Package 'SIfEK'

October 12, 2022

Type Package

Title Statistical Inference for Enzyme Kinetics

Version 0.1.0

Author Donghyun Ra, Kyunghoon Kim, Boseung Choi

Maintainer Donghyun Ra <dongcle72@gmail.com>

Description

Functions for estimating catalytic constant and Michaelis-Menten constant (MM constant) of stochastic Michaelis-Menten enzyme kinetics model are provided. The likelihood functions based on stochastic simulation approximation (SSA), diffusion approximation (DA), and Gaussian processes (GP) are provided to construct posterior functions for the Bayesian estimation. All functions utilize Markov Chain Monte Carlo (MCMC) methods with Metropolis-Hastings algorithm with random walk chain and robust adaptive Metropolis-Hastings algorithm based on Bayesian framework.

License GPL-3

Encoding UTF-8

LazyData true

RoxygenNote 6.1.0

Depends R(>= 2.10.0)

Imports MASS, ramcmc, smfsb, numDeriv

NeedsCompilation no

Repository CRAN

Date/Publication 2018-11-22 14:20:03 UTC

R topics documented:

Chymo_high	2
Chymo_low	2
DA.cat	3
DA.combi	4
DA.MM	5
DA.multi	7

Chymo_low

GP.cat	8
GP.combi	9
GP.MM	11
GP.multi	13
SSA.cat	14
SSA.combi	15
SSA.MM	17
SSA.multi	18
	20

Index

Chymo_high

Product concentration of 101 observed time

Description

A synthetic data set of the product concentration of the enzyme kinetics with lower initial enzyme concentration and discrete observed time.

Usage

Chymo_high

Format

A data frame with 101 rows and 2 variables

Chymo_low

Product concentration of 101 observed time

Description

A synthetic data set of the product concentration of the enzyme kinetics with higher initial enzyme concentration and discrete observed time.

Usage

Chymo_low

Format

A data frame with 101 rows and 2 variables

DA.cat

Description

The function estimates single catalytic constant using single data set with an initial enzyme concentrations and substrate concentration. The diffusion approximation is utilized for the likelihood function.

Usage

```
DA.cat(method = T, dat, enz, subs, MM, catal, nrepeat = 10000,
jump = 1, burning = 0, catal_m_v = c(1, 10000), sig,
scale_tun = 80)
```

Arguments

method	method selection: T=TQ model, F=SQ model(default = T)
dat	observed dataset (time & trajectory columns)
enz	enzyme concentration
subs	substrate concentration
MM	true value of MM constant
catal	initial value of catalytic constant
nrepeat	total number of iteration (default=10000)
jump	length of distance (default =1)
burning	lenth of burning period (default =0)
catal_m_v	Catalytic prior gamma mean, variance(default=c(1,10000))
sig	standard deviation of univariate Normal proposal distribution
scale_tun	scale tunning constant for stochastic simulation

Details

The function DA.cat generates a set of MCMC simulation samples from the conditional posterior distribution of catalytic constant of enzyme kinetics model. As the catalytic constant is only parameter to be estimated in the function the user should assign MM constant as well as initial enzyme concentration and substrate concentration. The prior information for the parameter can be given. The turning constant (scale_tun) and standard deviation (sig) can be set to controlled proper mixing and acceptance ratio of the parameter from the conditional posterior distribution. The posterior samples are only stored with fixed interval according to set "jump" to reduce serial correlation. The initial iterations are removed for convergence. The "burning" is set the length of initial iterations. The diffusion approximation method is used for construction of the likelihood.

Value

A vector of posterior samples of catalytic constant

Examples

End(Not run)

DA.combi	Simultaneous estimation of Michaelis-Menten constant and catalytic
	constant using combined data and the likelihood function with the dif-
	fusion approximation method.

Description

The function estimates both catalytic constant and Michaelis-Menten constant simultaneously using combined data sets with different enzyme concentrations or substrate concentrations. The diffusion approximation is utilized for the likelihood function.

