Package ‘RaM§’

December 14, 2022

Type Package

Title R Access to Mass-Spec Data

Version 1.3.1

Maintainer William Kumler <wkumler@uw.edu>

Description R-based access to mass-spectrometry (MS) data. While many packages
exist to process MS data, many of these make it difficult to
access the underlying mass-to-charge ratio (m/z), intensity, and
retention time of the files
themselves. This package is designed to format MS data in a tidy fashion and
allows the user perform the plotting and analysis.

License MIT + file LICENSE
URL https://github.com/wkumler/RaMS

BugReports https://github.com/wkumler/RaMS/issues
Encoding UTF-8

Imports xml2, base64enc, data.table, utils

RoxygenNote 7.2.1

Suggests testthat, knitr, rmarkdown, tidyverse, ggplot2, dplyr,
plotly, openxlsx, DBI, RSQLite, reticulate

VignetteBuilder knitr
NeedsCompilation no

Author William Kumler [aut, cre, cph],
Ricardo Cunha [ctb],
Ethan Bass [ctb]

Repository CRAN
Date/Publication 2022-12-14 21:40:06 UTC

R topics documented:

checkOutputQuality e
getEncoded

https://github.com/wkumler/RaMS
https://github.com/wkumler/RaMS/issues

2 checkOutputQuality
giveEncoding L e 4
grabAccessionData L 4
grabMSdata 5
grabMzmIBPCo 7
grabMzmIDAD 8
grabMzmlData L 8
grabMzmlEncodingData L 10
grabMzmlIMetadata L. e 11
grabMzmIMS1 11
grabMzmIMS2 12
grabMzxmIBPCo 12
grabMzxmlData e 13
grabMzxmlEncodingData L 15
grabMzxmlMetadata 15
grabMzxmIMST L e 16
grabMzxmIMS2 16
grabMzxmlSpectraMzInto 17
grabMzxmlSpectraPremz L. 17
grabMzxmlSpectraRto 18
grabMzxmlSpectraVoltage 18
grabSpectralnt 19
grabSpectraMz e e e e e e e 19
grabSpectraPremz 20
grabSpectraRt 20
grabSpectraVoltage 21
minifyMSdata 21
minifyMzml L e 23
minifyMzxml 24
msdata_connection e e e e e e e 26
node2dt e e 26
PIMPPI .« . oot t e ee e e e 27
print.msdata_connection oLl e e e 27
tmzmlMaker 28
[.msdata_connection e 29
$.msdata_connectiono e, 30

Index 31

checkOutputQuality Check that the output data is properly formatted.

Description

This function checks that data produced by repeated calls to the ‘grabMzmlData()‘ and ‘grab-
MzxmlData()* functions is formatted properly before it’s provided to the user. It checks that all
of the requested data has been obtained and warns if data is found to be empty, misnamed, or has
columns of the wrong type.

getEncoded 3

Usage

checkOutputQuality(output_data, grab_what)

Arguments

output_data The collected data resulting from repeated calls to ‘grabMzmlData()‘, after be-
ing bound together.

grab_what The names of the data requested by the user.

Value

NULL (invisibly). The goal of this function is its side effects, i.e. throwing errors and providing
info when the files are not found.

getEncoded Convert from compressed binary to R numeric vector

Description

Convert from compressed binary to R numeric vector

Usage

getEncoded(mzint_nodes, compression_type, bin_precision, endi_enc)

Arguments

mzint_nodes The XML nodes containing the compressed binary string

compression_type
Compression type to be used by memDecompress

bin_precision The bit (?) precision used by readBin

endi_enc The byte order (?) of the string. For mzML this is always "little" but mzXML
can also be "big"

Value

A numeric vector of m/z or intensity values

4 grabAccessionData

giveEncoding Convert from R numeric vector to compressed binary

Description

Convert from R numeric vector to compressed binary

Usage

giveEncoding(mzint_vals, compression_type, bin_precision, endi_enc)

Arguments

mzint_vals A numeric vector of m/z or intensity values
compression_type
Compression type to be used by memCompress

bin_precision The bit (?) precision used by writeBin

endi_enc The byte order (?) of the string. For mzML this is always "little" but mzXML
can also be "big"

Value

A single base64-encoded string of compressed binary values

grabAccessionData Get arbitrary metadata from an mzML file by accession number

Description

Get arbitrary metadata from an mzML file by accession number

Usage

grabAccessionData(filename, accession_number)

Arguments

filename The name of the file for which metadata is requested. Both absolute and relative
paths are acceptable.

accession_number
The HUPO-PSI accession number for the metadata to be extracted. These ac-
cession numbers are typically of the form MS:##H#H### and the full list can
be found and searched at https://raw.githubusercontent.com/HUPO-PSI/psi-ms-
CV/master/psi-ms.obo.

grabMSdata 5

Value

A data frame with the name and value of the parameter requested, as deduced from the XML tag
attributes corresponding to the accession number.

Examples

library(RaMS)

sample_dir <- system.file("extdata”, package = "RaMS")
sample_file <- list.files(sample_dir, full.names=TRUE)[3]
Get ion injection time

iit_df <- grabAccessionData(sample_file, "MS:1000927")

Manually create TIC

int_df <- grabAccessionData(sample_file, "MS:1000285")
rt_df <- grabAccessionData(sample_file, "MS:1000016")

tic <- data.frame(rt=rt_df$value, int=int_df$value)
plot(ticrt, ticint, type = "1")

grabMSdata Grab mass-spectrometry data from file(s)

Description

The main ‘RaMS°* function. This function accepts a list of the files that will be read into R’s
working memory and returns a list of ‘data.table‘s containing the requested information. What
information is requested is determined by the ‘grab_what‘ argument, which can include MS1, MS2,
BPC, TIC, or metadata information. This function serves as a wrapper around both ‘grabMzmlIData‘
and ‘grabMzxmlData‘ and handles multiple files, but those two have also been exposed to the user
in case super-simple handling is desired. Retention times are reported in minutes, and will be
converted automatically if they are encoded in seconds.

