txt) # no names this way
nchar(txt)

# Now don't use names for the gatherer elements.
g = multiTextGatherer(length(uris))
txt = getURIAsynchronous(uris, write = g)
names(txt)
nchar(txt)

## End(Not run)
})

## Not run:
Sys.setlocale(,"en_US.latin1")
Sys.setlocale(,"en_US.UTF-8")
uris = c("https://www.omegahat.net/RCurl/index.html",

"https://www.omegahat.net/RCurl/philosophy.html")
g = multiTextGatherer(uris)
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txt = getURIAsynchronous(uris, write = g)

## End(Not run)

binaryBuffer Create internal C-level data structure for collecting binary data

Description

This is the constructor function for creating an internal data structure that is used when reading bi-
nary data from an HTTP request via RCurl. It is used with the native routine R_curl_write_binary_data
for collecting the response from the HTTP query into a buffer that stores the bytes. The contents
can then be brought back into R as a raw vector and then used in different ways, e.g. uncompressed
with the Rcompression package, or written to a file via writeBin.

Usage

binaryBuffer(initialSize = 5000)

Arguments

initialSize a number giving the size (number of bytes) to allocate for the buffer. In most
cases, the size won’t make an enormous difference. If this is small, the R_curl_write_binary_data
routine will expand it as necessary when more daat is received than would fit in
it. If it is very large, i.e. larger than the resulting response, the consequence is
simply unused memory. One can determine the appropriate size by performing
the HTTP request with nobody = TRUE and looking at the resulting size indicated
by the headers of the response, i.e. getCurlInfo(handle) and then using that
size and repeating the request and receiving the body. This is a trade-off between
network speed and memor consumption and processing speed when collecting
the .

Value

An object of class RCurlBinaryBuffer which is to be treated as an opaque data for the most part.
When passing this as the value of the file option, one will have to pass the ref slot.

After the contents have been read, one can convert this object to an R raw vector using as(buf,
"raw").

Author(s)

Duncan Temple Lang

References

Curl homepage https://curl.se/

https://curl.se/
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See Also

R_curl_write_binary_data

Examples

if(url.exists("https://www.omegahat.net/RCurl/xmlParse.html.gz")) {
buf = binaryBuffer()

# Now fetch the binary file.
getURI("https://www.omegahat.net/RCurl/xmlParse.html.gz",

write = getNativeSymbolInfo("R_curl_write_binary_data")$address,
file = buf@ref)

# Convert the internal data structure into an R raw vector
b = as(buf, "raw")

if (getRversion() >= "4")
txt = memDecompress(b, asChar = TRUE)

## or txt = Rcompression::gunzip(b)
}

CFILE Create a C-level handle for a file

Description

This function and class allow us to work with C-level FILE handles. The intent is to be able to pass
these to libcurl as options so that it can read or write from or to the file. We can also do this
with R connections and specify callback functions that manipulate these connections. But using the
C-level FILE handle is likely to be significantly faster for large files.

The close method allows us to explicitly flush and close the file from within R.

Usage

CFILE(filename, mode = "r")

Arguments

filename the name of the file on disk
mode a string specifying how to open the file, read or write, text or binary.

Details

This is a simple interface to the C routine fopen.

Value

An object of class CFILE which is has a single slot name ref which is an external pointer holding
the address of the FILE object in C.
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Author(s)

Duncan Temple Lang

References

Man page for fopen

See Also

curlPerform and the readdata

Examples

## Not run:
filename = system.file("tests", "amazon3.R", package = "RCurl")
f = CFILE(filename)

if(url.exists('http://s3.amazonaws.com/'))
curlPerform(url = "http://s3.amazonaws.com/RRupload/duncan2",

upload = TRUE,
readdata = f@ref,
infilesize = file.info(filename)[1, "size"])

## End(Not run)

chunkToLineReader Utility that collects data from the HTTP reply into lines and calls user-
provided function.

Description

When one provides an R function to process the body of the R rep

Usage

chunkToLineReader(f, verbose = FALSE)

Arguments

f a function that is to be called each time the read function is invoked and there
are complete lines in that input.

verbose a logical value. If TRUE, information is displayed when there is any text that does
not form a complete line and is held for processing in the next chunk.

Details

This constructs a closure and then processes each chunk as they are passed to the read function. It
strips away any text that does not form a complete line at the end of the chunk and holds this to be
added to the next chunk being processed.
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Value

A list with two components

read the function that will do the actual reading from the HTTP response stream and
call the function f on each step (assuming the chunk has a line marker.

comp2 Description of ’comp2’

...

Author(s)

Duncan Temple Lang

References

Curl homepage https://curl.se/

See Also

getURI and the write argument. getForm, postForm curlPerform

Examples

# Read a rectangular table of data into R from the URL
# and add up the values and the number of values read.

summer =
function()
{

total = 0.0
numValues = 0

list(read = function(txt) {
con = textConnection(txt)
on.exit(close(con))
els = scan(con)
numValues <<- numValues + length(els)
total <<- total + sum(els)

""
},

result = function() c(total = total, numValues = numValues))
}

s = summer()

## Not run:
## broken, 2022-07-29
if(url.exists("https://www.omegahat.net/RCurl/matrix.data"))
getURL("https://www.omegahat.net/RCurl/matrix.data", write = chunkToLineReader(s$read)$read)

## End(Not run)

https://curl.se/
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clone Clone/duplicate an object

Description

This is a generic function and methods for making a copy of an object such as a curl handle, C-level
pointer to a file, etc.

Usage

clone(x, ...)

Arguments

x the object to be cloned.

... additional parameters for methods

Value

Typically, an object of the same class and “value” as the input - x.

Author(s)

Duncan Temple Lang

See Also

dupCurlHandle

Examples

h = getCurlHandle(verbose = TRUE)
other = dupCurlHandle(h)
curlSetOpt(curl = h, verbose = FALSE)

complete Complete an asynchronous HTTP request

Description

This is a generic function that is used within the RCurl package to force the completion of an HTTP
request. If the request is asynchronous, this essentially blocks until the request is completed by
repeatedly asking for more information to be retrieved from the HTTP connection.

Usage

complete(obj, ...)
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Arguments

obj the object which is to be completed. This is typically a MultiCURLHandle-class
instance.

... additional arguments intended to be used by specific methods.

Value

The value is typically not of interest, but rather the side effect of processing the pending requests.

Author(s)

Duncan Temple Lang

References

https://curl.se/, specifically the multi interface of libcurl.

See Also

MultiCURLHandle-class push, pop

Examples

## Not run: # it does not exist
if(url.exists("http://eeyore.ucdavis.edu/cgi-bin/testForm1.pl")) {

f = system.file("NAMESPACE", package = "RCurl")
postForm("http://eeyore.ucdavis.edu/cgi-bin/testForm1.pl",

"fileData" = fileUpload(f))

postForm("http://eeyore.ucdavis.edu/cgi-bin/testForm1.pl",
"fileData" = fileUpload("",

paste(readLines(f), collapse = "\n"),
"text/plain"))

postForm("http://eeyore.ucdavis.edu/cgi-bin/testForm1.pl",
"fileData" = fileUpload(f,

paste(readLines(f), collapse = "\n")
),

.opts = list(verbose = TRUE, header = TRUE))
}
## End(Not run)

https://curl.se/
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CURLEnums Classes and coercion methods for enumerations in libcurl

Description

These are classes and coercion methods for enumeration types in RCurl corresponding to symbolic
constants in libcurl. The actual constants are not exported, but are defined within the package. So
we can use them with code such as RCurl:::CURLINFO_DATA_IN.

Author(s)

Duncan Temple Lang

curlError Raise a warning or error about a CURL problem

Description

This function is called to raise an error or warning that arises from a curl operation when making
a request. This is called from C code that encounters the error and this function is responsible for
generating the error.

Usage

curlError(type, msg, asError = TRUE)

Arguments

type the type of the error or a status code identifying the type of the error. Typi-
cally this is an integer value that identifies the type of the Curl error. The value
corresponds to one of the enumerated value of type CURLcode.

msg the error message, as a character vector of length 1

asError a logical value that indicates whether to raise an error or a warning

Value

This calls warning or stop with the relevant condition object. The object is always of basic
(S3) class GenericCurlError, error, condition or GenericCurlError, warning, condition.
When the type value corresponds to a CURLCode value, the condition has the primary class given
by that CURLCode’s name, e.g. COULDNT_RESOLVE_HOST, TOO_MANY_REDIRECTS (with the CURLE
prefix removed).

Author(s)

Duncan Temple Lang
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References

libcurl documentation.