Usage

DA.combi(method = T, dat1, dat2, enz, subs, MM, catal, sig, nrepeat = 11000, jump = 1, burning = 1000, catal_m_v = c(1, 10000), MM_m_v = c(1, 10000), scale_tun = 80)

method	method selection: T=TQ model, F=SQ model(default = T)
dat1	observed dataset1 (time & trajectory columns)
dat2	observed dataset2 (time & trajectory columns)
enz	enzyme concentrate
subs	substrate concentrate
MM	initial value of MM constant
catal	initial value of catalytic constant
sig	variance of bivariate Normal proposal distribution
nrepeat	total number of iteration (default=10000)
jump	length of distance (default =1)
burning	length of burning period (default =0)
catal_m_v	catalytic prior gamma mean, variance(default=c(1,10000))
MM_m_v	MM prior gamma mean, variance(default=c(1,10000))
scale_tun	scale tunning constant for stochastic simulation

DA.MM

Details

The function DA.combi generates a set of MCMC simulation samples from the posterior distribution of catalytic constant and MM constant of enzyme kinetics model. As the function uses combined data set with different initial concentration of enzyme or substrate concentration the user should input two values of enzyme and substrate initial concentration. The prior information for both two parameters can be given. The turning constant (scale_tun) and variances for two constants (sig) can be set to controlled proper mixing and acceptance ratio for updating two parameters simultaneously. The posterior samples are only stored with fixed interval according to set "jump" to reduce serial correlation. The initial iterations are removed for convergence. The "burning" is set the length of initial iterations. The diffusion approximation method is used for construction of the likelihood.

Value

A n*2 matrix of postrior samples of catalytic constant and MM constant

Examples

```
## Not run:
data('Chymo_low')
data('Chymo_high')
comb_DA=DA.combi(method=TRUE,dat1=Chymo_low,dat2=Chymo_high,enz=c(4.4e+7,4.4e+9)
        ,subs=c(4.4e+7,4.4e+7),MM=4.4e+8,cata1=0.05,sig=2.0*(c(0.005,8e+7))^2
        ,nrepeat=10000,jump=1,burning=0,cata1_m_v = c(1, 1e+6)
        ,MM_m_v = c(1, 1e+10),scale_tun=100)
```

End(Not run)

DA.MM

Estimation of single Michaelis-Menten constant using diffusion approximation

Description

The function estimates single Michaelis-Menten constant using the likelihood function with diffusion approximation method.

Usage

```
DA.MM(method = T, dat, enz, subs, MM, catal, nrepeat = 10000,
jump = 1, burning = 0, MM_m_v = c(1, 10000), sig, scale_tun = 80)
```

Arguments

method	method selection: T=TQ model, F=SQ model(default = T)
dat	observed dataset (time & trajectory columns)
enz	enzyme concentrate
subs	substrate concentrate
ММ	initial value of MM constant
catal	true value of catalytic constant
nrepeat	total number of iteration (default=10000)
jump	length of distance (default = 1)
burning	length of burning period (default=0)
MM_m_v	MM prior gamma mean, variance(default=c(1,10000))
sig	standard deviation of univariate Normal proposal distribution
scale_tun	scale tunning constant for stochastic simulation

Details

The function DA.MM generates a set of MCMC simulation samples from the conditional posterior distribution of Michaelis-Menten constant of enzyme kinetics model. As the MM constant is only parameter to be estimated in the function the user should assign catalytic constant as well as initial enzyme concentration and substrate concentration. The prior information for the parameter can be given. The turning constant (scale_tun) and standard deviation (sig) can be set to controlled proper mixing and acceptance ratio of the parameter from the conditional posterior distribution. The posterior samples are only stored with fixed interval according to set "jump" to reduce serial correlation. The initial iterations are removed for convergence. The "burning" is set the length of initial iterations. The diffusion approximation method is used for construction of the likelihood.

Value

A vector of posterior samples of catalytic constant

Examples

End(Not run)

DA.multi Simultaneous estimation of Michaelis-Menten constant and catalytic constant using the likelihood function with diffusion approximation method

Description

The function estimates both catalytic constant and Michaelis-Menten constant simultaneously using single data set with an initial enzyme concentrations and substrate concentration. The diffusion approximation is utilized for the likelihood function.