Usage

grabMSdata(
files,
grab_what = "everything”,
verbosity = NULL,
mz = NULL,
ppm = NULL,
rtrange = NULL,
prefilter = -1

Arguments

files A character vector of filenames to read into R’s memory. Both absolute and
relative paths are acceptable.

grab_what

verbosity

mz

ppm

rtrange

prefilter

Value

grabMSdata

What data should be read from the file? Options include "MS1" for data only
from the first spectrometer, "MS2" for fragmentation data, "BPC" for rapid ac-
cess to the base peak chromatogram, "TIC" for rapid access to the total ion
chromatogram, "DAD" for DAD (UV) data, and "chroms" for precompiled chro-
matogram data (especially useful for MRM but often contains BPC/TIC in other
files). Metadata can be accessed with "metadata”, which provides information
about the instrument and time the file was run. These options can be combined
(i.e. ‘grab_data=c("MS1", "MS2", "BPC")‘) or this argument can be set to "ev-
erything" to extract all of the above. Options "EIC" and "EIC_MS2" are useful
when working with files whose total size exceeds working memory - it first ex-
tracts all relevant MS1 and MS2 data, respectively, then discards data outside
of the mass range(s) calculated from the provided mz and ppm. The default,
"everything", includes all MS1, MS2, BPC, TIC, and metadata.

Three levels of processing output to the R console are available, with increas-
ing verbosity corresponding to higher integers. A verbosity of zero means that
no output will be produced, useful when wrapping within larger functions. A
verbosity of 1 will produce a progress bar using base R’s txtProgressBar func-
tion. A verbosity of 2 or higher will produce timing output for each individual
file read in. The default, NULL, will select between 1 and 2 depending on the
number of files being read: if a single file, verbosity is set to 2; if multiple files,
verbosity is set to 1.

A vector of the mass-to-charge ratio for compounds of interest. Only used when
combined with ‘grab_what = "EIC"* (see above). Multiple masses can be pro-
vided.

A single number corresponding to the mass accuracy (in parts per million) of
the instrument on which the data was collected. Only used when combined with
‘grab_what = "EIC"* (see above).

Only available when parsing mzML files. A vector of length 2 containing an
upper and lower bound on retention times of interest. Providing a range here
can speed up load times (although not enormously, as the entire file must still be
read) and reduce the final object’s size.

A single number corresponding to the minimum intensity of interest in the MS1
data. Data points with intensities below this threshold will be silently dropped,
which can dramatically reduce the size of the final object. Currently only works
with MS1 data, but could be expanded easily to handle more.

A list of ‘data.table‘s, each named after the arguments requested in grab_what. E.g. $MS1 contains
MS1 information, $MS?2 contains fragmentation info, etc. MS1 data has four columns: retention
time (rt), mass-to-charge (mz), intensity (int), and filename. MS2 data has six: retention time (rt),
precursor m/z (premz), fragment m/z (fragmz), fragment intensity (int), collision energy (voltage),
and filename. Data requested that does not exist in the provided files (such as MS2 data requested
from MS1-only files) will return an empty (length zero) data.table. The data.tables extracted from
each of the individual files are collected into one large table using data.table’s ‘rbindlist‘. $metadata
is a little weirder because the metadata doesn’t fit neatly into a tidy format but things are hopefully
named helpfully. $chroms was added in v1.3 and contains 7 columns: chromatogram type (usually

grabMzmIBPC 7

TIC, BPC or SRM info), chromatogram index, target mz, product mz, retention time (rt), and
intensity (int). $DAD was also added in v1.3 and contains has three columns: retention time (rt),
wavelength (lambda),and intensity (int). Data requested that does not exist in the provided files
(such as MS2 data requested from MS1-only files) will return an empty (zero-row) data.table.

Examples

library(RaMS)

Extract MS1 data from a couple files

sample_dir <- system.file("extdata”, package = "RaMS")

sample_files <- list.files(sample_dir, full.names=TRUE)

multifile_data <- grabMSdata(sample_files[c(3, 5, 6)]1, grab_what="MS1")

"Stream” data from the internet (i.e. Metabolights)
Not run:
access_url <- "https://www.ebi.ac.uk/metabolights/MTBLS703/files”

URL below obtained by right-clicking site download button and copying

link address

sample_url <- paste@("https://www.ebi.ac.uk/metabolights/ws/studies/",
"MTBLS703/download/acefcd61-a634-4f35-9c3c-c572",
"adeb5acf3?file=161024_Smp_LB12HL_AB_pos.mzXML")

file_data <- grabMSdata(sample_url, grab_what="everything”, verbosity=2)

End(Not run)

grabMzmlBPC Grab the BPC or TIC from a file

Description

The base peak intensity and total ion current are actually written into the mzML files and aren’t
encoded, making retrieval of BPC and TIC information blazingly fast if parsed correctly.

Usage
grabMzmlBPC(xml_data, rtrange, TIC = FALSE)

Arguments
xml_data An ‘xml2°‘ nodeset, usually created by applying ‘read_xml‘ to an mzML file.
rtrange A vector of length 2 containing an upper and lower bound on retention times
of interest. Providing a range here can speed up load times (although not enor-
mously, as the entire file must still be read) and reduce the final object’s size.
TIC Boolean. If TRUE, the TIC is extracted rather than the BPC.
Value

A ‘data.table* with columns for retention time (rt), and intensity (int).

8 grabMzmlIData

grabMzml1DAD Extract the DAD data from an mzML nodeset

Description

Extract the DAD data from an mzML nodeset

Usage

grabMzmlDAD(xml_data, rtrange, file_metadata)

Arguments
xml_data An ‘xml2‘ nodeset, usually created by applying ‘read_xml‘ to an mzML file.
rtrange A vector of length 2 containing an upper and lower bound on retention times

of interest. Providing a range here can speed up load times (although not enor-
mously, as the entire file must still be read) and reduce the final object’s size.

file_metadata Information about the file used to decode the binary arrays containing m/z and
intensity information.

