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AA.MultsS Compute the multiple-surrogate adjusted association

Description

The function AA.MultS computes the multiple-surrogate adjusted correlation. This is a generalisa-
tion of the adjusted association proposed by Buyse & Molenberghs (1998) (see Single.Trial.RE.AA)
to the setting where there are multiple endpoints. See Details below.

Usage

AA.MultS(Sigma_gamma, N, Alpha=0.05)

Arguments
Sigma_gamma The variance covariance matrix of the residuals of regression models in which
the true endpoint (7") is regressed on the treatment (Z), the first surrogate (S1)
is regressed on Z, ..., and the k-th surrogate (Sk) is regressed on Z. See Details
below.
N The sample size (needed to compute a CI around the multiple adjusted associa-
tion; yar)
Alpha The a-level that is used to determine the confidence interval around ;. Default
0.05.
Details

The multiple-surrogate adjusted association (vyas) is obtained by regressing 7', S1, 52, ..., Sk on
the treatment (2):

T = pr + BZ; + €1y,
Sl = ps1 + o Zj + es1j,
Sk;j = psk + arZ; + €514,

where the error terms have a joint zero-mean normal distribution with variance-covariance matrix:

s-(gr o),
Ysr Xss
The multiple adjusted association is then computed as

)

orT
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Value
An object of class AA.MultS with components,

Gamma.Delta An object of class data.frame that contains the multiple-surrogate adjusted
association (i.e., ), its standard error, and its confidence interval (based on
the Fisher-Z transformation procedure).

Corr.Gamma.Delta
An object of class data. frame that contains the bias-corrected multiple-surrogate
adjusted association (i.e., corrected ~y,y), its standard error, and its confidence
interval (based on the Fisher-Z transformation procedure).

Sigma_gamma The variance covariance matrix of the residuals of regression models in which
T is regressed on Z, S1 is regressed on Z, ..., and Sk is regressed on Z.
N The sample size (used to compute a CI around the multiple adjusted association;
YM)
Alpha The «-level that is used to determine the confidence interval around ;.
Author(s)

Wim Van der Elst, Ariel Alonso, & Geert Molenberghs

References
Buyse, M., & Molenberghs, G. (1998). The validation of surrogate endpoints in randomized exper-
iments. Biometrics, 54, 1014-1029.

Van der Elst, W., Alonso, A. A., & Molenberghs, G. (2017). A causal inference-based approach to
evaluate surrogacy using multiple surrogates.

See Also

Single.Trial.RE.AA

Examples

data(ARMD.MultS)

# Regress Ton Z, STonZ, ..., SkonZ

# (to compute the covariance matrix of the residuals)
Res_T <- residuals(1lm(Diff52~Treat, data=ARMD.MultS))
Res_S1 <- residuals(Im(Diff4~Treat, data=ARMD.MultS))
Res_S2 <- residuals(Im(Diff12~Treat, data=ARMD.MultS))
Res_S3 <- residuals(Im(Diff24~Treat, data=ARMD.MultS))
Residuals <- cbind(Res_T, Res_S1, Res_S2, Res_S3)

# Make covariance matrix of residuals, Sigma_gamma
Sigma_gamma <- cov(Residuals)

# Conduct analysis
Result <- AA.MultS(Sigma_gamma = Sigma_gamma, N = 188, Alpha = .05)
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# Explore results
summary (Result)

ARMD Data of the Age-Related Macular Degeneration Study

Description

These are the data of a clinical trial involving patients suffering from age-related macular degener-
ation (ARMD), a condition that involves a progressive loss of vision. A total of 181 patients from
36 centers participated in the trial. Patients’ visual acuity was assessed using standardized vision
charts. There were two treatment conditions (placebo and interferon-). The potential surrogate
endpoint is the change in the visual acuity at 24 weeks (6 months) after starting treatment. The true
endpoint is the change in the visual acuity at 52 weeks.

Usage
data(ARMD)

Format
A data. frame with 181 observations on 5 variables.

Id The Patient ID.
Center The center in which the patient was treated.
Treat The treatment indicator, coded as —1 = placebo and 1 = interferon-a.

Diff24 The change in the visual acuity at 24 weeks after starting treatment. This endpoint is a
potential surrogate for Diff52.

Diff52 The change in the visual acuity at 52 weeks after starting treatment. This outcome serves
as the true endpoint.

ARMD.MultS Data of the Age-Related Macular Degeneration Study with multiple
candidate surrogates

Description

These are the data of a clinical trial involving patients suffering from age-related macular degen-
eration (ARMD), a condition that involves a progressive loss of vision. A total of 181 patients
participated in the trial. Patients’ visual acuity was assessed using standardized vision charts. There
were two treatment conditions (placebo and interferon-a). The potential surrogate endpoints are
the changes in the visual acuity at 4, 12, and 24 weeks after starting treatment. The true endpoint is
the change in the visual acuity at 52 weeks.
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Usage
data(ARMD.MultS)

Format
A data. frame with 181 observations on 6 variables.

Id The Patient ID.

Diff4 The change in the visual acuity at 4 weeks after starting treatment. This endpoint is a
potential surrogate for Diff52.

Diff12 The change in the visual acuity at 12 weeks after starting treatment. This endpoint is a
potential surrogate for Diff52.

Diff24 The change in the visual acuity at 24 weeks after starting treatment. This endpoint is a
potential surrogate for Diff52.

Diff52 The change in the visual acuity at 52 weeks after starting treatment. This outcome serves
as the true endpoint.

Treat The treatment indicator, coded as —1 = placebo and 1 = interferon-a.

BifixedContCont Fits a bivariate fixed-effects model to assess surrogacy in the meta-
analytic multiple-trial setting (Continuous-continuous case)

Description

The function BifixedContCont uses the bivariate fixed-effects approach to estimate trial- and
individual-level surrogacy when the data of multiple clinical trials are available. The user can
specify whether a (weighted or unweighted) full, semi-reduced, or reduced model should be fitted.
See the Details section below. Further, the Individual Causal Association (ICA) is computed.

Usage

BifixedContCont(Dataset, Surr, True, Treat, Trial.ID, Pat.ID, Model=c("”Full"),
Weighted=TRUE, Min.Trial.Size=2, Alpha=.05, T0T1=seq(-1, 1, by=.2),
TOS1=seq(-1, 1, by=.2), T1S0=seq(-1, 1, by=.2), S0S1=seq(-1, 1, by=.2))

Arguments
Dataset A data. frame that should consist of one line per patient. Each line contains (at
least) a surrogate value, a true endpoint value, a treatment indicator, a patient
ID, and a trial ID.
Surr The name of the variable in Dataset that contains the surrogate endpoint values.
True The name of the variable in Dataset that contains the true endpoint values.
Treat The name of the variable in Dataset that contains the treatment indicators. The

treatment indicator should either be coded as 1 for the experimental group and
—1 for the control group, or as 1 for the experimental group and 0 for the control

group.
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Trial.ID The name of the variable in Dataset that contains the trial ID to which the
patient belongs.

Pat.ID The name of the variable in Dataset that contains the patient’s ID.

Model The type of model that should be fitted, i.e., Model=c("Full"), Model=c("Reduced"),
or Model=c("SemiReduced"). See the Details section below. Default Model=c("Full").

Weighted Logical. If TRUE, then a weighted regression analysis is conducted at stage 2
of the two-stage approach. If FALSE, then an unweighted regression analysis is
conducted at stage 2 of the two-stage approach. See the Details section below.
Default TRUE.

Min.Trial.Size The minimum number of patients that a trial should contain in order to be in-
cluded in the analysis. If the number of patients in a trial is smaller than the
value specified by Min.Trial.Size, the data of the trial are excluded from the
analysis. Default 2.

Alpha The a-level that is used to determine the confidence intervals around Rfrml,
Rivials R%ndiv and R;y4i,. Default 0.05.
TOT1 A scalar or vector that contains the correlation(s) between the counterfactuals TO

and T1 that should be considered in the computation of pa (ICA). For details,
see function ICA.ContCont. Default seq(-1, 1, by=.2).

TOS1 A scalar or vector that contains the correlation(s) between the counterfactuals
TO and S1 that should be considered in the computation of pa. Default seq(-1,
1, by=.2).

T1S0 A scalar or vector that contains the correlation(s) between the counterfactuals
T1 and SO that should be considered in the computation of pa. Default seq(-1,
1, by=.2).

S0S1 A scalar or vector that contains the correlation(s) between the counterfactuals
SO and S1 that should be considered in the computation of pa. Default seq(-1,
1, by=.2).

Details

When the full bivariate mixed-effects model is fitted to assess surrogacy in the meta-analytic frame-
work (for details, Buyse & Molenberghs, 2000), computational issues often occur. In that situation,
the use of simplified model-fitting strategies may be warranted (for details, see Burzykowski et al.,
2005; Tibaldi et al., 2003).

The function BifixedContCont implements one such strategy, i.e., it uses a two-stage bivariate
fixed-effects modelling approach to assess surrogacy. In the first stage of the analysis, a bivariate
linear regression model is fitted. When a full or semi-reduced model is requested (by using the argu-
ment Model=c("Full") or Model=c("SemiReduced") in the function call), the following bivariate
model is fitted:

Sij = Msi+ 0 Zij + €sij,
Tij = wri + BiZij + €1ij,

where S;; and T;; are the surrogate and true endpoint values of subject j in trial 7, Z;; is the
treatment indicator for subject 7 in trial ¢, pug; and pp; are the fixed trial-specific intercepts for
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S and T, and «; and f3; are the trial-specific treatment effects on S and T, respectively. When a
reduced model is requested (by using the argument Model=c("Reduced") in the function call), the
following bivariate model is fitted:

Sij = us + OéiZij + €8ijs
Tij = pr + BiZij + erij,

where g and pr are the common intercepts for S and T (i.e., it is assumed that the intercepts for
the surrogate and the true endpoints are identical in all trials). The other parameters are the same as
defined above.

In the above models, the error terms £ g;; and e7;; are assumed to be mean-zero normally distributed
with variance-covariance matrix X:
g
= 75 .
osT OTT

Based on 3, individual-level surrogacy is quantified as:

2

R2 e = osr
maiv *
0SSoTT

Next, the second stage of the analysis is conducted. When a full model is requested by the user (by
using the argument Model=c(”Full") in the function call), the following model is fitted:

Bi = Xo + Aifisi + Ao + €5,

where the parameter estimates for 3;, ps;, and «; are based on the full model that was fitted in stage
1.

When a reduced or semi-reduced model is requested by the user (by using the arguments Model=c("Reduced”)
or Model=c("SemiReduced") in the function call), the following model is fitted:

Bi = Xo + M@ + &5

where the parameter estimates for 3; and «; are based on the semi-reduced or reduced model that
was fitted in stage 1.

When the argument Weighted=FALSE is used in the function call, the model that is fitted in stage
2 is an unweighted linear regression model. When a weighted model is requested (using the argu-
ment Weighted=TRUE in the function call), the information that is obtained in stage 1 is weighted
according to the number of patients in a trial.

2

The classical coefficient of determination of the fitted stage 2 model provides an estimate of 7, ;.
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Value
An object of class BifixedContCont with components,

Data.Analyze Prior to conducting the surrogacy analysis, data of patients who have a missing
value for the surrogate and/or the true endpoint are excluded. In addition, the
data of trials (i) in which only one type of the treatment was administered, and
(ii) in which either the surrogate or the true endpoint was a constant (i.e., all
patients within a trial had the same surrogate and/or true endpoint value) are
excluded. In addition, the user can specify the minimum number of patients that
a trial should contain in order to include the trial in the analysis. If the number
of patients in a trial is smaller than the value specified by Min.Trial.Size,
the data of the trial are excluded. Data.Analyze is the dataset on which the
surrogacy analysis was conducted.

Obs.Per.Trial A data.frame that contains the total number of patients per trial and the number
of patients who were administered the control treatment and the experimental
treatment in each of the trials (in Data.Analyze).

Results.Stage.1
The results of stage 1 of the two-stage model fitting approach: a data.frame
that contains the trial-specific intercepts and treatment effects for the surrogate
and the true endpoints (when a full or semi-reduced model is requested), or the
trial-specific treatment effects for the surrogate and the true endpoints (when a
reduced model is requested).

Residuals.Stage.1
A data.frame that contains the residuals for the surrogate and true endpoints
that are obtained in stage 1 of the analysis (¢g;; and e7;;).

Results.Stage.?2
An object of class 1m (linear model) that contains the parameter estimates of the
regression model that is fitted in stage 2 of the analysis.

Trial.R2 A data. frame that contains the trial-level coefficient of determination (Rfm-u D
its standard error and confidence interval.

Indiv.R2 A data.frame that contains the individual-level coefficient of determination
(R?n 4iv)» 1ts standard error and confidence interval.

Trial.R A data.frame that contains the trial-level correlation coefficient (R;r;q;), its

standard error and confidence interval.

Indiv.R A data. frame that contains the individual-level correlation coefficient (R;., 450 ),
its standard error and confidence interval.

Cor.Endpoints A data.frame that contains the correlations between the surrogate and the true
endpoint in the control treatment group (i.e., proso) and in the experimental
treatment group (i.e., pr151), their standard errors and their confidence intervals.

D.Equiv The variance-covariance matrix of the trial-specific intercept and treatment ef-
fects for the surrogate and true endpoints (when a full or semi-reduced model is
fitted, i.e., when Model=c("Full"”) or Model=c("SemiReduced") is used in the
function call), or the variance-covariance matrix of the trial-specific treatment
effects for the surrogate and true endpoints (when a reduced model is fitted,
i.e., when Model=c("Reduced”) is used in the function call). The variance-
covariance matrix D.Equiv is equivalent to the D matrix that would be obtained
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when a (full or reduced) bivariate mixed-effect approach is used; see function

BimixedContCont).
Sigma The 2 by 2 variance-covariance matrix of the residuals (¢g;; and e7;;).
ICA A fitted object of class ICA.ContCont.
TeTo The variance of the true endpoint in the control treatment condition.
T1T1 The variance of the true endpoint in the experimental treatment condition.
S0S0 The variance of the surrogate endpoint in the control treatment condition.
S181 The variance of the surrogate endpoint in the experimental treatment condition.

Author(s)
Wim Van der Elst, Ariel Alonso, & Geert Molenberghs

References

Burzykowski, T., Molenberghs, G., & Buyse, M. (2005). The evaluation of surrogate endpoints.
New York: Springer-Verlag.

Buyse, M., Molenberghs, G., Burzykowski, T., Renard, D., & Geys, H. (2000). The validation of
surrogate endpoints in meta-analysis of randomized experiments. Biostatistics, 1, 49-67.

Tibaldi, F., Abrahantes, J. C., Molenberghs, G., Renard, D., Burzykowski, T., Buyse, M., Parmar,
M., et al., (2003). Simplified hierarchical linear models for the evaluation of surrogate endpoints.
Journal of Statistical Computation and Simulation, 73, 643-658.

See Also

UnifixedContCont, UnimixedContCont, BimixedContCont, plot Meta-Analytic

Examples

## Not run: # time consuming code part
# Example 1, based on the ARMD data
data(ARMD)

# Fit a full bivariate fixed-effects model with weighting according to the

# number of patients in stage 2 of the two stage approach to assess surrogacy:

Sur <- BifixedContCont(Dataset=ARMD, Surr=Diff24, True=Diff52, Treat=Treat, Trial.ID=Center,
Pat.ID=Id, Model="Full", Weighted=TRUE)

# Obtain a summary of the results
summary (Sur)

# Obtain a graphical representation of the trial- and individual-level surrogacy
plot(Sur)

# Example 2
# Conduct a surrogacy analysis based on a simulated dataset with 2000 patients,
# 100 trials, and Rindiv=Rtrial=.8
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# Simulate the data:
Sim.Data.MTS(N.Total=2000, N.Trial=100, R.Trial.Target=.8, R.Indiv.Target=.8,
Seed=123, Model="Reduced")

# Fit a reduced bivariate fixed-effects model with no weighting according to the

# number of patients in stage 2 of the two stage approach to assess surrogacy:
\dontrun{ #time-consuming code parts

Sur2 <- BifixedContCont(Dataset=Data.Observed.MTS, Surr=Surr, True=True, Treat=Treat,
Trial.ID=Trial.ID, Pat.ID=Pat.ID, , Model="Reduced"”, Weighted=FALSE)

# Show summary and plots of results:
summary (Sur2)

plot(Sur2, Weighted=FALSE)?}

## End(Not run)

BimixedCbCContCont Fits a bivariate mixed-effects model using the cluster-by-cluster (CbC)
estimator to assess surrogacy in the meta-analytic multiple-trial set-
ting (Continuous-continuous case)

Description

The function BimixedCbCContCont uses the cluster-by-cluster (CbC) estimator of the bivariate
mixed-effects to estimate trial- and individual-level surrogacy when the data of multiple clinical
trials are available. See the Details section below.

Usage

BimixedCbCContCont(Dataset, Surr, True, Treat, Trial.ID,Min.Treat.Size=2,Alpha=0.05)

Arguments

Dataset A data. frame that should consist of one line per patient. Each line contains (at
least) a surrogate value, a true endpoint value, a treatment indicator, and a trial
ID.

Surr The name of the variable in Dataset that contains the surrogate endpoint values.

True The name of the variable in Dataset that contains the true endpoint values.

Treat The name of the variable in Dataset that contains the treatment indicators. The
treatment indicator should either be coded as 1 for the experimental group and
—1 for the control group, or as 1 for the experimental group and 0 for the control
group.

Trial.ID The name of the variable in Dataset that contains the trial ID to which the

patient belongs.

Min.Treat.Size The minimum number of patients in each group (control or experimental) that a
trial should contain to be included in the analysis. If the number of patients in a
group of a trial is smaller than the value specified by Min.Treat.Size, the data
of the trial are excluded from the analysis. Default 2.
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Alpha The a-level that is used to determine the confidence intervals around R? ; ; and
R? ... Default 0.05.
Details

The function BimixedContCont fits a bivariate mixed-effects model using the CbC estimator (for
details, see Florez et al., 2019) to assess surrogacy (for details, see Buyse et al., 2000). In particular,
the following mixed-effects model is fitted:

Sij = ps +msi + (o + a;)Zij + €sij,
Tij = pr +mri + (B + b)) Zij + e7ij,

where 7 and j are the trial and subject indicators, S;; and T;; are the surrogate and true endpoint
values of subject j in trial 4, Z;; is the treatment indicator for subject j in trial 4, p15 and pu7 are the
fixed intercepts for S and T, mg; and my; are the corresponding random intercepts, a and 3 are the
fixed treatment effects for S and T, and a; and b; are the corresponding random treatment effects,
respectively.

The vector of the random effects (i.e., mg;, mr;, a; and b;) is assumed to be mean-zero normally
distributed with variance-covariance matrix D:

dss
dST dTT
D =
dSa dTa daa

dsy dry dap dpp

2

The trial-level coefficient of determination (i.e., R; ., ,;

) is quantified as:

’

dsp dss dse \ ' ( ds
R2 o dap dsq  daa dap

trial — dbb

The error terms €g;; and e7;; are assumed to be mean-zero normally distributed with variance-

covariance matrix X:
o
n=( 7% :
osT OTT

Based on 3, individual-level surrogacy is quantified as:

2
2 _ _Osr
Rindiv - .
08soTT

Note The CbC estimator for the full bivariate mixed-effects model is closed-form (for details, see
Florez et al., 2019). Therefore, it is fast. Furthermore, it is recommended when computational issues
occur with the full maximum likelihood estimator (implemented in function BimixedContCont).

The CbC estimator is performed in two stages: (1) a linear model is fitted in each trial. Evidently,
it is require that the design matrix (X;) is full column rank within each trial, allowing estimation
of the fixed effects. When X is not full rank, trial i is excluded from the analysis. (2) a global
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estimator of the fixed effects () is obtained by weighted averaging the sets of estimates of each
trial, and D is estimated using a method-of-moments estimator. Optimal weights (for details, see
Molenberghs et al., 2018) are used as a weighting scheme.

The estimator of D might lead to a non-positive-definite solution. Therefore, the eigenvalue method
(for details, see Rousseeuw and Molenberghs, 1993) is used for non-positive-definiteness adjust-
ment.

Value

An object of class BimixedContCont with components,

Obs.Per.Trial A data.frame that contains the total number of patients per trial and the number
of patients who were administered the control treatment and the experimental
treatment in each of the trials (after excluding clusters). Clusters are excluded
for two reasons: (i) the number of patients is smaller than the value especified
by Min.Trial.Size, and (ii) the design matrix (X;) is not full rank.

Trial.removed Number of trials excluded from the analysis

Fixed.Effects A data.frame that contains the fixed intercept and treatment effects for the true
and the surrogate endpoints (i.e., ug, pur, o, and 3) and their corresponding
standard error.

Trial.R2 A data. frame that contains the trial-level coefficient of determination (Rf”.al),
its standard error and confidence interval.

Indiv.R2 A data.frame that contains the individual-level coefficient of determination
(R 1:.), its standard error and confidence interval.

D The variance-covariance matrix of the random effects (the D matrix), i.e., a 4
by 4 variance-covariance matrix of the random intercept and treatment effects.

DH.pd DH.pd=TRUE if an adjustment for non-positive definiteness was not needed to
estimate D). DH. pd=FALSE if this adjustment was required.

Sigma The 2 by 2 variance-covariance matrix of the residuals (cg;; and e7;;).