Usage

```
DA.multi(method = T, dat, enz, subs, MM, catal, nrepeat = 10000,
  jump = 1, burning, catal_m_v = c(1, 10000), MM_m_v = c(1, 10000),
  sig, scale_tun = 80)
```

Arguments

method	method selection: T=TQ model, F=SQ model(default = T)
dat	observed dataset (time & trajectory columns)
enz	enzyme concentrate
subs	substrate concentrate
ММ	initial value of MM constant
catal	initial value of catalytic constant
nrepeat	total number of iteration (default=10000)
jump	length of distance (default =1)
burning	length of burning period (default =0)
catal_m_v	catalytic prior gamma mean, variance(default=c(1,10000))
MM_m_v	MM prior gamma mean, variance(default=c(1,10000))
sig	variance of bivariate Normal proposal distribution
scale_tun	scale tunning constant for stochastic simulation

Details

The function DA.multi generates a set of MCMC simulation samples from the posterior distribution of catalytic constant and MM constant of enzyme kinetics model. As the function estimates both two constants the user should input the enzyme and substrate initial concentration. The prior information for both two parameters can be given. The turning constant (scale_tun) and variances for two constants (sig) can be set to controlled proper mixing and acceptance ratio for updating two parameters simultaneously. The posterior samples are only stored with fixed interval according to set "jump" to reduce serial correlation. The initial iterations are removed for convergence. The "burning" is set the length of initial iterations. The diffusion approximation method is used for construction of the likelihood.

Value

A n*2 matrix of postrior samples of catalytic constant and MM constant

Examples

End(Not run)

GP.cat

Estimation of single catalytic constant using Gaussian processes

Description

The function estimates single catalytic constant using single data set with an initial enzyme concentrations and substrate concentration. The Gaussian processes is utilized for the likelihood function.

Usage

```
GP.cat(method = T, RAM = F, time, dat, enz, subs, MM, catal,
    nrepeat = 10000, jump = 1, burning = 0, catal_m_v = c(1, 10000),
    sig, va)
```

method	method selection: T=TQ model, F=SQ model(default = T)
RAM	Robust Adaptive MCMC options (default = F)
time	total time of data
dat	observed dataset (trajectory column)
enz	enzyme concentrate
subs	substrate concentrate
MM	true value of MM constant
catal	initial value of catalytic constant
nrepeat	total number of iteration (default=10000)
jump	length of distance (default =1)
burning	length of burning period (default =0)
catal_m_v	Catalytic prior gamma mean, variance(default=c(1,10000))
sig	standard deviation of univariate Normal proposal distribution
va	variance of dataset

GP.combi

Details

The function GP.cat generates a set of MCMC simulation samples from the conditional posterior distribution of catalytic constant of enzyme kinetics model. As the catalytic constant is only parameter to be estimated in the function the user should assign MM constant as well as initial enzyme concentration and substrate concentration. The prior information for the parameter can be given. The GP.cat function can select Robust Adaptive Metropolis (RAM) algorithm as well as Metropolis-Hastings algorithm with random walk chain for MCMC procedure. When "RAM" is assigned T then the function use RAM method and the "sig" is used as initial standard deviation of normal proposal distribution. When "RAM" is F, the function use Metropolis-Hastings algorithm with random walk chain and the "sig" can be set to controlled proper mixing and acceptance ratio of the parameter from the conditional posterior distribution. The "va" is the variance of the Gaussian process. The posterior samples are only stored with fixed interval according to set "jump" to reduce serial correlation. The initial iterations are removed for convergence. The "burning" is set the length of initial iterations. The Gaussian process method is used for construction of the likelihood.

Value

A vector of posterior samples of catalytic constant

Examples

End(Not run)

Simultaneous estimation of Michaelis-Menten constant and catalytic constant using combined data and the likelihood function with the Gaussian process method

Description

GP.combi

The function estimates both catalytic constant and Michaelis-Menten constant simultaneously using combined data sets with different enzyme concentrations or substrate concentrations. The Gaussian process is utilized for the likelihood function.