Value

A ‘data.table‘ with columns for retention time (rt), wavelength (lambda), and intensity (int).

grabMzmlData Get mass-spectrometry data from an mzML file

Description

This function handles the mzML side of things, reading in files that are written in the mzML format.
Much of the code is similar to the mzXML format, but the xpath handles are different and the mz/int
array is encoded as two separate entries rather than simultaneously. This function has been exposed
to the user in case per-file optimization (such as peakpicking or additional filtering) is desired before
the full data object is returned.

Usage

grabMzmlData(
filename,
grab_what,
verbosity = 0,
mz = NULL,
ppm = NULL,
rtrange = NULL,
prefilter = -1

grabMzmlData

Arguments

filename

grab_what

verbosity

mz

ppm

rtrange

prefilter

Value

A single filename to read into R’s memory. Both absolute and relative paths are
acceptable.

What data should be read from the file? Options include "MS1" for data only
from the first spectrometer, "MS2" for fragmentation data, "BPC" for rapid ac-
cess to the base peak chromatogram, "TIC" for rapid access to the total ion
chromatogram, "DAD" for DAD (UV) data, and "chroms" for precompiled chro-
matogram data (especially useful for MRM but often contains BPC/TIC in other
files). Metadata can be accessed with "metadata”, which provides information
about the instrument and time the file was run. These options can be combined
(i.e. ‘grab_data=c("MS1", "MS2", "BPC")*) or this argument can be set to "ev-
erything" to extract all of the above. Options "EIC" and "EIC_MS2" are useful
when working with files whose total size exceeds working memory - it first ex-
tracts all relevant MS1 and MS2 data, respectively, then discards data outside
of the mass range(s) calculated from the provided mz and ppm. The default,
"everything", includes all MS1, MS2, BPC, TIC, and metadata.

Three levels of processing output to the R console are available, with increasing
verbosity corresponding to higher integers. A verbosity of zero means that no
output will be produced, useful when wrapping within larger functions. A ver-
bosity of 1 will produce a progress bar using base R’s txtProgressBar function.
A verbosity of 2 or higher will produce timing output for each individual file
read in.

A vector of the mass-to-charge ratio for compounds of interest. Only used when
combined with ‘grab_what = "EIC"* (see above). Multiple masses can be pro-
vided.

A single number corresponding to the mass accuracy (in parts per million) of
the instrument on which the data was collected. Only used when combined with
‘grab_what = "EIC"* (see above).

A vector of length 2 containing an upper and lower bound on retention times
of interest. Providing a range here can speed up load times (although not enor-
mously, as the entire file must still be read) and reduce the final object’s size.

A single number corresponding to the minimum intensity of interest in the MS1
data. Data points with intensities below this threshold will be silently dropped,
which can dramatically reduce the size of the final object. Currently only works
with MS1 data, but could be expanded easily to handle more.

A list of ‘data.table‘s, each named after the arguments requested in grab_what. E.g. $MS1 contains
MS1 information, $MS2 contains fragmentation info, etc. MS1 data has four columns: retention
time (rt), mass-to-charge (mz), intensity (int), and filename. MS2 data has six: retention time (rt),
precursor m/z (premz), fragment m/z (fragmz), fragment intensity (int), collision energy (voltage),
and filename. Data requested that does not exist in the provided files (such as MS2 data requested
from MS1-only files) will return an empty (Iength zero) data.table. The data.tables extracted from
each of the individual files are collected into one large table using data.table’s ‘rbindlist‘. $metadata
is a little weirder because the metadata doesn’t fit neatly into a tidy format but things are hopefully

10 grabMzmlEncodingData

named helpfully. $chroms was added in v1.3 and contains 7 columns: chromatogram type (usually
TIC, BPC or SRM info), chromatogram index, target mz, product mz, retention time (rt), and
intensity (int). $DAD was also added in v1.3 and contains has three columns: retention time (rt),
wavelength (lambda),and intensity (int). Data requested that does not exist in the provided files
(such as MS2 data requested from MS1-only files) will return an empty (zero-row) data.table.

Examples

sample_file <- system.file("extdata”, "LB12HL_AB.mzML.gz", package = "RaMS")

file_data <- grabMzmlData(sample_file, grab_what="MS1")

Not run:

Extract MS1 data and a base peak chromatogram

file_data <- grabMzmlData(sample_file, grab_what=c(”"MS1", "BPC"))

Extract data from a retention time subset

file_data <- grabMzmlData(sample_file, grab_what=c("MS1", "BPC"),
rtrange=c(5, 7))

Extract EIC for a specific mass

file_data <- grabMzmlData(sample_file, grab_what="EIC", mz=118.0865, ppm=5)

Extract EIC for several masses simultaneously

file_data <- grabMzmlData(sample_file, grab_what="EIC", ppm=5,
mz=c(118.0865, 146.118104, 189.123918))

Extract MS2 data
sample_file <- system.file("extdata”, "DDApos_2.mzML.gz", package = "RaMS")
MS2_data <- grabMzmlData(sample_file, grab_what="MS2")

End(Not run)

grabMzmlEncodingData Helper function to extract mzML file encoding data

Description

Helper function to extract mzML file encoding data

Usage

grabMzmlEncodingData(xml_data)

Arguments

xml_data mzML data as parsed by xml2

Value

A list of values used by other parsing functions, currently compression, mz_precision, int_precision

grabMzmlIMetadata 11

grabMzmlMetadata Helper function to extract mzML file metadata

Description

Helper function to extract mzML file metadata

Usage

grabMzmlMetadata(xml_data)

Arguments

xml_data mzML data as parsed by xml2

Value

A list of values corresponding to various pieces of metadata for each file

grabMzmlMS1 Extract the MSI data from an mzML nodeset

Description

Extract the MS1 data from an mzML nodeset

Usage

grabMzmlMS1(xml_data, rtrange, file_metadata, prefilter)

Arguments
xml_data An ‘xml2°‘ nodeset, usually created by applying ‘read_xml‘ to an mzML file.
rtrange A vector of length 2 containing an upper and lower bound on retention times

of interest. Providing a range here can speed up load times (although not enor-
mously, as the entire file must still be read) and reduce the final object’s size.

file_metadata Information about the file used to decode the binary arrays containing m/z and
intensity information.

prefilter The lowest intensity value of interest, used to reduce file size (and especially
useful for profile mode data with many O values)

Value

A ‘data.table‘ with columns for retention time (rt), m/z (mz), and intensity (int).