See Also

curlPerform

Examples

# This illustrates generating and catching an error.
# We intentionally give a mis-spelled URL.
tryCatch(curlPerform(url = "ftp.wcc.nrcs.usda.govx"),

COULDNT_RESOLVE_HOST = function(x) cat("resolve problem\n"),
error = function(x) cat(class(x), "got it\n"))

curlEscape Handle characters in URL that need to be escaped

Description

These functions convert between URLs that are human-readable and those that have special char-
acters escaped. For example, to send a URL with a space, we need to represent the space as %20.

curlPercentEncode uses a different format than the curlEscape function and this is needed for
x-www-form-encoded POST submissions.

Usage

curlEscape(urls)
curlUnescape(urls)
curlPercentEncode(x, amp = TRUE, codes = PercentCodes, post.amp = FALSE)

Arguments

urls a character vector giving the strings to be escaped or unescaped.

x the strings to be encoded via the percent-encoding method

amp a logical value indicating whether to encode & characters.

codes the named character vector giving the encoding map. The names are the charac-
ters we encode, the values are what we encode them as.

post.amp a logical value controlling whether the resulting string is further processed to
escape the percent (%) prefixes with the code for percent, i.e. %25.

Details

This calls curl_escape or curl_unescape in the libcurl library.
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Value

A character vector that has corresponding elements to the input with the characters escaped or not.

Author(s)

Duncan Temple Lang

References

Curl homepage https://curl.se/

Percent encoding explained in https://en.wikipedia.org/wiki/Percent-encoding

Examples

curlEscape("http://www.abc.com?x=a is a sentence&a b=and another")

# Reverse it should get back original
curlUnescape(curlEscape("http://www.abc.com?x=a is a sentence&a b=and another"))

CurlFeatureBits Constants for libcurl

Description

These are enums and bit fields defining constants used in libcurl and used in R to specify values
symbolically.

Usage

CurlFeatureBits

Format

named integer vectors. The names give the symbolic constants that can be used in R and C code.
These are mapped to their integer equivalents and used in C-level computations.

Source

libcurl (see https://curl.se/)

https://curl.se/
https://en.wikipedia.org/wiki/Percent-encoding
https://curl.se/
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curlGlobalInit Start and stop the Curl library

Description

These functions provide a way to both start/initialize and stop/uninitialize the libcurl engine. There
is no need to call curlGlobalInit as it is done implicitly the first time one uses the libcurl facilities.
However, this function does permit one to explicitly control how it is initialized. Specifically, on
Windows one might want to avoid re-initializing the Win32 socket facilities if the host application
(e.g. R) has already done this.

curlGlobalInit should only be called once per R session. Subsequent calls will have no effect, or
may confuse the libcurl engine.

One can reclaim the resources the libcurl engine is consuming via the curlGlobalCleanup function
when one no longer needs the libcurl facilities in an R session.

Usage

curlGlobalInit(flags = c("ssl", "win32"))
curlGlobalCleanup()

Arguments

flags flags indicating which features to activate. These come from the CurlGlobalBits
bit-field. The default is to activate both SSL and Win32 sockets (if on Win-
dows). One can specify either the names of the features that are matched (via
setBitIndicators) or the integer value.

Value

curlGobalInit returns a status code which should be 0. curlGlobalCleanup returns NULL in all
cases.

Author(s)

Duncan Temple Lang

References

Curl homepage https://curl.se/

See Also

getCurlHandle curlPerform

https://curl.se/
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Examples

# Activate only the SSL.
curlGlobalInit("ssl")

## Not run:
# Don't run these automatically as we should only call this function
# once per R session

# Everything, the default.
curlGlobalInit()

# Nothing.
curlGlobalInit("none")
curlGlobalInit(0)

## End(Not run)

CURLHandle-class Class "CURLHandle" for synchronous HTTP requests

Description

This is the basic class used for performing HTTP requests in the RCurl package. In R, this is a
reference to a C-level data structure so we treat it as an opaque data type. However, essentially
we can think of this as an with a set of options that persists across calls, i.e. HTTP requests. The
numerous options that one can set can be see via getCurlOptionsConstants. The object can keep
a connection to a Web server open for a period of time across calls.

This class differs from MultiCURLHandle-class as it can handle only one request at a time and
blocks until the request is completed (normally or abnormally). The other class can handle asyn-
chronous, multiple connections.

Objects from the Class

A virtual Class: No objects may be created from it.

Extends

Class "oldClass", directly.

Author(s)

Duncan Temple Lang

References

https://curl.se/, the libcurl web site.

https://curl.se/
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See Also

getURL, getForm, postForm dupCurlHandle, getCurlHandle, MultiCURLHandle-class

curlOptions Constructor and accessors for CURLOptions objects

Description

These functions provide a constructor and accessor methods for the (currently S3) class CURLOptions.
This class is a way to group and manage options settings for CURL. These functions manage a
named list of options where the names are elements of a fixed. Not all elements need be set, but
these functions take care of expanding names to match the fixed set, while allowing callers to use
abbreviated/partial names. Names that do not match (via pmatch) will cause an error.

The set of possible names is given by names(getCurlOptionsConstants()) or more directly with
listCurlOptions().

mapCurlOptNames handles the partial matching and expansion of the names of the options for all
the functions that handle CURL options. Currently this uses pmatch to perform the matching and
so rejects words that are ambiguous, i.e. have multiple matches within the set of permissible option
names. As a result, "head" will match both "header" and "headerfunction". We may change this
behavior in the future, but we encourage using the full names for readability of code if nothing else.

Usage

curlOptions(..., .opts = list())
getCurlOptionsConstants()
## S3 replacement method for class 'CURLOptions'
x[i] <- value
## S3 replacement method for class 'CURLOptions'
x[[i]] <- value
listCurlOptions()
getCurlOptionTypes(opts = getCurlOptionsConstants())

Arguments

... name-value pairs identifying the settings for the options of interest.

.opts a named list of options, typically a previously created CURLOptions object.
These are merged with the options specified in ....

x a CURLOptions object

i the name(s) of the option elements being accessed. These can be partial names
matching elements in the set of known options. Other names will cause an error.

value the values to assign to the options identified via i.

opts the options whose type description are of interest in the call.
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Details

These functions use mapCurlOptNames to match and hence expand the names the callers provide.

Value

curlOptions returns an object of class CURLOptions which is simply a named list.

getCurlConstants returns a named vector identifying the names of the possible options and their
associated values. These values are used in the C code and also each integer encodes the type of the
argument expected by the C code for that option.

getCurlOptionTypes returns human-readable, heuristic descriptions of the types expected for the
different options. These are integer/logical corresponding to "long" in the RCurl documentation;
string/object pointer corresponding to "char *" or ; function corresponding to a function/routine
pointer; large number corresponding to a curl_off_t.

Author(s)

Duncan Temple Lang

References

Curl homepage https://curl.se/

See Also

curlPerform curlSetOpt

Examples

tt = basicTextGatherer()
myOpts = curlOptions(verbose = TRUE, header = TRUE, writefunc = tt[[1]])

# note that the names are expanded, e.g. writefunc is now writefunction.
names(myOpts)

myOpts[["header"]]

myOpts[["header"]] <- FALSE

# Using the abbreviation "hea" is an error as it matches
# both
# myOpts[["hea"]] <- FALSE

# Remove the option from the list
myOpts[["header"]] <- NULL

https://curl.se/
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curlPerform Perform the HTTP query

Description

These function causes the HTTP query, that has been specified via the different options in this and
other calls, to be sent and processed. Unlike in curl itself, for curlPerform one can specify all the
options in this call as an atomic invocation. This avoids having to set the options and then perform
the action. Instead, this is all done in one call.

For curlMultiPerform, one must add the relevant CURLHandle-class objects to the MultiCURLHandle-class
objects before issuing the call to curlMultiPerform.

Usage

curlPerform(..., .opts = list(), curl = getCurlHandle(), .encoding = integer())
curlMultiPerform(curl, multiple = TRUE)

Arguments

curl for curlPerform, this is the CURLHandle object giving the structure for the op-
tions and that will process the command. For curlMultiPerform, this is an
object of class code MultiCURLHandle-class.

... a named list of curl options to set after the handle has been created.

.opts a named list or CURLOptions object identifying the curl options for the handle.
This is merged with the values of . . . to create the actual options for the curl
handle in the request.

multiple a logical value. If TRUE and the internal call to curl_multi_perform returns a
value that indicates there is still data available from one of the HTTP responses,
we call curl_multi_perform repeatedly until there is no more data available
at that time. If this is FALSE, we call curl_multi_perform once and return,
regardless of whether there is more data available. This is convenient if we want
to limit the time spent in the call to curlMultiPerform.

.encoding an integer or a string that explicitly identifies the encoding of the content that is
returned by the HTTP server in its response to our query. The possible strings are
‘UTF-8’ or ‘ISO-8859-1’ and the integers should be specified symbolically as
CE_UTF8 and CE_LATIN1. Note that, by default, the package attempts to process
the header of the HTTP response to determine the encoding. This argument
is used when such information is erroneous and the caller knows the correct
encoding.
Note that the encoding argument is not a regular libcurl option and is handled
specially by RCurl. But as a result, it is not unset in subsequent uses of the curl
handle (curl).