Author(s)

Alvaro J. Florez, Wim Van der Elst, Ariel Alonso, & Geert Molenberghs

References

Buyse, M., Molenberghs, G., Burzykowski, T., Renard, D., & Geys, H. (2000). The validation of
surrogate endpoints in meta-analysis of randomized experiments. Biostatistics, 1, 49-67.

Florez, A. J., Molenberghs G, Verbeke G, Alonso, A. (2019). A closed-form estimator for meta-
analysis and surrogate markers evaluation. Journal of Biopharmaceutical Statistics, 29(2) 318-332.

Molenberghs, G., Hermans, L., Nassiri, V., Kenward, M., Van der Elst, W., Aerts, M. and Verbeke,
G. (2018). Clusters with random size: maximum likelihood versus weighted estimation. Statistica
Sinica, 28, 1107-1132.

Rousseeuw, P. J. and Molenberghs, G. (1993) Transformation of non positive semidefinite correla-
tion matrices. Communications in Statistics, Theory and Methods, 22, 965-984.
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See Also

BimixedContCont, UnifixedContCont, BifixedContCont, UnimixedContCont

Examples

# Open the Schizo dataset (clinial trial in schizophrenic patients)
data(Schizo)

# Fit a full bivariate random-effects model by the cluster-by-cluster (CbC) estimator
# a minimum of 2 subjects per group are allowed in each trial
fit <- BimixedCbCContCont(Dataset=Schizo, Surr=BPRS, True=PANSS, Treat=Treat,Trial.ID=InvestId,
Alpha=0.05, Min.Treat.Size = 10)
# Note that an adjustment for non-positive definiteness was requiered and 113 trials were removed.

# Obtain a summary of the results

summary (fit)
BimixedContCont Fits a bivariate mixed-effects model to assess surrogacy in the meta-
analytic multiple-trial setting (Continuous-continuous case)
Description

The function BimixedContCont uses the bivariate mixed-effects approach to estimate trial- and
individual-level surrogacy when the data of multiple clinical trials are available. The user can
specify whether a full or reduced model should be fitted. See the Details section below. Further,
the Individual Causal Association (ICA) is computed.

Usage

BimixedContCont(Dataset, Surr, True, Treat, Trial.ID, Pat.ID, Model=c("Full"),
Min.Trial.Size=2, Alpha=.05, T@T1=seq(-1, 1, by=.2), T0Sl1=seq(-1, 1, by=.2),

T1S0=seq(-1, 1, by=.2), S@Sl=seq(-1, 1, by=.2), ...)
Arguments
Dataset A data. frame that should consist of one line per patient. Each line contains (at

least) a surrogate value, a true endpoint value, a treatment indicator, a patient
ID, and a trial ID.

Surr The name of the variable in Dataset that contains the surrogate endpoint values.
True The name of the variable in Dataset that contains the true endpoint values.
Treat The name of the variable in Dataset that contains the treatment indicators. The

treatment indicator should either be coded as 1 for the experimental group and
—1 for the control group, or as 1 for the experimental group and 0 for the control

group.
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Trial.ID The name of the variable in Dataset that contains the trial ID to which the
patient belongs.

Pat.ID The name of the variable in Dataset that contains the patient’s ID.

Model The type of model that should be fitted, i.e., Model=c("Full”) or Model=c("Reduced").
See the Details section below. Default Model=c("Full").

Min.Trial.Size The minimum number of patients that a trial should contain to be included in the
analysis. If the number of patients in a trial is smaller than the value specified by
Min.Trial.Size, the data of the trial are excluded from the analysis. Default 2.

Alpha The a-level that is used to determine the confidence intervals around Rf”-al,
Ririat, R, 4, and Ripgiy. Default 0.05.
TOT1 A scalar or vector that contains the correlation(s) between the counterfactuals TO

and T1 that should be considered in the computation of pa (ICA). For details,
see function ICA.ContCont. Default seq(-1, 1, by=.2).

TOS1 A scalar or vector that contains the correlation(s) between the counterfactuals
TO and S1 that should be considered in the computation of pa. Default seq(-1,
1, by=.2).

T1S0 A scalar or vector that contains the correlation(s) between the counterfactuals
T1 and SO that should be considered in the computation of pa. Default seq(-1,
1, by=.2).

S0S1 A scalar or vector that contains the correlation(s) between the counterfactuals
SO and S1 that should be considered in the computation of pa. Default seq(-1,
1, by=.2).

Other arguments to be passed to the function 1mer (of the R package 1me4) that
is used to fit the geralized linear mixed-effect models in the function BimixedContCont.

Details

The function BimixedContCont fits a bivariate mixed-effects model to assess surrogacy (for details,
see Buyse et al., 2000). In particular, the following mixed-effects model is fitted:

Si; = ps +msi+ (a+ ;) Zij + £sij,
Tij = pr +mri + (B + b)) Zij + e14j,

where 4 and j are the trial and subject indicators, S;; and T;; are the surrogate and true endpoint
values of subject j in trial 4, Z;; is the treatment indicator for subject j in trial ¢, us and pr are the
fixed intercepts for S and T, mg; and m; are the corresponding random intercepts, « and 3 are the
fixed treatment effects for S and T, and a; and b; are the corresponding random treatment effects,
respectively.

The vector of the random effects (i.e., mg;, mr;, a; and b;) is assumed to be mean-zero normally
distributed with variance-covariance matrix D:

dss
| dsr drr
D= dSa dTa daa

dsy dry dap dpp
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2

The trial-level coefficient of determination (i.e., Ry, ;) is quantified as:

’

( dsy ) ( dss dsa )1 ( dsy )
dg dsq  daa dq
RtQTial = ’ & ’ .

dy,

The error terms €g;; and e7;; are assumed to be mean-zero normally distributed with variance-

covariance matrix X:
_ [ oss
osTr OTT

Based on 3, individual-level surrogacy is quantified as:

2
R2 98T

indiv — .
0SsOTT

Note

When the full bivariate mixed-effects approach is used to assess surrogacy in the meta-analytic
framework (for details, see Buyse & Molenberghs, 2000), computational issues often occur. Such
problems mainly occur when the number of trials is low, the number of patients in the different
trials is low, and/or when the trial-level heterogeneity is small (Burzykowski et al., 2000).

In that situation, the use of a simplified model-fitting strategy may be warranted (for details, see
Burzykowski et al., 2000; Tibaldi et al., 2003).

For example, a reduced bivariate-mixed effect model can be fitted instead of a full model (by using
the Model=c("Reduced") argument in the function call). In the reduced model, the random-effects
structure is simplified (i) by assuming that there is no heterogeneity in the random intercepts, or
(ii) by assuming that the covariance between the random intercepts and random treatment effects is
zero. Note that under this assumption, the computation of the trial-level coefficient of determination
(.e., RZ ;) simplifies to:

2
dab

R .= :
trial
e daadbb

Alternatively, the bivariate mixed-effects model may be abandonned and the user may fit a univariate
fixed-effects model, a bivariate fixed-effects model, or a univariate mixed-effects model (for details,
see Tibaldi et al., 2003). These models are implemented in the functions UnifixedContCont,
BifixedContCont, and UnimixedContCont).

Value

An object of class BimixedContCont with components,

Data.Analyze Prior to conducting the surrogacy analysis, data of patients who have a missing
value for the surrogate and/or the true endpoint are excluded. In addition, the
data of trials (i) in which only one type of the treatment was administered, and
(i1) in which either the surrogate or the true endpoint was a constant (i.e., all
patients within a trial had the same surrogate and/or true endpoint value) are
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Obs.Per.Trial

BimixedContCont

excluded. In addition, the user can specify the minimum number of patients that
a trial should contain in order to include the trial in the analysis. If the number
of patients in a trial is smaller than the value specified by Min.Trial.Size,
the data of the trial are excluded. Data.Analyze is the dataset on which the
surrogacy analysis was conducted.

A data. frame that contains the total number of patients per trial and the number
of patients who were administered the control treatment and the experimental
treatment in each of the trials (in Data.Analyze).

Trial.Spec.Results

Residuals

A data. frame that contains the trial-specific intercepts and treatment effects on
the surrogate and the true endpoints when a full model is requested (i.e., s +
mgq, i +mrp;, a+a;, and B+ b;), or the trial-specific treatment effects on the
surrogate and the true endpoints when a reduced model is requested (i.e., « + a;,
and B + b;). Note that the results that are contained in Trial.Spec.Results
are equivalent to the results in Results.Stage.1 that are obtained when the
functions UnifixedContCont, UnimixedContCont, or BifixedContCont are
used.

A data.frame that contains the residuals for the surrogate and true endpoints
(651']' and ETij)-

Fixed.Effect.Pars

A data.frame that contains the fixed intercept and treatment effects for the
surrogate and the true endpoints (i.e., pg, 7, <, and 3).

Random.Effect.Pars

Trial.R2

Indiv.R2

Trial.R

Indiv.R

Cor.Endpoints

A data.frame that contains the random intercept and treatment effects for the
surrogate and the true endpoints (i.e., mg;, mr;, a;, and b;) when a full model is
fitted (i.e., when Model=c("Full") is used in the function call), or that contains
the random treatment effects for the surrogate and the true endpoints (i.e., a; and
b;) when a reduced model is fitted (i.e., when Model=c("Reduced") is used in
the function call).

A data. frame that contains the trial-level coefficient of determination (R, ;).
its standard error and confidence interval.

A data.frame that contains the individual-level coefficient of determination

(R? . ;:), its standard error and confidence interval.

A data.frame that contains the trial-level correlation coefficient (Ry,;q;), its
standard error and confidence interval.

A data. frame that contains the individual-level correlation coefficient (R;., 45 ),
its standard error and confidence interval.

A data. frame that contains the correlations between the surrogate and the true
endpoint in the control treatment group (i.e., proso) and in the experimental
treatment group (i.e., pr151), their standard errors and their confidence intervals.

The variance-covariance matrix of the random effects (the D matrix), i.e., a 4
by 4 variance-covariance matrix of the random intercept and treatment effects
when a full model is fitted (i.e., when Model=c("Full") is used in the function
call), or a 2 by 2 variance-covariance matrix of the random treatment effects
when a reduced model is fitted (i.e., when Model=c("Reduced") is used in the
function call).
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Sigma The 2 by 2 variance-covariance matrix of the residuals (cg;; and £7;).

ICA A fitted object of class ICA.ContCont.

ToTO The variance of the true endpoint in the control treatment condition.

T1T1 The variance of the true endpoint in the experimental treatment condition.

S0S0 The variance of the surrogate endpoint in the control treatment condition.

S1S1 The variance of the surrogate endpoint in the experimental treatment condition.
Author(s)

Wim Van der Elst, Ariel Alonso, & Geert Molenberghs

References

Burzykowski, T., Molenberghs, G., & Buyse, M. (2005). The evaluation of surrogate endpoints.
New York: Springer-Verlag.

Buyse, M., Molenberghs, G., Burzykowski, T., Renard, D., & Geys, H. (2000). The validation of
surrogate endpoints in meta-analysis of randomized experiments. Biostatistics, 1, 49-67.

Tibaldi, F., Abrahantes, J. C., Molenberghs, G., Renard, D., Burzykowski, T., Buyse, M., Parmar,
M., et al., (2003). Simplified hierarchical linear models for the evaluation of surrogate endpoints.
Journal of Statistical Computation and Simulation, 73, 643-658.

See Also

UnifixedContCont, BifixedContCont, UnimixedContCont, plot Meta-Analytic

Examples

# Open the Schizo dataset (clinial trial in schizophrenic patients)
data(Schizo)

## Not run: #Time consuming (>5 sec) code part

# When a reduced bivariate mixed-effect model is used to assess surrogacy,

# the conditioning number for the D matrix is very high:

Sur <- BimixedContCont(Dataset=Schizo, Surr=BPRS, True=PANSS, Treat=Treat, Model="Reduced”,
Trial.ID=InvestId, Pat.ID=Id)

# Such problems often occur when the total number of patients, the total number
# of trials and/or the trial-level heterogeneity
# of the treatment effects is relatively small

# As an alternative approach to assess surrogacy, consider using the functions
BifixedContCont, UnifixedContCont or UnimixedContCont in the meta-analytic framework,
# or use the information-theoretic approach

**

## End(Not run)
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Bootstrap. MEP.BinBin

Bootstrap.MEP.BinBin  Bootstrap 95% CI around the maximum-entropy ICA and SPF (surro-

gate predictive function)

Description

Computes a 95% bootstrap-based CI around the maximum-entropy ICA and SPF (surrogate predic-
tive function) in the binary-binary setting

Usage

Bootstrap.MEP.BinBin(Data, Surr, True, Treat, M=100, Seed=123)

Arguments

Data
Surr
True
Treat
M
Seed

Value

R2H

r_1_1
r_mini_1
r_o_1

r_1_0
r_minl_o
r_0_o
r_1_minl
r_minl_min1
r_o_minl

vector_p

Author(s)

The dataset to be used.

The name of the surrogate variable.

The name of the true endpoint.

The name of the treatment indicator.

The number of bootstrap samples taken. Default M=1000.
The seed to be used. Default Seed=123.

The vector the bootstrapped MEP ICA values.

The vector of the bootstrapped bootstrapped MEP (1, 1) values.
The vector of the bootstrapped bootstrapped MEP r(—1, 1).

The vector of the bootstrapped bootstrapped MEP (0, 1).

The vector of the bootstrapped bootstrapped MEP (1, 0).

The vector of the bootstrapped bootstrapped MEP r(—1, 0).

The vector of the bootstrapped bootstrapped MEP (0, 0).

The vector of the bootstrapped bootstrapped MEP (1, —1).

The vector of the bootstrapped bootstrapped MEP r(—1, —1).
The vector of the bootstrapped bootstrapped MEP (0, —1).

The matrix that contains all bootstrapped maximum entropy distributions of the
vector of the potential outcomes.

Wim Van der Elst, Ariel Alonso, & Geert Molenberghs
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References

Alonso, A., & Van der Elst, W. (2015). A maximum-entropy approach for the evluation of surrogate
endpoints based on causal inference.

See Also

ICA.BinBin, ICA.BinBin.Grid.Sample, ICA.BinBin.Grid.Full, plot MaxEntSPF BinBin

Examples

## Not run: # time consuming code part

MEP_CI <- Bootstrap.MEP.BinBin(Data = Schizo_Bin, Surr = "BPRS_Bin"”, True = "PANSS_Bin",
Treat = "Treat”, M = 500, Seed=123)

summary (MEP_CI)

## End(Not run)

CausalDiagramBinBin Draws a causal diagram depicting the median informational coeffi-
cients of correlation (or odds ratios) between the counterfactuals for
a specified range of values of the ICA in the binary-binary setting.

Description

This function provides a diagram that depicts the medians of the informational coefficients of cor-
relation (or odds ratios) between the counterfactuals for a specified range of values of the individual
causal association in the binary-binary setting (R%).

Usage

CausalDiagramBinBin(x, Values="Corrs", Theta_T0S@, Theta_T1S1,
Min=0, Max=1, Cex.Letters=3, Cex.Corrs=2, Lines.Rel.Width=TRUE,
Col.Pos.Neg=TRUE, Monotonicity, Histograms.Correlations=FALSE,
Densities.Correlations=FALSE)

Arguments

X An object of class ICA.BinBin. See ICA.BinBin.

Values Specifies whether the median informational coefficients of correlation or median
odds ratios between the counterfactuals should be depicted, i.e., Values="Corrs”
or Values="0Rs".

Theta_TosSe The odds ratio between 7" and .S in the control group. This quantity is estimable
based on the observed data. Only has to be provided when Values="0Rs".

Theta_T1S1 The odds ratio between T and S in the experimental treatment group. This

quantity is estimable based on the observed data. Only has to be provided when
Values="0ORs".
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Min The minimum value of R that should be considered. Default=—1.
Max The maximum value of R?; that should be considered. Default=1.
Cex.Letters The size of the symbols for the counterfactuals (Sg, S1), 1o, 11). Default=3.

Cex.Corrs The size of the text depicting the median odds ratios between the counterfactu-
als. Default=2.

Lines.Rel.Width
Logical. When Lines.Rel.Width=TRUE, the widths of the lines that represent
the odds ratios between the counterfactuals are relative to the size of the odds
ratios (i.e., a smaller/thicker line is used for smaller/higher odds ratios. When
Lines.Rel.Width=FALSE, the width of all lines representing the odds ratios
between the counterfactuals is identical. Default=TRUE. Only considered when
Values="0ORs".

Col.Pos.Neg Logical. When Col.Pos.Neg=TRUE, the color of the lines that represent the odds
ratios between the counterfactuals is red for odds ratios below 1 and black for the
ones above 1. When Col.Pos.Neg=FALSE, all lines are in black. Default=TRUE.
Only considered when Values="0ORs".

Monotonicity Specifies the monotonicity scenario that should be considered (i.e., Monotonicity=c("No"),
Monotonicity=c("True.Endp"),Monotonicity=c("Surr.Endp"), orMonotonicity=c("Surr.True.
Histograms.Correlations
Should histograms of the informational coefficients of association R?; be pro-
vided? Default Histograms.Correlations=FALSE.
Densities.Correlations

Should densities of the informational coefficients of association R? be pro-
vided? Default Densities.Correlations=FALSE.

Value

The following components are stored in the fitted object if histograms of the informational correla-
tions are requested in the function call (i.e., if Histograms. Correlations=TRUE and Values="Corrs"
in the function call):

R2_H_ToT1 The informational coefficients of association R%; between Ty and T7.

R2_H_S1T@ The informational coefficients of association R%; between S; and 7.

R2_H_S0T1 The informational coefficients of association R%{ between Sy and 717 .

R2_H_S0s1 The informational coefficients of association R%, between Sy and 5.

R2_H_S0T0 The informational coefficients of association qu between Sy and 1.

R2_H_S1T1 The informational coefficients of association R%I between S; and T3.
Author(s)

Wim Van der Elst, Ariel Alonso, & Geert Molenberghs
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References

Alonso, A., Van der Elst, W., Molenberghs, G., Buyse, M., & Burzykowski, T. (submitted). On
the relationship between the causal inference and meta-analytic paradigms for the validation of
surrogate markers.

Van der Elst, W., Alonso, A., & Molenberghs, G. (submitted). An exploration of the relationship
between causal inference and meta-analytic measures of surrogacy.

See Also
ICA.BinBin

Examples

# Compute R2_H given the marginals specified as the pi's

ICA <- ICA.BinBin.Grid.Sample(pil_1_=0.2619048, pi1_0_=0.2857143,
pi_1_.1=0.6372549, pi_1_0=0.07843137, pi@_1_=0.1349206, pi_0_1=0.127451,
Seed=1, Monotonicity=c("General”), M=1000)

# Obtain a causal diagram that provides the medians of the
# correlations between the counterfactuals for the range
# of R2_H values between 0.1 and 1
# Assume no monotonicty
CausalDiagramBinBin(x=ICA, Min=0.1, Max=1, Monotonicity="No")

# Assume monotonicty for S
CausalDiagramBinBin(x=ICA, Min=0.1, Max=1, Monotonicity="Surr.Endp")

# Now only consider the results that were obtained when

# monotonicity was assumed for the true endpoint
CausalDiagramBinBin(x=ICA, Values="ORs", Theta_T0S0=2.156, Theta_T1S1=10,
Min=0, Max=1, Monotonicity="True.Endp")

CausalDiagramContCont Draws a causal diagram depicting the median correlations between
the counterfactuals for a specified range of values of ICA or MICA in
the continuous-continuous setting

Description

This function provides a diagram that depicts the medians of the correlations between the coun-
terfactuals for a specified range of values of the individual causal association (ICA; pa) or the
meta-analytic individual causal association (MICA; pyy).

Usage

CausalDiagramContCont(x, Min=-1, Max=1, Cex.lLetters=3, Cex.Corrs=2,
Lines.Rel.Width=TRUE, Col.Pos.Neg=TRUE, Histograms.Counterfactuals=FALSE)
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Arguments
X An object of class ICA.ContCont or MICA.ContCont. See ICA.ContCont or
MICA.ContCont.
Min The minimum values of (M)ICA that should be considered. Default=—1.
Max The maximum values of (M)ICA that should be considered. Default=1.

Cex.Letters The size of the symbols for the counterfactuals (Sg, S1), To, 11). Default=3.

Cex.Corrs The size of the text depicting the median correlations between the counterfactu-
als. Default=2.

Lines.Rel.Width
Logical. When Lines.Rel.Width=TRUE, the widths of the lines that represent
the correlations between the counterfactuals are relative to the size of the corre-
lations (i.e., a smaller line is used for correlations closer to zero whereas a thicker

line is used for (absolute) correlations closer to 1). When Lines.Rel.Width=FALSE,

the width of all lines representing the correlations between the counterfactuals
is identical. Default=TRUE.

Col.Pos.Neg Logical. When Col.Pos.Neg=TRUE, the color of the lines that represent the
correlations between the counterfactuals is red for negative correlations and
black for positive ones. When Col.Pos.Neg=FALSE, all lines are in black. De-
fault=TRUE.

Histograms.Counterfactuals

Should plots that shows the densities for the inidentifiable correlations be shown?
Default =FALSE.

Author(s)
Wim Van der Elst, Ariel Alonso, & Geert Molenberghs

References

Alonso, A., Van der Elst, W., Molenberghs, G., Buyse, M., & Burzykowski, T. (submitted). On
the relationship between the causal inference and meta-analytic paradigms for the validation of
surrogate markers.

Van der Elst, W., Alonso, A., & Molenberghs, G. (submitted). An exploration of the relationship
between causal inference and meta-analytic measures of surrogacy.