12 grabMzxmIBPC

grabMzmlMS2 Extract the MS2 data from an mzML nodeset

Description

Extract the MS2 data from an mzML nodeset

Usage

grabMzmIMS2(xml_data, rtrange, file_metadata)

Arguments
xml_data An ‘xml2‘ nodeset, usually created by applying ‘read_xml‘ to an mzML file.
rtrange A vector of length 2 containing an upper and lower bound on retention times

of interest. Providing a range here can speed up load times (although not enor-
mously, as the entire file must still be read) and reduce the final object’s size.

file_metadata Information about the file used to decode the binary arrays containing m/z and
intensity information.

Value

A ‘data.table‘ with columns for retention time (rt), precursor m/z (mz), fragment m/z (fragmz),
collision energy (voltage), and intensity (int).

grabMzxmlBPC Grab the BPC or TIC from a file

Description

The base peak intensity and total ion current are actually written into the mzXML files and aren’t
encoded, making retrieval of BPC and TIC information blazingly fast if parsed correctly.

Usage
grabMzxmlBPC(xml_data, TIC = FALSE, rtrange)

Arguments
xml_data An ‘xml2‘ nodeset, usually created by applying ‘read_xml‘ to an mzML file.
TIC Boolean. If TRUE, the TIC is extracted rather than the BPC.
rtrange A vector of length 2 containing an upper and lower bound on retention times

of interest. Providing a range here can speed up load times (although not enor-
mously, as the entire file must still be read) and reduce the final object’s size.

grabMzxmlData 13

Value

A ‘data.table‘ with columns for retention time (rt), and intensity (int).

grabMzxmlData Get mass-spectrometry data from an mzXML file

Description

This function handles the mzXML side of things, reading in files that are written in the mzXML
format. Much of the code is similar to the mzXML format, but the xpath handles are different and
the mz/int array is encoded simultaneously rather than as two separate entries. This function has
been exposed to the user in case per-file optimization (such as peakpicking or additional filtering)
is desired before the full data object is returned.

Usage

grabMzxmlData(
filename,
grab_what,
verbosity = 0,
rtrange = NULL,

mz = NULL,
ppm = NULL,
prefilter = -1

)

Arguments
filename A single filename to read into R’s memory. Both absolute and relative paths are
acceptable.
grab_what What data should be read from the file? Options include "MS1" for data only

from the first spectrometer, "MS2" for fragmentation data, "BPC" for rapid ac-
cess to the base peak chromatogram, and "TIC" for rapid access to the total ion
chromatogram. DAD and chromatogram ("DAD" and "chroms") are unavailable
for mzXML files. Metadata can be accessed with "metadata", which provides
information about the instrument and time the file was run. These options can
be combined (i.e. ‘grab_data=c("MS1", "MS2", "BPC")*) or this argument can
be set to "everything" to extract all of the above. Options "EIC" and "EIC_MS2"
are useful when working with files whose total size exceeds working memory -
it first extracts all relevant MS1 and MS2 data, respectively, then discards data
outside of the mass range(s) calculated from the provided mz and ppm. The
default, "everything", includes all MS1, MS2, BPC, TIC, and metadata.

verbosity Three levels of processing output to the R console are available, with increasing
verbosity corresponding to higher integers. A verbosity of zero means that no
output will be produced, useful when wrapping within larger functions. A ver-
bosity of 1 will produce a progress bar using base R’s txtProgressBar function.

14

rtrange

mz

ppm

prefilter

Value

grabMzxmlData

A verbosity of 2 or higher will produce timing output for each individual file
read in.

Not supported for mzXML data. Only provided here so as to throw a friendly
warning rather than an unexpected error.

A vector of the mass-to-charge ratio for compounds of interest. Only used when
combined with ‘grab_what = "EIC"* (see above). Multiple masses can be pro-
vided.

A single number corresponding to the mass accuracy (in parts per million) of
the instrument on which the data was collected. Only used when combined with
‘grab_what = "EIC"* (see above).

A single number corresponding to the minimum intensity of interest in the MS1
data. Data points with intensities below this threshold will be silently dropped,
which can dramatically reduce the size of the final object. Currently only works
with MS1 data, but could be expanded easily to handle more.

A list of ‘data.table‘s, each named after the arguments requested in grab_what. E.g. $MS1 contains
MS1 information, $MS2 contains fragmentation info, etc. MS1 data has four columns: retention
time (rt), mass-to-charge (mz), intensity (int), and filename. MS2 data has six: retention time (rt),
precursor m/z (premz), fragment m/z (fragmz), fragment intensity (int), collision energy (voltage),
and filename. Data requested that does not exist in the provided files (such as MS2 data requested
from MS1-only files) will return an empty (length zero) data.table. The data.tables extracted from
each of the individual files are collected into one large table using data.table’s ‘rbindlist‘. $metadata
is a little weirder because the metadata doesn’t fit neatly into a tidy format but things are hopefully
named helpfully. Data requested that does not exist in the provided files (such as DAD or chro-
matogram data) will return an empty (zero-row) data.table.

