library(SDPDmod)
This vignette gives a few examples on how to create different spatial
weights matrices using the SDPDmod
package.
A spatial weights matrix is an \(N \times N\) non-negative matrix, where \(N\) is the size of the data set. The elements of the spatial matrix \(W\), \(w_{ij}\) are non-zero if \(i\) and \(j\) are considered to be neighbors and zero otherwise. Since unit \(i\) can not be a neighbor to itself, the diagonal elements of the spatial weights matrix are zero, i.e. \(w_{ij}=0\).
Data on German districts and distances between district’s centroids
in meters are included in the SDPDmod
package and are used
for the examples.
library("sf")
<- st_read(system.file(dsn = "shape/GermanyNUTS3.shp",
ger package = "SDPDmod"))
data(gN3dist, package = "SDPDmod")
\[ w_{ij} = \begin{cases} 1,&i &\text{and} &j &\text{have a shared boundary}\\ 0,& \text{otherwise} \end{cases} \]
<- mOrdNbr(ger) ## first order neighbors W_1
\[ w_{ij} = \begin{cases} 1,&i &\text{and} &j &\text{are neighbors of order} &m\\ 0,& \text{otherwise} \end{cases} \]
<- mOrdNbr(sf_pol = ger, m = 2) ## second order neighbors
W_2n <- mOrdNbr(ger, 3) ## third order neighbors W_3n
\[ w_{ij} = \begin{cases} 1,& \text{if unit} &j &\text{is one of the} &k &\text{nearest neighbor of} &i\\ 0,& \text{otherwise} \end{cases} \]
<- mNearestN(distMat = gN3dist, m = 5) ## 5 nearest neighbors W_knn
\[ w_{ij} = d_{ij}^{-\alpha} \] \(d_{ij}\) - distance between units \(i\) and \(j\), \(\alpha\) - positive exponent
<- InvDistMat(distMat = gN3dist) ## inverse distance no cut-off
W_inv1 <- InvDistMat(distMat = gN3dist, distCutOff = 100000) ## inverse distance with cut-off 100000 meters
W_inv2 <- gN3dist/1000 ## convert to kilometers
gN3dist2 <- InvDistMat(distMat = gN3dist2, distCutOff = 100) ## inverse distance with cut-off 100 km
W_inv3 <- InvDistMat(gN3dist2, 200, powr = 2) ## inverse distance with cut-off 200km and exponent 2 W_inv4
\[ w_{ij} = exp(-\alpha d_{ij}) \] \(d_{ij}\) - distance between units \(i\) and \(j\), \(\alpha\) - positive exponent
<- ExpDistMat(distMat = gN3dist) ## Exponential distance no cut-off
W_exp1 <- ExpDistMat(distMat = gN3dist, distCutOff = 100000) ## Exponential distance with cut-off 100000 meters
W_exp2 <- gN3dist/1000 ## convert to kilometers
gN3dist2 <- ExpDistMat(gN3dist2, 100) ## Exponential distance with cut-off 100 km
W_exp3 <- DistWMat(gN3dist2, 100, type = "expo") ## Exponential distance with cut-off 100 km
W_exp4 all(W_exp3==W_exp4)
#> [1] TRUE
<- ExpDistMat(gN3dist2, 200, expn = 0.001) ## Exponential distance with cut-off 200 km and exponent 0.001 W_exp5
\[ w_{ij} = \begin{cases} (1-(\frac{d_{ij}}{D})^p)^p,&0 \leq d_{ij} \leq D \\ 0,& d_{ij} \geq D \end{cases} \] \(d_{ij}\) - distance between units \(i\) and \(j\), \(p\) - positive exponent, \(D\) - distance cut-off
<- DDistMat(distMat = gN3dist) ## Double-Power distance no cut-off, exponent 2
W_dd1 <- DDistMat(distMat = gN3dist, distCutOff=100000) ## Double-Power distance with cut-off 100000 meters, exponent 2
W_dd2 <- gN3dist/1000 ## convert to kilometers
gN3dist2 <- DDistMat(gN3dist2, 100) ## Double-Power distance with cut-off 100 km
W_dd3 <- DistWMat(gN3dist2, 100, type = "doubled") ## Double-Power distance with cut-off 100 km
W_dd4 all(W_dd3==W_dd4)
#> [1] TRUE
<- DDistMat(gN3dist2, 200, powr = 3) ## Double-Power distance with cut-off 200km and exponent 3 W_dd5
\[ w_{ij}^{normalized} =w_{ij}/\sum_{j=1}^N w_{ij} \]
<- mOrdNbr(sf_pol = ger, m = 2, rn = T) ## second order neighbors
W_2n_norm <- rownor(W_2n)
W_2n_norm2 all(W_2n_norm==W_2n_norm2)
#> [1] TRUE
\[ w_{ij}^{normalized} =w_{ij}/\lambda_{max} \] \(\lambda_{max}\) maximum eigenvalue of \(W\)
<- InvDistMat(distMat = gN3dist, mevn = T) ## Inverse distance
W_inv1_norm <- eignor(W_inv1)
W_inv1_norm2 all(W_inv1_norm==W_inv1_norm2)
#> [1] TRUE