Value

A integer value indicating the status of the request. This should be 0 as other errors will generate
errors.



24 curlPerform

Author(s)

Duncan Temple Lang

References

Curl homepage https://curl.se/

See Also

getURL postForm getForm curlSetOpt

Examples

if(url.exists("https://www.omegahat.net/RCurl")) withAutoprint({
h = basicTextGatherer()
curlPerform(url = "https://www.omegahat.net/RCurl", writefunction = h$update)
# Now read the text that was cumulated during the query response.
cat(h$value())

})

## this no longer exists
if(url.exists("http://services.soaplite.com/hibye.cgi")) withAutoprint({

# SOAP request
body = '<?xml version="1.0" encoding="UTF-8"?>\

<SOAP-ENV:Envelope SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" \
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/" \
xmlns:xsd="http://www.w3.org/1999/XMLSchema" \
xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/" \
xmlns:xsi="http://www.w3.org/1999/XMLSchema-instance">\

<SOAP-ENV:Body>\
<namesp1:hi xmlns:namesp1="http://www.soaplite.com/Demo"/>\

</SOAP-ENV:Body>\
</SOAP-ENV:Envelope>\n'

h$reset()
curlPerform(url = "http://services.soaplite.com/hibye.cgi",

httpheader=c(Accept="text/xml", Accept="multipart/*",
SOAPAction='"http://www.soaplite.com/Demo#hi"',
'Content-Type' = "text/xml; charset=utf-8"),

postfields=body,
writefunction = h$update,
verbose = TRUE
)

body = h$value()

})

# Using a C routine as the reader of the body of the response.

https://curl.se/
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if(url.exists("https://www.omegahat.net/RCurl/index.html")) withAutoprint({
routine = getNativeSymbolInfo("R_internalWriteTest", PACKAGE = "RCurl")$address
curlPerform(URL = "https://www.omegahat.net/RCurl/index.html",

writefunction = routine)
})

curlSetOpt Set values for the CURL options

Description

This function allows us to set values for the possible options in the CURL data structure that defines
the HTTP request. These options persist across calls in the CURLHandle object.

Usage

curlSetOpt(..., .opts = list(), curl = getCurlHandle(),
.encoding = integer(), .forceHeaderNames = FALSE,
.isProtected = FALSE)

Arguments

... a named list of curl options to set after the handle has been created.

.opts a named list or CURLOptions object identifying the curl options for the handle.

curl the CURLHandle object created earlier via a call to getCurlHandle or dupCurlHandle

.encoding an integer or a string that explicitly identifies the encoding of the content that is
returned by the HTTP server in its response to our query. The possible strings are
‘UTF-8’ or ‘ISO-8859-1’ and the integers should be specified symbolically as
CE_UTF8 and CE_LATIN1. Note that, by default, the package attempts to process
the header of the HTTP response to determine the encoding. This argument
is used when such information is erroneous and the caller knows the correct
encoding.

.forceHeaderNames

a logical value which if TRUE allows the caller to explicitly indicate that the
HTTPHEADER option needs to have the names prefixed to the strings. This
removes any ambiguity caused by the presence of ’:’ in the values appearing to
be the separator between the name and the value of the name: value pairs of the
HTTP header.

.isProtected a logical vector (or value that is repeated) specifying which of the values in
. . . and .opts need to be explicitly protected from garbage collection or not.
The basic idea is that we specify FALSE if the value being set for the curl option
may be garbage collected before the curl handle is garbage collected. This
would leave the curl object in an inconsistent state, referring to an R object (i.e.
an R function), which may be used after the R object has been garbage collected.
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Value

An integer value giving the status of the return. This should be 0 as if there was an error in the
libcurl mechiansim, we will throw it there.

Author(s)

Duncan Temple Lang

References

Curl homepage https://curl.se/

See Also

getCurlHandle dupCurlHandle

Examples

if(url.exists("https://www.omegahat.net")) {

curl = getCurlHandle()
# Note the header that extends across two lines with the second line
# prefixed with white space.

curlSetOpt( .opts = list(httpheader = c(Date = "Wed, 1/2/2000 10:01:01",
foo="abc\n extra line"), verbose = TRUE),

curl = curl)
ans = getURL("https://www.omegahat.net", curl = curl)

}

curlVersion Information describing the Curl library

Description

This function queries the Curl library to provide information about its characteristics when it was
compiled. This tells the user about its capabilities and can be used to determine strategies.

Usage

curlVersion(id = 0)

Arguments

id an integer value between 0 and 3 inclusive. The idea is that one specifies the
identifier for the version of interest. In fact, all values seem to yield the same
result.

https://curl.se/
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Value

A list

age integer giving the number of this libcurl, 0 is FIRST, 1 is SECOND, 2 is THIRD

version the version identifier as a string, e.g. "7.12.0"

version_num the value as an integer

host the machine on which the libcurl was configured/built.

features a named integer vector of bits indicating what features of libcurl were configured
and built into this version. These are features such as ipv6, ssl, libz, largefile,
ntlm (Microsoft "authorization").

ssl_version the string identifying the SSL version.
ssl_version_num

the number identifying the SSL version

libz_version the string identifying the version of libz.

protocols a character vector of the supported HTTP protocols, e.g. http, https, ftp, ldap,
gopher, telnet

ares name of the asynchronous DNS (domain name service) lookup library. This is
often simply the empty string indicating it is not there.

ares_num the number for the ares library

libidn the name of the IDN (internationalized domain names) library being used. This
field only appears in version 3 of libcurl. If you are using version 2 (e.g. curl-
7.11.2), this will be NA. An empty string indicates that the field is present, but
has no value.

See the man page for curl_version_info for a description of these fields. features in R is a
named integer vector detailing the different features.

Author(s)

Duncan Temple Lang

References

Curl homepage https://curl.se/

See Also

curl_version_info in the libcurl documentation.

Examples

curlVersion()

https://curl.se/
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dynCurlReader Dynamically determine content-type of body from HTTP header and
set body reader

Description

This function is used for the writefunction option in a curl HTTP request. The idea is that we
read the header of the HTTP response and when our code determines that the header is complete
(the presence of a blank line), it examines the contents of the header and finds a Content-Type field.
It uses the value of this to determine the nature of the body of the HTTP response and dynamically
(re)sets the reader for the curl handle appropriately. If the content is binary, it collects the content
into a raw vector; if it is text, it sets the appropriate character encoding and collects the content into
a character vector.

This function is like basicTextGatherer but behaves dynamically by determining how to read the
content based on the header of the HTTP response. This function returns a list of functions that are
used to update and query a shared state across calls.

Usage

dynCurlReader(curl = getCurlHandle(), txt = character(), max = NA,
value = NULL, verbose = FALSE, binary = NA, baseURL = NA,
isHTTP = NA, encoding = NA)

Arguments

curl the curl handle to be used for the request. It is essential that this handle be used
in the low-level call to curlPerform so that the update element sets the reader
for the body on the appropriate curl handle that is used in the request.

txt initial value of the text. This is almost always an empty character vector.

max the maximum number of characters to read. This is almost always NA.

value a function that can be specified which will be used to convert the body of the
response from text or raw in a customized manner, e.g. uncompress a gzip body.
This can als be done explicitly with a call fun(reader$value()) after the body
has been read. The advantage of specifying the function in the constructor of
the reader is that the end-user doesn’t have to know which function to use to do
the conversion.

verbose a logical value indicating whether messages about progress and operations are
written on the console as the header and body are processed.

binary a logical value indicating whether the caller knows whether the resulting content
is binary (TRUE) or not (FALSE) or unknown (NA).

baseURL the URL of the request which can be used to follow links to other URLs that are
described relative to this.

isHTTP a logical value indicating whether the request/download uses HTTP or not. If
this is NA, we determine this when the header is received. If the caller knows this
is an FTP or other request, they can specify this when creating the reader.
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encoding a string that allows the caller to specify and override the encoding of the result.
This is used to convert text returned from the server.

Value

A list with 5 elements all of which are functions. These are

update the function that does the actual reading/processing of the content that libcurl
passes to it from the header and the body. This is the work-horse of the reader.

value a function to get the body of the response

header a function to get the content of the HTPP header

reset a function to reset the internal contents which allows the same reader to be re-
used in subsequent HTTP requests

curl accessor function for the curl handle specified in the call to create this dynamic
reader object.