Examples

sample_file <- system.file("extdata”, "LB12HL_AB.mzXML.gz", package = "RaMS")
file_data <- grabMzxmlData(sample_file, grab_what="MS1")

Not run:

Extract MS1 data and a base peak chromatogram

file_data <- grabMzxmlData(sample_file, grab_what=c(”"MS1", "BPC"))

Extract EIC for a specific mass

file_data <- grabMzxmlData(sample_file, grab_what="EIC", mz=118.0865, ppm=5)
Extract EIC for several masses simultaneously

file_data <- grabMzxmlData(sample_file, grab_what="EIC", ppm=5,

mz=c(118.0865, 146.118104, 189.123918))

Extract MS2 data
sample_file <- system.file("extdata”, "DDApos_2.mzXML.gz", package = "RaMS")
MS2_data <- grabMzxmlData(sample_file, grab_what="MS2")

End(Not run)

grabMzxmlEncodingData 15

grabMzxmlEncodingData Helper function to extract mzXML file metadata

Description

Helper function to extract mzXML file metadata

Usage

grabMzxmlEncodingData(xml_data)

Arguments

xml_data mzXML data as parsed by xml2

Value

A list of values used by other parsing functions, currently compression, precision, and endian en-
coding (endi_enc)

grabMzxmlMetadata Helper function to extract mzXML file metadata

Description

Helper function to extract mzXML file metadata

Usage

grabMzxmlMetadata(xml_data)

Arguments

xml_data mzXML data as parsed by xml2

Value

A list of values corresponding to various pieces of metadata for each file

16 grabMzxmIMS2

grabMzxmlMS1 Extract the MS1 data from an mzXML nodeset

Description

Extract the MS1 data from an mzXML nodeset

Usage

grabMzxmlMS1(xml_data, file_metadata, rtrange, prefilter)

Arguments

xml_data An ‘xml2‘ nodeset, usually created by applying ‘read_xml‘ to an mzXML file.

file_metadata Information about the file used to decode the binary arrays containing m/z and
intensity information.

rtrange A vector of length 2 containing an upper and lower bound on retention times
of interest. Providing a range here can speed up load times (although not enor-
mously, as the entire file must still be read) and reduce the final object’s size.

prefilter The lowest intensity value of interest, used to reduce file size (and especially
useful for profile mode data with many 0 values)

Value

A ‘data.table‘ with columns for retention time (rt), m/z (mz), and intensity (int).

grabMzxmlMS2 Extract the MS2 data from an mzXML nodeset

Description

Extract the MS2 data from an mzXML nodeset

Usage

grabMzxmlMS2(xml_data, file_metadata, rtrange)

Arguments

xml_data An ‘xml2°‘ nodeset, usually created by applying ‘read_xml‘ to an mzXML file.

file_metadata Information about the file used to decode the binary arrays containing m/z and
intensity information.

rtrange A vector of length 2 containing an upper and lower bound on retention times
of interest. Providing a range here can speed up load times (although not enor-
mously, as the entire file must still be read) and reduce the final object’s size.

grabMzxmlSpectraMzInt 17

Value

A ‘data.table‘ with columns for retention time (rt), precursor m/z (mz), fragment m/z (fragmz),
collision energy (voltage), and intensity (int).

grabMzxmlSpectraMzInt Extract the mass-to-charge data from the spectra of an mzXML node-
set

Description

The mz and intensity information of mzXML files are encoded as a binary array, sometimes com-
pressed via gzip or zlib or numpress. This code finds all the m/z-int binary arrays and converts them
back to the original measurements. See https://github.com/ProteoWizard/pwiz/issues/1301

Usage

grabMzxmlSpectraMzInt(xml_nodes, file_metadata)

Arguments
xml_nodes An xml_nodeset object corresponding to the spectra collected by the mass spec-
trometer, usually produced by applying ‘xml_find_all* to an MS1 or MS2 node-
set.

file_metadata Information about the file used to decode the binary arrays containing m/z and
intensity information. Here, the compression and mz precision information is
relevant.

Value

A numeric vector of masses, many for each scan.

grabMzxmlSpectraPremz Extract the precursor mass from the spectra of an mzXML nodeset

Description

Extract the precursor mass from the spectra of an mzXML nodeset

Usage

grabMzxmlSpectraPremz(xml_nodes)

Arguments

xml_nodes An xml_nodeset object corresponding to the spectra collected by the mass spec-
trometer, usually produced by applying ‘xml_find_all* to an MS1 or MS2 node-
set.

18 grabMzxmlSpectraVoltage

Value

A numeric vector of precursor masses, one for each scan

grabMzxmlSpectraRt Extract the retention time from the spectra of an mzXML nodeset

Description

Extract the retention time from the spectra of an mzXML nodeset

Usage

grabMzxmlSpectraRt (xml_nodes)

Arguments
xml_nodes An xml_nodeset object corresponding to the spectra collected by the mass spec-
trometer, usually produced by applying ‘xml_find_all to an MS1 or MS2 node-
set.
Value

A numeric vector of retention times, one for each scan

grabMzxmlSpectraVoltage
Extract the collison energies from the spectra of an mzXML nodeset

Description
Although the collision energy is typically fixed per file, it’s equally fast (afaik) to just grab them all
individually here. Also, I'm worried about these rumors of "ramped" collision energies

Usage

grabMzxmlSpectraVoltage(xml_nodes)

Arguments
xml_nodes An xml_nodeset object corresponding to the spectra collected by the mass spec-
trometer, usually produced by applying ‘xml_find_all to an MS1 or MS2 node-
set.
Value

A numeric vector of collision energies, one for each scan.

grabSpectralnt 19

grabSpectralnt Extract the intensity information from the spectra of an mzML nodeset

Description

The mz and intensity information of mzML files are encoded as binary arrays, sometimes com-
pressed via gzip or zlib or numpress. This code finds all the intensity binary arrays and converts
them back to the original measurements. See https://github.com/ProteoWizard/pwiz/issues/1301

Usage

grabSpectralnt(xml_nodes, file_metadata)

Arguments
xml_nodes An xml_nodeset object corresponding to the spectra collected by the mass spec-
trometer, usually produced by applying ‘xml_find_all to an MS1 or MS2 node-
set.

file_metadata Information about the file used to decode the binary arrays containing m/z and
intensity information. Here, the compression and int precision information is
relevant.