Usage

```
GP.combi(method = T, RAM = F, time1, dat1, time2, dat2, enz, subs, MM,
    catal, nrepeat = 11000, jump = 1, burning = 1000,
    catal_m_v = c(1, 10000), MM_m_v = c(1, 10000), sig, va)
```

Arguments

method	method selection: T=TQ model, F=SQ model(default = T)
RAM	Robust Adaptive MCMC options (default = F)
time1	total time of dataset1
dat1	observed dataset1 (trajectory column)
time2	total time of dataset2
dat2	observed dataset2 (trajectory column)
enz	enzyme concentrate
subs	substrate concentrate
MM	initial value of MM constant
catal	initial value of catalytic constant
nrepeat	total number of iteration (defuault=10000)
jump	length of distance (default =1)
burning	length of burning period (default =0)
catal_m_v	catalytic prior gamma mean, variance(default=c(1,10000))
MM_m_v	MM prior gamma mean, variance(default=c(1,10000))
sig	variance of bivariate Normal proposal distribution
va	variance of data

Details

The function GP.combi generates a set of MCMC simulation samples from the posterior distribution of catalytic constant and MM constant of enzyme kinetics model. As the function uses combined data set with different initial concentration of enzyme or substrate concentration the user should input two values of enzyme and substrate initial concentration. The prior information for both two parameters can be given. The function can select Robust Adaptive Metropolis (RAM) algorithm as well as Metropolis-Hastings algorithm with random walk chain for MCMC procedure. When "RAM" is assigned T then the function use RAM method and the "sig" is used as initial variances of normal proposal distribution for catalytic and MM constant. When "RAM" is F, the function use Metropolis-Hastings algorithm with random walk chain and the "sig" can be set to controlled proper mixing and acceptance ratio of the parameter for updating two parameters simultaneously. The "va" is the variance of the Gaussian process. The posterior samples are only stored with fixed interval according to set "jump" to reduce serial correlation. The initial iterations are removed for convergence. The "burning" is set the length of initial iterations. The Gaussian process method is used for construction of the likelihood

Value

A n*2 matrix of postrior samples of catalytic constant and MM constant

GP.MM

Examples

End(Not run)

GP.MM

Estimation of single Michaelis-Menten constant using the Gaussian process method The function estimates single Michaelis-Menten constant using the likelihood function with the Gaussian process method.

Description

Estimation of single Michaelis-Menten constant using the Gaussian process method The function estimates single Michaelis-Menten constant using the likelihood function with the Gaussian process method.

Usage

```
GP.MM(method = T, RAM = F, time, dat, enz, subs, MM, catal,
    nrepeat = 10000, jump = 1, burning = 0, MM_m_v = c(1, 10000),
    sig, va)
```

method	method selection: T=TQ model, F=SQ model(default = T)
RAM	Robust Adaptive MCMC options (default = F)
time	total time of data
dat	observed dataset (trajectory column)
enz	enzyme concentrate
subs	substrate concentrate
MM	initial value of MM constant

catal	true value of catalytic constant
nrepeat	total number of iteration (default=10000)
jump	length of distance (default = 1)
burning	length of burning period (default=0)
MM_m_v	MM prior gamma mean, variance(default=c(1,10000))
sig	standard deviation of univariate Normal proposal distribution
va	variance of dataset

Details

The function GP.MM generates a set of MCMC simulation samples from the conditional posterior distribution of Michaelis-Menten constant of enzyme kinetics model. As the MM constant is only parameter to be estimated in the function the user should assign catalytic constant as well as initial enzyme concentration and substrate concentration. The prior information for the parameter can be given. The GP.MM function can select Robust Adaptive Metropolis (RAM) algorithm as well as Metropolis-Hastings algorithm with random walk chain for MCMC procedure. When "RAM" is assigned T then the function use RAM method and the "sig" is used as initial standard deviation of normal proposal distribution. When "RAM" is F, the function use Metropolis-Hastings algorithm with random walk chain and the "sig" can be set to controlled proper mixing and acceptance ratio of the parameter from the conditional posterior distribution. The "va" is the variance of the Gaussian process. The posterior samples are only stored with fixed interval according to set "jump" to reduce serial correlation. The initial iterations are removed for convergence. The "burning" is set the length of initial iterations. The diffusion approximation method is used for construction of the likelihood.

