SVDNF: Discrete Nonlinear Filtering for Stochastic Volatility Models
Generates simulated paths from various financial stochastic volatility models
with jumps and applies the discrete nonlinear filter (DNF) of Kitagawa (1987) <doi:10.1080/01621459.1987.10478534> to
compute likelihood evaluations, filtering distribution estimates, and maximum likelihood parameter estimates.
The algorithm is implemented following the work of Bégin and Boudreault (2021) <doi:10.1080/10618600.2020.1840995>.
Version: |
0.1.3 |
Imports: |
Rcpp (≥ 1.0.9), methods |
LinkingTo: |
Rcpp |
Published: |
2023-01-14 |
Author: |
Louis Arsenault-Mahjoubi [aut, cre],
Jean-François Bégin [aut],
Mathieu Boudreault [aut] |
Maintainer: |
Louis Arsenault-Mahjoubi <larsenau at sfu.ca> |
License: |
GPL-3 |
NeedsCompilation: |
yes |
In views: |
Finance |
CRAN checks: |
SVDNF results |
Documentation:
Downloads:
Linking:
Please use the canonical form
https://CRAN.R-project.org/package=SVDNF
to link to this page.