See Also
ICA.ContCont, MICA.ContCont

Examples

## Not run: #Time consuming (>5 sec) code parts

# Generate the vector of ICA values when rho_T@S0=.91, rho_T1S1=.91, and when the

# grid of values {@, .1, ..., 1} is considered for the correlations

# between the counterfactuals:

SurICA <- ICA.ContCont(T@S@=.95, T1S1=.91, T@T1=seq(@, 1, by=.1), T@S1=seq(®, 1, by=.1),
T1S0=seq(@, 1, by=.1), S0S1=seq(@, 1, by=.1))



comb27.BinBin 25

#obtain a plot of ICA

# Obtain a causal diagram that provides the medians of the
# correlations between the counterfactuals for the range

# of ICA values between .9 and 1 (i.e., which assumed

# correlations between the counterfactuals lead to a

# high ICA?)

CausalDiagramContCont(SurICA, Min=.9, Max=1)

# Same, for low values of ICA
CausalDiagramContCont(SurICA, Min=0, Max=.5)
## End(Not run)

comb27.BinBin Assesses the surrogate predictive value of each of the 27 prediction
functions in the setting where both S and T are binary endpoints

Description

The function comb27.BinBin assesses a surrogate predictive value of each of the 27 possible pre-
diction functions in the single-trial causal-inference framework when both the surrogate and the
true endpoints are binary outcomes. The distribution of frequencies at which each of the 27 possi-
ble predicton functions are selected provides additional insights regarding the association between
S (Ag) and T (Ar). See Details below.

Usage

comb27.BinBin(pil_1_, pil_0_, pi_1_1, pi_1_0,
pi@_1_, pi_0_1, Monotonicity=c("No"),M=1000, Seed=1)

Arguments
pil_1_ A scalar that contains values for P(T = 1,5 = 1|Z = 0), i.e., the probability
that S = 7" = 1 when under treatment Z = 0.
pil_o_ A scalar that contains values for P(T' = 1,5 = 0|Z = 0).
pi_1_1 A scalar that contains values for P(T'= 1,5 = 1|Z = 1).
pi_1_0 A scalar that contains values for P(T' = 1,5 =0|Z = 1).
pio_1_ A scalar that contains values for P(T'= 0,5 = 1|Z = 0).
pi_0_1 A scalar that contains values for P(T' = 0,5 = 1|Z = 1).

Monotonicity Specifies which assumptions regarding monotonicity should be made, only one
assumption can be made at the time: Monotonicity=c("No"), Monotonicity=c("True.Endp"),
Monotonicity=c("Surr.Endp"), orMonotonicity=c("Surr.True.Endp"). De-
fault Monotonicity=c("No").

M The number of random samples that have to be drawn for the freely varying
parameters. Default M=100000.

Seed The seed to be used to generate 7,.. Default Seed=1.
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Details

In the continuous normal setting, surroagacy can be assessed by studying the association between
the individual causal effects on .S and 7" (see ICA.ContCont). In that setting, the Pearson correlation
is the obvious measure of association.

When S and T are binary endpoints, multiple alternatives exist. Alonso et al. (2016) proposed
the individual causal association (ICA; R%I), which captures the association between the individual
causal effects of the treatment on S' (Ag) and T (Ar) using information-theoretic principles.

The function comb27.BinBin computes %, using a grid-based approach where all possible com-
binations of the specified grids for the parameters that are allowed to vary freely are considered. It
computes the probability of a prediction error for each of the 27 possible prediction functions.The
frequency at which each prediction function is selected provides additional insight about the mini-
mal probability of a prediction error PPE which can be obtained with PPE.BinBin.

Value

An object of class comb27.BinBin with components,

index count variable

Monotonicity  The vector of Monotonicity assumptions

Pe The vector of the prediction error values.

combo The vector containing the codes for the each of the 27 prediction functions.
R2_H The vector of the R?; values.

H_Delta_T The vector of the entropies of Ar.

H_Delta_S The vector of the entropies of Ag.

I_Delta_T_Delta_S
The vector of the mutual information of Ag and Ar.

Author(s)

Paul Meyvisch, Wim Van der Elst, Ariel Alonso, Geert Molenberghs

References

Alonso A, Van der Elst W, Molenberghs G, Buyse M and Burzykowski T. (2016). An information-
theoretic approach for the evaluation of surrogate endpoints based on causal inference.

Alonso A, Van der Elst W and Meyvisch P (2016). Assessing a surrogate predictive value: A causal
inference approach.

See Also

PPE.BinBin
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Examples

# Conduct the analysis assuming no montonicity

## Not run: # time consuming code part

comb27.BinBin(pil_1_ = 0.3412, pil_0_ = 0.2539, pio_1_ = ©.119,
pi_1_1 = 0.6863, pi_1_0 = 0.0882, pi_0_1 = 0.0784,
Seed=1,Monotonicity=c("No"), M=500000)
## End(Not run)
ECT Apply the Entropy Concentration Theorem

Description

The Entropy Concentration Theorem (ECT; Edwin, 1982) states that if NV is large enough, then
100(1 — F)% of all px and AH is determined by the upper tail are 1 — F of a x? distribution, with
DF = q¢ —m — 1 (which equals 8 in a surrogate evaluation context).

Usage

ECT(Perc=.95, H_Max, N)

Arguments
Perc The desired interval. E.g., Perc=.05 will generate the lower and upper bounds
for H(p) that contain 95% of the cases (as determined by the ECT).
H_Max The maximum entropy value. In the binary-binary setting, this can be computed
using the function MaxEntICABinBin.
N The sample size.
Value

An object of class ECT with components,

Lower_H The lower bound of the requested interval.
Upper_H The upper bound of the requested interval, which equals Hsax.
Author(s)

Wim Van der Elst, Paul Meyvisch, & Ariel Alonso

References

Alonso, A., Van der Elst, W., & Molenberghs, G. (2016). Surrogate markers validation: the
continuous-binary setting from a causal inference perspective.
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See Also

MaxEntICABinBin, ICA.BinBin

Examples

ECT_fit <- ECT(Perc = .05, H_Max = 1.981811, N=454)
summary (ECT_fit)

Fano.BinBin Evaluate the possibility of finding a good surrogate in the setting
where both S and T are binary endpoints

Description

The function Fano.BinBin evaluates the existence of a good surrogate in the single-trial causal-
inference framework when both the surrogate and the true endpoints are binary outcomes. See
Details below.

Usage

Fano.BinBin(pil_, pi_1, rangepil@=c(@,min(pil_,1-pi_1)),
fano_delta=c(@0.1), M=100, Seed=1)

Arguments

pil_ A scalar or a vector of plausibel values that represents the proportion of respon-
ders under treatment.

pi_1 A scalar or a vector of plausibel values that represents the proportion of respon-
ders under control.

rangepil@ Represents the range from which 7 is sampled. By default, Monte Carlo sim-
ulation will be constrained to the interval [0, min(7y., 7.9)] but this allows the
user to specify a more narrow range. rangepil@=c(@,@) is equivalent to the
assumption of monotonicity for the true endpoint.

fano_delta A scalar or a vector that specifies the values for the upper bound of the prediction
error §. Default fano_delta=c(0.2).

M The number of random samples that have to be drawn for the freely varying
parameter mg. Default M=1000. The number of random samples should be
sufficiently large in relation to the length of the interval rangepi1@. Typically
M=1000 yields a sufficiently fine grid. In case rangepi1@ is a single value: M=1

Seed The seed to be used to sample the freely varying parameter 7. Default Seed=1.

Details

Values for 71 have to be uniformly sampled from the interval [0, min(7;., 7.)]. Any sampled value
for 7o will fully determine the bivariate distribution of potential outcomes for the true endpoint.
The treatment effect should be positive.

The vector gy, fully determines R%; .
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Value

An object of class Fano.BinBin with components,

R2_HL The sampled values for R?,; .
H_Delta_T The sampled values for HAT.
PPE_T The sampled values for PP Er.
minpi1o The minimum value for 7.
maxpilo The maximum value for 7.
samplepilo The sampled value for 1.
delta The specified vector of upper bounds for the prediction errors.
uncertainty Indexes the sampling of pil_.
pi_00 The sampled values for 7.
pi_11 The sampled values for ;.
pi_01 The sampled values for mp;.
pi_10 The sampled values for 7.
Author(s)

Paul Meyvisch, Wim Van der Elst, Ariel Alonso

References

Alonso, A., Van der Elst, W., & Molenberghs, G. (2014). Validation of surrogate endpoints: the
binary-binary setting from a causal inference perspective.

See Also

plot.Fano.BinBin

Examples

# Conduct the analysis assuming no montonicity
# for the true endpoint, using a range of

# upper bounds for prediction errors
Fano.BinBin(pil_ = ©.5951 , pi_1 = 0.7745,
fano_delta=c(@.05, 0.1, 0.2), M=1000)

# Conduct the same analysis now sampling from
# a range of values to allow for uncertainty

Fano.BinBin(pil_ = runif(n=20,min=0.504,max=0.681),
pi_1 = runif(n=20,min=0.679,max=0.849),
fano_delta=c(0.05, 0.1, 0.2), M=10, Seed=2)
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fit_model_SurvSurv Fit Survival-Survival model

Description

The function fit_model_SurvSurv() fits the copula model for time-to-event surrogate and true
endpoints (Stijven et al., 2022). Because the bivariate distributions of the surrogate-true endpoint
pairs are functionally independent across treatment groups, a bivariate distribution is fitted in each
treatment group separately. The marginal distributions are based on the Royston-Parmar survival
model (Royston and Parmar, 2002).

Usage
fit_model_SurvSurv(
data,
copula_family,
nknots = 2,

fitted_model = NULL,
hessian = TRUE,
maxit = 500

Arguments

data A data frame in the correct format (See details).

copula_family One of the following parametric copula families: "clayton”, "frank”, "gaussian”,
or "gumbel”.

nknots Number of internal knots for the Royston-Parmar survival model.

fitted_model Fitted model from which initial values are extracted. If NULL (default), standard
initial values are used. This option intended for when a model is repeatedly
fitted, e.g., in a bootstrap.

hessian A boolean.

* TRUE (default): Hessian is computed

* FALSE: Hessian is not computed. This can save a small amount of time.
This can be useful when a model is repeatedly fitted, e.g., in a bootstrap.

maxit Maximum number of iterations for the numeric optimization, defaults to 500.

Value

Returns an S3 object that can be used to perform the sensitivity analysis with ica_SurvSurv_sens().
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Model

In the causal-inference approach to evaluating surrogate endpoints, the first step is to estimate the
joint distribution of the relevant potential outcomes. Let (Tp, Sp, S1,71) denote the vector of po-
tential outcomes where (S, T})’ is the pair of potential outcomes under treatment Z = k. T
refers to the true endpoint, e.g., overall survival. S refers to the composite surrogate endpoint, e.g.,
progression-free-survival. Because S is usually a composite endpoint with death as possible event,
modeling difficulties arise because Pr(Sy = T) > 0.

Due to difficulties in modeling the composite surrogate and the true endpoint jointly, the time-to-
surrogate event (S) is modeled instead of the time-to-composite surrogate event (S). Using this
new variable, S, a D-vine copula model is proposed for (To, So, 51, Ty)" in Stijven et al. (2022).
However, only the following bivariate distributions are identifiable (T}, Sy)" for k = 0,1. The
margins in these bivariate distributions are based on the Royston-Parmar survival model (Roystona
and Parmar, 2002). The association is modeled through two copulas of the same parametric form,
but with unique copula parameters.

Two modelling choices are made before estimating the two bivariate distributions described in the
previous paragraph:

* The number of internal knots for the Royston-Parmar survival models. This is specified
through the nknots argument. The number of knots is assumed to be equal across the four
margins.

* The parametric family of the bivariate copulas. The parametric family is assumed to be equal
across treatment groups. This choice is specified through the copula_family argument.

Data Format

The data frame should have the semi-competing risks format. The columns must be ordered as
follows:

* time to surrogate event, true event, or independent censoring; whichever comes first

* time to true event, or independent censoring; whichever comes first

* treatment indicator: O or 1

* surrogate event indicator: 1 if surrogate event is observed, 0 otherwise

¢ true event indicator: 1 if true event is observed, 0 otherwise
Note that according to the methodology in Stijven et al. (2022), the surrogate event must not be the
composite event. For example, when the surrogacy of progression-free survival for overall survival

is evaluated. The surrogate event is progression, but not the composite event of progression or
death.

Author(s)

Florian Stijven

References

Stijven, F., Alonso, a., Molenberghs, G., Van Der Elst, W., Van Keilegom, I. (2022). An information-
theoretic approach to the evaluation of time-to-event surrogates for time-to-event true endpoints
based on causal inference.



32 FixedBinBinIT

Royston, P., & Parmar, M. K. (2002). Flexible parametric proportional-hazards and proportional-
odds models for censored survival data, with application to prognostic modelling and estimation of
treatment effects. Statistics in medicine, 21(15), 2175-2197.

See Also

marginal_gof_scr(), ica_SurvSurv_sens()

Examples

if(require(Surrogate)) {
data("Ovarian”)
#For simplicity, data is not recoded to semi-competing risks format, but is
#left in the composite event format.
data = data.frame(Ovarian$Pfs,
Ovarian$Surv,
Ovarian$Treat,
Ovarian$PfsInd,
Ovarian$SurvInd)
Surrogate::fit_model_SurvSurv(data = data,
copula_family = "clayton”,
nknots = 1)

FixedBinBinIT Fits (univariate) fixed-effect models to assess surrogacy in the binary-
binary case based on the Information-Theoretic framework

Description

The function FixedBinBinIT uses the information-theoretic approach (Alonso & Molenberghs,
2007) to estimate trial- and individual-level surrogacy based on fixed-effect models when both S
and T are binary variables. The user can specify whether a (weighted or unweighted) full, semi-
reduced, or reduced model should be fitted. See the Details section below.

Usage

FixedBinBinIT(Dataset, Surr, True, Treat, Trial.ID, Pat.ID,
Model=c("Full”), Weighted=TRUE, Min.Trial.Size=2, Alpha=.05,
Number.Bootstraps=50, Seed=sample(1:1000, size=1))

Arguments

Dataset A data. frame that should consist of one line per patient. Each line contains (at
least) a surrogate value, a true endpoint value, a treatment indicator, a patient
ID, and a trial ID.

Surr The name of the variable in Dataset that contains the surrogate endpoint values.
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True The name of the variable in Dataset that contains the true endpoint values.

Treat The name of the variable in Dataset that contains the treatment indicators. The
treatment indicator should either be coded as 1 for the experimental group and
—1 for the control group, or as 1 for the experimental group and 0 for the control
group.

Trial.ID The name of the variable in Dataset that contains the trial ID to which the
patient belongs.

Pat.ID The name of the variable in Dataset that contains the patient’s ID.

Model The type of model that should be fitted, i.e., Model=c("Full"”), Model=c("Reduced"),
or Model=c("SemiReduced”). See the Details section below. Default Model=c("Full").

Weighted Logical. In practice it is often the case that different trials (or other clustering
units) have different sample sizes. Univariate models are used to assess surro-
gacy in the information-theoretic approach, so it can be useful to adjust for het-
erogeneity in information content between the trial-specific contributions (par-
ticularly when trial-level surrogacy measures are of primary interest and when
the heterogeneity in sample sizes is large). If Weighted=TRUE, weighted regres-
sion models are fitted. If Weighted=FALSE, unweighted regression analyses are
conducted. See the Details section below. Default TRUE.

Min.Trial.Size The minimum number of patients that a trial should contain to be included in the
analysis. If the number of patients in a trial is smaller than the value specified by
Min.Trial.Size, the data of the trial are excluded from the analysis. Default 2.

Alpha The a-level that is used to determine the confidence intervals around R7 and
R2,. Default 0.05.

Number.Bootstraps
The standard errors and confidence intervals for R, RZ, . and R2 . . are de-
termined based on a bootstrap procedure. Number.Bootstraps specifies the
number of bootstrap samples that are used. Default 50.

Seed The seed to be used in the bootstrap procedure. Default sample(1 : 1000, size =

1).

Details

Individual-level surrogacy

The following univariate generalised linear models are fitted:

gr(E(T3j)) = pri + BiZij,
gr(E(T;1Si;)) = v0i + MiZij + 72iSij

where ¢ and j are the trial and subject indicators, g7 is an appropriate link function (i.e., a logit
link when binary endpoints are considered), S;; and Tj; are the surrogate and true endpoint values
of subject j in trial 4, and Z;; is the treatment indicator for subject j in trial ¢. p7; and f3; are
the trial-specific intercepts and treatment-effects on the true endpoint in trial 7. -y, and ~y;; are the
trial-specific intercepts and treatment-effects on the true endpoint in trial ¢ after accounting for the
effect of the surrogate endpoint.
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The —2 log likelihood values of the previous models in each of the ¢ trials (i.e., Li; and Lo;,
respectively) are subsequently used to compute individual-level surrogacy based on the so-called
Variance Reduction Factor (VFR; for details, see Alonso & Molenberghs, 2007):

]

T

where N is the number of trials and n; is the number of patients within trial i.

When it can be assumed (i) that the treatment-corrected association between the surrogate and the
true endpoint is constant across trials, or (ii) when all data come from a single clinical trial (i.e.,
when N = 1), the previous expression simplifies to:

Lo— L,
R =1-— St Bt I
h.ind exp ( N )

The upper bound does not reach to 1 when 7' is binary, i.e., its maximum is 0.75. Kent (1983)
claims that 0.75 is a reasonable upper bound and thus R} , , can usually be interpreted without
paying special consideration to the discreteness of 7. Alternatively, to address the upper bound
problem, a scaled version of the mutual information can be used when both S and 7" are binary
(Joe, 1989):

I(T,S)
min[H(T), H(S)]’

2 _
Rb.ind -

where the entropy of 7" and S in the previous expression can be estimated using the log likelihood
functions of the GLMs shown above.

Trial-level surrogacy

When a full or semi-reduced model is requested (by using the argument Model=c("Full”) or
Model=c("SemiReduced") in the function call), trial-level surrogacy is assessed by fitting the fol-
lowing univariate models:

Sij = psi + i Zij + €siz, (1)

Tij = pri + BiZij + e7ij, (1)
where 7 and j are the trial and subject indicators, S;; and T;; are the surrogate and true endpoint
values of subject j in trial ¢, Z;; is the treatment indicator for subject j in trial 4, j15; and ji7; are the

fixed trial-specific intercepts for S and T, and «; and 3; are the fixed trial-specific treatment effects
on S and T, respectively. The error terms €g;; and e7;; are assumed to be independent.

When a reduced model is requested by the user (by using the argument Model=c("Reduced”) in
the function call), the following univariate models are fitted:

Sij = ps + aiZij + €sij, (2)

T;j = pr + BiZij + €14j, (2)

where pg and pp are the common intercepts for S and T. The other parameters are the same as
defined above, and €g;; and e7;; are again assumed to be independent.
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When the user requested a full model approach (by using the argument Model=c(”Full”) in the
function call, i.e., when models (1) were fitted), the following model is subsequently fitted:

-~

Bi = Ao + Mligi + A2Q; + €4, (3)

where the parameter estimates for 3;, ig;, and «; are based on models (1) (see above). When a
weighted model is requested (using the argument Weighted=TRUE in the function call), model (3) is
a weighted regression model (with weights based on the number of observations in trial 7). The —2
log likelihood value of the (weighted or unweighted) model (3) (L) is subsequently compared to
the —2 log likelihood value of an intercept-only model (Bl- = \3; Lo), and R?, is computed based
based on the Variance Reduction Factor (for details, see Alonso & Molenberghs, 2007):

Ly — Lo
R2, =1— = =
ht emp( N )

where NV is the number of trials.

When a semi-reduced or reduced model is requested (by using the argument Model=c (" SemiReduced")
or Model=c("Reduced") in the function call), the following model is fitted:

Bi = do + M + &5,

where the parameter estimates for 3; and «; are based on models (1) when a semi-reduced model
is fitted or on models (2) when a reduced model is fitted. The —2 log likelihood value of this
(weighted or unweighted) model (L) is subsequently compared to the —2 log likelihood value
of an intercept-only model (Bi = A3; Lp), and R%Lt is computed based on the reduction in the
likelihood (as described above).

Value
An object of class FixedBinBinIT with components,

Data.Analyze Prior to conducting the surrogacy analysis, data of patients who have a missing
value for the surrogate and/or the true endpoint are excluded. In addition, the
data of trials (i) in which only one type of the treatment was administered, and
(ii) in which either the surrogate or the true endpoint was a constant (i.e., all
patients within a trial had the same surrogate and/or true endpoint value) are
excluded. In addition, the user can specify the minimum number of patients that
a trial should contain in order to include the trial in the analysis. If the number
of patients in a trial is smaller than the value specified by Min.Trial.Size,
the data of the trial are excluded. Data.Analyze is the dataset on which the
surrogacy analysis was conducted.

Obs.Per.Trial A data.frame that contains the total number of patients per trial and the number
of patients who were administered the control treatment and the experimental
treatment in each of the trials (in Data.Analyze).

Trial.Spec.Results
A data.frame that contains the trial-specific intercepts and treatment effects
for the surrogate and the true endpoints (when a full or semi-reduced model is
requested), or the trial-specific treatment effects for the surrogate and the true
endpoints (when a reduced model is requested).
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R2ht

R2h.ind

R2h

R2b.ind

FixedBinBinIT

A data. frame that contains the trial-level surrogacy estimate and its confidence
interval.

A data. frame that contains the individual-level surrogacy estimate R? , . (single-
trial based estimate) and its confidence interval.