Value

A vector of posterior samples of catalytic constant

Examples

```
## Not run:
data('Chymo_low')
time1=max(Chymo_low[,1])*1.01
sm_GPMH=GP.MM(method=TRUE,time=time1,dat=Chymo_low[,2],enz=4.4e+7,subs=4.4e+7
,MM=4.4e+8,catal=0.05,nrepeat=10000,jump=1,burning=0
,MM_m_v=c(1,1e+10),sig=8e+7,va=var(Chymo_low[,2]))
# use RAM algorithm #
sm_GPRAM=GP.MM(method=TRUE,RAM=TRUE,time=time1,dat=Chymo_low[,2],enz=4.4e+7,subs=4.4e+7
,MM=4.4e+8,catal=0.05,nrepeat=10000,jump=1,burning=0
,MM_m_v=c(1,1e+10),sig=500,va=var(Chymo_low[,2]))
```

End(Not run)

GP.multi

Simultaneous estimation of Michaelis-Menten constant and catalytic constant using the likelihood function with the Gaussian process method.

Description

The function estimates both catalytic constant and Michaelis-Menten constant simultaneously using single data set with an initial enzyme concentrations and substrate concentration. the Gaussian process is utilized for the likelihood function.

Usage

```
GP.multi(method = T, RAM = F, time, dat, enz, subs, MM, catal,
    nrepeat = 10000, jump = 1, burning = 0, catal_m_v = c(1, 10000),
    MM_m_v = c(1, 10000), sig, va)
```

Arguments

method	method selection: T=TQ model, F=SQ model(default = T)
RAM	Robust Adaptive MCMC options (default = F)
time	total time of data
dat	observed dataset (trajectory column)
enz	enzyme concentrate
subs	substrate concentrate
MM	initial value of MM constant
catal	initial value of cataldattic constant
nrepeat	total number of iteration (default=10000)
jump	length of distance (default =1)
burning	length of burning period (default =0)
catal_m_v	MM prior gamma mean, variance(default=c(1,10000))
MM_m_v	MM prior gamma mean, variance(default=c(1,10000))
sig	variance of bivariate Normal proposal distribution
va	variance of dataset

Details

The function GP.multi generates a set of MCMC simulation samples from the posterior distribution of catalytic constant and MM constant of enzyme kinetics model. As the function estimates both two constants the user should input the enzyme and substrate initial concentration. The prior information for both two parameters can be given. The function can select Robust Adaptive Metropolis (RAM) algorithm as well as Metropolis-Hastings algorithm with random walk chain for MCMC procedure. When "RAM" is assigned T then the function use RAM method and the "sig" is used

as initial variances of normal proposal distribution for catalytic and MM constant. When "RAM" is F, the function use Metropolis-Hastings algorithm with random walk chain and the "sig" can be set to controlled proper mixing and acceptance ratio of the parameter for updating two parameters simultaneously. The "va" is the variance of the Gaussian process. The posterior samples are only stored with fixed interval according to set "jump" to reduce serial correlation. The initial iterations are removed for convergence. The "burning" is set the length of initial iterations. The diffusion approximation method is used for construction of the likelihood

Value

A vector of posterior samples of catalytic constant

Examples

End(Not run)

SSA.cat

Estimation of single catalytic constant using the stochastic simulation approximation method

Description

The function estimates single catalytic constant using single data set with an initial enzyme concentrations and substrate concentration. The stochastic simulation approximation method is utilized for the likelihood function.

Usage

```
SSA.cat(method = T, time, species, enz, subs, MM, catal,
    nrepeat = 10000, jump = 1, burning = 0, catal_m = 1,
    catal_v = 1e+06)
```

14

SSA.combi

Arguments

method	method selection: T=TQ model, F=SQ model(default = T)
time	observed time interval
species	observed trajectory of product
enz	enzyme concentration
subs	substrate concentration
MM	true value of MM constant
catal	initial value of catalytic constant
nrepeat	total number of iteration (default=10000)
jump	length of distance (default =1)
burning	lenth of burning period (default =0)
catal_m	prior mean of gamma prior (default =1)
catal_v	prior variance of gamma prior (default =1e+6)

Details

The function SSA.cat generates a set of Monte Carlo simulation samples from the conditional posterior distribution of catalytic constant of enzyme kinetics model. As the catalytic constant is only parameter to be estimated in the function the user should assign MM constant as well as initial enzyme concentration and substrate concentration. The prior information for the parameter can be given.