This list has the S3 class vector c("DynamicRCurlTextHandler", "RCurlTextHandler", "RCurlCallbackFunction")

Author(s)

Duncan Temple Lang

References

libcurl https://curl.se/

See Also

basicTextGatherer curlPerform getURLContent

Examples

# Each of these examples can be done with getURLContent().
# These are here just to illustrate the dynamic reader.

if(url.exists("https://www.omegahat.net/Rcartogram/demo.jpg")) withAutoprint({
header = dynCurlReader()
curlPerform(url = "https://www.omegahat.net/Rcartogram/demo.jpg",

headerfunction = header$update, curl = header$curl())
class( header$value() )
length( header$value() )

})

if(url.exists("https://www.omegahat.net/dd.gz")) withAutoprint({
# gzip example.

header = dynCurlReader()
curlPerform(url = "https://www.omegahat.net/dd.gz",

headerfunction = header$update, curl = header$curl())
class( header$value() )
length( header$value() )

https://curl.se/
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if (getRversion() >= "4")
cat(memDecompress(header$value(), asChar = TRUE))

## or cat(Rcompression::gunzip(header$value()))
})

# Character encoding example
## Not run:

header = dynCurlReader()
curlPerform(url = "http://www.razorvine.net/test/utf8form/formaccepter.sn",

postfields = c(text = "ABC", outputencoding = "UTF-8"),
verbose = TRUE,
writefunction = header$update, curl = header$curl())

class( header$value() )
Encoding( header$value() )

## End(Not run)

fileUpload Specify information about a file to upload in an HTTP request

Description

This function creates an object that describes all of the details needed to include the contents of a
file in the submission of an HTTP request, typically a multi-part form submitted via postForm. The
idea is that we want to transfer the contents of a file or a buffer of data within R that is not actually
stored on the file system but is resident in the R session. We want to be able to specify either the
name of the file and have RCurl read the contents when they are needed, or alternatively specify
the contents ourselves if it makes sense that we already have the contents in R, e.g. that they are
dynamically generated. Additionally, we may need to specify the type of data in the file/buffer via
the Content-Type field for this parameter in the request. This function allows us to specify either
the file name or contents and optionally the content type.

This is used as an element in of the params argument postForm and the native C code understands
and processes objects returned from this function.

Usage

fileUpload(filename = character(), contents = character(), contentType = character())

Arguments

filename the name of the file that RCurl is to pass in the form submission/HTTP request.
If this is specified and no value for contents is given, this has to identify a
valid/existing file. If contents is specified, any value provided here is used
simply to provide information about the provenance of the data in contents. The
file need not exist. The path is expanded by the function, so ~ can be used.

contents either a character vector or a raw vector giving the contents or data to be sub-
mitted. If this is provided, filename is not needed and not read.
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contentType a character string (vector of length 1) giving the type of the content, e.g. text/plain,
text/html, which helps the server receiving the data to interpret the contents. If
omitted, this is omitted from the form submission and the recipient left to guess.

Value

An object of (S3) class FileUploadInfo with fields filename, contents and contentType.

Author(s)

Duncan Temple Lang

References

https://curl.se/

See Also

postForm

findHTTPHeaderEncoding

Find the encoding of the HTTP response from the HTTP header

Description

This function is currently made available so it can be called from C code to find the charset from the
HTTP header in the response from an HTTP server. It maps this charset value to one of the known
R encodings (UTF-8 or LATIN1) or returns the native encoding.

This will most likely be removed in the future.

Usage

findHTTPHeaderEncoding(str)

Arguments

str one or more lines from the HTTP header

Value

NA or an integer value indicating the encoding to be used. This integer corresponds to the cetype_t
enumeration in Rinternals.h.

Author(s)

Duncan Temple Lang

https://curl.se/


32 ftpUpload

References

Writing R Extensions Manual and the section(s) on character encodings

Examples

findHTTPHeaderEncoding("Content-Type: text/html;charset=ISO-8859-1\r\n")
findHTTPHeaderEncoding("Content-Type: text/html; charset=utf-8\r\n")

ftpUpload Upload content via FTP

Description

This function is a relatively simple wrapper for curlPerform which allows the caller to upload a
file to an FTP server. One can upload the contents of a file from the local file system or the contents
already in memory. One specifies the FTP server and the fully-qualified file name and path where
the contents are to be stored. One can specify the user login and password via the userpwd option
for curlPerform via the . . . parameter, or one can put this information directly in the target URL
(i.e. to) in the form ftp://login:password@machine.name/path/to/file.

This function can handle binary or text content.

Usage

ftpUpload(what, to, asText = inherits(what, "AsIs") || is.raw(what),
..., curl = getCurlHandle())

Arguments

what the name of a local file or the contents to be uploaded. This can can be text or
binary content. This can also be an open connection. If this value is raw or has
class AsIs by being enclosed within I(), it is treated as literal content.

to the URL to which the content is to be uploaded. This should be the ftp server
with the prefix ftp:// and optionally the user login and password, and then the
path to the file in which the content is to be stored.

asText a logical value indicating whether to treat the value of what as content, be it text
or raw/binary vector. Otherwise, what is treated as the name of a file.

... additional arguments passed on to curlPerform.

curl the curl handle to use for the curlPerform

Value

The result of the curlPerform call.

Note

One can also provide additional FTP commands that are executed before and after the upload as
part of the request. Use the prequote, quote, and postquote options in curlPerform for these.
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Author(s)

Duncan Temple Lang

References

FTP, libcurl

See Also

curlPerform getCurlHandle

Examples

## Not run:

ftpUpload(I("Some text to be uploaded into a file\nwith several lines"),
"ftp://login:password@laptop17/ftp/zoe",
)

ftpUpload(I("Some text to be uploaded into a file\nwith several lines"),
"ftp://laptop17/ftp/zoe",
userpwd = "login:password"
)

ftpUpload(system.file("examples", "system.png", package = "RCurl"),
"ftp://login:password@laptop17/ftp/Election.rda",
postquote = c("CWD subdir", "RNFR Election.rda", "RNTO ElectionPolls.rda")
)

## End(Not run)

getBinaryURL Download binary content

Description

This function allows one to download binary content. This is a convenience function that is a call
to getURL with suitable values for the write and file options for the Curl handle. These take care
of processing the body of the response to the Curl request into a vector of "raw" elements.

Binary content from POST forms or other requests that are not simple URL requests can be imple-
mented using the same approach as this function, i.e., specifying the same values as in the body of
this function for write and file in the call to curlPerform.

Usage

getBinaryURL(url, ..., .opts = list(), curl = getCurlHandle(),
.buf = binaryBuffer(.len), .len = 5000)
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Arguments

url the URL identifying the content to download. This can be a regular URL or a
application/x-www-form-urlencoded URL, i.e. with name=value parame-
ters appended to the location via a ?, and separated from each other via a &.

... additional arguments that are passed to getURL.

.opts a list of named values that are passed to getURL as the .opts argument.

curl an optional curl handle used in curlPerform that has been created previously
and is to be reused for this request. This allows the R user to reuse a curl handle
that already has a connection to the server or has settings for options that have
been set previously.

.buf a raw vector in which to insert the body of the response. This is a parameter to
allow the caller to reuse an existing buffer.

.len an non-negative integer which is used as the length for the buffer in which to
store the binary data in the response. The buffer is extended if it is not big
enough but this allows the caller to provide context specific knowledge about
the length of the response, e.g. the size of the file being downloaded, and avoid
expanding the buffer as the material is being processed.

Value

A "raw" vector.

Author(s)

Duncan Temple Lang

See Also

getURL, raw, memDecompress

Examples

u = "https://www.omegahat.net/RCurl/data.gz"

if(url.exists(u)) withAutoprint({

content = getBinaryURL(u)

if (getRversion() >= "4") withAutoprint({
x <- memDecompress(content, asChar = TRUE)
read.csv(textConnection(x))

}) else withAutoprint({
tmp = tempfile()
writeBin(content, con = tmp)
read.csv(gzfile(tmp))
unlink(tmp)

})
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# Working from the Content-Type in the header of the HTTP response.
h = basicTextGatherer()
content = getBinaryURL(u, .opts = list(headerfunction = h$update))
header = parseHTTPHeader(h$value())
type = strsplit(header["Content-Type"], "/")[[1]]

if(type[2] %in% c("x-gzip", "gzip")) {
if (getRversion() >= "4") {

cat(memDecompress(content, asChar = TRUE))
} else {
tmp = tempfile()
writeBin(content, con = tmp)
writeLines(readLines(gzfile(tmp)))
unlink(tmp)
}

}

})

getBitIndicators Operate on bit fields

Description

The getBitIndicators function decompose a value into its respective bit components. The setBitIndicators
combines individual components into a single number to "set" a bit field value.

Usage

getBitIndicators(val, defs)
setBitIndicators(vals, defs)

Arguments

val the value to break up into the bit field components.

defs the named integer vector that defines the bit field elements.

vals the individual components that are to be combined into a single integer value
representing the collection of components. These can be given as names or
integer values that correspond to the elements in the defs, either by name or
value.

