
Package ‘RcppEigenAD’
October 12, 2022

Type Package

Title Compiles 'C++' Code using 'Rcpp', 'Eigen' and 'CppAD' to Produce
First and Second Order Partial Derivatives

Version 1.0.0

Date 2018-06-14

Author Damon Berridge <d.m.berridge@swansea.ac.uk> [ctb] Robert Crouch-
ley <r.crouchley@lancaster.ac.uk> [ctb] Daniel Grose <dan.grose@lancaster.ac.uk> [aut,cre,ctb]

Maintainer Daniel Grose <dan.grose@lancaster.ac.uk>

Description
Compiles 'C++' code using 'Rcpp', 'Eigen' and 'CppAD' to produce first and second order par-
tial derivatives. Also provides an implementation of Faa' di Bruno's formula to combine the par-
tial derivatives of composed functions, (see Hardy, M (2006) <arXiv:math/0601149v1>).

License GPL (>= 2)

Imports Rcpp (>= 0.12.12), methods, RcppEigen, functional, memoise,
readr, Rdpack

LinkingTo Rcpp, RcppEigen, BH

SystemRequirements C++11

RdMacros Rdpack

NeedsCompilation yes

Repository CRAN

Date/Publication 2018-06-15 13:10:04 UTC

R topics documented:
H . 2
J . 3
sourceCppAD . 5
%.% . 6

Index 8

1

https://arxiv.org/abs/math/0601149v1

2 H

H Construct a function to calculate the Hessian of a function.

Description

Constructs a function to calculate the Hessian of a function produced either using sourceCppAD
or the composition operator %.% . The returned function has the same argument signature as f
but returns a matrix representing the blocked Hessians of f evaluated at the functions arguments.
The partial derivatives are formed with respect to the argument specified when f was created with
sourceCppAD.

In what follows it is assumed that f has a single matrix argument (the one with which f is differen-
tiated with respect to). When this is not the case, the other arguments will be considered constant
at the point the Hessian is evaluated at. Consequently, the structure of the output of the function
produced by H is unchanged by the additional arguments. The blocked Hessian H is organised as
follows.

If f : Rn → Rm where YnY ×mY
= f(XnX×mX

) and n = nXmX , m = nY mY then by
numbering the elements of the matrices row-wise so that,

Y =

y1 . . . ymY

ymY +1 . . . y2mY

...
. . .

...
y(nY −1)mY +1 . . . ynY mY

and

X =

x1 . . . xmX

xmX+1 . . . x2mX

...
. . .

...
x(nX−1)mX+1 . . . xnXmX

then the n× nm blocked Hessian matrix H is structured as

H =
[
H1 H2 . . . Hm

]
with Hk the Hessian matrix for yk i.e.,

Hk =

∂2yk

∂x1∂x1
. . . ∂2yk

∂x1∂xn

...
. . .

...
∂2yk

∂xn∂x1
. . . ∂2yk

∂xn∂xn

Usage

H(f)

Arguments

f A function created using either sourceCppAD or the composition operator %.%.

J 3

Value

A function which computes the Hessian of the function.

Examples

library(RcppEigenAD)
define f as the eigen vectors of its argument x
calculated using the Eigen library
f<-sourceCppAD('
ADmat f(const ADmat& X)
{

Eigen::EigenSolver<ADmat> es(X);
return es.pseudoEigenvectors();

}
')
Hf<-H(f)
X<-matrix(c(1,2,3,4),2,2)
Hmat<-Hf(X)
Hmat # the Hessian matrices of second derivatives stacked column wise
Hmat[3,9] # the second derivative of f(X)[2,1] with respect to X[2,1] and X[1,2]

J Construct a function to calculate the Jacobian of a function.

Description

Constructs a function to calculate the Jacobian of a function produced either using sourceCppAD
or the composition operator %.%. The returned function has the same argument signature as f but
returns a matrix representing the Jacobian of f evaluated at the functions arguments. The partial
derivatives are formed with respect to the arguments specified when f was created with sourceCp-
pAD.

In what follows it is assumed that f has a single matrix argument (the one with which f is differen-
tiated with respect to). When this is not the case, the other arguments will be considered constant
at the point the Jacobian is evaluated at. Consequently, the structure of the output of the function
produced by J is unchanged by the additional arguments. The Jacobian matrix J is organised as
follows.

If f : Rn → Rm where YnY ×mY
= f(XnX×mX

) and n = nXmX , m = nY mY then by
numbering the elements of the matrices row-wise so that,

Y =

y1 . . . ymY

ymY +1 . . . y2mY

...
. . .

...
y(nY −1)mY +1 . . . ynY mY

4 J

and

X =

x1 . . . xmX

xmX+1 . . . x2mX

...
. . .

...
x(nX−1)mX+1 . . . xnXmX

then the m× n Jacobian matrix is given by

J =

∂y1

∂x1
. . . ∂y1

∂xn

...
. . .

...
∂ym

∂x1
. . . ∂ym

∂xn

Usage

J(f)

Arguments

f A function created using either sourceCppAD or the composition operator %.%.