Value

A vector of posterior samples of catalytic constant

Examples

```
data("Chymo_low")
time1=Chymo_low[,1]
species1=Chymo_low[,2]
Chymotrypsin.low<-SSA.cat(method=TRUE,time=time1,species=species1,enz=4.4e+7,subs=4.4e+7
,MM=4.4e+8, catal=0.1,nrepeat = 10000)</pre>
```

SSA.combi	Simultaneous estimation of Michaelis-Menten constant and catalytic
	constant using combined data and the likelihood function with the
	Stochastic Simulation Approximation method.

Description

The function estimates both catalytic constant and Michaelis-Menten constant simultaneously using combined data sets with different enzyme concentrations or substrate concentrations. The diffusion approximation is utilized for the likelihood function.

Usage

```
SSA.combi(method = T, time1, time2, species1, species2, enz1, enz2,
   subs1, subs2, MM, catal, tun = 2.4, std, nrepeat, jump = 1,
   burning = 0, catal_m = 1, catal_v = 1e+05, MM_m = 1,
   MM_v = 1e+05)
```

Arguments

method	method selection: T=TQ model, F=SQ model(default = T)
time1	observed time interval for data1
time2	observed time interval for data2
species1	observed trajectory of product for data1
species2	observed trajectory of product for data2
enz1	enzyme concentration for data1
enz2	enzyme concentration for data2
subs1	substrate concentration for data1
subs2	substrate concentration for data2
MM	initial value of MM constant
catal	initial value of catalytic constant
tun	tunning constant of MH algorithm (default =2.4)
std	standard deviation of proposal distribution
nrepeat	total number of iteration
jump	length of distance (default =1)
burning	lenth of burning period (default =0)
catal_m	prior mean of gamma prior (default =1)
catal_v	prior variance of gamma prior (default =10000)
MM_m	prior mean of gamma prior (default =1)
MM_v	prior variance of gamma prior (default =10000)

Details

The function DA.combi generates a set of MCMC simulation samples from the posterior distribution of catalytic constant and MM constant of enzyme kinetics model. As the function uses combined data set with different initial concentration of enzyme or substrate concentration the user should input two values of enzyme and substrate initial concentration. The prior information for both two parameters can be given. The function utilizes the Gibbs sampler to update two parameters iteratively from conditional posterior distribution. Updating catalytic constant is conducted using conditional gamma distribution. The posterior samples of MM constant are drawn vis Metropolis-Hasting algorithm with random walk chain. The turning constant (scale_tun) and standard deviation of proposal normal distribution (sig) can be set to controlled proper mixing and acceptance ratio of the parameter from the conditional posterior distribution. The posterior samples are only stored with fixed interval according to set "jump" to reduce serial correlation. The initial iterations are removed for convergence. The "burning" is set the length of initial iterations. The stochastic simulation approximation method is used for construction of the likelihood.

SSA.MM

Value

A n*2 matrix of postrior samples of catalytic constant and MM constant

Examples

End(Not run)

SSA.MM	Estimation of single Michaelis-Menten constant using the stochastic
	simulation approximation

Description

The function estimates single Michaelis-Menten constant using the likelihood function with the stochastic simulation approximation method.

Usage

```
SSA.MM(method = T, time, species, enz, subs, MM, catal, tun = 2.4, std,
    nrepeat, jump = 1, burning = 0, MM_m = 1, MM_v = 1e+06)
```

method	method selection: T=TQ model, F=SQ model(default = T)
time	observed time interval
species	observed trajectory of product
enz	enzyme concentration
subs	substrate concentration
MM	initial value of MM constant
catal	true value of catalytic constant
tun	tunning constant of MH algorithm (default=2.4)
std	standard deviation of proposal distribution (if =0, caclulated by Opt. function)

nrepeat	total number of iteration (default=10000)
jump	length of distance (default =1)
burning	lenth of burning period (default =0)
MM_m	prior mean of gamma prior (default =1)
MM_v	prior variance of gamma prior (default =10000)

Details

The function SSA.MM generates a set of MCMC simulation samples from the conditional posterior distribution of Michaelis-Menten constant of enzyme kinetics model. As the MM constant is only parameter to be estimated in the function the user should assign catalytic constant as well as initial enzyme concentration and substrate concentration. The prior information for the parameter can be given. The turning constant (scale_tun) and standard deviation of proposal normal distribution (sig) can be set to controlled proper mixing and acceptance ratio of the parameter from the conditional posterior distribution. The posterior samples are only stored with fixed interval according to set "jump" to reduce serial correlation. The initial iterations are removed for convergence. The "burning" is set the length of initial iterations. The diffusion approximation method is used for construction of the likelihood.