A data. frame that contains the individual-level surrogacy estimate R? (cluster-
based estimate) and its confidence interval (based on a bootsrtrap).

A data. frame that contains the individual-level surrogacy estimate R7 ,, , (single-
trial based estimate accounting for upper bound) and its confidence interval
(based on a bootstrap).

R2h.Ind.By.Trial

Author(s)

A data. frame that contains individual-level surrogacy estimates R, , (cluster-
based estimates) and their confidence interval for each of the trials seperately.

Wim Van der Elst, Ariel Alonso, & Geert Molenberghs

References

Alonso, A, & Molenberghs, G. (2007). Surrogate marker evaluation from an information theory
perspective. Biometrics, 63, 180-186.

Joe, H. (1989). Relative entropy measures of multivariate dependence. Journal of the American
Statistical Association, 84, 157-164.

Kent, T. J. (1983). Information gain as a general measure of correlation. Biometrica, 70, 163-173.

See Also

FixedBinContIT, FixedContBinIT, plot Information-Theoretic BinCombn

Examples

## Not run:

# Time consuming (>5sec) code part

# Generate data with continuous Surr and True
Sim.Data.MTS(N.Total=5000, N.Trial=50, R.Trial.Target=.9, R.Indiv.Target=.9,

Fixed.Effects=c(@, @, @, @), D.aa=10, D.bb=10, Seed=1,
Model=c("Full"))

# Dichtomize Surr and True

Surr_Bin <- Data.Observed.MTS$Surr
Surr_Bin[Data.Observed.MTS$Surr>.5] <- 1
Surr_Bin[Data.Observed.MTS$Surr<=.5] <- @
True_Bin <- Data.Observed.MTS$True
True_Bin[Data.Observed.MTS$True>.15] <- 1
True_Bin[Data.Observed.MTS$True<=.15] <- @
Data.Observed.MTS$Surr <- Surr_Bin
Data.Observed.MTS$True <- True_Bin

# Assess surrogacy using info-theoretic framework
Fit <- FixedBinBinIT(Dataset = Data.Observed.MTS, Surr = Surr,
True = True, Treat = Treat, Trial.ID = Trial.ID,



FixedBinContIT 37

Pat.ID = Pat.ID, Number.Bootstraps=100)

# Examine results
summary(Fit)
plot(Fit, Trial.Level
plot(Fit, Trial.Level

FALSE, Indiv.Level.By.Trial=TRUE)
TRUE, Indiv.Level.By.Trial=FALSE)

## End(Not run)

FixedBinContIT Fits (univariate) fixed-effect models to assess surrogacy in the case
where the true endpoint is binary and the surrogate endpoint is con-
tinuous (based on the Information-Theoretic framework)

Description

The function FixedBinContIT uses the information-theoretic approach (Alonso & Molenberghs,
2007) to estimate trial- and individual-level surrogacy based on fixed-effect models when T is binary
and S is continuous. The user can specify whether a (weighted or unweighted) full, semi-reduced,
or reduced model should be fitted. See the Details section below.

Usage

FixedBinContIT(Dataset, Surr, True, Treat, Trial.ID, Pat.ID,
Model=c("Full”), Weighted=TRUE, Min.Trial.Size=2, Alpha=.05,
Number.Bootstraps=50,Seed=sample(1:1000, size=1))

Arguments

Dataset A data. frame that should consist of one line per patient. Each line contains (at
least) a surrogate value, a true endpoint value, a treatment indicator, a patient
ID, and a trial ID.

Surr The name of the variable in Dataset that contains the surrogate endpoint values.

True The name of the variable in Dataset that contains the true endpoint values.

Treat The name of the variable in Dataset that contains the treatment indicators. The
treatment indicator should either be coded as 1 for the experimental group and
—1 for the control group, or as 1 for the experimental group and 0 for the control
group.

Trial.ID The name of the variable in Dataset that contains the trial ID to which the
patient belongs.

Pat.ID The name of the variable in Dataset that contains the patient’s ID.

Model The type of model that should be fitted, i.e., Model=c("Full"), Model=c("Reduced"),

or Model=c("SemiReduced"). See the Details section below. Default Model=c("Full").
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Weighted Logical. In practice it is often the case that different trials (or other clustering
units) have different sample sizes. Univariate models are used to assess surro-
gacy in the information-theoretic approach, so it can be useful to adjust for het-
erogeneity in information content between the trial-specific contributions (par-
ticularly when trial-level surrogacy measures are of primary interest and when
the heterogeneity in sample sizes is large). If Weighted=TRUE, weighted regres-
sion models are fitted. If Weighted=FALSE, unweighted regression analyses are
conducted. See the Details section below. Default TRUE.

Min.Trial.Size The minimum number of patients that a trial should contain to be included in the
analysis. If the number of patients in a trial is smaller than the value specified by
Min.Trial.Size, the data of the trial are excluded from the analysis. Default 2.

Alpha The a-level that is used to determine the confidence intervals around R and
R2,. Default 0.05.

Number .Bootstraps
The standard errors and confidence intervals for R? and R? , . are determined
based on a bootstrap procedure. Number.Bootstraps specifies the number of
bootstrap samples that are used. Default 50.

Seed The seed to be used in the bootstrap procedure. Default sample(1 : 1000, size =

1).

Details

Individual-level surrogacy

The following univariate generalised linear models are fitted:

gr(E(Ty;)) = pri + BiZij,
gr(E(T3515:5)) = v0i + 71iZi5 + 72i5i5,

where ¢ and j are the trial and subject indicators, g7 is an appropriate link function (i.e., a logit
link for binary endpoints and an identity link for normally distributed continuous endpoints), S;;
and T;; are the surrogate and true endpoint values of subject j in trial ¢, and Z;; is the treatment
indicator for subject j in trial 7. pp; and (; are the trial-specific intercepts and treatment-effects on
the true endpoint in trial 7. 7p; and 71, are the trial-specific intercepts and treatment-effects on the
true endpoint in trial ¢ after accounting for the effect of the surrogate endpoint.

The —2 log likelihood values of the previous models in each of the ¢ trials (i.e., Li; and Lo;,
respectively) are subsequently used to compute individual-level surrogacy based on the so-called
Variance Reduction Factor (VFR; for details, see Alonso & Molenberghs, 2007):

_1_726 < LQ’L_Ll’L)’

T

where N is the number of trials and n; is the number of patients within trial i.

When it can be assumed (i) that the treatment-corrected association between the surrogate and the
true endpoint is constant across trials, or (ii) when all data come from a single clinical trial (i.e.,
when N = 1), the previous expression simplifies to:
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Ly — L
R,zm-nd =1—-exp <_2Nl) .

The upper bound does not reach to 1 when 7' is binary, i.e., its maximum is 0.75. Kent (1983)
claims that 0.75 is a reasonable upper bound and thus R} , , can usually be interpreted without
paying special consideration to the discreteness of 7T'. Alternatively, to address the upper bound
problem, a scaled version of the mutual information can be used when both S and 7" are binary
(Joe, 1989):

I(T,S)
min[H(T), H(S)]’

2 _
Rb.ind -

where the entropy of 1" and S in the previous expression can be estimated using the log likelihood
functions of the GLMs shown above.

Trial-level surrogacy

When a full or semi-reduced model is requested (by using the argument Model=c("Full”) or
Model=c("SemiReduced") in the function call), trial-level surrogacy is assessed by fitting the fol-
lowing univariate models:

Sij = us; + Oéz’Zij + €55, (1)
Tij = pri + BiZi; + €1ij, (1)

where 7 and j are the trial and subject indicators, S;; and T;; are the surrogate and true endpoint
values of subject j in trial 7, Z;; is the treatment indicator for subject j in trial 7, ug; and pr; are the
fixed trial-specific intercepts for S and T, and «; and 3; are the fixed trial-specific treatment effects
on S and T, respectively. The error terms €g;; and e7;; are assumed to be independent.

When a reduced model is requested by the user (by using the argument Model=c("Reduced”) in
the function call), the following univariate models are fitted:

Sij = ps + iZij; + €sij, (2)
Tij = pr + BiZij +€1ij, (2)

where pg and pp are the common intercepts for S and T. The other parameters are the same as
defined above, and £g;; and e7;; are again assumed to be independent.

When the user requested a full model approach (by using the argument Model=c(”Full") in the
function call, i.e., when models (1) were fitted), the following model is subsequently fitted:

~

Bi = Mo+ )\1@ + A2@; + Eis (3)

where the parameter estimates for 3;, ug;, and «; are based on models (1) (see above). When a
weighted model is requested (using the argument Weighted=TRUE in the function call), model (3) is
a weighted regression model (with weights based on the number of observations in trial ). The —2
log likelihood value of the (weighted or unweighted) model (3) (L) is subsequently compared to
the —2 log likelihood value of an intercept-only model (Bi = \3; Lo), and R?, is computed based
based on the Variance Reduction Factor (for details, see Alonso & Molenberghs, 2007):
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L, — Ly
R, =1- = =
ht ezp( N >’

where N is the number of trials.

When a semi-reduced or reduced model is requested (by using the argument Model=c (" SemiReduced")
or Model=c("Reduced") in the function call), the following model is fitted:

~

Bi = Ao+ A\ + €4,

where the parameter estimates for 3; and «; are based on models (1) when a semi-reduced model
is fitted or on models (2) when a reduced model is fitted. The —2 log likelihood value of this
(weighted or unweighted) model (L) is subsequently compared to the —2 log likelihood value
of an intercept-only model (@ = A3; Lp), and R%Lt is computed based on the reduction in the
likelihood (as described above).

Value

An object of class FixedBinContIT with components,

Data.Analyze  Prior to conducting the surrogacy analysis, data of patients who have a missing
value for the surrogate and/or the true endpoint are excluded. In addition, the
data of trials (i) in which only one type of the treatment was administered, and
(i1) in which either the surrogate or the true endpoint was a constant (i.e., all
patients within a trial had the same surrogate and/or true endpoint value) are
excluded. In addition, the user can specify the minimum number of patients that
a trial should contain in order to include the trial in the analysis. If the number
of patients in a trial is smaller than the value specified by Min.Trial.Size,
the data of the trial are excluded. Data.Analyze is the dataset on which the
surrogacy analysis was conducted.

Obs.Per.Trial A data.frame that contains the total number of patients per trial and the number
of patients who were administered the control treatment and the experimental
treatment in each of the trials (in Data.Analyze).

Trial.Spec.Results
A data.frame that contains the trial-specific intercepts and treatment effects
for the surrogate and the true endpoints (when a full or semi-reduced model is
requested), or the trial-specific treatment effects for the surrogate and the true
endpoints (when a reduced model is requested).

R2ht A data. frame that contains the trial-level surrogacy estimate and its confidence
interval.
R2h.ind A data. frame that contains the individual-level surrogacy estimate R? ; , (single-

trial based estimate) and its confidence interval.

R2h A data. frame that contains the individual-level surrogacy estimate R (cluster-
based estimate) and its confidence interval (bootstrap-based).

R2b.ind A data. frame that contains the individual-level surrogacy estimate R? , , (single-
trial based estimate accounting for upper bound) and its confidence interval
(based on a bootstrap).
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R2h.Ind.By.Trial

A data. frame that contains individual-level surrogacy estimates R3 (cluster-
based estimate) and their confidence interval for each of the trials seperately.

Author(s)

Wim Van der Elst, Ariel Alonso, & Geert Molenberghs

References

Alonso, A, & Molenberghs, G. (2007). Surrogate marker evaluation from an information theory
perspective. Biometrics, 63, 180-186.

Joe, H. (1989). Relative entropy measures of multivariate dependence. Journal of the American
Statistical Association, 84, 157-164.

Kent, T. J. (1983). Information gain as a general measure of correlation. Biometrica, 70, 163-173.

See Also

FixedBinBinIT, FixedContBinIT, plot Information-Theoretic BinCombn

Examples

## Not run: # Time consuming (>5sec) code part

# Generate data with continuous Surr and True
Sim.Data.MTS(N.Total=2000, N.Trial=100, R.Trial.Target=.8,
R.Indiv.Target=.8, Seed=123, Model="Full")

# Make T binary

Data.Observed.MTS$True_Bin <- Data.Observed.MTS$True
Data.Observed.MTS$True_Bin[Data.Observed.MTS$True>=0] <- 1
Data.Observed.MTS$True_Bin[Data.Observed.MTS$True<@] <- 0

# Analyze data

Fit <- FixedBinContIT(Dataset = Data.Observed.MTS, Surr = Surr,

True = True_Bin, Treat = Treat, Trial.ID = Trial.ID, Pat.ID = Pat.ID,
Model = "Full”, Number.Bootstraps=50)

# Examine results

summary (Fit)

plot(Fit, Trial.Level = FALSE, Indiv.Level.By.Trial=TRUE)
plot(Fit, Trial.Level = TRUE, Indiv.Level.By.Trial=FALSE)

## End(Not run)
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FixedContBinIT Fits (univariate) fixed-effect models to assess surrogacy in the case
where the true endpoint is continuous and the surrogate endpoint is
binary (based on the Information-Theoretic framework)

Description

The function FixedContBinIT uses the information-theoretic approach (Alonso & Molenberghs,
2007) to estimate trial- and individual-level surrogacy based on fixed-effect models when T is con-
tinuous normally distributed and S is binary. The user can specify whether a (weighted or un-
weighted) full, semi-reduced, or reduced model should be fitted. See the Details section below.

Usage

FixedContBinIT(Dataset, Surr, True, Treat, Trial.ID, Pat.ID,
Model=c("Full"), Weighted=TRUE, Min.Trial.Size=2, Alpha=.05,
Number .Bootstraps=50,Seed=sample(1:1000, size=1))

Arguments

Dataset A data. frame that should consist of one line per patient. Each line contains (at
least) a surrogate value, a true endpoint value, a treatment indicator, a patient
ID, and a trial ID.

Surr The name of the variable in Dataset that contains the surrogate endpoint values.

True The name of the variable in Dataset that contains the true endpoint values.

Treat The name of the variable in Dataset that contains the treatment indicators. The
treatment indicator should either be coded as 1 for the experimental group and
—1 for the control group, or as 1 for the experimental group and 0 for the control
group.

Trial.ID The name of the variable in Dataset that contains the trial ID to which the
patient belongs.

Pat.ID The name of the variable in Dataset that contains the patient’s ID.

Model The type of model that should be fitted, i.e., Model=c("Full"), Model=c("Reduced"),
or Model=c("SemiReduced"). See the Details section below. Default Model=c("Full").

Weighted Logical. In practice it is often the case that different trials (or other clustering

units) have different sample sizes. Univariate models are used to assess surro-
gacy in the information-theoretic approach, so it can be useful to adjust for het-
erogeneity in information content between the trial-specific contributions (par-
ticularly when trial-level surrogacy measures are of primary interest and when
the heterogeneity in sample sizes is large). If Weighted=TRUE, weighted regres-
sion models are fitted. If Weighted=FALSE, unweighted regression analyses are
conducted. See the Details section below. Default TRUE.

Min.Trial.Size The minimum number of patients that a trial should contain to be included in the
analysis. If the number of patients in a trial is smaller than the value specified by
Min.Trial.Size, the data of the trial are excluded from the analysis. Default 2.
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Alpha The a-level that is used to determine the confidence intervals around R7 and
R2,. Default 0.05.

Number .Bootstraps
The standard error and confidence interval for R,Ql.m 4 18 determined based on
a bootstrap procedure. Number.Bootstraps specifies the number of bootstrap
samples that are used. Default 50.

Seed The seed to be used in the bootstrap procedure. Default sample(1 : 1000, size =

1).

Details

Individual-level surrogacy

The following univariate generalised linear models are fitted:

gr(E(T3j)) = pri + BiZij,
91 (E(T3515:5)) = Y0i + MiZij + 72:545,
where ¢ and j are the trial and subject indicators, g7 is an appropriate link function (i.e., a logit
link for binary endpoints and an identity link for normally distributed continuous endpoints), S;;
and T;; are the surrogate and true endpoint values of subject j in trial ¢, and Z;; is the treatment
indicator for subject j in trial 7. pup; and (; are the trial-specific intercepts and treatment-effects on

the true endpoint in trial 7. 7p; and 71, are the trial-specific intercepts and treatment-effects on the
true endpoint in trial ¢ after accounting for the effect of the surrogate endpoint.

The —2 log likelihood values of the previous models in each of the 7 trials (i.e., Li; and Lo,
respectively) are subsequently used to compute individual-level surrogacy based on the so-called
Variance Reduction Factor (VFR; for details, see Alonso & Molenberghs, 2007):

h— Nze ( L21_L11),

1

where NNV is the number of trials and n; is the number of patients within trial i.

When it can be assumed (i) that the treatment-corrected association between the surrogate and the
true endpoint is constant across trials, or (ii) when all data come from a single clinical trial (i.e.,
when N = 1), the previous expression simplifies to:

Ly —L
R: a=1—exp (_le)

Trial-level surrogacy

When a full or semi-reduced model is requested (by using the argument Model=c("Full”) or
Model=c("SemiReduced") in the function call), trial-level surrogacy is assessed by fitting the fol-
lowing univariate models:

Szj = Us; + O[ZZ” + ESij? (1)
,Tij = ur; + ﬁsz + eTij, (1)
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where 7 and j are the trial and subject indicators, S;; and T;; are the surrogate and true endpoint
values of subject j in trial ¢, Z;; is the treatment indicator for subject j in trial 7, ug; and pr; are the
fixed trial-specific intercepts for S and T, and «; and j3; are the fixed trial-specific treatment effects
on S and T, respectively. The error terms €g;; and e7;; are assumed to be independent.

When a reduced model is requested by the user (by using the argument Model=c("Reduced”) in
the function call), the following univariate models are fitted:

Sij = ps + aiZij + €sij, (2)
Tij = pr + BiZij + €rij, (2)

where g and pp are the common intercepts for S and T. The other parameters are the same as
defined above, and €g;; and e7;; are again assumed to be independent.

When the user requested a full model approach (by using the argument Model=c(”Full") in the
function call, i.e., when models (1) were fitted), the following model is subsequently fitted:

Bi = AO + Alﬁs\l + Agal + Eiy (3)

where the parameter estimates for (3;, p1g;, and «; are based on models (1) (see above). When a
weighted model is requested (using the argument Weighted=TRUE in the function call), model (3) is
a weighted regression model (with weights based on the number of observations in trial 7). The —2
log likelihood value of the (weighted or unweighted) model (3) (L;) is subsequently compared to
the —2 log likelihood value of an intercept-only model (Bi = MA3; Lgp), and R,%t is computed based
based on the Variance Reduction Factor (for details, see Alonso & Molenberghs, 2007):

L1 —L
2 1 0
RZ —1—epp| 222
ht ep( N >7

where N is the number of trials.

When a semi-reduced or reduced model is requested (by using the argument Model=c (" SemiReduced")
or Model=c("Reduced") in the function call), the following model is fitted:

Bi = Ao+ M + &5,

where the parameter estimates for 3; and «; are based on models (1) when a semi-reduced model
is fitted or on models (2) when a reduced model is fitted. The —2 log likelihood value of this
(weighted or unweighted) model (L) is subsequently compared to the —2 log likelihood value
of an intercept-only model (B\i = MA3; Lo), and R,QLt is computed based on the reduction in the
likelihood (as described above).

Value

An object of class FixedContBinIT with components,

Data.Analyze Prior to conducting the surrogacy analysis, data of patients who have a missing
value for the surrogate and/or the true endpoint are excluded. In addition, the
data of trials (i) in which only one type of the treatment was administered, and
(i1) in which either the surrogate or the true endpoint was a constant (i.e., all
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patients within a trial had the same surrogate and/or true endpoint value) are
excluded. In addition, the user can specify the minimum number of patients that
a trial should contain in order to include the trial in the analysis. If the number
of patients in a trial is smaller than the value specified by Min.Trial.Size,
the data of the trial are excluded. Data.Analyze is the dataset on which the
surrogacy analysis was conducted.

A data. frame that contains the total number of patients per trial and the number
of patients who were administered the control treatment and the experimental
treatment in each of the trials (in Data.Analyze).

Trial.Spec.Results

R2ht

R2h

R2h.ind

A data.frame that contains the trial-specific intercepts and treatment effects
for the surrogate and the true endpoints (when a full or semi-reduced model is
requested), or the trial-specific treatment effects for the surrogate and the true
endpoints (when a reduced model is requested).

A data. frame that contains the trial-level surrogacy estimate and its confidence
interval.

A data. frame that contains the individual-level surrogacy estimate R (cluster-
based estimate) and its confidence interval.

A data. frame that contains the individual-level surrogacy estimate R ;. (single-
trial based estimate) and its confidence interval based on a bootstrap. The R . .
shown is the mean of the bootstrapped values.

R2h.Ind.By.Trial

Author(s)

A data. frame that contains individual-level surrogacy estimates R3 (cluster-
based estimate) and their confidence interval for each of the trials seperately.

Wim Van der Elst, Ariel Alonso, & Geert Molenberghs

References

Alonso, A, & Molenberghs, G. (2007). Surrogate marker evaluation from an information theory
perspective. Biometrics, 63, 180-186.