Value

getBitIndicators returns a named integer vector representing the components of the bit field in
the value. The names of the vector give the symbolic elements that were set in the value.

setBitIndicators returns a single integer value representing the value from combining the differ-
ent components (e.g. ORing the bits of the different values).
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Author(s)

Duncan Temple Lang

References

Curl homepage https://curl.se/

See Also

The features field in curlVersion.

Examples

getBitIndicators(7, c(A = 1, B = 2, C = 4))
getBitIndicators(3, c(A = 1, B = 2, C = 4))
getBitIndicators(5, c(A = 1, B = 2, C = 4))

getCurlErrorClassNames

Retrieve names of all curl error classes

Description

This function returns the names of all of the error classes that curl can raise as a result of a request.
You can use these names in calls to tryCatch to identify the class of the error for which you want
to provide an error handler.

Usage

getCurlErrorClassNames()

Value

A character vector

Author(s)

Duncan Temple Lang

References

libcurl documentation

See Also

tryCatch curlPerform and higher-level functions for making requests.

https://curl.se/
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getCurlHandle Create libcurl handles

Description

These functions create and duplicate curl handles for use in calls to the HTTP facilities provided by
that low-level language and this R-level interface. A curl handle is an opaque data type that contains
a reference to the internal C-level data structure of libcurl for performing HTTP requests.

The getCurlMutliHandle returns an object that can be used for concurrent, multiple requests. It
is quite different from the regular curl handle and again, should be treated as an opaque data type.

Usage

getCurlHandle(..., .opts = NULL, .encoding = integer(),
.defaults = getOption("RCurlOptions"))

dupCurlHandle(curl, ..., .opts = NULL, .encoding = integer())
getCurlMultiHandle(..., .handles = list(...))

Arguments

curl the existing curl handle that is to be duplicated

... a named list of curl options to set after the handle has been created. For getCurlMultiHandle,
these values are invidivual curl handle objects, created via getCurlHandle or
dupCurlHandle.

.opts a named list or CURLOptions object identifying the curl options for the handle.
These and the ... arguments are used after the handle has been created.

.encoding an integer or a string that explicitly identifies the encoding of the content that is
returned by the HTTP server in its response to our query. The possible strings are
‘UTF-8’ or ‘ISO-8859-1’ and the integers should be specified symbolically as
CE_UTF8 and CE_LATIN1. Note that, by default, the package attempts to process
the header of the HTTP response to determine the encoding. This argument
is used when such information is erroneous and the caller knows the correct
encoding.

.defaults a collection of default values taken from R’s global/session options. This is a
parameter so that one can override it if necessary.

.handles a list of curl handle objects that are used as the individual request handles within
the multi-asynchronous requests

Details

These functions create C-level data structures.

Value

An object of class CURLHandle which is simply a pointer to the memory for the C structure.
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Author(s)

Duncan Temple Lang

References

Curl homepage https://curl.se/

See Also

getURL curlPerform

Examples

options(RCurlOptions = list(verbose = TRUE,
followlocation = TRUE,
autoreferer = TRUE,
nosignal = TRUE))

if(url.exists("https://www.omegahat.net/RCurl")) {
x = getURL("https://www.omegahat.net/RCurl")

# here we override one of these.
x = getURL("https://www.omegahat.net/RCurl", verbose = FALSE)

}

getCurlInfo Access information about a CURL request

Description

This function provides access to data about a previously executed CURL request that is accessible
via a CURLHandle object. This means, of course, that one must have access to the CURLHandle ob-
ject. The information one can get includes items such as the name of the file (potentially containing
redirects), download time,

See getCurlInfoConstants for the names of the possible fields.

Usage

getCurlInfo(curl, which = getCurlInfoConstants())
getCurlInfoConstants()

Arguments

curl the CURLHandle object used to perform the request. This is a reference to an
opaque internal C-level data structure that is provided and used by libcurl to
make a request.

which identifiers for the elements of interest. These can be specified by integer value or
by name. The names are matched against those in the getCurlInfoConstants.

https://curl.se/
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Details

This is an interface to the get_curl_info routine in the libcurl package.

Value

A named list whose elements correspond to the requested fields. The names are expanded to match
the names of these fields and the values are either strings or integer values.

Author(s)

Duncan Temple Lang

References

Curl homepage https://curl.se/

See Also

curlPerform getURL getCurlHandle

Examples

if(url.exists("https://www.omegahat.net/RCurl/index.html")) withAutoprint({
curl = getCurlHandle()
txt = getURL("https://www.omegahat.net/RCurl/index.html", curl = curl)
getCurlInfo(curl)
rm(curl) # release the curl!

})

getFormParams Extract parameters from a form query string

Description

This function facilitates getting the parameter names and values from a URL that is an parameter-
ized HTML query.

This is motivated by a function from Chris Davis and Delft University.

Usage

getFormParams(query, isURL = grepl("^(http|\\?)", query))

Arguments

query the query string or full URL containing the query

isURL a logical value. If TRUE, query is the full URL and we need to extract the sub-
string representing the parameters. If isURL is FALSE, then query is assumed to
be just the string containing the parameters.

https://curl.se/
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Value

A named character vector giving the parameter values The names are the parameter names.

Author(s)

Duncan Temple Lang

Examples

if(url.exists("https://www.omegahat.net/foo/bob.R")) withAutoPrint({

getFormParams("https://www.omegahat.net/foo/bob.R?xyz=1&abc=verylong")

getFormParams("xyz=1&abc=verylong")
getFormParams("xyz=1&abc=&on=true")
getFormParams("xyz=1&abc=")

})

getURIAsynchronous Download multiple URIs concurrently, with inter-leaved downloads

Description

This function allows the caller to specify multiple URIs to download at the same time. All the
requests are submitted and then the replies are processed as data becomes available on each con-
nection. In this way, the responses are processed in an inter-leaved fashion, with a chunk from one
response from one request being processed and then followed by a chunk from a different request.

Downloading documents asynchronously involves some trade-offs. The switching between dif-
ferent streams, detecting when input is available on any of them involves a little more process-
ing and so increases the consumption of CPU cycles. On the other hand, there is a potentially
large saving of time when one considers total time to download. See https://www.omegahat.
net/RCurl/concurrent.xml for more details. This is a common trade-off that arises in concur-
rent/parallel/asynchronous computing.

getURI calls this function if more than one URI is specified and async is TRUE, the default in this
case. One can also download the (contents of the) multiple URIs serially, i.e. one after the other
using getURI with a value of FALSE for async.

Usage

getURIAsynchronous(url, ..., .opts = list(), write = NULL,
curl = getCurlHandle(),
multiHandle = getCurlMultiHandle(), perform = Inf,
.encoding = integer(), binary = rep(NA, length(url)))

https://www.omegahat.net/RCurl/concurrent.xml
https://www.omegahat.net/RCurl/concurrent.xml
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Arguments

url a character vector identifying the URIs to download.

... named arguments to be passed to curlSetOpt when creating each of the differ-
ent curlHandle objects.

.opts a named list or CURLOptions object identifying the curl options for the handle.
This is merged with the values of . . . to create the actual options for the curl
handle in the request.

write an object giving the functions or routines that are to be called when input is
waiting on the different HTTP response streams. By default, a separate callback
function is associated with each input stream. This is necessary for the results
to be meaningful as if we use a single reader, it will be called for all streams
in a haphazard order and the content interleaved. One can do interesting things
however using a single object.

curl the prototypical curlHandle that is duplicated and used in in

multiHandle this is a curl handle for performing asynchronous requests.

perform a number which specifies the maximum number of calls to curlMultiPerform
that are to be made in this function call. This is typically either 0 for no calls
or Inf meaning process the requests until completion. One may find alternative
values useful, such as 1 to ensure that the requests are dispatched.

.encoding an integer or a string that explicitly identifies the encoding of the content that is
returned by the HTTP server in its response to our query. The possible strings are
‘UTF-8’ or ‘ISO-8859-1’ and the integers should be specified symbolically as
CE_UTF8 and CE_LATIN1. Note that, by default, the package attempts to process
the header of the HTTP response to determine the encoding. This argument
is used when such information is erroneous and the caller knows the correct
encoding.

binary a logical vector identifying whether each URI has binary content or simple text.

Details

This uses curlMultiPerform and the multi/asynchronous interface for libcurl.

Value

The return value depends on the run-time characteristics of the call. If the call merely specifies the
URIs to be downloaded, the result is a named character vector. The names identify the URIs and
the elements of the vector are the contents of the corresponding URI.