Value

A vector of posterior samples of Michaelis-Menten constant

Examples

```
data("Chymo_low")
time1=Chymo_low[,1]
species1=Chymo_low[,2]
Chymotrypsin.mm<-SSA.MM(method=TRUE,time=time1,species=species1,enz=4.4e+7,subs=4.4e+7
,MM=10000,catal=0.051,tun=2.4,std=8e+7 ,nrepeat=10000,jump=1
,burning=0,MM_m=1,MM_v=1e+10)</pre>
```

```
SSA.multi
```

Simultaneous estimation of Michaelis-Menten constant and catalytic constant using the likelihood function with the stochastic simulation approximation method

Description

The function estimates both catalytic constant and Michaelis-Menten constant simultaneously using single data set with an initial enzyme concentrations and substrate concentration. The stochastic simulation approximation is utilized for the likelihood function

Usage

```
SSA.multi(method = T, time, species, enz, subs, MM, catal, tun = 2.4,
std, nrepeat, jump = 1, burning = 0, catal_m = 1,
catal_v = 10000, MM_m = 1, MM_v = 10000)
```

SSA.multi

Arguments

method	method selection: T=TQ model, F=SQ model(default = T)
time	observed time interval
species	observed trajectory of product
enz	enzyme concentration
subs	substrate concentration
MM	true value of MM constant
catal	initial value of catalytic constant
tun	tunning constant of MH algorithm (default=2.4)
std	standard deviation of proposal distribution (if =0, caclulated by Opt. function)
nrepeat	total number of iteration (default=10000)
jump	length of distance (default =1)
burning	lenth of burning period (default =0)
catal_m	prior mean of gamma prior (default =1)
catal_v	prior variance of gamma prior (default =10000)
MM_m	prior mean of gamma prior (default =1)
MM_v	prior variance of gamma prior (default =10000)

Details

The function DA.multi generates a set of MCMC simulation samples from the posterior distribution of catalytic constant and MM constant of enzyme kinetics model. As the function estimates both two constants the user should input the enzyme and substrate initial concentration. The prior information for both two parameters can be given. The function utilizes the Gibbs sampler to update two parameters iteratively from conditional posterior distribution. Updating catalytic constant is conducted using conditional gamma distribution. The posterior samples of MM constant are drawn vis Metropolis-Hasting algorithm with random walk chain. The turning constant (scale_tun) and standard deviation of proposal normal distribution (sig) can be set to controlled proper mixing and acceptance ratio of the parameter from the conditional posterior distribution. The posterior samples are only stored with fixed interval according to set "jump" to reduce serial correlation. The initial iterations are removed for convergence. The "burning" is set the length of initial iterations. The stochastic simulation approximation method is used for construction of the likelihood.

Value

A n*2 matrix of postrior samples of catalytic constant and MM constant

Examples

```
data("Chymo_low")
time1=Chymo_low[,1]
species1=Chymo_low[,2]
Chymotrypsin.low<-SSA.multi(method=TRUE, time=time1,species=species1,enz=4.4e+7
,subs=4.4e+7,MM=1e+9,catal=0.01,tun=2.4,std=8e+7,nrepeat=10000,jump=1,
burning=0,catal_m=1,catal_v=1e+10, MM_m=1e+9,MM_v=1e+18)</pre>
```

Index

* datasets Chymo_high, 2 Chymo_low, 2 $\texttt{Chymo_high, 2}$ Chymo_low, 2 DA.cat, 3 DA.combi,4 DA.MM, 5 DA.multi,7 GP.cat,8 GP.combi, 9GP.MM, 11 GP.multi, 13 SSA.cat, 14 SSA.combi, 15 SSA.MM, 17 SSA.multi, 18