See Also

FixedBinBinIT, FixedBinContIT, plot Information-Theoretic BinCombn

Examples

## Not run: # Time consuming (>5sec) code part

# Generate data with continuous Surr and True
Sim.Data.MTS(N.Total=2000, N.Trial=100, R.Trial.Target=.8,
R.Indiv.Target=.8, Seed=123, Model="Full")

# Make S binary

Data.Observed.MTS$Surr_Bin <- Data.Observed.MTS$Surr
Data.Observed.MTS$Surr_Bin[Data.Observed.MTS$Surr>=0] <- 1
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Data.Observed.MTS$Surr_Bin[Data.Observed.MTS$Surr<o] <- @

# Analyze data

Fit <- FixedContBinIT(Dataset = Data.Observed.MTS, Surr = Surr_Bin,
True = True, Treat = Treat, Trial.ID = Trial.ID, Pat.ID = Pat.ID,
Model = "Full”, Number.Bootstraps=50)

# Examine results
summary (Fit)

plot(Fit, Trial.Level

FALSE, Indiv.Level.By.Trial=TRUE)

plot(Fit, Trial.Level = TRUE, Indiv.lLevel.By.Trial=FALSE)

## End(Not run)

FixedContContIT Fits (univariate) fixed-effect models to assess surrogacy in the
continuous-continuous case based on the Information-Theoretic
framework

Description

The function FixedContContIT uses the information-theoretic approach (Alonso & Molenberghs,
2007) to estimate trial- and individual-level surrogacy based on fixed-effect models when both S
and T are continuous variables. The user can specify whether a (weighted or unweighted) full,
semi-reduced, or reduced model should be fitted. See the Details section below.

Usage

FixedContContIT(Dataset, Surr, True, Treat, Trial.ID, Pat.ID,

Model=c("Full")

, Weighted=TRUE, Min.Trial.Size=2,

Alpha=.05, Number.Bootstraps=500, Seed=sample(1:1000, size=1))

Arguments

Dataset

Surr
True

Treat

Trial.ID

Pat.ID

A data. frame that should consist of one line per patient. Each line contains (at
least) a surrogate value, a true endpoint value, a treatment indicator, a patient
ID, and a trial ID.

The name of the variable in Dataset that contains the surrogate endpoint values.
The name of the variable in Dataset that contains the true endpoint values.

The name of the variable in Dataset that contains the treatment indicators. The
treatment indicator should either be coded as 1 for the experimental group and
—1 for the control group, or as 1 for the experimental group and 0 for the control
group.

The name of the variable in Dataset that contains the trial ID to which the
patient belongs.

The name of the variable in Dataset that contains the patient’s ID.
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Model The type of model that should be fitted, i.e., Model=c("Full"), Model=c("Reduced"),
or Model=c("SemiReduced"). See the Details section below. Default Model=c("Full").

Weighted Logical. In practice it is often the case that different trials (or other clustering
units) have different sample sizes. Univariate models are used to assess surro-
gacy in the information-theoretic approach, so it can be useful to adjust for het-
erogeneity in information content between the trial-specific contributions (par-
ticularly when trial-level surrogacy measures are of primary interest and when
the heterogeneity in sample sizes is large). If Weighted=TRUE, weighted regres-
sion models are fitted. If Weighted=FALSE, unweighted regression analyses are
conducted. See the Details section below. Default TRUE.

Min.Trial.Size The minimum number of patients that a trial should contain to be included in the
analysis. If the number of patients in a trial is smaller than the value specified by
Min.Trial.Size, the data of the trial are excluded from the analysis. Default 2.

Alpha The a-level that is used to determine the confidence intervals around R}QL and
Rit. Default 0.05.

Number.Bootstraps
The standard error and confidence interval for R? is determined based on a
bootstrap procedure. Number.Bootstraps specifies the number of bootstrap
samples that are used. Default 500.

Seed The seed to be used in the bootstrap procedure. Default sample(1 : 1000, size =

1).

Details

Individual-level surrogacy

The following univariate generalised linear models are fitted:

gr(E(Tij)) = pri + BiZij,
91 (E(Ti5|S:5)) = Yoi + MiZij + 72i545,

where ¢ and j are the trial and subject indicators, gr is an appropriate link function (i.e., an identity
link when a continuous true endpoint is considered), S;; and T;; are the surrogate and true endpoint
values of subject j in trial 4, and Z;; is the treatment indicator for subject j in trial ¢. 7 and 3; are
the trial-specific intercepts and treatment-effects on the true endpoint in trial i. g, and ~y; are the
trial-specific intercepts and treatment-effects on the true endpoint in trial ¢ after accounting for the
effect of the surrogate endpoint.

The —2 log likelihood values of the previous models in each of the ¢ trials (i.e., Ly; and Lo;,
respectively) are subsequently used to compute individual-level surrogacy based on the so-called
Variance Reduction Factor (VFR; for details, see Alonso & Molenberghs, 2007):

1 Lo; — Ly,
R2. =1—- — e T
h.ind N Zexp ( n; ) )

where N is the number of trials and n; is the number of patients within trial i.
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When it can be assumed (i) that the treatment-corrected association between the surrogate and the
true endpoint is constant across trials, or (ii) when all data come from a single clinical trial (i.e.,
when N = 1), the previous expression simplifies to:

Lo — Ly
R?, =1- _=2 )
h.ind.clust exp ( N >

Trial-level surrogacy

When a full or semi-reduced model is requested (by using the argument Model=c("Full"”) or
Model=c("SemiReduced") in the function call), trial-level surrogacy is assessed by fitting the fol-
lowing univariate models:

Sij = wsi + @i Zij + €545, (1)

Tij = pri + BiZij + eriz, (1)
where 4 and j are the trial and subject indicators, S;; and 7;; are the surrogate and true endpoint
values of subject j in trial ¢, Z;; is the treatment indicator for subject j in trial 4, y15; and ji7; are the

fixed trial-specific intercepts for S and T, and «; and j3; are the fixed trial-specific treatment effects
on S and T, respectively. The error terms €g;; and e7;; are assumed to be independent.

When a reduced model is requested by the user (by using the argument Model=c("Reduced”) in
the function call), the following univariate models are fitted:

Sij = ps + aiZij + €sij, (2)
T;j = pr + BiZij + €145, (2)
where pg and pr are the common intercepts for S and T. The other parameters are the same as

defined above, and €g;; and e7;; are again assumed to be independent.

When the user requested a full model approach (by using the argument Model=c(”Full”) in the
function call, i.e., when models (1) were fitted), the following model is subsequently fitted:

Bi = Ao + Mifigi + A2 + €4, (3)

where the parameter estimates for [3;, us;, and «; are based on models (1) (see above). When a
weighted model is requested (using the argument Weighted=TRUE in the function call), model (3) is
a weighted regression model (with weights based on the number of observations in trial ). The —2
log likelihood value of the (weighted or unweighted) model (3) (L) is subsequently compared to
the —2 log likelihood value of an intercept-only model (Bl- = A3; Lo), and R?, is computed based
based on the Variance Reduction Factor (for details, see Alonso & Molenberghs, 2007):

Ly — Lo
R, =1-— = =
ht emp( N )

where N is the number of trials.

When a semi-reduced or reduced model is requested (by using the argument Model=c (" SemiReduced")

or Model=c("Reduced") in the function call), the following model is fitted:
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~

Bi = Ao+ A\ + €4,

where the parameter estimates for 3; and «; are based on models (1) when a semi-reduced model
is fitted or on models (2) when a reduced model is fitted. The —2 log likelihood value of this
(weighted or unweighted) model (L;) is subsequently compared to the —2 log likelihood value
of an intercept-only model (@ = MA3; Lg), and R,%t is computed based on the reduction in the
likelihood (as described above).

Value

An object of class FixedContContIT with components,

Data.Analyze

Obs.Per.Trial

Prior to conducting the surrogacy analysis, data of patients who have a missing
value for the surrogate and/or the true endpoint are excluded. In addition, the
data of trials (i) in which only one type of the treatment was administered, and
(ii) in which either the surrogate or the true endpoint was a constant (i.e., all
patients within a trial had the same surrogate and/or true endpoint value) are
excluded. In addition, the user can specify the minimum number of patients that
a trial should contain in order to include the trial in the analysis. If the number
of patients in a trial is smaller than the value specified by Min.Trial.Size,
the data of the trial are excluded. Data.Analyze is the dataset on which the
surrogacy analysis was conducted.

A data. frame that contains the total number of patients per trial and the number
of patients who were administered the control treatment and the experimental
treatment in each of the trials (in Data.Analyze).

Trial.Spec.Results

R2ht

R2h.ind.clust

R2h.ind

Boot.CI
Cor.Endpoints

Residuals

A data.frame that contains the trial-specific intercepts and treatment effects
for the surrogate and the true endpoints (when a full or semi-reduced model is
requested), or the trial-specific treatment effects for the surrogate and the true
endpoints (when a reduced model is requested).

A data. frame that contains the trial-level surrogacy estimate and its confidence
interval.

A data. frame that contains the individual-level surrogacy estimate and its con-
fidence interval.

A data. frame that contains the individual-level surrogacy estimate and its con-
fidence interval under the assumption that the treatment-corrected association
between the surrogate and the true endpoints is constant across trials or when all
data come from a single clinical trial.

A data. frame that contains the bootstrapped R2h.Single values.

A data. frame that contains the correlations between the surrogate and the true
endpoint in the control treatment group (i.e., proso) and in the experimental
treatment group (i.e., pr151), their standard errors and their confidence intervals.

A data.frame that contains the residuals for the surrogate and true endpoints
(esi; and e7;) that are obtained when models (1) or models (2) are fitted (see
the Details section above).
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Author(s)

Wim Van der Elst, Ariel Alonso, & Geert Molenberghs

References

Alonso, A, & Molenberghs, G. (2007). Surrogate marker evaluation from an information theory
perspective. Biometrics, 63, 180-186.

See Also

MixedContContIT, FixedContBinIT, FixedBinContIT, FixedBinBinIT, plot Information-Theoretic

Examples

# Example 1
# Based on the ARMD data

data(ARMD)

# Assess surrogacy based on a full fixed-effect model

# in the information-theoretic framework:

Sur <- FixedContContIT(Dataset=ARMD, Surr=Diff24, True=Diff52, Treat=Treat, Trial.ID=Center,
Pat.ID=Id, Model="Full"”, Number.Bootstraps=50)

# Obtain a summary of the results:

summary (Sur)

## Not run: #time consuming code

# Example 2

# Conduct an analysis based on a simulated dataset with 2000 patients, 100 trials,
# and Rindiv=Rtrial=.8

# Simulate the data:

Sim.Data.MTS(N.Total=2000, N.Trial=100, R.Trial.Target=.8, R.Indiv.Target=.8,
Seed=123, Model="Full")

# Assess surrogacy based on a full fixed-effect model

# in the information-theoretic framework:

Sur2 <- FixedContContIT(Dataset=Data.Observed.MTS, Surr=Surr, True=True, Treat=Treat,

Trial.ID=Trial.ID, Pat.ID=Pat.ID, Model="Full”, Number.Bootstraps=50)

# Show a summary of the results:
summary (Sur2)
## End(Not run)

FixedDiscrDiscrIT Investigates surrogacy for binary or ordinal outcomes using the Infor-
mation Theoretic framework
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Description

The function FixedDiscrDiscrIT uses the information theoretic approach (Alonso and Molen-
berghs 2007) to estimate trial and individual level surrogacy based on fixed-effects models when
the surrogate is binary and the true outcome is ordinal, the converse case or when both outcomes are
ordinal (the user must specify which form the data is in). The user can specify whether a weighted
or unweighted analysis is required at the trial level. The penalized likelihood approach of Firth
(1993) is applied to resolve issues of separation in discrete outcomes for particular trials. Requires
packages OrdinallLogisticBiplot and logistf.

Usage

FixedDiscrDiscrIT(Dataset, Surr, True, Treat, Trial.ID,
Weighted = TRUE, Setting = c("binord"”))

Arguments

Dataset A data. frame that should consist of one line per patient. Each line contains (at
least) a surrogate value, a true outcome value, a treatment indicator and a trial
ID.

Surr The name of the variable in Dataset that contains the surrogate outcome values.
True The name of the variable in Dataset that contains the true outcome values.

Treat The name of the in Dataset that contains the treatment group values, 0/1 or
-1/+1 are recommended.

Trial.ID The name of the variable in Dataset that contains the trial ID to which the
patient belongs.

Weighted Logical. In practice it is often the case that different trials (or other clustering
units) have different sample sizes. Univariate models are used to assess surro-
gacy in the information-theoretic approach, so it can be useful to adjust for het-
erogeneity in information content between the trial-specific contributions (par-
ticularly when trial-level surrogacy measures are of primary interest and when
the heterogeneity in sample sizes is large). If Weighted=TRUE, weighted regres-
sion models are fitted. If Weighted=FALSE, unweighted regression analyses are
conducted. See the Details section below. Default TRUE.

Setting Specifies whether an ordinal or binary surrogate or true outcome are present in
Dataset. Setting=c("binord"”) for a binary surrogate and ordinal true out-
come, Setting=c("ordbin") for an ordinal surrogate and binary true outcome
and Setting=c("ordord") where both outcomes are ordinal.

Details

Individual level surrogacy

The following univariate logistic regression models are fitted when Setting=c("ordbin"):

logit(P(Ti; = 1)) = pri + BiZij, (1)
logit(P(T;j = 11Si; = 8)) = Yoi + 11 Zi5 + 72iSij, (1)
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where: ¢ and j are the trial and subject indicators; S;; and T5; are the surrogate and true outcome
values of subject j in trial ¢; and Z;; is the treatment indicator for subject j in trial ¢; pp; and ;
are the trial-specific intercepts and treatment-effects on the true endpoint in trial ¢; and ~yy; and v1;
are the trial-specific intercepts and treatment-effects on the true endpoint in trial ¢ after accounting
for the effect of the surrogate endpoint. The —2 log likelihood values of the previous models in
each of the i trials (i.e., L1; and Ls;, respectively) are subsequently used to compute individual-
level surrogacy based on the so-called Likelihood Reduction Factor (LRF; for details, see Alonso

& Molenberghs, 2006):
1 Lo; — Ly;
2 21 1z
Rh—l—N E exp (—m) ,

where N is the number of trials and n; is the number of patients within trial 7.

At the individual level in the discrete case R is bounded above by a number strictly less than one
and is re-scaled (see Alonso & Molenberghs (2007)):

_ 2
R= =

where L is the log-likelihood of the intercept only model of the true outcome (logit(P(T;; = 1) =
V3)-

In the case of Setting=c("binord") or Setting=c("ordord") proportional odds models in (1)
are used to accommodate the ordinal true response outcome, in all other respects the calculation of
R? would proceed in the same manner.

Trial-level surrogacy

When Setting=c("ordbin") trial-level surrogacy is assessed by fitting the following univariate
logistic regression and proportional odds models for the ordinal surrogate and binary true response
variables regressed on treatment for each trial ::

logit(P(Si; < W)) = ps,,; + @iZij, (2)

logit(P(Tij = 1)) = pri + BiZij, (2)
where: 4 and j are the trial and subject indicators; S;; and T;; are the surrogate and true outcome
values of subject j in trial 4; Z;; is the treatment indicator for subject j in trial ¢; ug,, are the
trial-specific intercept values for each cut point w, where w = 1,.., W — 1, of the ordinal surrogate
outcome; jp; are the fixed trial-specific intercepts for T; and «; and 3; are the fixed trial-specific
treatment effects on S and T, respectively. The mean trial-specific intercepts for the surrogate are
calculated, pg .. The following model is subsequently fitted:

B\i =X+ Alﬁsm + Xotv; + €4, (3)

where the parameter estimates for 3;, Jig, ., and «; are based on models (2) (see above). When a
weighted model is requested (using the argument Weighted=TRUE in the function call), model (2) is
a weighted regression model (with weights based on the number of observations in trial ). The —2
log likelihood value of the (weighted or unweighted) model (2) (L) is subsequently compared to
the —2 log likelihood value of an intercept-only model (Bi = A3; Lo), and R%, is computed based
on the Likelihood Reduction Factor (for details, see Alonso & Molenberghs, 2006):

L, — Ly
R, =1-— =
ht ezp( N >’
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where N is the number of trials.

When separation (the presence of zero cells) occurs in the cross tabs of treatment and the true
or surrogate outcome for a particular trial in models (2) extreme bias can occur in R3,. Under
separation there are no unique maximum likelihood for parameters 3;, iig . and a;, in (2), for the
affected trial . This typically leads to extreme bias in the estimation of these parameters and hence
outlying influential points in model (3), bias in R, inevitably follows.

To resolve the issue of separation the penalized likelihood approach of Firth (1993) is applied.
This approach adds an asymptotically negligible component to the score function to allow unbiased
estimation of 3;, ig, ., and «; and in turn R2,. The penalized likelihood R function logitf from
the package of the same name is applied in the case of binary separation (Heinze and Schemper,
2002). The function pordlogistf from the package OrdinallLogisticBioplot is applied in the
case of ordinal separation (Hern’andez, 2013). All instances of separation are reported.

In the case of Setting=c("binord”) or Setting=c("ordord") the appropriate models (either
logistic regression or a proportional odds models) are fitted in (2) to accommodate the form (either
binary or ordinal) of the true or surrogate response variable. The rest of the analysis would proceed
in a similar manner as that described above.

Value

An object of class FixedDiscrDiscrIT with components,

Trial.Spec.Results
A data. frame that contains the trial-specific intercepts and treatment effects for
the surrogate and the true endpoints. Also, the number of observations per trial;
whether the trial was able to be included in the analysis for both R? and R3,;
whether separation occurred and hence the penalized likelihood approach used
for the surrogate or true outcome.

R2ht A data. frame that contains the trial-level surrogacy estimate and its confidence
interval.
R2h A data. frame that contains the individual-level surrogacy estimate and its con-

fidence interval.

Author(s)
Hannah M. Ensor & Christopher J. Weir

References

Alonso, A, & Molenberghs, G. (2007). Surrogate marker evaluation from an information theory
perspective. Biometrics, 63, 180-186.

Alonso, A, & Molenberghs, G., Geys, H., Buyse, M. & Vangeneugden, T. (2006). A unifying
approach for surrogate marker validation based on Prentice’s criteria. Statistics in medicine, 25,
205-221.

Firth, D. (1993). Bias reduction of maximum likelihood estimates. Biometrika, 80, 27-38.

Heinze, G. & Schemper, M. 2002. A solution to the problem of separation in logistic regression.
Statistics in medicine, 21, 2409-2419.

Hern’andez, J. C. V.-V. O., J. L. 2013. OrdinalLogisticBiplot: Biplot representations of ordinal
variables. R.
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See Also

FixedContContIT, plot Information-Theoretic, logistf

Examples

## Not run: # Time consuming (>5sec) code part

# Example 1

# Conduct an analysis based on a simulated dataset with 2000 patients, 100 trials,
# and Rindiv=Rtrial=.8

# Simulate the data:
Sim.Data.MTS(N.Total=2000, N.Trial=100, R.Trial.Target=.8, R.Indiv.Target=.8,
Seed=123, Model="Full")

# create a binary true and ordinal surrogate outcome
Data.Observed.MTS$True<-findInterval (Data.Observed.MTS$True,
c(quantile(Data.Observed.MTS$True,9.5)))
Data.Observed.MTS$Surr<-findInterval(Data.Observed.MTS$Surr,
c(quantile(Data.Observed.MTS$Surr,0.333),quantile(Data.Observed.MTS$Surr,0.666)))

# Assess surrogacy based on a full fixed-effect model

# in the information-theoretic framework for a binary surrogate and ordinal true outcome:
SurEval <- FixedDiscrDiscrIT(Dataset=Data.Observed.MTS, Surr=Surr, True=True, Treat=Treat,
Trial.ID=Trial.ID, Setting="ordbin")

# Show a summary of the results:
summary (SurkEval)
SurEval$Trial.Spec.Results
SurEval$R2h

SurEval$R2ht

## End(Not run)

ICA.BinBin Assess surrogacy in the causal-inference single-trial setting in the
binary-binary case

Description

The function ICA.BinBin quantifies surrogacy in the single-trial causal-inference framework (indi-
vidual causal association and causal concordance) when both the surrogate and the true endpoints
are binary outcomes. See Details below.

Usage

ICA.BinBin(pil_1_, pil1_0_, pi_1_1, pi_1_0, pi@_1_, pi_0_1,
Monotonicity=c("General”), Sum_Pi_f = seq(from=0.01, to0=0.99, by=.01),
M=10000, Volume.Perc=0, Seed=sample(1:100000, size=1))
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Arguments

pil_1_ A scalar or vector that contains values for P(T' = 1,5 = 1|Z = 0), i.e., the
probability that S = T' = 1 when under treatment Z = 0. A vector is specified
to account for uncertainty, i.e., rather than keeping P(T = 1,5 = 1|Z =
0) fixed at one estimated value, a distribution can be specified (see examples
below) from which a value is drawn in each run.

pil_e_ A scalar or vector that contains values for P(T' = 1,5 = 0|Z = 0).

pi_1_1 A scalar or vector that contains values for P(T' = 1,5 = 1|Z = 1).

pi_1_0 A scalar or vector that contains values for P(T' = 1,5 =0|Z = 1).

pio_1_ A scalar or vector that contains values for P(T' = 0,5 = 1|Z = 0).

pi_0_1 A scalar or vector that contains values for P(T' = 0,5 =1|Z = 1).

Monotonicity Specifies which assumptions regarding monotonicity should be made: Monotonicity=c("General"),
Monotonicity=c("No"),Monotonicity=c("True.Endp"), Monotonicity=c("Surr.Endp"),
orMonotonicity=c("Surr.True.Endp"). See Details below. Default Monotonicity=c("General").

Sum_Pi_f A scalar or vector that specifies the grid of values G = g1, g2, ..., g to be con-
sidered when the sensitivity analysis is conducted. See Details below. Default
Sum_Pi_f = seq(from=0.01, to=0.99, by=.01).

