
Package ‘SPAS’
October 12, 2022

Type Package

Title Stratified-Petersen Analysis System

Version 2020.1.1

Date 2020-01-01

Author Carl James Schwarz

Maintainer Carl James Schwarz <cschwarz.stat.sfu.ca@gmail.com>

LinkingTo TMB, RcppEigen

Imports BB, MASS, Matrix, msm, numDeriv, plyr, TMB (>= 1.7.15)

Description The Stratified-Petersen Analysis System (SPAS) is designed
to estimate abundance in two-sample capture-recapture experiments
where the capture and recaptures are stratified. This is a generalization
of the simple Lincoln-Petersen estimator.
Strata may be defined in time or in space or both,
and the s strata in which marking takes place
may differ from the t strata in which recoveries take place.
When s=t, SPAS reduces to the method described by
Darroch (1961) <https://www.jstor.org/stable/2332748>.
When s<t, SPAS implements the methods described in
Plante, Rivest, and Tremblay (1988)
<https://www.jstor.org/stable/2533994>.
Schwarz and Taylor (1998) <doi:10.1139/f97-238> describe
the use of SPAS in estimating return of salmon stratified by
time and geography.
A related package, BTSPAS, deals with temporal stratification where
a spline is used to model the distribution of the population
over time as it passes the second capture location.
This is the R-version of the (now obsolete) standalone Windows
program available at <http://www.cs.umanitoba.ca/~popan/spas/spas_home.html>.

License GPL (>= 2)

RoxygenNote 7.0.1

Suggests knitr, rmarkdown

VignetteBuilder knitr

1

https://www.jstor.org/stable/2332748
https://www.jstor.org/stable/2533994
https://doi.org/10.1139/f97-238
http://www.cs.umanitoba.ca/~popan/spas/spas_home.html

2 SPAS.fit.model

NeedsCompilation yes

Repository CRAN

Date/Publication 2019-12-02 09:30:11 UTC

R topics documented:
SPAS.fit.model . 2
SPAS.fit.model.legacy . 4
SPAS.print.model . 6
SPAS.print.model.legacy . 7

Index 8

SPAS.fit.model Fit a Stratified-Petersen (SP) model using TMB.

Description

This function fits a Stratified-Petersen (Plante, 1996) to data and specify which rows/columns of the
data should be pooled. The number of rows after pooling should be <= number of columns after
pooling .

Usage

SPAS.fit.model(
model.id = "Stratified Petersen Estimator",
rawdata,
row.pool.in,
col.pool.in,
row.physical.pool = TRUE,
theta.pool = FALSE,
CJSpool = FALSE,
optMethod = c("nlminb"),
optMethod.control = list(maxit = 50000),
svd.cutoff = 1e-04,
chisq.cutoff = 0.1

)

Arguments

model.id Character string identifying the name of the model including any pooling..

rawdata An (s+1) x (t+1) of the raw data BEFORE pooling. The s x t upper left matrix is
the number of animals released in row stratum i and recovered in column stratum
j. Row s+1 contains the total number of UNMARKED animals recovered in
column stratum j. Column t+1 contains the number of animals marked in each
row stratum but not recovered in any column stratum. The rawdata[s+1, t+1] is

SPAS.fit.model 3

not used and can be set to 0 or NA. The sum of the entries in each of the first
s rows is then the number of animals marked in each row stratum. The sum of
the entries in each of the first t columns is then the number of animals captured
(marked and unmarked) in each column stratum. The row/column names of the
matrix may be set to identify the entries in the output.

row.pool.in, col.pool.in

Vectors (character/numeric) of length s and t respectively. These identify the
rows/columns to be pooled before the analysis is done. The vectors consists of
entries where pooling takes place if the entries are the same. For example, if s=4,
then row.pool.in = c(1,2,3,4) implies no pooling because all entries are distinct;
row.pool.in=c("a","a","b","b") implies that the first two rows will be pooled and
the last two rows will be pooled. It is not necessary that row/columns be contin-
uous to be pooled, but this is seldom sensible. A careful choice of pooling labels
helps to remember what as done, e.g. row.pool.in=c("123","123","123","4") in-
dicates that the first 3 rows are pooled and the 4th row is not pooled. Character
entries ensure that the resulting matrix is sorted properly (e.g. if row.pool.in=c(123,123,123,4),
then the same pooling is done, but the matrix rows are sorted rather strangely.

row.physical.pool

Should physical pooling be done (default) or should logical pooling be done. For
example, if there are 3 rows in the data matrix and row.pool.in=c(1,1,3), then in
physical pooling, the entries in rows 1 and 2 are physically added together to
create 2 rows in the data matrix before fitting. Because the data has changed,
you cannot compare physical pooling using AIC. In logical pooling, the data
matrix is unchanged, but now parameters p1=p2 but the movement parameters
for the rest of the matrix are not forced equal.