If the requests are not performed or completed (i.e. perform is zero or too small a value to process
all the chunks) a list with 2 elements is returned. These elements are:

multiHandle the curl multi-handle, of class MultiCURLHandle-class. This can be used in
further calls to curlMultiPerform

write the write argument (after it was potentially expanded to a list). This can then
be used to fetch the results of the requests when the requests are completed in
the future.
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Author(s)

Duncan Temple Lang <duncan@r-project.org>

References

Curl homepage https://curl.se/

See Also

getURL getCurlMultiHandle curlMultiPerform

Examples

uris = c("https://www.omegahat.net/RCurl/index.html",
"https://www.omegahat.net/RCurl/philosophy.xml")

txt = getURIAsynchronous(uris)
names(txt)
nchar(txt)

getURL Download a URI

Description

These functions download one or more URIs (a.k.a. URLs). It uses libcurl under the hood to
perform the request and retrieve the response. There are a myriad of options that can be specified
using the . . . mechanism to control the creation and submission of the request and the processing of
the response.

getURLContent has been added as a high-level function like getURL and getBinaryURL but which
determines the type of the content being downloaded by looking at the resulting HTTP header’s
Content-Type field. It uses this to determine whether the bytes are binary or "text".

The request supports any of the facilities within the version of libcurl that was installed. One can
examine these via curlVersion.

getURLContent doesn’t perform asynchronous or multiple concurrent requests at present.

Usage

getURL(url, ..., .opts = list(),
write = basicTextGatherer(.mapUnicode = .mapUnicode),
curl = getCurlHandle(), async = length(url) > 1,
.encoding = integer(), .mapUnicode = TRUE)

getURI(url, ..., .opts = list(),
write = basicTextGatherer(.mapUnicode = .mapUnicode),
curl = getCurlHandle(), async = length(url) > 1,
.encoding = integer(), .mapUnicode = TRUE)

getURLContent(url, ..., curl = getCurlHandle(.opts = .opts), .encoding = NA,

https://curl.se/
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binary = NA, .opts = list(...),
header = dynCurlReader(curl, binary = binary,

baseURL = url, isHTTP = isHTTP,
encoding = .encoding),

isHTTP = length(grep('^[[:space:]]*http', url)) > 0)

Arguments

url a string giving the URI

... named values that are interpreted as CURL options governing the HTTP request.

.opts a named list or CURLOptions object identifying the curl options for the handle.
This is merged with the values of . . . to create the actual options for the curl
handle in the request.

write if explicitly supplied, this is a function that is called with a single argument each
time the the HTTP response handler has gathered sufficient text. The argument
to the function is a single string. The default argument provides both a function
for cumulating this text and is then used to retrieve it as the return value for this
function.

curl the previously initialized CURL context/handle which can be used for multiple
requests.

async a logical value that determines whether the download request should be done via
asynchronous, concurrent downloading or a serial download. This really only
arises when we are trying to download multiple URIs in a single call. There are
trade-offs between concurrent and serial downloads, essentially trading CPU
cycles for shorter elapsed times. Concurrent downloads reduce the overall time
waiting for getURI/getURL to return.

.encoding an integer or a string that explicitly identifies the encoding of the content that is
returned by the HTTP server in its response to our query. The possible strings are
‘UTF-8’ or ‘ISO-8859-1’ and the integers should be specified symbolically as
CE_UTF8 and CE_LATIN1. Note that, by default, the package attempts to process
the header of the HTTP response to determine the encoding. This argument
is used when such information is erroneous and the caller knows the correct
encoding. The default value leaves the decision to this default mechanism. This
does however currently involve processing each line/chunk of the header (with
a call to an R function). As a result, if one knows the encoding for the resulting
response, specifying this avoids this slight overhead which is probably quite
small relative to network latency and speed.

.mapUnicode a logical value that controls whether the resulting text is processed to map com-
ponents of the form \uxxxx to their appropriate Unicode representation.

binary a logical value indicating whether the caller knows whether the resulting content
is binary (TRUE) or not (FALSE) or unknown (NA).

header this is made available as a parameter of the function to allow callers to construct
different readers for processing the header and body of the (HTTP) response.
Callers specifying this will typically only adjust the call to dynCurlReader, e.g.
to specify a function for its value parameter to control how the body is post-
processed.
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The caller can specify a value of TRUE or FALSE for this parameter. TRUE means
that the header will be returned along with the body; FALSE corresponds to the
default and only the body will be returned. When returning the header, it is first
parsed via parseHTTPHeader, unless the value of header is of class AsIs. So
to get the raw header, pass the argument as header = I(TRUE).

isHTTP a logical value that indicates whether the request an HTTP request. This is used
when determining how to process the response.

Value

If no value is supplied for write, the result is the text that is the HTTP response. (HTTP header in-
formation is included if the header option for CURL is set to TRUE and no handler for headerfunction
is supplied in the CURL options.)

Alternatively, if a value is supplied for the write parameter, this is returned. This allows the caller
to create a handler within the call and get it back. This avoids having to explicitly create and assign
it and then call getURL and then access the result. Instead, the 3 steps can be inlined in a single call.

Author(s)

Duncan Temple Lang

References

Curl homepage https://curl.se/

See Also

getBinaryURL curlPerform curlOptions

Examples

omegahatExists = url.exists("https://www.omegahat.net")

# Regular HTTP
if(omegahatExists && requireNamespace("XML", quietly = TRUE)) withAutoprint({

txt = getURL("https://www.omegahat.net/RCurl/")
## Then we could parse the result.
XML::htmlTreeParse(txt, asText = TRUE)

})

# HTTPS. First check to see that we have support compiled into
# libcurl for ssl.

if(interactive() && ("ssl" %in% names(curlVersion()$features))
&& url.exists("https://sourceforge.net/")) {

txt = tryCatch(getURL("https://sourceforge.net/"),
error = function(e) {

getURL("https://sourceforge.net/",
ssl.verifypeer = FALSE)

})

https://curl.se/
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}

# Create a CURL handle that we will reuse.
if(interactive() && omegahatExists) {

curl = getCurlHandle()
pages = list()
for(u in c("https://www.omegahat.net/RCurl/index.html",

"https://www.omegahat.net/RGtk/index.html")) {
pages[[u]] = getURL(u, curl = curl)

}
}

# Set additional fields in the header of the HTTP request.
# verbose option allows us to see that they were included.

if(omegahatExists)
getURL("https://www.omegahat.net", httpheader = c(Accept = "text/html",

MyField = "Duncan"),
verbose = TRUE)

# Arrange to read the header of the response from the HTTP server as
# a separate "stream". Then we can break it into name-value
# pairs. (The first line is the HTTP/1.1 200 Ok or 301 Moved Permanently
# status line)

if(omegahatExists) withAutoprint({
h = basicTextGatherer()
txt = getURL("https://www.omegahat.net/RCurl/index.html",

header= TRUE, headerfunction = h$update,
httpheader = c(Accept="text/html", Test=1), verbose = TRUE)

print(paste(h$value(NULL)[-1], collapse=""))
con <- textConnection(paste(h$value(NULL)[-1], collapse=""))
read.dcf(con)
close(con)

})

# Test the passwords.
if(omegahatExists) withAutoprint({
x = getURL("https://www.omegahat.net/RCurl/testPassword/index.html", userpwd = "bob:duncantl")

# Catch an error because no authorization
# We catch the generic HTTPError, but we could catch the more specific "Unauthorized" error

# type.
x = tryCatch(getURLContent("https://www.omegahat.net/RCurl/testPassword/index.html"),

HTTPError = function(e) {
cat("HTTP error: ", e$message, "\n")

})
})
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## Not run:
# Needs specific information from the cookie file on a per user basis
# with a registration to the NY times.
x = getURL("https://www.nytimes.com",

header = TRUE, verbose = TRUE,
cookiefile = "/home/duncan/Rcookies",
netrc = TRUE,
maxredirs = as.integer(20),
netrc.file = "/home2/duncan/.netrc1",
followlocation = TRUE)

## End(Not run)

if(interactive() && omegahatExists) {
d = debugGatherer()
x = getURL("https://www.omegahat.net", debugfunction = d$update, verbose = TRUE)
d$value()

}

#############################################
# Using an option set in R

if(interactive() && omegahatExists) {
opts = curlOptions(header = TRUE, userpwd = "bob:duncantl", netrc = TRUE)

getURL("https://www.omegahat.net/RCurl/testPassword/index.html", verbose = TRUE, .opts = opts)

# Using options in the CURL handle.
h = getCurlHandle(header = TRUE, userpwd = "bob:duncantl", netrc = TRUE)

getURL("https://www.omegahat.net/RCurl/testPassword/index.html", verbose = TRUE, curl = h)
}

# Use a C routine as the reader. Currently gives a warning.
if(interactive() && omegahatExists) {

routine = getNativeSymbolInfo("R_internalWriteTest", PACKAGE = "RCurl")$address
getURL("https://www.omegahat.net/RCurl/index.html", writefunction = routine)