M The number of runs that are conducted for a given value of Sum_Pi_f. This
argument is not used when Volume.Perc=0. Default M=10000.

Volume.Perc Note that the marginals that are observable in the data set a number of restric-
tions on the unidentified correlations. For example, under montonicity for .S and
T, it holds that my117 <= mZ‘n(’lT()Al.,’lT.l.l) and 71190 <= min(m.o.,ﬂ.l.o).
For example, when min(mg.1.,7.1.1) = 0.10 and min(w1.9.,7.1.0) = 0.08,
then all valid mg1;17 <= 0.10 and all valid 7199 <= 0.08. The argument
Volume.Perc specifies the fraction of the ’volume’ of the paramater space that
is explored. This volume is computed based on the grids G=0, 0.01, ..., max-
imum possible value for the counterfactual probability at hand. E.g., in the
previous example, the 'volume’ of the parameter space would be 11 %« 9 = 99,
and when e.g., the argument Volume.Perc=1 is used a total of 99 runs will be
conducted for each given value of Sum_Pi_f. Notice that when monotonicity is
not assumed, relatively high values of Volume.Perc will lead to a large number
of runs and consequently a long analysis time.

Seed The seed to be used to generate 7,.. Default Seed=sample(1:100000, size=1).

Details

In the continuous normal setting, surroagacy can be assessed by studying the association between
the individual causal effects on S and T (see ICA.ContCont). In that setting, the Pearson correlation
is the obvious measure of association.

When S and T are binary endpoints, multiple alternatives exist. Alonso et al. (2014) proposed
the individual causal association (ICA; R%I), which captures the association between the individual
causal effects of the treatment on S (Ag) and T' (A7) using information-theoretic principles.

The function ICA.BinBin computes R% based on plausible values of the potential outcomes. De-
note by Y’ = (Ty, T, So, S1) the vector of potential outcomes. The vector Y can take 16 values
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and the set of parameters ;;,q = P(Ty = 1,11 = j, So = p,S1 = q) (with i, j,p,q = 0/1) fully
characterizes its distribution.

However, the parameters in 7;;,, are not all functionally independent, e.g., 1 = 7..... When no
assumptions regarding monotonicity are made, the data impose a total of 7 restrictions, and thus
only 9 proabilities in ;;p, are allowed to vary freely (for details, see Alonso et al., 2014). Based
on the data and assuming SUTVA, the marginal probabilites 71.1., 71.0., T.1.1, T.1.0, T0-1., and 7.g.1
can be computed (by hand or using the function MarginalProbs). Define the vector

/
b = (1,7T1-1~,7T1-0~,7T<1-1,7T<1-0,7T0-1~,7T~0-1)

and A is a contrast matrix such that the identified restrictions can be written as a system of linear
equation
Arm =b.

The matrix A has rank 7 and can be partitioned as A = (A,|Ay¢), and similarly the vector 7
can be partitioned as w = (7r;|7r;¢) (where f refers to the submatrix/vector given by the 9 last
columns/components of A /7). Using these partitions the previous system of linear equations can
be rewritten as

A, + Apmy =b.

The following algorithm is used to generate plausible distributions for Y. First, select a value
of the specified grid of values (specified using Sum_Pi_f in the function call). For k = 1to M
(specified using M in the function call), generate a vector 7 that contains 9 components that are
uniformly sampled from hyperplane subject to the restriction that the sum of the generated compo-
nents equals Sum_Pi_f (the function RandVec, which uses the randfixedsum algorithm written by
Roger Stafford, is used to obtain these components). Next, 7w, = A1 (b — Asms) is computed
and the 7, vectors where all components are in the [0; 1] range are retained. This procedure is
repeated for each of the Sum_Pi_f values. Based on these results, R?; is estimated. The obtained
values can be used to conduct a sensitivity analysis during the validation exercise.

The previous developments hold when no monotonicity is assumed. When monotonicity for S, T,
or for S and T is assumed, some of the probabilities of 7 are zero. For example, when montonicity is
assumed for T', then P(Ty <= T}) = 1, or equivantly, w1000 = T1010 = 71001 = 71011 = 0. When
monotonicity is assumed, the procedure described above is modified accordingly (for details, see
Alonso et al., 2014). When a general analysis is requested (using Monotonicity=c("General")
in the function call), all settings are considered (no monotonicity, monotonicity for S alone, for T’
alone, and for both for S and T'.)

To account for the uncertainty in the estimation of the marginal probabilities, a vector of values can
be specified from which a random draw is made in each run (see Examples below).

Value

An object of class ICA.BinBin with components,

Pi.Vectors An object of class data. frame that contains the valid 7 vectors.
R2_H The vector of the R%, values.

Theta_T The vector of odds ratios for 7.

Theta_S The vector of odds ratios for .S.

H_Delta_T The vector of the entropies of Ap.
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Monotonicity The assumption regarding monotonicity that was made.

Volume.No The ’volume’ of the parameter space when monotonicity is not assumed. Is only
provided when the argument Volume. Perc is used (i.e., when it is not equal to
0.

Volume.T The ’volume’ of the parameter space when monotonicity for 7" is assumed. Is

only provided when the argument V olume.Perc is used.

Volume.S The ’volume’ of the parameter space when monotonicity for S is assumed. Is
only provided when the argument V olume.Perc is used.

Volume.ST The ’volume’ of the parameter space when monotonicity for S and 7" is assumed.
Is only provided when the argument V olume.Perc is used.

Author(s)
Wim Van der Elst, Paul Meyvisch, Ariel Alonso & Geert Molenberghs

References

Alonso, A., Van der Elst, W., & Molenberghs, G. (2015). Validation of surrogate endpoints: the
binary-binary setting from a causal inference perspective.

See Also

ICA.ContCont, MICA.ContCont

Examples

## Not run: # Time consuming code part

# Compute R2_H given the marginals specified as the pi's, making no

# assumptions regarding monotonicity (general case)

ICA <- ICA.BinBin(pi1_1_=0.2619048, pi1_0_=0.2857143, pi_1_1=0.6372549,
pi_1_0=0.07843137, pi0_1_=0.1349206, pi_0_1=0.127451, Seed=1,
Monotonicity=c("General”), Sum_Pi_f = seq(from=0.01, to=.99, by=.01), M=10000)

# obtain plot of the results
plot(ICA, R2_H=TRUE)

# Example 2 where the uncertainty in the estimation
# of the marginals is taken into account
ICA_BINBIN2 <- ICA.BinBin(pil_1_=runif(10000, 0.2573, ©.4252),
pil_0_=runif(10000, 0.1769, ©.3310),

pi_1_1=runif (10000, 0.5947, 0.7779),

pi_1_0=runif (10000, 0.0322, 0.1442),

pi@_1_=runif (10000, 0.0617, ©.1764),

pi_@0_1=runif (10000, 0.0254, 0.1315),
Monotonicity=c("General"),

Sum_Pi_f = seq(from=0.01, to=0.99, by=.01),
M=50000, Seed=1)

# Plot results
plot (ICA_BINBIN2)
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## End(Not run)

ICA.BinBin.CounterAssum

ICA.BinBin.CounterAssum

ICA (binary-binary setting) that is obtaied when the counterfactual
correlations are assumed to fall within some prespecified ranges.

Description

Shows the results of ICA (binary-binary setting) in the subgroup of results where the counterfactual
correlations are assumed to fall within some prespecified ranges.

Usage

ICA.BinBin.CounterAssum(x, r2_h_S0@S1_min, r2_h_S0S1_max, r2_h_S0T1_min,
r2_h_S0T1_max, r2_h_TOT1_min, r2_h_TOT1_max, r2_h_T@S1_min, r2_h_T0S1_max,

Monotonicity="General”, Type="Freq", MainPlot=" ", Cex.Legend=1,
Cex.Position="topright”, ...)

Arguments
X An object of class ICA.BinBin. See ICA.BinBin.

r2_h_S@S1_min
r2_h_S0@S1_max
r2_h_S0T1_min
r2_h_S0T1_max
r2_h_TOT1_min
r2_h_TOT1_max
r2_h_T0S1_min
r2_h_T0S1_max

Monotonicity

Type

The minimum value to be considered for the counterfactual correlation r7 (Sp, S1).
The maximum value to be considered for the counterfactual correlation 73 (Sp, S1).
The minimum value to be considered for the counterfactual correlation 73 (S, T} ).
The maximum value to be considered for the counterfactual correlation 73 ( Sy, 1} ).
The minimum value to be considered for the counterfactual correlation 73 (1o, 7).
The maximum value to be considered for the counterfactual correlation r,% (To, Th).
The minimum value to be considered for the counterfactual correlation 7 (Tp, S1).
The maximum value to be considered for the counterfactual correlation 73 (Tp, S1).

Specifies whether the all results in the fitted object ICA.BinBin should be shown

(i.e., Monotonicity=c("General™)), or a subset of the results arising under
specific assumptions (i.e., Monotonicity=c(”"No"),Monotonicity=c("True.Endp"),
Monotonicity=c("Surr.Endp"), or Monotonicity=c("Surr.True.Endp")).
Default Monotonicity=c("General”).

The type of plot that is produced. When Type="Freq" or Type="Density", the

Y-axis shows frequencies or densities of R%I. When Type="All.Densities”

and the fitted object of class ICA.BinBin was obtained using a general analy-

sis (i.e., conducting the analyses assuming no monotonicity, monotonicity for S

alone, monotonicity for 7" alone, and for both S and 7, so using Monotonicity=c("General")
in the function call of ICA.BinBin), the density plots are shown for the four sce-

narios where different assumptions regarding monotonicity are made. Default

"Freq".
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MainPlot The title of the plot. Default " ".
Cex.Legend The size of the legend when Type="Al1.Densities" isused. Default Cex.Legend=1.

Cex.Position The position of the legend, Cex.Position="topright" or Cex.Position="topleft".
Default Cex.Position="topright".

Other arguments to be passed to the plot() function.

Author(s)
Wim Van der Elst, Ariel Alonso, & Geert Molenberghs

References

Alonso, A., Van der Elst, W., Molenberghs, G., Buyse, M., & Burzykowski, T. (submitted). On
the relationship between the causal inference and meta-analytic paradigms for the validation of
surrogate markers.

Van der Elst, W., Alonso, A., & Molenberghs, G. (submitted). An exploration of the relationship
between causal inference and meta-analytic measures of surrogacy.

See Also
ICA.BinBin

Examples

## Not run: #Time consuming (>5 sec) code part

# Compute R2_H given the marginals specified as the pi's, making no
# assumptions regarding monotonicity (general case)

ICA <- ICA.BinBin.Grid.Sample(pi1_1_=0.261, pil1_0_=0.285,
pi_1_1=0.637, pi_1_0=0.078, pi0_1_=0.134, pi_0_1=0.127,
Monotonicity=c("General”), M=5000, Seed=1)

# Obtain a density plot of R2_H, assuming that

# r2_h_S0S1>=.2, r2_h_S0T1>=0, r2_h_TOT1>=.2, and r2_h_T0S1>=0
ICA.BinBin.CounterAssum(ICA, r2_h_S@S1_min=.2, r2_h_S@S1_max=1,
r2_h_S0T1_min=0, r2_h_S@T1_max=1, r2_h_TOT1_min=0.2, r2_h_TOT1_max=1,
r2_h_TeS1_min=0, r2_h_T@S1_max=1, Monotonicity="General”,
Type="Density")

# Now show the densities of R2_H under the different

# monotonicity assumptions

ICA.BinBin.CounterAssum(ICA, r2_h_S@S1_min=.2, r2_h_S0@S1_max=1,
r2_h_SeT1_min=0, r2_h_SOT1_max=1, r2_h_TOT1_min=0.2, r2_h_TOT1_max=1,
r2_h_TeS1_min=0, r2_h_T@S1_max=1, Monotonicity="General”,
Type="All.Densities”, MainPlot=" ", Cex.Legend=1,
Cex.Position="topright”, ylim=c(@, 20))

## End(Not run)
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ICA.BinBin.Grid.Full Assess surrogacy in the causal-inference single-trial setting in the
binary-binary case when monotonicity for S and T is assumed using
the full grid-based approach

Description

The function ICA.BinBin.Grid.Full quantifies surrogacy in the single-trial causal-inference frame-

work (individual causal association and causal concordance) when both the surrogate and the true

endpoints are binary outcomes. This method provides an alternative for ICA.BinBin and ICA.BinBin.Grid.Sample.
It uses an alternative strategy to identify plausible values for 7. See Details below.

Usage

ICA.BinBin.Grid.Full(pil_1_, pil_0_, pi_1_1, pi_1_0, pi0_1_, pi_0_1,
Monotonicity=c("General”), pi_1001=seq(@, 1, by=.02),
pi_1110=seq(@, 1, by=.02), pi_1101=seq(@, 1, by=.02),
pi_1011=seq(@, 1, by=.02), pi_1111=seq(0, 1, by=.02),
pi_0110=seq(@, 1, by=.02), pi_0011=seq(@, 1, by=.02),
pi_0111=seq(@, 1, by=.02), pi_1100=seq(@, 1
Seed=sample(1:100000, size=1))

, by=.02),

Arguments
pil_1_ A scalar that contains P(T' = 1,5 = 1|Z = 0), i.e., the proability that S =
T = 1 when under treatment Z = 0.
pil_o_ A scalar that contains P(T' = 1,5 =0|Z = 0).
pi_1_1 A scalar that contains P(T'=1,5 =1|Z = 1).
pi_1_0 A scalar that contains P(T' =1,5 =0|Z = 1).
pio_1_ A scalar that contains P(T' = 0,S = 1|Z = 0).
pi_0_1 A scalar that contains P(T'= 0,5 = 1|Z = 1).

Monotonicity  Specifies which assumptions regarding monotonicity should be made: Monotonicity=c("General"),
Monotonicity=c(”"No"),Monotonicity=c("True.Endp"), Monotonicity=c("Surr.Endp"),
orMonotonicity=c("”Surr.True.Endp”). When a general analysis is requested
(using Monotonicity=c("”General™) in the function call), all settings are con-
sidered (no monotonicity, monotonicity for .S alone, for 7" alone, and for both
for S and T'. Default Monotonicity=c("General").

pi_1001 A vector that specifies the grid of values that should be considered for 7p;, 001.
Default pi_1001=seq(@, 1, by=.02).

pi_1110 A vector that specifies the grid of values that should be considered for 7p;, 110.
Default pi_1110=seq(0@, 1, by=.02).

pi_1101 A vector that specifies the grid of values that should be considered for mp;,101.
Default pi_1101=seq(@, 1, by=.02).
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pi_1011

pi_1111

pi_0110

pi_0011

pi_0111

pi_1100

Seed

Details
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A vector that specifies the grid of values that should be considered for 7p;,011.
Default pi_1011=seq(0@, 1, by=.02).

A vector that specifies the grid of values that should be considered for mp;,111.
Default pi_1111=seq(0@, 1, by=.02).

A vector that specifies the grid of values that should be considered for 7p;,110-
Default pi_0110=seq(0, 1, by=.02).

A vector that specifies the grid of values that should be considered for mp;,011-
Default pi_0011=seq(@, 1, by=.02).

A vector that specifies the grid of values that should be considered for mp;,111.
Default pi_0111=seq(@, 1, by=.02).

A vector that specifies the grid of values that should be considered for 7;, 100-
Default pi_1100=seq(0, 1, by=.02).

The seed to be used to generate 7. Default Seed=sample(1:100000, size=1).

In the continuous normal setting, surroagacy can be assessed by studying the association between
the individual causal effects on .S and T" (see ICA.ContCont). In that setting, the Pearson correlation
is the obvious measure of association.

When S and T are binary endpoints, multiple alternatives exist. Alonso et al. (2014) proposed
the individual causal association (ICA; Rf{), which captures the association between the individual
causal effects of the treatment on S (Ag) and T' (A7) using information-theoretic principles.

The function ICA.BinBin.Grid.Full computes R% using a grid-based approach where all pos-
sible combinations of the specified grids for the parameters that are allowed that are allowed to
vary freely are considered. When it is not assumed that monotonicity holds for both .S and 7', the
computationally less demanding algorithm ICA.BinBin.Grid.Sample may be preferred.

Value

An object of class ICA.BinBin with components,

Pi.Vectors
R2_H
Theta_T
Theta_S
H_Delta_T

Author(s)

An object of class data. frame that contains the valid 7 vectors.
The vector of the R? values.

The vector of odds ratios for 7.

The vector of odds ratios for .S.

The vector of the entropies of Ar.

Wim Van der Elst, Paul Meyvisch, Ariel Alonso & Geert Molenberghs

References

Alonso, A., Van der Elst, W., & Molenberghs, G. (2014). Validation of surrogate endpoints: the
binary-binary setting from a causal inference perspective.

Buyse, M., Burzykowski, T., Aloso, A., & Molenberghs, G. (2014). Direct estimation of joint
counterfactual probabilities, with application to surrogate marker validation.
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See Also

ICA.ContCont, MICA.ContCont, ICA.BinBin, ICA.BinBin.Grid.Sample

Examples

## Not run: # time consuming code part

# Compute R2_H given the marginals,

# assuming monotonicity for S and T and grids

# pi_0111=seq(@, 1, by=.001) and

# pi_1100=seq(@, 1, by=.001)

ICA <- ICA.BinBin.Grid.Full(pi1_1_=0.2619048, pi1_0_=0.2857143, pi_1_1=0.6372549,
pi_1_0=0.07843137, pi0_1_=0.1349206, pi_0_1=0.127451,

pi_0111=seq(@, 1, by=.01), pi_1100=seq(@, 1, by=.01), Seed=1)

# obtain plot of R2_H
plot(ICA, R2_H=TRUE)

## End(Not run)

ICA.BinBin.Grid. Sample
Assess surrogacy in the causal-inference single-trial setting in the
binary-binary case when monotonicity for S and T is assumed using
the grid-based sample approach

Description

The function ICA.BinBin.Grid.Sample quantifies surrogacy in the single-trial causal-inference
framework (individual causal association and causal concordance) when both the surrogate and
the true endpoints are binary outcomes. This method provides an alternative for ICA.BinBin and
ICA.BinBin.Grid.Full. It uses an alternative strategy to identify plausible values for 7. See
Details below.

Usage

ICA.BinBin.Grid.Sample(pil_1_, pil_0_, pi_1_1, pi_1_0, pio_1_,
pi_0_1, Monotonicity=c("General"), M=100000,
Volume.Perc=0, Seed=sample(1:100000, size=1))

Arguments
pil_1_ A scalar that contains values for P(T' = 1,S = 1|Z = 0), i.e., the probability
that S = 7" = 1 when under treatment Z = 0.
pil_o_ A scalar that contains values for P(T'=1,5 =0|Z =

0)

pi_1_1 A scalar that contains values for P(T'=1,5 =1|Z = 1)
pi_1_0 A scalar that contains values for P(T' = 1,5 =0|Z = 1).
( 0)

pi0_1_ A scalar that contains values for P(T'=0,5 = 1|Z =
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pi_0_1 A scalar that contains values for P(T'=0,5 = 1|Z = 1).

Monotonicity  Specifies which assumptions regarding monotonicity should be made: Monotonicity=c("General"),
Monotonicity=c(”"No"),Monotonicity=c("True.Endp"), Monotonicity=c("Surr.Endp"),
orMonotonicity=c("Surr.True.Endp”). When a general analysis is requested
(using Monotonicity=c("”General™) in the function call), all settings are con-
sidered (no monotonicity, monotonicity for S alone, for 7" alone, and for both
for S and T'. Default Monotonicity=c("General").

M The number of random samples that have to be drawn for the freely varying pa-
rameters. Default M=100000. This argument is not used when Volume.Perc=0.
Default M=10000.

Volume.Perc Note that the marginals that are observable in the data set a number of restric-
tions on the unidentified correlations. For example, under montonicity for .S and
T, it holds that mg111 <= min(ﬂ'o.l.,ﬂ'.l.l) and 71190 <= min(ﬂj.o‘,ﬂ"l.o).
For example, when min(mg.1.,7.1.1) = 0.10 and min(wy.9.,7.1.9) = 0.08,
then all valid 79117 <= 0.10 and all valid 71199 <= 0.08. The argument
Volume.Perc specifies the fraction of the volume’ of the paramater space that
is explored. This volume is computed based on the grids G=0, 0.01, ..., max-
imum possible value for the counterfactual probability at hand. E.g., in the
previous example, the ’volume’ of the parameter space would be 11 % 9 = 99,
and when e.g., the argument Volume.Perc=1 is used a total of 99 runs will be
conducted. Notice that when monotonicity is not assumed, relatively high val-
ues of Volume.Perc will lead to a large number of runs and consequently a long
analysis time.

Seed The seed to be used to generate 7,.. Default M=100000.

Details

In the continuous normal setting, surroagacy can be assessed by studying the association between
the individual causal effects on .S and 7" (see ICA.ContCont). In that setting, the Pearson correlation
is the obvious measure of association.

When S and T are binary endpoints, multiple alternatives exist. Alonso et al. (2014) proposed
the individual causal association (ICA; R%{), which captures the association between the individual
causal effects of the treatment on S (Ag) and T' (Ar) using information-theoretic principles.

The function ICA.BinBin.Grid.Full computes R% using a grid-based approach where all possi-
ble combinations of the specified grids for the parameters that are allowed that are allowed to vary
freely are considered. When it is not assumed that monotonicity holds for both .S and 7', the number
of possible combinations become very high. The function ICA.BinBin.Grid.Sample considers a
random sample of all possible combinations.