theta.pool, CJSpool

NOT YET IMPLEMENTED. DO NOT CHANGE.

optMethod What optimization method is used. Defaults is the nlminb() function..
optMethod.control

Control parameters for optimization method. See the documentation on the dif-
ferent optimization methods for details.

svd.cutoff When finding the variance-covariance matrix, a singular value decomposition is
used. This identifies the smallest singular value to retain.

chisq.cutoff When finding a goodness of fit statistic using (obs-exp)^2/exp, all cell whose
Exp < gof.cutoff are ignored to try and remove structural zero cells.

Value

A list with many entries. Refer to the vignettes for more details.

Examples

conne.data.csv <- textConnection("
9 , 21 , 0 , 0 , 0 , 0 , 171
0 , 101 , 22 , 1 , 0 , 0 , 763
0 , 0 , 128 , 49 , 0 , 0 , 934
0 , 0 , 0 , 48 , 12 , 0 , 434
0 , 0 , 0 , 0 , 7 , 0 , 49

4 SPAS.fit.model.legacy

0 , 0 , 0 , 0 , 0 , 0 , 4
351, 2736 , 3847 , 1818 , 543 , 191 , 0")
conne.data <- as.matrix(read.csv(conne.data.csv, header=FALSE))
close(conne.data.csv)

mod1 <- SPAS.fit.model(conne.data, model.id="Pooling rows 1/2, 5/6; pooling columns 5/6",
row.pool.in=c("12","12","3","4","56","56"),
col.pool.in=c(1,2,3,4,56,56))

SPAS.fit.model.legacy Fit a Stratified-Petersen (SP) model using the legacy method without
TMB. The preferred method is to use the SPAS.fit.model() function that
used TMB.

Description

This function fits a Stratified-Petersen (Plante, 1996) to data and specify which rows/columns of the
data should be pooled. The number of rows after pooling should be <= number of columns after
pooling .

Usage

SPAS.fit.model.legacy(
model.id = "Stratified Petersen Estimator",
rawdata,
row.pool.in,
col.pool.in,
row.physical.pool = TRUE,
theta.pool = FALSE,
CJSpool = FALSE,
sd.noise.init.est = 0,
optMethod = c("BBoptim", "optim"),
optMethod.control = list(maxit = 50000, ftol = 1e-09, gtol = 1e-05),
svd.cutoff = 1e-04,
chisq.cutoff = 0.1

)

Arguments

model.id Character string identifying the name of the model including any pooling..

rawdata An (s+1) x (t+1) of the raw data BEFORE pooling. The s x t upper left matrix is
the number of animals released in row stratum i and recovered in column stratum
j. Row s+1 contains the total number of UNMARKED animals recovered in
column stratum j. Column t+1 contains the number of animals marked in each
row stratum but not recovered in any column stratum. The rawdata[s+1, t+1] is
not used and can be set to 0 or NA. The sum of the entries in each of the first
s rows is then the number of animals marked in each row stratum. The sum of

SPAS.fit.model.legacy 5

the entries in each of the first t columns is then the number of animals captured
(marked and unmarked) in each column stratum. The row/column names of the
matrix may be set to identify the entries in the output.

row.pool.in, col.pool.in

Vectors (character/numeric) of length s and t respectively. These identify the
rows/columns to be pooled before the analysis is done. The vectors consists of
entries where pooling takes place if the entries are the same. For example, if s=4,
then row.pool.in = c(1,2,3,4) implies no pooling because all entries are distinct;
row.pool.in=c("a","a","b","b") implies that the first two rows will be pooled and
the last two rows will be pooled. It is not necessary that row/columns be contin-
uous to be pooled, but this is seldom sensible. A careful choice of pooling labels
helps to remember what as done, e.g. row.pool.in=c("123","123","123","4") in-
dicates that the first 3 rows are pooled and the 4th row is not pooled. Character
entrie ensure that the resulting matrixi is sorted properly (e.g. if row.pool.in=c(123,123,123,4),
then the same pooling is done, but the matrix rows are sorted rather strangely.

row.physical.pool

Should physical pooling be done (default) or should logical pooling be done. For
example, if there are 3 rows in the data matrix and row.pool.in=c(1,1,3), then in
physical pooling, the entries in rows 1 and 2 are physically added together to
create 2 rows in the data matrix before fitting. Because the data has changed,
you cannot compare physical pooling using AIC. In logical pooling, the data
matrix is unchanged, but now parameters p1=p2 but the movement parameters
for the rest of the matrix are not forced equal.