}

# Example
if(interactive() && omegahatExists) {

uris = c("https://www.omegahat.net/RCurl/index.html",
"https://www.omegahat.net/RCurl/philosophy.xml")

txt = getURI(uris)
names(txt)
nchar(txt)

txt = getURI(uris, async = FALSE)
names(txt)
nchar(txt)
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routine = getNativeSymbolInfo("R_internalWriteTest", PACKAGE = "RCurl")$address
txt = getURI(uris, write = routine, async = FALSE)
names(txt)
nchar(txt)

# getURLContent() for text and binary
x = getURLContent("https://www.omegahat.net/RCurl/index.html")
class(x)

x = getURLContent("https://www.omegahat.net/RCurl/data.gz")
class(x)
attr(x, "Content-Type")

x = getURLContent("https://www.omegahat.net/Rcartogram/demo.jpg")
class(x)
attr(x, "Content-Type")

curl = getCurlHandle()
dd = getURLContent("https://www.omegahat.net/RJSONIO/RJSONIO.pdf",

curl = curl,
header = dynCurlReader(curl, binary = TRUE,

value = function(x) {
print(attributes(x))
x}))

}

# FTP
# Download the files within a directory.

if(interactive() && url.exists('ftp://ftp.wcc.nrcs.usda.gov')) {

url = 'ftp://ftp.wcc.nrcs.usda.gov/data/snow/snow_course/table/history/idaho/'
filenames = getURL(url, ftp.use.epsv = FALSE, dirlistonly = TRUE)

# Deal with newlines as \n or \r\n. (BDR)
# Or alternatively, instruct libcurl to change \n's to \r\n's for us with crlf = TRUE
# filenames = getURL(url, ftp.use.epsv = FALSE, ftplistonly = TRUE, crlf = TRUE)

filenames = paste(url, strsplit(filenames, "\r*\n")[[1]], sep = "")
con = getCurlHandle( ftp.use.epsv = FALSE)

# there is a slight possibility that some of the files that are
# returned in the directory listing and in filenames will disappear
# when we go back to get them. So we use a try() in the call getURL.

contents = sapply(filenames[1:5], function(x) try(getURL(x, curl = con)))
names(contents) = filenames[1:length(contents)]

}
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guessMIMEType Infer the MIME type from a file name

Description

This function returns the MIME type, i.e. part of the value used in the Content-Type for an HTTP
request/response or in email to identify the nature of the content. This is a string such as "text/plain"
or "text/xml" or "image/png".

The function consults an R object constructed by reading a Web site of known MIME types (not
necessarily all) and matching the extension of the file name to the names of that table.

Usage

guessMIMEType(name, default = NA)

Arguments

name character vector of file names

default the value to use if no MIME type is found in the table for the given file name/extension.

Value

A character vector giving the MIME types for each element of name.

Author(s)

Duncan Temple Lang

References

The table of MIME types and extensions was programmatically extracted from ‘http://www.webmaster-toolkit.com/mime-types.shtml’
with tbls = readHTMLTable("http://www.webmaster-toolkit.com/mime-types.shtml") tmp
= tbls[[1]][-1,] mimeTypeExtensions = structure(as.character(tmp[[2]]), names = gsub("^\.",
"", tmp[[1]])) save(mimeTypeExtensions, file = "data/mimeTypeExtensions.rda") The IANA
list is not as convenient to programmatically compile.

See Also

Uploading file.

Examples

guessMIMEType(c("foo.txt", "foo.png", "foo.jpeg", "foo.Z", "foo.R"))

guessMIMEType("foo.bob")
guessMIMEType("foo.bob", "application/x-binary")
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httpPUT Simple high-level functions for HTTP PUT and DELETE

Description

These two functions are simple, high-level functions that implement the HTTP request methods
PUT and DELETE. These can also be done by specifying the method type using the curl option
customrequest. These functions merely provide a convenience wrapper for getURLContent with
the HTTP method specified.

Usage

httpPUT(url, content, ..., curl = getCurlHandle())
httpPOST(url, ..., curl = getCurlHandle())
httpDELETE(url, ..., curl = getCurlHandle())
httpGET(url, ..., curl = getCurlHandle())
httpHEAD(url, ..., curl = getCurlHandle())
httpOPTIONS(url, ..., curl = getCurlHandle())

Arguments

url the URL of the server to which the HTTP request is to be made

content the value that is to be used as the content of the PUT request. This can be a
character or a raw object.

... additional arguments passed to getURLContent

curl the curl handle to be used to make the request

Value

The content returned by the server as a result of the request.

Author(s)

Duncan Temple Lang

See Also

getURLContent

Examples

## Not run:
# create a database in a CouchDB server

httpPUT("http://127.0.0.1:5984/temp_db")

# Insert an entry into an ElasticSearch dabtabase.
httpPUT("http://localhost:9200/a/b/axyz", '{"abc" : 123}')
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# Then delete the database
httpDELETE("http://127.0.0.1:5984/temp_db")

## End(Not run)

HTTP_VERSION_1_0 Symbolic constants for specifying HTTP and SSL versions in libcurl

Description

These are values that can be used to set the http.version and sslversion options of curlPerform.

Usage

HTTP_VERSION_1_0

References

https://curl.se/libcurl/c/curl_easy_setopt.html

merge.list Method for merging two lists by name

Description

This is a method that merges the contents of one list with another by adding the named elements in
the second that are not in the first. In other words, the first list is the target template, and the second
one adds any extra elements that it has.

Usage

merge.list(x, y, ...)

Arguments

x the list to which elements will be added

y the list which will supply additional elements to x that are not already there by
name.

... not used.

Value

A named list whose name set is the union of the elements in names of x and y and whose values are
those taken from y and then with those in x, overwriting if necessary.

https://curl.se/libcurl/c/curl_easy_setopt.html


mimeTypeExtensions 51

Author(s)

Duncan Temple Lang

References

Curl homepage https://curl.se/

See Also

merge

Examples

## Not run:
# Not exported.

merge.list(list(a=1, b = "xyz", c = function(x, y) {x+y}),
list(a = 2, z = "a string"))

# No values in y
merge.list(list(a=1, b = "xyz", c = function(x, y) {x+y}), list())

# No values in x
merge.list(list(), list(a=1, b = "xyz", c = function(x, y) {x+y}))

## End(Not run)

mimeTypeExtensions Mapping from extension to MIME type

Description

This is a programmatically generated character vector whose names identify the MIME type typi-
cally associated with the extension which are the values. This is used in guessMIMEType. We can
match an extension and then find the corresponding MIME type. There are duplicates.

Usage

data(mimeTypeExtensions)

Format

The format is a named character vector where the names are the MIME types and the values are the
file extensions.

https://curl.se/
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Source

The table of MIME types and extensions was programmatically extracted from ‘http://www.webmaster-toolkit.com/mime-types.shtml’
with tbls = readHTMLTable("http://www.webmaster-toolkit.com/mime-types.shtml") tmp
= tbls[[1]][-1,] mimeTypeExtensions = structure(as.character(tmp[[2]]), names = gsub("^\.",
"", tmp[[1]])) save(mimeTypeExtensions, file = "data/mimeTypeExtensions.rda") The IANA
list is not as convenient to programmatically compile.

Examples

data(mimeTypeExtensions)

MultiCURLHandle-class Class "MultiCURLHandle" for asynchronous, concurrent HTTP re-
quests

Description

This is a class that represents a handle to an internal C-level data structure provided by libcurl to
perform multiple HTTP requests in a single operation and process the responses in an inter-leaved
fashion, i.e. a chunk from one, followed by a chunk from another.

Objects of this class contain not only a reference to the internal C-level data structure, but also have
a list of the CURLHandle-class objects that represent the individual HTTP requests that make up
the collection of concurrent requests. These are maintained for garbage collection reasons.

Essentially, the data in objects of this class are for internal use; this is an opaque class in R.

Objects from the Class

The constructor function getCurlMultiHandle is the only way to create meaningful instances of
this class.

Slots

ref: Object of class "externalptr". This is a reference to the instance of the libcurl data structure
CURLM pointer.

subhandles: Object of class "list". This is a list of CURLHandle-class instances that have been
push()ed onto the multi-handle stack.

Methods

pop signature(obj = "MultiCURLHandle", val = "CURLHandle"): ...

pop signature(obj = "MultiCURLHandle", val = "character"): ...

push signature(obj = "MultiCURLHandle", val = "CURLHandle"): ...

Author(s)

Duncan Temple Lang
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References

Curl homepage https://curl.se/ https://www.omegahat.net/RCurl/

See Also

getCurlMultiHandle curlMultiPerform multiTextGatherer

postForm Submit an HTML form

Description

These functions provide facilities for submitting an HTML form using either the simple GET mech-
anism (appending the name-value pairs of parameters in the URL) or the POST method which puts
the name-value pairs as separate sections in the body of the HTTP request. The choice of action is
defined by the form, not the caller.