Value

An object of class ICA.BinBin with components,

Pi.Vectors An object of class data. frame that contains the valid 7 vectors.
R2_H The vector of the R?; values.
Theta_T The vector of odds ratios for 7.

Theta_S The vector of odds ratios for S.
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H_Delta_T The vector of the entropies of Ar.

Volume.No The "volume’ of the parameter space when monotonicity is not assumed.

Volume.T The "volume’ of the parameter space when monotonicity for 7" is assumed.

Volume.S The ’volume’ of the parameter space when monotonicity for S is assumed.

Volume.ST The *volume’ of the parameter space when monotonicity for .S and 7" is assumed.
Author(s)

Wim Van der Elst, Paul Meyvisch, Ariel Alonso & Geert Molenberghs

References

Alonso, A., Van der Elst, W., & Molenberghs, G. (2014). Validation of surrogate endpoints: the

binary-binary setting from a causal inference perspective.

Buyse, M., Burzykowski, T., Aloso, A., & Molenberghs, G. (2014). Direct estimation of joint

counterfactual probabilities, with application to surrogate marker validation.

See Also

ICA.ContCont, MICA.ContCont, ICA.BinBin, ICA.BinBin.Grid.Sample

Examples

## Not run: #time-consuming code parts

# Compute R2_H given the marginals,

# assuming monotonicity for S and T and grids

# pi_0111=seq(@, 1, by=.001) and

# pi_1100=seq(@, 1, by=.001)

ICA <- ICA.BinBin.Grid.Sample(pil1_1_=0.261, pil1_0_=0.285,
pi_1_1=0.637, pi_1_0=0.078, pi0_1_=0.134, pi_0_1=0.127,
Monotonicity=c("Surr.True.Endp"”), M=2500, Seed=1)

# obtain plot of R2_H
plot(ICA, R2_H=TRUE)

## End(Not run)

ICA.BinBin.Grid.Sample.Uncert

Assess surrogacy in the causal-inference single-trial setting in the
binary-binary case when monotonicity for S and T is assumed using
the grid-based sample approach, accounting for sampling variability
in the marginal 7.
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Description

The function ICA.BinBin.Grid.Sample.Uncert quantifies surrogacy in the single-trial causal-

inference framework (individual causal association and causal concordance) when both the surro-

gate and the true endpoints are binary outcomes. This method provides an alternative for ICA.BinBin
and ICA.BinBin.Grid.Full. It uses an alternative strategy to identify plausible values for 7. The

function allows to account for sampling variability in the marginal 7. See Details below.

Usage

ICA.BinBin.Grid.Sample.Uncert(pil_1_, pil_0_, pi_1_1, pi_1_0, pio_1_,
pi_0_1, Monotonicity=c("General"), M=100000,
Volume.Perc=0, Seed=sample(1:100000, size=1))

Arguments

pil_1_ A vector that contains values for P(T' = 1,5 = 1|Z = 0), i.e., the probability
that S = 7" = 1 when under treatment Z = 0. A vector is specified to account
for uncertainty, i.e., rather than keeping P(T' = 1,5 = 1|Z = 0) fixed at
one estimated value, a distribution can be specified (see examples below) from
which a value is drawn in each run.

pil_o_ A vector that contains values for P(T = 1,5 = 0/Z = 0).

pi_1_1 A vector that contains values for P(T'= 1,5 = 1|Z = 1).

pi_1_0 A vector that contains values for P(T'=1,5 =0[Z =1).

pio_1_ A vector that contains values for P(T' = 0,5 = 1|Z = 0).

pi_0_1 A vector that contains values for P(T' = 0,5 = 1|Z =1).

Monotonicity Specifies which assumptions regarding monotonicity should be made: Monotonicity=c("General”),
Monotonicity=c(”"No"),Monotonicity=c("True.Endp"), Monotonicity=c("Surr.Endp"),
orMonotonicity=c("Surr.True.Endp"”). When a general analysis is requested
(using Monotonicity=c(”General") in the function call), all settings are con-
sidered (no monotonicity, monotonicity for .S alone, for T" alone, and for both
for S and T'. Default Monotonicity=c("General").

M The number of random samples that have to be drawn for the freely varying pa-
rameters. Default M=100000. This argument is not used when Volume.Perc=0.
Default M=10000.

Volume.Perc Note that the marginals that are observable in the data set a number of restric-
tions on the unidentified correlations. For example, under montonicity for S and
T, it holds that my117 <= mi’n(ﬂo.l.ﬂ'r.l.l) and w1199 <= min(m.o.,w.l.o).
For example, when min(mg.1.,m.1.1) = 0.10 and min(m.9.,7.1.0) = 0.08,
then all valid mp117 <= 0.10 and all valid 71199 <= 0.08. The argument
Volume.Perc specifies the fraction of the ’volume’ of the paramater space that
is explored. This volume is computed based on the grids G=0, 0.01, ..., max-
imum possible value for the counterfactual probability at hand. E.g., in the
previous example, the 'volume’ of the parameter space would be 11 x 9 = 99,
and when e.g., the argument Volume.Perc=1 is used a total of 99 runs will be
conducted. Notice that when monotonicity is not assumed, relatively high val-
ues of Volume.Perc will lead to a large number of runs and consequently a long
analysis time.
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Seed The seed to be used to generate 7,.. Default M=100000.

Details

In the continuous normal setting, surroagacy can be assessed by studying the association between
the individual causal effects on S and T (see ICA.ContCont). In that setting, the Pearson correlation
is the obvious measure of association.

When S and T are binary endpoints, multiple alternatives exist. Alonso et al. (2014) proposed
the individual causal association (ICA; R%,), which captures the association between the individual
causal effects of the treatment on S (Ag) and T' (A7) using information-theoretic principles.

The function ICA.BinBin.Grid.Full computes R% using a grid-based approach where all possi-
ble combinations of the specified grids for the parameters that are allowed that are allowed to vary
freely are considered. When it is not assumed that monotonicity holds for both .S and 7', the num-
ber of possible combinations become very high. The function ICA.BinBin.Grid.Sample.Uncert
considers a random sample of all possible combinations.

Value

An object of class ICA.BinBin with components,

Pi.Vectors An object of class data. frame that contains the valid 7 vectors.

R2_H The vector of the R%, values.

Theta_T The vector of odds ratios for 7.

Theta_S The vector of odds ratios for S.

H_Delta_T The vector of the entropies of Ap.

Volume.No The ’volume’ of the parameter space when monotonicity is not assumed.

Volume.T The "volume’ of the parameter space when monotonicity for 7" is assumed.

Volume.S The *volume’ of the parameter space when monotonicity for S is assumed.

Volume.ST The *volume’ of the parameter space when monotonicity for S and 7" is assumed.
Author(s)

Wim Van der Elst, Paul Meyvisch, Ariel Alonso & Geert Molenberghs

References

Alonso, A., Van der Elst, W., & Molenberghs, G. (2014). Validation of surrogate endpoints: the
binary-binary setting from a causal inference perspective.

Buyse, M., Burzykowski, T., Aloso, A., & Molenberghs, G. (2014). Direct estimation of joint
counterfactual probabilities, with application to surrogate marker validation.

See Also

ICA.ContCont, MICA.ContCont, ICA.BinBin, ICA.BinBin.Grid.Sample.Uncert
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Examples

# Compute R2_H given the marginals (sample from uniform),

# assuming no monotonicity

ICA_No2 <- ICA.BinBin.Grid.Sample.Uncert(pil_1_=runif (10000, 0.3562, 0.4868),
pi@_1_=runif (10000, 0.0240, ©.0837), pil_0_=runif(10000, 0.0240, 0.0837),
pi_1_1=runif (10000, 0.4434, 0.5742), pi_1_0=runif (10000, 0.0081, 0.0533),
pi_0_1=runif (10000, ©.0202, 0.0763), Seed=1, Monotonicity=c("No"), M=1000)

summary (ICA_No2)

# obtain plot of R2_H
plot(ICA_No2)

ICA.BinCont Assess surrogacy in the causal-inference single-trial setting in the
binary-continuous case

Description

The function ICA.BinCont quantifies surrogacy in the single-trial setting within the causal-inference
framework (individual causal association) when the surrogate endpoint is continuous (normally dis-
tributed) and the true endpoint is a binary outcome. For details, see Alonso Abad et al. (2022).

Usage

ICA.BinCont(Dataset, Surr, True, Treat,
G_pi_10=c(0,1),
G_rho_01_00=c(-1,1),
G_rho_01_01=c(-1,1),
G_rho_01_10=c(-1,1),
G_rho_01_11=c(-1,1),
Theta.S_0,
Theta.S_1,
M=1000, Seed=123,
Monotonicity=FALSE,
Independence=FALSE,
Plots=TRUE, Save.Plots="No", Show.Details=FALSE)

Arguments
Dataset A data. frame that should consist of one line per patient. Each line contains (at
least) a surrogate value, a true endpoint value, and a treatment indicator.
Surr The name of the variable in Dataset that contains the surrogate endpoint values.
True The name of the variable in Dataset that contains the true endpoint values.
Treat The name of the variable in Dataset that contains the treatment indicators. The

treatment indicator should be coded as 1 for the experimental group and —1 for
the control group.
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G_pi_10

G_rho_01_00

G_rho_01_01

G_rho_01_10

G_rho_01_11

Theta.S_0

Theta.S_1

M
Seed

Monotonicity

Independence

Plots

Save.Plots

Show.Details

Value

ICA.BinCont

The lower and upper limits of the uniform distribution from which the probabil-
ity parameter g is sampled. Default c(@,1). When Monotonicity=TRUE the
values of these limits are set as c(0,0).

The lower and upper limits of the uniform distribution from which the associa-
tion parameter pQ) is sampled. Default c(-1,1).

The lower and upper limits of the uniform distribution from which the associa-
tion parameter pJi is sampled. Default c(-1,1).

The lower and upper limits of the uniform distribution from which the associa-
tion parameter p) is sampled. Default c(-1,1).

The lower and upper limits of the uniform distribution from which the associa-
tion parameter p} is sampled. Default c(-1,1).

The starting values of the means and standard deviations for the mixture dis-
tribution of the surrogate endpoint in the control group. The argument should
contain eight values, where the first four values represent the starting values for
the means and the last four values represent the starting values for the standard
deviations. These starting values should be approximated based on the data on
hand. Example: Theta.S_0=c(-10,-5,5,10,10,10,10,10).

The starting values of the means and standard deviations for the mixture distri-
bution of the surrogate endpoint in the treatment group. The argument should
contain eight values, where the first four values represent the starting values for
the means and the last four values represent the starting values for the standard
deviations. These starting values should be approximated based on the data on
hand. Example: Theta.S_0=c(-10,-5,5,10,10,10,10,10).

The number of valid ICA values to be sampled. Default M=1000.
The random seed to be used in the analysis (for reproducibility). Default Seed=123.

Logical. If Monotonicity=TRUE, the analysis is performed assuming mono-
tonicity, i.e. P(17; <= Tp) = 0. Default Monotonicity=FALSE.

Logical. If Independence=TRUE, the analysis is performed assuming indepen-
dence between the treatment effect in both groups, i.e. m;; = m;. X 7 ;. Default
Independence=FALSE.

Logical. Should histograms of S (surrogate endpoint in control group) and S;
(surrogate endpoint in experimental treatment group) be provided together with
density of fitted mixtures? Default Plots=TRUE.

Should the plots (see previous item) be saved? If Save.Plots="No", no plots
are saved. If plots have to be saved, replace "No” by the desired location, e.g.,
Save.Plots="C:/". Default Save.Plots="No".

Should some details regarding the availability of some output from the function

be displayed in the console when the analysis is running? Setting Show.Details=TRUE

could be useful for debugging procedure (if any). Default Show.Details=FALSE.

An object of class ICA.BinCont with components,

R2_H

The vector of the R?; values.
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pi_0e
pi_01
pi_10
pi_11
G_rho_01_00
G_rho_01_01
G_rho_01_10
G_rho_01_11

pi_Delta_T_mini

pi_Delta_T_0
pi_Delta_T_1
pi_0_00
pi_0_01
pi_0_10
pi_0_11
mu_0_00
mu_0_01
mu_0_10
mu_0_11
sigma2_00_00
sigma2_00_01
sigma2_00_10
sigma2_00_11
pi_1_00
pi_1_01
pi_1_10
pi_1_11
mu_1_00
mu_1_01
mu_1_10
mu_1_11
sigma2_11_00
sigma2_11_01
sigma2_11_10
sigma2_11_11

mean_Y_S@

The vector of 7l values.
The vector of 7 values.
The vector of 7% values.
The vector of 7 values.
The vector of the p? values.
The vector of the p)i values.
The vector of the p{ values.

The vector of the pj} values.

The vector of the 721" values.

The vector of the 75" values.

The vector of the 7" values.

The vector of mgg values of f(.Sp).

The vector of my; values of f(Sp).

The vector of 71 values of f(Sp).

The vector of 717 values of f(.Sp).

The vector of mean 19" values of f(Sp).

The vector of mean pQ! values of f(Sp).

The vector of mean y}° values of f(Sp).
)

The vector of mean pj! values of f(Sp).

The vector of variance o) values of f(Sp).
S0)-

The vector of variance o} values of f

(So)
(So)
The vector of variance o) values of f(Sp)
(S0)
The vector of oo values of f(.S7).
The vector of 7y values of f(S7).
The vector of 71 values of f(S7).
The vector of 17 values of f(.S7).
The vector of mean z{Y values of f(S;
The vector of mean u{* values of f(S;
The vector of mean ;1Y values of f(S;

).
).
).
).

The vector of mean p1! values of f(S;

The vector of variance o9 values of f(S1).

(51)
The vector of variance o1 values of f(S1).
The vector of variance o1y values of f(S1).

(51)

The vector of variance o] values of f(St).

The vector of mean p values of f(.Sp).

So).

The vector of variance o3} values of f(Sp).

69
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mean_Y_S1 The vector of mean p values of f(S7).
var_Y_So The vector of variance oo values of f(Sp).
var_Y_S1 The vector of variance o1 values of f(S7).
dev_So The vector of deviance values of the normal mixture for f(Sp).
dev_S1 The vector of deviance values of the normal mixture for f(.S7).
mean. S0 The mean of Sy.
var.Se The variance of S.
mean.S1 The mean of S;.
var.S1 The variance of S .
Author(s)

Wim Van der Elst, Fenny Ong, Ariel Alonso, and Geert Molenberghs

References

Alonso Abad, A., Ong, F., Van der Elst, W., Molenberghs, G., Verbeke, G., & Callegaro, A. (2022).
Assessing a continuous outcome as a surrogate for a binary true endpoint based on causal inference
and information theory: An application to vaccine evaluation.

See Also

ICA.ContCont, MICA.ContCont, ICA.BinBin

Examples

## Not run: # Time consuming code part

data(Schizo)

Fit <- ICA.BinCont(Dataset = Schizo, Surr = BPRS, True = PANSS_Bin,
Theta.S_0=c(-10,-5,5,10,10,10,10,10), Theta.S_1=c(-10,-5,5,10,10,10,10,10),
Treat=Treat, M=50, Seed=1)

summary (Fit)
plot(Fit)

## End(Not run)

ICA.ContCont Assess surrogacy in the causal-inference single-trial setting (Individ-
ual Causal Association, ICA) in the Continuous-continuous case

Description

The function ICA.ContCont quantifies surrogacy in the single-trial causal-inference framework.
See Details below.
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Usage

ICA.ContCont(T@SO, T1S1, TOTO=1, T1T1=1, S@S0=1, S1S1=1, TOT1=seq(-1, 1, by=.1),
ToS1=seq(-1, 1, by=.1), T1S0=seq(-1, 1, by=.1), S@Si=seq(-1, 1, by=.1))

Arguments

T0S0 A scalar or vector that specifies the correlation(s) between the surrogate and the
true endpoint in the control treatment condition that should be considered in the
computation of pa.

T1S1 A scalar or vector that specifies the correlation(s) between the surrogate and the
true endpoint in the experimental treatment condition that should be considered
in the computation of pa .

ToTO A scalar that specifies the variance of the true endpoint in the control treatment
condition that should be considered in the computation of pa. Default 1.

TIm A scalar that specifies the variance of the true endpoint in the experimental treat-
ment condition that should be considered in the computation of pa. Default 1.

S0S0 A scalar that specifies the variance of the surrogate endpoint in the control treat-
ment condition that should be considered in the computation of pa. Default
1.

S181 A scalar that specifies the variance of the surrogate endpoint in the experimental
treatment condition that should be considered in the computation of pa. Default
1.

TOT1 A scalar or vector that contains the correlation(s) between the counterfactuals TO
and T1 that should be considered in the computation of pa. Default seq(-1, 1,
by=.1), i.e., the values —1, —0.9, —0.8, ..., 1.

TOS1 A scalar or vector that contains the correlation(s) between the counterfactuals
TO and S1 that should be considered in the computation of pa. Default seq(-1,
1, by=.1).

T1S0 A scalar or vector that contains the correlation(s) between the counterfactuals
T1 and SO that should be considered in the computation of pa. Default seq(-1,
1, by=.1).

S0S1 A scalar or vector that contains the correlation(s) between the counterfactuals

S0 and S1 that should be considered in the computation of pa. Default seq(-1,
1, by=.1).

Details

Based on the causal-inference framework, it is assumed that each subject j has four counterfactuals
(or potential outcomes), i.e., To;, 115, So;, and S1;. Let Tp; and T7; denote the counterfactuals
for the true endpoint (7') under the control (Z = 0) and the experimental (Z = 1) treatments
of subject j, respectively. Similarly, So; and S1; denote the corresponding counterfactuals for the
surrogate endpoint (.S) under the control and experimental treatments, respectively. The individual
causal effects of Z on T" and S for a given subject j are then defined as Ay, = Ti; — Tp; and
Ag, = S1; — Soj, respectively.

In the single-trial causal-inference framework, surrogacy can be quantified as the correlation be-
tween the individual causal effects of Z on S and T (for details, see Alonso et al., submitted):



72 ICA.ContCont

V050500 ToToPSoTo T 1/T5151 0TI T1 PSi Ty — /05050 OT1T1 PSoT1 — /O S51510ToToPS:To
pA:p(ATjaASj): ,

\/(UTOTD +onT — 2\/ UTOTOUTlTlpTOTl)(USOSO + 05,8 — 2\/ 0505005151/)5051)

where the correlations ps,r,, ps,1,> PT,Ty» and ps,s, are not estimable. It is thus warranted to
conduct a sensitivity analysis (by considering vectors of possible values for the correlations between
the counterfactuals — rather than point estimates).

When the user specifies a vector of values that should be considered for one or more of the coun-
terfactual correlations in the above expression, the function ICA.ContCont constructs all possible
matrices that can be formed as based on these values, identifies the matrices that are positive definite
(i.e., valid correlation matrices), and computes pa for each of these matrices. The obtained vector
of pa values can subsequently be used to examine (i) the impact of different assumptions regard-
ing the correlations between the counterfactuals on the results (see also plot Causal-Inference
ContCont), and (ii) the extent to which proponents of the causal-inference and meta-analytic frame-
works will reach the same conclusion with respect to the appropriateness of the candidate surrogate
at hand.

The function ICA.ContCont also generates output that is useful to examine the plausibility of find-
ing a good surrogate endpoint (see GoodSurr in the Value section below). For details, see Alonso
et al. (submitted).

Notes

A single pa value is obtained when all correlations in the function call are scalars.

Value
An object of class ICA.ContCont with components,

Total.Num.Matrices
An object of class numeric that contains the total number of matrices that can
be formed as based on the user-specified correlations in the function call.

Pos.Def A data.frame that contains the positive definite matrices that can be formed
based on the user-specified correlations. These matrices are used to compute the
vector of the pa values.

ICA A scalar or vector that contains the individual causal association (ICA; pa)
value(s).
GoodSurr A data. frame that contains the ICA (pa), oA, and 6.
Author(s)

Wim Van der Elst, Ariel Alonso, & Geert Molenberghs

References

Alonso, A., Van der Elst, W., Molenberghs, G., Buyse, M., & Burzykowski, T. (submitted). On
the relationship between the causal-inference and meta-analytic paradigms for the validation of
surrogate markers.
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See Also

MICA.ContCont, ICA.Sample.ContCont, Single.Trial .RE.AA, plot Causal-Inference ContCont

Examples

## Not run: #time-consuming code parts

# Generate the vector of ICA.ContCont values when rho_T@S@=rho_T151=.95,

# sigma_T0OT0=90, sigma_T1T1=100,sigma_ SO@S0=10, sigma_S1S1=15, and

# the grid of values {0, .2, ..., 1} is considered for the correlations

# between the counterfactuals:

SurICA <- ICA.ContCont(T@S@=.95, T1S1=.95, TOTQ=90, T1T1=100, S0S0=10, S1S1=15,
TOT1=seq(@, 1, by=.2), TOS1=seq(@, 1, by=.2), T1S0=seq(@, 1, by=.2),
S0S1=seq(@, 1, by=.2))

# Examine and plot the vector of generated ICA values:
summary (SurICA)
plot(SurICA)

# Obtain the positive definite matrices than can be formed as based on the
# specified (vectors) of the correlations (these matrices are used to

# compute the ICA values)

SurICA$Pos.Def

# Same, but specify vectors for rho_T@S@ and rho_T1S1: Sample from
# normal with mean .95 and SD=.05 (to account for uncertainty

# in estimation)

SurICA2 <- ICA.ContCont(T0S@=rnorm(n=10000000, mean=.95, sd=.05),
T1S1=rnorm(n=10000000, mean=.95, sd=.05),

TOTO=90, T1T1=100, SO@S0=10, S1S1=15,

TOT1=seq(@, 1, by=.2), TOS1=seq(@, 1, by=.2), T1S0=seq(@, 1, by=.2),
S0S1=seq(@, 1, by=.2))

# Examine results
summary (SurICA2)
plot(SurICA2)

## End(Not run)

ICA.ContCont.MultS Assess surrogacy in the causal-inference single-trial setting (Individ-
ual Causal Association, ICA) using a continuous univariate T and
multiple continuous S

Description

The function ICA.ContCont.MultS quantifies surrogacy in the single-trial causal-inference frame-
work where T is continuous and there are multiple continuous S.
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Usage

ICA.ContCont.MultS(M = 500, N, Sigma,
G = seq(from=-1, to=1, by = .00001),
Seed=c(123), Show.Progress=FALSE)

Arguments

M The number of multivariate ICA values (R%) that should be sampled. Default
M=500.