Value

A numeric vector of intensities, many for each scan.

grabSpectraMz Extract the mass-to-charge data from the spectra of an mzML nodeset

Description

The mz and intensity information of mzML files are encoded as binary arrays, sometimes com-
pressed via gzip or zlib or numpress. This code finds all the m/z binary arrays and converts them
back to the original measurements. See https://github.com/ProteoWizard/pwiz/issues/1301

Usage

grabSpectraMz(xml_nodes, file_metadata)

Arguments
xml_nodes An xml_nodeset object corresponding to the spectra collected by the mass spec-
trometer, usually produced by applying ‘xml_find_all to an MS1 or MS2 node-
set.

file_metadata Information about the file used to decode the binary arrays containing m/z and
intensity information. Here, the compression and mz precision information is
relevant.

20 grabSpectraRt

Value

A numeric vector of masses, many for each scan.

grabSpectraPremz Extract the precursor mass from the spectra of an mzML nodeset

Description

Extract the precursor mass from the spectra of an mzML nodeset

Usage

grabSpectraPremz(xml_nodes)

Arguments
xml_nodes An xml_nodeset object corresponding to the spectra collected by the mass spec-
trometer, usually produced by applying ‘xml_find_all to an MS1 or MS2 node-
set.
Value

A numeric vector of precursor masses, one for each scan

grabSpectraRt Extract the retention time from the spectra of an mzML nodeset

Description

Extract the retention time from the spectra of an mzML nodeset

Usage

grabSpectraRt (xml_nodes)

Arguments
xml_nodes An xml_nodeset object corresponding to the spectra collected by the mass spec-
trometer, usually produced by applying ‘xml_find_all* to an MS1 or MS2 node-
set.
Value

A numeric vector of retention times, one for each scan

grabSpectraVoltage 21

grabSpectraVoltage Extract the collison energies from the spectra of an mzML nodeset

Description
Although the collision energy is typically fixed per file, it’s equally fast (afaik) to just grab them all
individually here. Also, I'm worried about these rumors of "ramped" collision energies

Usage

grabSpectraVoltage(xml_nodes)

Arguments
xml_nodes An xml_nodeset object corresponding to the spectra collected by the mass spec-
trometer, usually produced by applying ‘xml_find_all* to an MS1 or MS2 node-
set.
Value

A numeric vector of collision energies, one for each scan.

minifyMSdata Shrink MS data by including only data points near masses of interest

Description

MS files can be annoyingly large if only a few masses are of interest. This large size makes it
difficult to share them online for debugging purposes and often means that untargeted algorithms
spend a lot of time picking peaks in data that’s irrelevant. minifyMSdata is a function designed to
"minify" MS files by extracting only those data points that are within the ppm error of an m/z value
of interest, and returns the file essentially otherwise unchanged.

Usage

minifyMSdata(
files,
output_files = NULL,
mz_exclude = NULL,

mz_include = NULL,
ppm = NULL,
warn = TRUE,

prefilter = -1,
verbosity = NULL

22

Arguments

files

output_files

mz_exclude

mz_include

ppm

warn

prefilter

verbosity

Value

minifyMSdata

The name of a single file to be minified, usually produced by Proteowizard’s
‘msconvert* or something similar.

The name of the file to be written out.

A vector of m/z values that should be excluded from the minified file. This
argument must be used with the ‘ppm* argument and should not be used with
mz_include. For each mass provided, an m/z window of +/- ‘ppm° is calculated,
and all data points within that window are removed.

A vector of m/z values that should be included in the minified file. This argument
must be used with the ‘ppm* argument and should not be used with mz_exclude.
For each mass provided, an m/z window of +/- ‘ppm* is calculated, and all data
points within that window are kept.

The parts-per-million error of the instrument used to collect the original file.

Boolean. Should the function warn the user when removing an index from an
mzML file?

A single number corresponding to the minimum intensity of interest in the MS1
data. Data points with intensities below this threshold will be silently dropped,
which can dramatically reduce the size of the final object. Currently only works
with MS1 data, but could be expanded easily to handle more.

A single number with a sensible default behavior. If larger than 2, will render a
progress bar as files are processed.

Invisibly, the name of the new files.

Examples

Not run:
library(RaMS)

Extract data corresponding to only valine and homarine

m/z = 118.0865 and 138.0555, respectively

filename <- system.file("extdata”, "LB12HL_AB.mzML.gz", package = "RaMS")
output_filename <- "mini_LB12HL_AB.mzML"

include_mzs <- c(118.0865, 138.0555)

minifyMSdata(filename, output_filename, mz_include=include_mzs, ppm=5)
unlink(output_filename)

Exclude data corresponding to valine and homarine

filename <- system.file("extdata”, "LB12HL_AB.mzML.gz", package = "RaMS")
output_filename <- "mini_LB12HL_AB.mzML"

exclude_mzs <- c(118.0865, 138.0555)

minifyMSdata(filename, output_filename, mz_exclude=exclude_mzs, ppm=5)
unlink(output_filename)

End(Not run)

minifyMzml

23

minifyMzml

Shrink mzML files by including only data points near masses of interest

Description

mzML files can be annoyingly large if only a few masses are of interest. This large size makes it
difficult to share them online for debugging purposes and often means that untargeted algorithms
spend a lot of time picking peaks in data that’s irrelevant. minifyMzml is a function designed to
"minify" mzML files by extracting only those data points that are within a ppm error of an m/z value
of interest, and returns the file essentially otherwise unchanged. This function currently works only
on MS1 data, but is reasonably expandable if demand becomes evident.

Usage
minifyMzml(
filename,
output_filename,
ppm,
mz_exclude = NULL,
mz_include = NULL,
warn = TRUE,
prefilter = -1
)
Arguments
filename The name of a single file to be minified, usually produced by Proteowizard’s

output_filename

ppm

mz_exclude

mz_include

warn

prefilter

‘msconvert* or something similar.