Usage

postForm(uri, ..., .params = list(), .opts = curlOptions(url = uri),
curl = getCurlHandle(), style = 'HTTPPOST',
.encoding = integer(), binary = NA, .checkParams = TRUE,
.contentEncodeFun = curlEscape)

.postForm(curl, .opts, .params, style = 'HTTPPOST')
getForm(uri, ..., .params = character(), .opts = list(), curl = getCurlHandle(),

.encoding = integer(), binary = NA, .checkParams = TRUE)

Arguments

uri the full URI to which the form is to be posted. This includes the host and the
specific file or script which will process the form.

... the name-value pairs of parameters. Note that these are not the CURL options.

.params instead of specifying the name-value parameters in "free" form via the . . . argument,
one can specify them as named list or character vector.

.opts an object representing the CURL options for this call.

curl the CURLHandle object created earlier if one is reusing these objects. Otherwise,
a new one is generated and discarded.

style this is typically a string and controls how the form data is posted, specifically the
value for the Content-Type header and the particular representation. Use ’http-
post’ to use a multipart/form-data transmission and use ’post’ for application/x-www-form-urlencoded
content. This string is compared to the names of (the internal) PostStyles vec-
tor using partial matching. In the future, we will use enum values within R. The
default is multipart/form-data for reasons of backward compatability.

.encoding the encoding of the result, if it is known a priori. This can be an integer between
0 and 4 or more appropriately a string identifying the encoding as one of "utf-8",
or "ISO-859-1".

https://curl.se/
https://www.omegahat.net/RCurl/
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binary a logical value indicating whether the caller knows whether the resulting content
is binary (TRUE) or not (FALSE) or unknown (NA).

.checkParams a logical value that indicates whether we should perform a check/test to identify
if any of the arguments passed to the form correspond to Curl options. This is
useful to identify potential errors in specifying the Curl options in the wrong
place (in the way we would for curlPerform). This check can lead to spurious
warning messages if the form has parameters with names that do conflict with
Curl options. By specifying FALSE for this parameter, you can avoid this test
and hence any warnings. But make certain you know what you are doing.

.contentEncodeFun

a function which encodes strings in a suitable manner. For x-www-form-encoded
submissions, this should most likely should be curlPercentEncode which maps
spaces to +, = to %3D, etc. We are leaving the default as curlEscape for now
until we test whether applications continue to work with the correct encoding.

Details

Creating a new CURLHandle allows the C-level code to more efficiently map the R-level values to
their C equivalents needed to make the call. However, reusing the handle across calls can be more
efficient in that the connection to a server can be maintained and thus, the sometimes expensive task
of establishing it is avoided in subsequent calls.

Value

By default, the text from the HTTP response is returned.

See Also

getURL curlOptions curlSetOpt

Examples

if(url.exists("http://www.google.com")) withAutoprint({
# Two ways to submit a query to google. Searching for RCurl
getURL("http://www.google.com/search?hl=en&lr=&ie=ISO-8859-1&q=RCurl&btnG=Search")

# Here we let getForm do the hard work of combining the names and values.
getForm("http://www.google.com/search", hl="en", lr="",

ie="ISO-8859-1", q="RCurl", btnG="Search")

# And here if we already have the parameters as a list/vector.
getForm("http://www.google.com/search", .params = c(hl="en", lr="",

ie="ISO-8859-1", q="RCurl", btnG="Search"))
})

# Now looking at POST method for forms.
url <- "http://wwwx.cs.unc.edu/~jbs/aw-wwwp/docs/resources/perl/perl-cgi/programs/cgi_stdin.cgi"
if(url.exists(url))
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postForm(url,
name = "Bob", "checkedbox" = "spinich",
submitButton = "Now!",
textarea = "Some text to send",
selectitem = "The item",
radiobutton = "a", style = "POST")

# Genetic database via the Web.
if(url.exists('http://www.wormbase.org/db/searches/advanced/dumper')) withAutoprint({
x = postForm('http://www.wormbase.org/db/searches/advanced/dumper',

species="briggsae",
list="",
flank3="0",
flank5="0",
feature="Gene Models",
dump = "Plain TEXT",
orientation = "Relative to feature",
relative = "Chromsome",
DNA ="flanking sequences only",

.cgifields = paste(c("feature", "orientation", "DNA", "dump","relative"), collapse=", "))

# Note that we don't have to paste multiple values together ourselves,
# e.g. the .cgifields can be specified as a character vector rather
# than a string.
x = postForm('http://www.wormbase.org/db/searches/advanced/dumper',

species="briggsae",
list="",
flank3="0",
flank5="0",
feature="Gene Models",
dump = "Plain TEXT",
orientation = "Relative to feature",
relative = "Chromsome",
DNA ="flanking sequences only",
.cgifields =c("feature", "orientation", "DNA", "dump", "relative"))

})

RCurlInternal Internal functions

Description

Not for human consumption
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reset Generic function for resetting an object

Description

This generic and the associated method for a CURLHandle allows one to reset the state of the Curl
object to its default state. This is convenient if we want to reuse the same connection, but want to
ensure that it is in a particular state.
Unfortunately, we cannot query the state of different fields in an existing Curl handle and so we
need to be able to reset the state and then update it with any particular settings we would have liked
to keep.

Usage

reset(x, ...)

Arguments

x the object to be reset. For our method, this is an object of class CURLHandle.
... additional arguments for methods

Details

This calls the C routine curl_easy_reset in libcurl.

Value

Methods typically return the updated version of the object passed to it. This allows the caller to
assign the new result to the same variable rather than relying on mutating the content of the object
in place. In other words, the object should not be treated as a reference but a new object with the
updated contents should be returned.

Author(s)

Duncan Temple Lang

References

Curl homepage https://curl.se/

See Also

getCurlHandle dupCurlHandle

Examples

h = getCurlHandle()
curlSetOpt(customrequest = "DELETE")
reset(h)

https://curl.se/
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scp Retrieve contents of a file from a remote host via SCP (Secure Copy)

Description

This function allows us to retrieve the contents of a file from a remote host via SCP. This is done
entirely within R, rather than a command line application and the contents of the file are never
written to disc. The function allows the

Usage

scp(host, path, keypasswd = NA, user = getUserName(), rsa = TRUE,
key = sprintf(c("~/.ssh/id_%s.pub", "~/.ssh/id_%s"),

if (rsa) "rsa" else "dsa"),
binary = NA, size = 5000, curl = getCurlHandle(), ...)

Arguments

host the name of the remote host or its IP address

path the path of the file of interest on the remote host’s file systems

keypasswd a password for accessing the local SSH key. This is the passphrase for the key.

user the name of the user on the remote machine

rsa a logical value indicating whether to use the RSA or DSA key

key the path giving the location of the SSH key.

binary a logical value giving

size an estimate of the size of the buffer needed to store the contents of the file. This
is used to initialize the buffer and potentially avoid resizing it as needed.

curl a curl handle (getCurlHandle) that is to be reused for this request and which
potentially contains numerous options settings or an existing connection to the
host.

... additional parameters handed to curlPerform.

Details

This uses libcurl’s facilities for scp. Use "scp" %in% curlVersion()$protocols to see if SCP is
supported.

Value

Either a raw or character vector giving the contents of the file.

Author(s)

Duncan Temple Lang
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References

libcurl https://curl.se/

See Also

curlPerform getCurlOptionsConstants

Examples

## Not run:
x = scp("eeyore.ucdavis.edu", "/home/duncan/OmegaWeb/index.html",

"My.SCP.Passphrase", binary = FALSE)
x = scp("eeyore.ucdavis.edu", "/home/duncan/OmegaWeb/RCurl/xmlParse.bz2",

"My.SCP.Passphrase")
o = memDecompress(x, asChar = TRUE)

## End(Not run)

url.exists Check if URL exists

Description

This functions is analogous to file.exists and determines whether a request for a specific URL
responds without error. We make the request but ask the server not to return the body. We just
process the header.

Usage

url.exists(url, ..., .opts = list(...),
curl = getCurlHandle(.opts = .opts),
.header = FALSE)

Arguments

url a vector of one or more URLs whose existence we are to test

... name = value pairs of Curl options.

.opts a list of name = value pairs of Curl options.

curl a Curl handle that the caller can specify if she wants to reuse an existing handle,
e.g. with different options already specified or that has previously established a
connection to the Web server

.header a logical value that if TRUE causes the header information to be returned.

Details

This makes an HTTP request but with the nobody option set to FALSE so that we don’t actually
retrieve the contents of the URL.

https://curl.se/


url.exists 59

Value

If .header is FALSE, this returns TRUE or FALSE for each URL indicating whether the request was
successful (had a status with a value in the 200 range).

If .header is TRUE, the header is returned for the request for each URL.

Author(s)

Duncan Temple Lang

References

HTTP specification

See Also

curlPerform

Examples

url.exists("https://www.omegahat.net/RCurl")
try(url.exists("https://www.omegahat.net/RCurl-xxx"))
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