theta.pool, CJSpool

NOT YET IMPLEMENTED. DO NOT CHANGE.
sd.noise.init.est

How much random noise should be added to the initial (least squares) estimates.
Normally only used with severe convergence problems.

optMethod What optimization method is used. Defaults is the BBoptim function from the
BB package.

optMethod.control

Control parameters for optimization method. See spg() function in BB pack-
age or optim() function for details. For BBoptim, a suggest control parameter
for debugging is optMethod.control=list(M=20, trace=TRUE , maxit = 50000,
ftol=10^-5).

svd.cutoff When finding the variance-covariance matrix, a singular value decomposition is
used. This identifies the smallest singular value to retain.

chisq.cutoff When finding a goodness of fit statistic using (obs-exp)^2/exp, all cell whose
Exp < gof.cutoff are ignored to try and remove structural zero cells.

Value

A list with many entries. Refer to the vignettes for more details.

Examples

conne.data.csv <- textConnection("

6 SPAS.print.model

9 , 21 , 0 , 0 , 0 , 0 , 171
0 , 101 , 22 , 1 , 0 , 0 , 763
0 , 0 , 128 , 49 , 0 , 0 , 934
0 , 0 , 0 , 48 , 12 , 0 , 434
0 , 0 , 0 , 0 , 7 , 0 , 49
0 , 0 , 0 , 0 , 0 , 0 , 4
351, 2736 , 3847 , 1818 , 543 , 191 , 0")
conne.data <- as.matrix(read.csv(conne.data.csv, header=FALSE))
close(conne.data.csv)

mod1 <- SPAS.fit.model.legacy(conne.data, model.id="Pooling rows 1/2, 5/6; pooling columns 5/6",
row.pool.in=c("12","12","3","4","56","56"),
col.pool.in=c(1,2,3,4,56,56),
optMethod.control=list(ftol=.0001))

SPAS.print.model Print the results from a fit of a Stratified-Petersen (SP) model when
using the TMB optimizer

Description

This function makes a report of the results of the model fitting .

Usage

SPAS.print.model(x)

Arguments

x A result from the model fitting. See SPAS.fit.model.

Value

A report to the console. Refer to the vignettes.

Examples

conne.data.csv <- textConnection("
9 , 21 , 0 , 0 , 0 , 0 , 171
0 , 101 , 22 , 1 , 0 , 0 , 763
0 , 0 , 128 , 49 , 0 , 0 , 934
0 , 0 , 0 , 48 , 12 , 0 , 434
0 , 0 , 0 , 0 , 7 , 0 , 49
0 , 0 , 0 , 0 , 0 , 0 , 4
351, 2736 , 3847 , 1818 , 543 , 191 , 0")
conne.data <- as.matrix(read.csv(conne.data.csv, header=FALSE))
close(conne.data.csv)

mod1 <- SPAS.fit.model(conne.data, model.id="Pooling rows 1/2, 5/6; pooling columns 5/6",

SPAS.print.model.legacy 7

row.pool.in=c("12","12","3","4","56","56"),
col.pool.in=c(1,2,3,4,56,56))

SPAS.print.model(mod1)

SPAS.print.model.legacy

Print the results from a fit of a Stratified-Petersen (SP) model from the
legacy (i.e. pre using TMB) code

Description

This function makes a report of the results of the model fitting .

Usage

SPAS.print.model.legacy(x)

Arguments

x A result from the model fitting. See SPAS.fit.model.

Value

A report to the console. Refer to the vignettes.

Examples

conne.data.csv <- textConnection("
9 , 21 , 0 , 0 , 0 , 0 , 171
0 , 101 , 22 , 1 , 0 , 0 , 763
0 , 0 , 128 , 49 , 0 , 0 , 934
0 , 0 , 0 , 48 , 12 , 0 , 434
0 , 0 , 0 , 0 , 7 , 0 , 49
0 , 0 , 0 , 0 , 0 , 0 , 4
351, 2736 , 3847 , 1818 , 543 , 191 , 0")
conne.data <- as.matrix(read.csv(conne.data.csv, header=FALSE))
close(conne.data.csv)

mod1 <- SPAS.fit.model.legacy(conne.data, model.id="Pooling rows 1/2, 5/6; pooling columns 5/6",
row.pool.in=c("12","12","3","4","56","56"),
col.pool.in=c(1,2,3,4,56,56),
optMethod.control=list(ftol=.0001))

SPAS.print.model.legacy(mod1)

Index

SPAS.fit.model, 2
SPAS.fit.model.legacy, 4
SPAS.print.model, 6
SPAS.print.model.legacy, 7

8

	SPAS.fit.model
	SPAS.fit.model.legacy
	SPAS.print.model
	SPAS.print.model.legacy
	Index