The name of the file to be written out.
The parts-per-million error of the instrument used to collect the original file.

A vector of m/z values that should be excluded from the minified file. This
argument must be used with the ‘ppm* argument and should not be used with
mz_include. For each mass provided, an m/z window of +/- ‘ppm° is calculated,
and all data points within that window are removed.

A vector of m/z values that should be included in the minified file. This argument
must be used with the ‘ppm* argument and should not be used with mz_exclude.
For each mass provided, an m/z window of +/- ‘ppm°* is calculated, and all data
points within that window are kept.

Boolean. Should the function warn the user when removing an index from an
mzML file?

A single number corresponding to the minimum intensity of interest in the MS1
data. Data points with intensities below this threshold will be silently dropped,
which can dramatically reduce the size of the final object. Currently only works
with MS1 data, but could be expanded easily to handle more.

24 minifyMzxml

Value

Invisibly, the name of the new file.

Examples

Not run:

library(RaMS)

Extract data corresponding to only valine and homarine

m/z = 118.0865 and 138.0555, respectively

filename <- system.file("”extdata”, "LB12HL_AB.mzML.gz", package = "RaMS")
output_filename <- "mini_LB12HL_AB.mzML"

include_mzs <- c¢(118.0865, 138.0555)

minifyMzml(filename, output_filename, mz_include=include_mzs, ppm=5)
unlink(output_filename)

Exclude data corresponding to valine and homarine

filename <- system.file("extdata”, "LB12HL_AB.mzML.gz", package = "RaMS")
output_filename <- "mini_LB12HL_AB.mzML"

exclude_mzs <- c(118.0865, 138.0555)

minifyMzml(filename, output_filename, mz_exclude=exclude_mzs, ppm=5)
unlink(output_filename)

End(Not run)

minifyMzxml Shrink mzxML files by including only data points near masses of inter-
est

Description

mzXML files can be annoyingly large if only a few masses are of interest. This large size makes
it difficult to share them online for debugging purposes and often means that untargeted algorithms
spend a lot of time picking peaks in data that’s irrelevant. minifyMzxml is a function designed to
"minify" mzXML files by extracting only those data points that are within a ppm error of an m/z
value of interest, and returns the file essentially otherwise unchanged. This function currently works
only on MS1 data, but is reasonably expandable if demand becomes evident.

Usage
minifyMzxml(
filename,
output_filename,
ppm,
mz_exclude = NULL,
mz_include = NULL,

prefilter = -1,
warn = TRUE

minifyMzxml 25

Arguments

filename The name of a single file to be minified, usually produced by Proteowizard’s
‘msconvert* or something similar.

output_filename
The name of the file to be written out.

ppm The parts-per-million error of the instrument used to collect the original file.

mz_exclude A vector of m/z values that should be excluded from the minified file. This
argument must be used with the ‘ppm* argument and should not be used with
mz_include. For each mass provided, an m/z window of +/- ‘ppm° is calculated,
and all data points within that window are removed.

mz_include A vector of m/z values that should be included in the minified file. This argument
must be used with the ‘ppm* argument and should not be used with mz_exclude.
For each mass provided, an m/z window of +/- ‘ppm°* is calculated, and all data
points within that window are kept.

prefilter A single number corresponding to the minimum intensity of interest in the MS1
data. Data points with intensities below this threshold will be silently dropped,
which can dramatically reduce the size of the final object. Currently only works
with MS1 data, but could be expanded easily to handle more.

warn Boolean. Should the function warn the user when removing an index from an
mzML file?

Value

Invisibly, the name of the new file.

Examples

Not run:

library(RaMS)

Extract data corresponding to only valine and homarine

m/z = 118.0865 and 138.0555, respectively

filename <- system.file("extdata”, "LB12HL_AB.mzXML.gz", package = "RaMS")
output_filename <- "mini_LB12HL_AB.mzXML"

include_mzs <- c(118.0865, 138.0555)

minifyMzxml(filename, output_filename, mz_include=include_mzs, ppm=5)
unlink(output_filename)

Exclude data corresponding to valine and homarine

filename <- system.file("extdata”, "LB12HL_AB.mzXML.gz", package = "RaMS")
output_filename <- "mini_LB12HL_AB.mzXML"

exclude_mzs <- c(118.0865, 138.0555)

minifyMzxml(filename, output_filename, mz_exclude=exclude_mzs, ppm=5)
unlink(output_filename)

End(Not run)

26

node2dt

msdata_connection S3 constructor for msdata_connection

Description

S3 constructor for msdata_connection

Usage

msdata_connection(x)

Arguments

X This is a thing?

Value

Itself, with the class?

node2dt Convert node to data.table

Description

Convert node to data.table

Usage

node2dt (dubset_node, ms_level)

Arguments
dubset_node The "data subset" node with children rt, mz, etc.
ms_level The requested MS level to search for

Value

A data.table with columns depending on the MS level requested

pmppm 27

pmppm Plus/minus parts per million

Description

It shouldn’t be hard to translate a point mass into a mass window bounded by spectrometer accuracy.

Usage

pmppm(mass, ppm = 4)

Arguments
mass A length-1 numeric representing the mass of interest for which a mass range is
desired.
ppm The parts-per-million accuracy of the mass spectrometer on which the data was
collected.
Value

A length-2 numeric representing the mass range requested

Examples

pmppm(100, 5)

pmppm (1000000, 5)
pmppm(118.0865, 2.5)
pmppm(892.535313, 10)

print.msdata_connection
S3 print option for msdata_connection objects

Description

S3 print option for msdata_connection objects

Usage
S3 method for class 'msdata_connection'
print(x, ...)
Arguments
X An msdata_connection object containing files and grab_what

Other arguments to be passed to print.default, I guess

28

Value

Messages, mostly

tmzmlMaker

tmzmlMaker

Maker of tmzML documents

Description

This function converts mzML and mzXML documents into "transposed" mzML (tmzML) docu-
ments. Traditional mass-spec data is organized by scan number, corresponding to retention time,
but this isn’t always the most sensible format. Often, it makes more sense to organize a mass-spec
file by m/z ratio instead. This allows parsers to scan and decode a much smaller portion of the file
when searching for a specific mass, as opposed to the traditional format which requires that every
scan be opened, searched, and subset. The tmzML document implements this strategy and allows
the creation of MS object representations that use essentially zero memory because the data is read
off the disk instead of being stored in RAM. RaMS has been designed to interface with these new
file types identically to traditional files, allowing all your favorite tidyverse tricks to work just as
well and much more quickly.