Value

A function which computes the Jacobian of the function

Examples

define f as the eigen vectors of its argument X
calculated using the Eigen library
library(RcppEigenAD)
f<-sourceCppAD('
ADmat f(const ADmat& X)
{

Eigen::EigenSolver<ADmat> es(X);
return es.pseudoEigenvectors();

}
')
Jf<-J(f)
X<-matrix(c(1,2,3,4),2,2)
Jmat<-Jf(X)
Jmat # the Jacobian matrix of first derivatives
Jmat[2,3] # the derivative of f(X)[1,2] with respect to X[2,1]

sourceCppAD 5

sourceCppAD Construct a function to calculate the Jacobian of a function.

Description

Constructs an R function that wraps a call to a C++ function and compiles the C++ code used to
define the function. The code must define a function having arguments of the type const ADmat&
and a return type of ADmat. The ADmat type is a type definition for a dynamically sized matrix
from the Eigen linear algebra library. (Guennebaud G, Jacob B and others 2010). The function can
employ methods from the Eigen library, such as all of the standard operators from linear algebra,
and a wide range of functions for calculating inverses, decompositions and so on. See Guennebaud
G, Jacob B and others (2010) for further details.

The returned function can then be used as an argument to J or H which provide functions that apply
algorithmic differentiation to calculate the Jacobian or Hessian matrices. The functions produced
by J or H evaluate the partial derivatives with respect to the elements of the argument located at the
position in the functions argument list that is specified by the wrt argument of sourceCppAD.

Usage

sourceCppAD(code=NULL,file=NULL,wrt=1,output="method")

Arguments

code A character vector containing the C++ code to compile.

file The filename of a file containing the C++ code to compile.

wrt The position of the argument that J and H are differentiated with respect to.

output Specifies what is generated by sourceCppAD. If output="method" (the default)
then a function which invokes the compiled code is returned. If output="code"
then the source code that wraps the users function for use with the algorithmic
differentiation libraries is returned.

Value

A function which invokes the compiled code or the c++ code that wraps the users function for use
with the algorithmic differentiation libraries.

References

Guennebaud G, Jacob B and others (2010). “Eigen v3.” http://eigen.tuxfamily.org.

Examples

library(RcppEigenAD)
define a function to calculate sin(cos(x)) where x is a matrix
f<-sourceCppAD('
ADmat f(const ADmat& X)

6 %.%

{
return X.array().cos().sin();

}
')
x<-matrix(c(1,2,3,4),2,2)
call it
f(x)

%.% Compose two functions created using either sourceCppAD or %.% it-
self

Description

Returns a function with a matrix X as input which computes the value of (f ◦ g)(x) = f(g(x)).
Note that the order of the composition is such that g is applied to X first. f is then applied to the
result of g. The returned function is compatible with both J and H, and if J and H are applied to a
function produced by composition, the resulting Jacobian or Hessian matrices are constructed from
the Jacobians and Hessians of f and g using a combinatorical form of Faa di Bruno’s formula (Hardy
2006). The functions f and g must both be functions of a single argument. Note that a function of
multiple arguments can be Curried into a function with a single argument. The R package functional
provides the method Curry which is convenient for this purpose.

Usage

f %.% g

Arguments

f Function to be composed with g

g Function to be composed with f

Value

A function which computes the composition f and g

References

Hardy M (2006). “Combinatorics of Partial Derivatives.” Electr. J. Comb., 13(1). http://dblp.
uni-trier.de/db/journals/combinatorics/combinatorics13.html#Hardy06.

Ma T (2009). “Higher Chain Formula proved by Combinatorics.” Electr. J. Comb., 16.

http://dblp.uni-trier.de/db/journals/combinatorics/combinatorics13.html#Hardy06
http://dblp.uni-trier.de/db/journals/combinatorics/combinatorics13.html#Hardy06

%.% 7

Examples

library(RcppEigenAD)
define a function to calculate the eigen vectors of a matrix
f<-sourceCppAD('
ADmat f(const ADmat& X)
{

Eigen::EigenSolver<ADmat> es(X);
return es.pseudoEigenvectors();

}
')
define function to calculate the inverse of a matrix
g<-sourceCppAD('
ADmat g(const ADmat& X)
{

return X.inverse();
}
')
compose f and g to produce a functions to calculate the eigenvectors of the inverse of a matrix
h<-f%.%g # h = f o g
x<-matrix(c(1,2,3,4),2,2)
x<-x%*%t(x) # positive definite matrix
J(h)(x) # Jacobian of h = f o g
H(h)(x) # Stacked Hessians of h = f o g
redefine h as a function to directly calculate the eigenvectors of the inverse of a matrix
h<-sourceCppAD('
ADmat h(const ADmat& X)
{

Eigen::EigenSolver<ADmat> es(X.inverse());
return es.pseudoEigenvectors();

}
')
calculate the Jacobian and Hessian of h to compare with previous result
J(h)(x) # Jacobian of h = f o g
H(h)(x) # Stacked Hessians of h = f o g

Index

%.%, 2–4, 6

Curry, 6

H, 2, 5, 6

J, 3, 5, 6

sourceCppAD, 2–4, 5, 6

8

	H
	J
	sourceCppAD
	%.%
	Index