Usage

tmzmlMaker (input_filename, output_filename = NULL, verbosity = @, binwidth = 3)

Arguments

input_filename

output_filename

verbosity

binwidth

Character vector of length 1 with the name of the file to be converted. Can only
handle mzML and mzXML currently - other formats should be converted to one
of these first, using (for example) Proteowizard’s msconvert tool.

The name of the file that will be written out. Should end in ".tmzML" and
will throw a warning otherwise. Often, it makes sense to have two folders in a
working directory, one containing the original mzML files and a second, parallel
folder for the tmzMLs.

Numeric value between 0 and 2, corresponding to level of verbosity shared by
the function as it proceeds. 0 means no output, 1 will produce mile markers
after file opening, MS1 and MS2 conversion, and 2 will provide progress bars
between each mile marker.

Numeric value controlling the width of the bins in m/z space to create. Because
MS data is created in such a way that m/z values are continuous, they must
be binned together to create a discrete representation that can be searched effi-
ciently. Lower values (0.1-1) will have faster retrieval times, while higher values
(5-10) will have faster conversion times.

[.msdata_connection 29

Value

An msdata_connection object. This object behaves exactly like a normal RaMS list with values for
MS1, MS2, etc. but secretly just contains pointers to the files requested because the data is extracted
on the fly. The S3 msdata_connection object is necessary to create new behaviors for ‘$‘ and [
that allow indexing like normal.

Examples

Not run:

sample_dir <- system.file("extdata”, package = "RaMS")

sample_files <- list.files(sample_dir, full.names=TRUE, pattern="LB.xmzML")
tmzml_filenames <- gsub(x=sample_files, "\\.mzML.gz", ".tmzML")

Convert a single file

tmzmlMaker (sample_files[1], tmzml_filenames[1])

file_data <- grabMSdata(tmzml_filenames[1], grab_what="everything"”, verbosity=2)
file_data$MS1[mz%between%pmppm(118.0865)]

Multiple files

mapply (tmzmlMaker, sample_files, tmzml_filenames)

file_data <- grabMSdata(tmzml_filenames, grab_what="everything", verbosity=2)
betaine_data <- file_data$MS1[mz%between%pmppm(118.0865)]

Plot output

plot(betaine_data$rt, betaine_data$int, type="1")
library(ggplot2)

ggplot(betaine_data) + geom_line(aes(x=rt, y=int, color=filename))

Clean up afterward
file.remove(tmzml_filenames)

End(Not run)

[.msdata_connection S3 indexing for msdata_connection objects

Description

This is the step that actually performs the file opening and extraction!

Usage
S3 method for class 'msdata_connection'
msdata_obj[sub_func]

Arguments

msdata_obj An msdata_connection object containing files and grab_what

sub_func The function that will be parsed and used to subset the file

30 $.msdata_connection

Value

A data.table with columns rt, mz, int, and filename

$.msdata_connection S3 dollar sign notation for msdata_connection objects

Description

S3 dollar sign notation for msdata_connection objects

Usage

S3 method for class 'msdata_connection'
msdata_obj$ms_level

Arguments
msdata_obj An msdata_connection object containing files and grab_what
ms_level The requested MS level of the object

Value

An msdata_connection object with only a single MS level

Index

[.msdata_connection, 29
$.msdata_connection, 30

checkOutputQuality, 2

getEncoded, 3
giveEncoding, 4
grabAccessionData, 4
grabMSdata, 5
grabMzmlBPC, 7
grabMzmlDAD, 8
grabMzmlData, 8
grabMzmlEncodingData, 10
grabMzmlMetadata, 11
grabMzmlMs1, 11
grabMzmlMs2, 12
grabMzxmlBPC, 12
grabMzxmlData, 13
grabMzxmlEncodingData, 15
grabMzxmlMetadata, 15
grabMzxmlMS1, 16
grabMzxmlMS2, 16
grabMzxmlSpectraMzInt, 17
grabMzxmlSpectraPremz, 17
grabMzxmlSpectraRt, 18
grabMzxmlSpectraVoltage, 18
grabSpectralnt, 19
grabSpectraMz, 19
grabSpectraPremz, 20
grabSpectraRt, 20
grabSpectraVoltage, 21

minifyMSdata, 21
minifyMzml, 23
minifyMzxml, 24
msdata_connection, 26

node2dt, 26

pmppm, 27
print.msdata_connection, 27

31

tmzmlMaker, 28

	checkOutputQuality
	getEncoded
	giveEncoding
	grabAccessionData
	grabMSdata
	grabMzmlBPC
	grabMzmlDAD
	grabMzmlData
	grabMzmlEncodingData
	grabMzmlMetadata
	grabMzmlMS1
	grabMzmlMS2
	grabMzxmlBPC
	grabMzxmlData
	grabMzxmlEncodingData
	grabMzxmlMetadata
	grabMzxmlMS1
	grabMzxmlMS2
	grabMzxmlSpectraMzInt
	grabMzxmlSpectraPremz
	grabMzxmlSpectraRt
	grabMzxmlSpectraVoltage
	grabSpectraInt
	grabSpectraMz
	grabSpectraPremz
	grabSpectraRt
	grabSpectraVoltage
	minifyMSdata
	minifyMzml
	minifyMzxml
	msdata_connection
	node2dt
	pmppm
	print.msdata_connection
	tmzmlMaker
	[.msdata_connection
	$.msdata_connection
	Index