N The sample size of the dataset.

Sigma A matrix that specifies the variance-covariance matrix between Ty, 11, Sio,
S11, S99, S921, ..., Sko, and Si1 (in this order, the T; and 77 data should be
in Sigmalc(1,2), c(1,2)], the S1g and S7; data should be in Sigma[c(3,4),
c(3,4)1, and so on). The unidentifiable covariances should be defined as NA
(see example below).

G A vector of the values that should be considered for the unidentified correlations.
Default G=seq(-1, 1, by=.00001), i.e., values with range —1 to 1.

Seed The seed that is used. Default Seed=123.

Show.Progress  Should progress of runs be graphically shown? (i.e., 1% done..., 2% done...,
etc). Mainly useful when a large number of S have to be considered (to follow
progress and estimate total run time).

Details

The multivariate ICA (R%,) is not identifiable because the individual causal treatment effects on 7T,
S1, ..., Sk cannot be observed. A simulation-based sensitivity analysis is therefore conducted in
which the multivariate ICA (R%I) is estimated across a set of plausible values for the unidentifiable
correlations. To this end, consider the variance covariance matrix of the potential outcomes 3 (0
and 1 subscripts refer to the control and experimental treatments, respectively):

OTo Ty

OToT OT\Ty

O0TyS1lg O0T1S1y 98S10S1o

0TyS1;, 01,81, 0S13581;, 051,51,

3= 0TyS20 O0Ty1820 0810520 0S11529 052052

0Ty821 O0T1827 08105217 081,52, 082,82, 082,52

OTySko OT1Sko O0S19Sko 0S11Sko 0S520Sko 09S521Sko <o OSkoSko
JTQSkl JTlskl JSloSkl UShSkl USQQSkl 0—521.9]61 JSkQSkl USkISky

The ICA.ContCont.MultS function requires the user to specify a distribution GG for the uniden-
tified correlations. Next, the identifiable correlations are fixed at their estimated values and the
unidentifiable correlations are independently and randomly sampled from G. In the function call,
the unidentifiable correlations are marked by specifying NA in the Sigma matrix (see example sec-
tion below). The algorithm generates a large number of ’completed’ matrices, and only those that
are positive definite are retained (the number of positive definite matrices that should be obtained is
specified by the M= argument in the function call). Based on the identifiable variances, these positive
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definite correlation matrices are converted to covariance matrices 3 and the multiple-surrogate ICA
are estimated.

An issue with this approach (i.e., substituting unidentified correlations by random and independent
samples from G) is that the probability of obtaining a positive definite matrix is very low when the
dimensionality of the matrix increases. One approach to increase the efficiency of the algorithm is
to build-up the correlation matrix in a gradual way. In particular, the property that a (k x k) matrix
is positive definite if and only if all principal minors are positive (i.e., Sylvester’s criterion) can be
used. In other words, a (k x k) matrix is positive definite when the determinants of the upper-left
(2 x2), (3%x3), ..., (kx k) submatrices all have a positive determinant. Thus, when a positive
definite (k x k) matrix has to be generated, one can start with the upper-left (2 x 2) submatrix and
randomly sample a value from the unidentified correlation (here: pr,7,) from G. When the deter-
minant is positive (which will always be the case for a (2 x 2) matrix), the same procedure is used
for the upper-left (3 x 3) submatrix, and so on. When a particular draw from G for a particular
submatrix does not give a positive determinant, new values are sampled for the unidentified correla-
tions until a positive determinant is obtained. In this way, it can be guaranteed that the final (k x k)
submatrix will be positive definite. The latter approach is used in the current function. This proce-
dure is used to generate many positive definite matrices. Based on these matrices, 3 A is generated
and the multivariate ICA (R%[) is computed (for details, see Van der Elst et al., 2017).

Value

An object of class ICA.ContCont.MultS with components,

R2_H The multiple-surrogate individual causal association value(s).

Corr.R2_H The corrected multiple-surrogate individual causal association value(s).
Lower.Dig.Corrs.All
A data. frame that contains the matrix that contains the identifiable and uniden-

tifiable correlations (lower diagonal elements) that were used to compute (R%)
in the run.

Author(s)
Wim Van der Elst, Ariel Alonso, & Geert Molenberghs

References
Van der Elst, W., Alonso, A. A., & Molenberghs, G. (2017). Univariate versus multivariate surro-
gate endpoints.

See Also

MICA.ContCont, ICA.ContCont, Single.Trial .RE.AA, plot Causal-Inference ContCont, ICA.ContCont.MultS_alt

Examples

## Not run: #time-consuming code parts
# Specify matrix Sigma (var-cavar matrix T_0, T_1, S1_0, S1_1, ...)
# here for 1 true endpoint and 3 surrogates

s<-matrix(rep(NA, times=64),8)
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s[1,1] <- 450; s[2,2] <- 413.5; s[3,3] <- 174.2; s[4,4] <- 157.5;
s[5,5] <- 244.0; s[6,6] <- 229.99; s[7,7] <- 294.2; s[8,8] <- 302.5
s[3,1] <- 160.8; s[5,1] <- 208.5; s[7,1] <- 268.4

s[4,2] <- 124.6; s[6,2] <- 212.3; s[8,2] <- 287.1

s[5,3] <- 160.3; s[7,3] <- 142.8

s[6,4] <- 134.3; s[8,4] <- 130.4

s[7,5] <- 209.3;

s[8,6] <- 214.7

sfupper.tri(s)] = t(s)[upper.tri(s)]

# Marix looks like (NA indicates unidentified covariances):

# T T_.1 S1.0 S1.1 S2.0 S2.1 S2.0 S2_1
# (.11 [,21 ,31 [,41 [,51 [,61 [,71 [,8]
#T0 [1,] 450.0  NA 160.8  NA 208.5 NA 268.4  NA
#T_1 [2,] NA413.5  NA 124.6  NA 212.30  NA 287.1
# S1_0 [3,] 160.8  NA 174.2  NA 160.3 NA 142.8  NA
# 511 [4,] NA124.6  NA 157.5  NA 134.30  NA 130.4
#52_0 [5,] 208.5  NA 160.3  NA 244.0 NA 209.3  NA
#S2.1[6,] NA212.3  NA 134.3  NA 229.99  NA 214.7
# S3_0 [7,] 268.4  NA 142.8  NA 209.3 NA 294.2  NA
# 53_1 [8,1  NA 287.1 NA 130.4  NA 214.70  NA 302.5

# Conduct analysis
ICA <- ICA.ContCont.MultS(M=100, N=200, Show.Progress = TRUE,
Sigma=s, G = seq(from=-1, to=1, by = .00001), Seed=c(123))

# Explore results
summary (ICA)
plot(ICA)

## End(Not run)

ICA.ContCont.MultS.MPC
Assess surrogacy in the causal-inference single-trial setting (Individ-
ual Causal Association, ICA) using a continuous univariate T and
multiple continuous S, by simulating correlation matrices using a
modified algorithm based on partial correlations

Description

The function ICA.ContCont.MultS.MPC quantifies surragacy in the single-trial causal-inference
framework in which the true endpoint (T) and multiple surrogates (S) are continuous. This function
is a modification of the ICA.ContCont.MultS.PC algorithm based on partial correlations. it miti-
gates the effect of non-informative surrogates and effectively explores the PD space to capture the
ICA range (Florez, et al. 2021).

Usage

ICA.ContCont.MultS.MPC(M=1000,N,Sigma,prob = NULL,Seed=123,
Save.Corr=F, Show.Progress=FALSE)
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Arguments

M

Sigma

prob

Save.Corr

Seed

Show.Progress

Details

The number of multivariate ICA values (R%I) that should be sampled. Default
M=1000.

The sample size of the dataset.

A matrix that specifies the variance-covariance matrix between Ty, 11, Sio,
S11, S99, S921, ..., Sko, and Siq (in this order, the T; and 77 data should be
in Sigmalc(1,2), c(1,2)], the S1g and S7; data should be in Sigma[c(3,4),
c(3,4)1, and so on). The unidentifiable covariances should be defined as NA
(see example below).

vector of probabilities to choose the number of surrogates (r) with their non-
identifiable correlations equal to zero. The default (prob=NULL) vector of prob-
abilities is:
()
T

=1 (9)
In this way, each possible combination of $r$ surrogates has the same probability
of being selected.

T, = , forr=0,...,p.

If true, the lower diagonal elements of the correlation matrix (identifiable and
unidientifiable elements) are stored. If false, these results are not saved.

The seed that is used. Default Seed=123.

Should progress of runs be graphically shown? (i.e., 1% done..., 2% done...,
etc). Mainly useful when a large number of S have to be considered (to follow
progress and estimate total run time).

The multivariate ICA (R%,) is not identifiable because the individual causal treatment effects on 7',
S1, ..., Sk cannot be observed. A simulation-based sensitivity analysis is therefore conducted in
which the multivariate ICA (R%,) is estimated across a set of plausible values for the unidentifiable
correlations. To this end, consider the variance covariance matrix of the potential outcomes X (0
and 1 subscripts refer to the control and experimental treatments, respectively):

OToTo
0Ty T,
0TyS1o
0TyS1,
> = 0Ty 520
0Ty52

UTOSkO
UTO Ski

0T\ T,

01,581y 081951,

0181, 0810581, 081,51,

011520 0810520 08511820 0520529

UT1$21 US10521 US11521 0520321 0521321

UTlsko USIQS}C[} UShSko US’2OSkO US21Sk0 Uskosko
OTySkw  0S10Ski 0S11Ski  08S20Ski  082,Sk: - OSkoSky OSkySki-

The identifiable correlations are fixed at their estimated values and the unidentifiable correlations
are independently and randomly sampled using a modification of an algorithm based on partial
correlations (PC), called modified partial correlation (MPC) algorithm. In the function call, the
unidentifiable correlations are marked by specifying NA in the Sigma matrix (see example section

below).



78 ICA.ContCont. MultS.MPC

The PC algorithm generate each correlation matrix progressively based on parameterization of terms
of the correlations p; ;11, for i = 1,...,d — 1, and the partial correlations p; jit1,....;—1, for
j — 1 > 2 (for details, see Joe, 2006 and Florez et al., 2018). The MPC algorithm randomly fixed
some of the unidentifiable correlations to zero in order to explore the PD, which is coherent with
the estimable entries of the correlation matrix, to capture the ICA range more efficiently.

Based on the identifiable variances, these correlation matrices are converted to covariance matrices
3} and the multiple-surrogate ICA are estimated (for details, see Van der Elst et al., 2017).

This approach to simulate the unidentifiable parameters of 3 is computationally more efficient than
the one used in the function ICA.ContCont.MultsS.

Value

An object of class ICA.ContCont.MultS.PC with components,

R2_H The multiple-surrogate individual causal association value(s).

Corr.R2_H The corrected multiple-surrogate individual causal association value(s).

Lower.Dig.Corrs.All
A data. frame that contains the matrix that contains the identifiable and uniden-
tifiable correlations (lower diagonal elements) that were used to compute (R%I)
in the run.

surr.eval.r Matrix indicating the surrogates of which their unidentifiable correlations are
fixed to zero in each simulation.

Author(s)

Wim Van der Elst, Ariel Alonso, Geert Molenberghs & Alvaro Florez

References

Florez, A., Molenberghs, G., Van der Elst, W., Alonso, A. A. (2021). An efficient algorithm for
causally assessing surrogacy in a multivariate setting.

Florez, A., Alonso, A. A., Molenberghs, G. & Van der Elst, W. (2020). Generating random correla-
tion matrices with fixed values: An application to the evaluation of multivariate surrogate endpoints.
Computational Statistics & Data Analysis 142.

Joe, H. (2006). Generating random correlation matrices based on partial correlations. Journal of
Multivariate Analysis, 97(10):2177-2189.

Van der Elst, W., Alonso, A. A., & Molenberghs, G. (2017). Univariate versus multivariate surro-
gate endpoints.

See Also

MICA.ContCont, ICA.ContCont, Single.Trial.RE.AA, plot Causal-Inference ContCont, ICA.ContCont.MultsS,
ICA.ContCont.MultS_alt
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Examples

## Not run:
# Specify matrix Sigma (var-cavar matrix T_0, T_1, S1_0, S1_1, ...)
# here we have 1 true endpoint and 10 surrogates (8 of these are non-informative)

Sigma = ks::invvech(

c(25, NA, 17.8, NA, -10.6, NA, @, NA, @, NA, @, NA, @, NA, @, NA, @, NA, @, NA, 0, NA,
4, NA, -0.32, NA, -1.32, NA, @, NA, @, NA, @, NA, @, NA, @, NA, @, NA, @, NA, 0, 16,
NA, -4, NA, 0, NA, @, NA, @, NA, @, NA, @, NA, @, NA, @, NA, @, NA, 1, NA, 0.48, NA,
0, NA, @, NA, @, NA, @, NA, @, NA, @, NA, ©, NA, @, 16, NA, @, NA, @, NA, 0, NA, 0,
NA, @, NA, @, NA, @, NA, @, NA, 1, NA, @, NA, @, NA, @, NA, @, NA, @, NA, @, NA, 0,
NA, @, 16, NA, 8, NA, 8, NA, 8, NA, 8, NA, 8, NA, 8, NA, 8, NA, 1, NA, 9.5, NA, 0.5,
NA, 0.5, NA, 0.5, NA, 0.5, NA, 0.5, NA, 0.5, 16, NA, 8, NA, 8, NA, 8, NA, 8, NA, 8,
NA, 8, NA, 1, NA, 9.5, NA, 0.5, NA, 0.5, NA, 0.5, NA, 0.5, NA, 0.5, 16, NA, 8, NA,
8, NA, 8, NA, 8, NA, 8, NA, 1,NA,0.5,NA,0.5,NA,0.5,NA,0.5,NA,0.5, 16, NA, 8, NA, 8,
NA, 8, NA, 8, NA, 1, NA, 0.5, NA, 0.5, NA, 0.5, NA, 0.5, 16, NA, 8, NA, 8, NA, 8, NA,
1, NA, 0.5, NA, 0.5, NA, 0.5, 16, NA, 8, NA, 8, NA, 1, NA, 0.5, NA, 0.5, 16, NA, 8, NA,
1, NA, 0.5, 16, NA, 1))

# Conduct analysis using the PC and MPC algorithm

## first evaluating two surrogates

ICA.PC.2 = ICA.ContCont.MultS.PC(M = 30000, N=200, Sigmal[1:6,1:6], Seed = 123)
ICA.MPC.2 = ICA.ContCont.MultS.MPC(M = 30000, N=200, Sigma[1:6,1:6],prob=NULL,
Seed = 123, Save.Corr=T, Show.Progress = TRUE)

## later evaluating two surrogates

ICA.PC.10 = ICA.ContCont.MultS.PC(M = 150000, N=200, Sigma, Seed = 123)
ICA.MPC.10 = ICA.ContCont.MultS.MPC(M = 150000, N=200@, Sigma,prob=NULL,
Seed = 123, Save.Corr=T, Show.Progress = TRUE)

# Explore results
range (ICA.PC.2%R2_H)
range(ICA.PC.10$R2_H)

range (ICA.MPC.2$R2_H)
range (ICA.MPC.10%$R2_H)
## as we observe, the MPC algorithm displays a wider interval of possible values for the ICA

## End(Not run)

ICA.ContCont.MultS.PC Assess surrogacy in the causal-inference single-trial setting (Individ-
ual Causal Association, ICA) using a continuous univariate T and
multiple continuous S, by simulating correlation matrices using an al-
gorithm based on partial correlations

Description

The function ICA.ContCont.MultS quantifies surrogacy in the single-trial causal-inference frame-
work where T is continuous and there are multiple continuous S. This function provides an alterna-
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tive for ICA.ContCont.Mults.

Usage
ICA.ContCont.MultS.PC(M=1000,N,Sigma,Seed=123,Show.Progress=FALSE)

Arguments
M The number of multivariate ICA values (R%,) that should be sampled. Default
M=1000.
N The sample size of the dataset.
Sigma A matrix that specifies the variance-covariance matrix between Tg, 11, Sio,

S11, S99, 591, ..., Sko, and Sy (in this order, the Tj and 77 data should be
in Sigmalc(1,2), c(1,2)], the S1g and S;; data should be in Sigmal[c(3,4),
c(3,4)1, and so on). The unidentifiable covariances should be defined as NA
(see example below).

Seed The seed that is used. Default Seed=123.

Show.Progress  Should progress of runs be graphically shown? (i.e., 1% done..., 2% done...,
etc). Mainly useful when a large number of S have to be considered (to follow
progress and estimate total run time).

Details

The multivariate ICA (R?H) is not identifiable because the individual causal treatment effects on 7',
S1, ..., Sk cannot be observed. A simulation-based sensitivity analysis is therefore conducted in
which the multivariate ICA (R%) is estimated across a set of plausible values for the unidentifiable
correlations. To this end, consider the variance covariance matrix of the potential outcomes 32 (0
and 1 subscripts refer to the control and experimental treatments, respectively):

OToTo

OToT) O\ T,

O0TyS1y O0T1S1, 0OS1¢S1g

0TyS11  O0TyS1; 0813811 081181,

3= 0TyS20 O0T1S20 0810520 0811529 0520529

0TyS2; 0TS82, 0810521 081,82, 082,82, 052,52,

UTQSIC() JTlskg JSIOSkU UShSk:O USQQSko US2lsko O-Sk‘gsk‘()
OToSk1 OT1Ski  O0S1oSki  O0S1:1Ski  0S20Sk1  052:Sky - OSkoSk:s OSkyiSk:-

The identifiable correlations are fixed at their estimated values and the unidentifiable correlations
are independently and randomly sampled using an algorithm based on partial correlations (PC). In
the function call, the unidentifiable correlations are marked by specifying NA in the Sigma matrix
(see example section below). The PC algorithm generate each correlation matrix progressively
based on parameterization of terms of the correlations p; ;41, fori = 1,...,d — 1, and the partial
correlations p; jj;y1,....j—1, for j — i > 2 (for details, see Joe, 2006 and Florez et al., 2018). Based
on the identifiable variances, these correlation matrices are converted to covariance matrices > and
the multiple-surrogate ICA are estimated (for details, see Van der Elst et al., 2017).

This approach to simulate the unidentifiable parameters of 3 is computationally more efficient than
the one used in the function ICA.ContCont.MultS.
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Value
An object of class ICA.ContCont.MultS.PC with components,

R2_H The multiple-surrogate individual causal association value(s).

Corr.R2_H The corrected multiple-surrogate individual causal association value(s).
Lower.Dig.Corrs.All
A data. frame that contains the matrix that contains the identifiable and uniden-
tifiable correlations (lower diagonal elements) that were used to compute (qu)
in the run.

Author(s)

Alvaro Florez

References

Florez, A., Alonso, A. A., Molenberghs, G. & Van der Elst, W. (2018). Simulation of random corre-
lation matrices with fixed values: comparison of algorithms and application on multiple surrogates
assessment.

Joe, H. (2006). Generating random correlation matrices based on partial correlations. Journal of
Multivariate Analysis, 97(10):2177-2189.

Van der Elst, W., Alonso, A. A., & Molenberghs, G. (2017). Univariate versus multivariate surro-
gate endpoints.

See Also

MICA.ContCont, ICA.ContCont, Single.Trial.RE.AA, plot Causal-Inference ContCont, ICA.ContCont.Mults,
ICA.ContCont.MultS_alt

Examples

## Not run:
# Specify matrix Sigma (var-cavar matrix T_@, T_1, S1_@, S1_1, ...)
# here for 1 true endpoint and 3 surrogates

s<-matrix(rep(NA, times=64),8)
s[1,1] <- 450; s[2,2] <- 413.5; s[3,3] <- 174.2; s[4,4] <- 157.5;

s[5,5] <- 244.0; s[6,6] <- 229.99; s[7,7] <- 294.2; s[8,8] <- 302.5
s[3,1] <- 160.8; s[5,1] <- 208.5; s[7,1] <- 268.4

s[4,2] <- 124.6; s[6,2] <- 212.3; s[8,2] <- 287.1

s[5,3] <- 160.3; s[7,3] <- 142.8

s[6,4] <- 134.3; s[8,4] <- 130.4

s[7,5] <- 209.3:

s[8,6] <- 214.7
sfupper.tri(s)] = t(s)[upper.tri(s)]

# Marix looks like (NA indicates unidentified covariances):

# T_0 T_1 S1_0 S1_1 S2_0 S2_1 S2_0 S2_1
# [,11 [,21 [,31 [,4]1 I[,5] [,61 [,7]1 [,8]
#T7_0 [1,]1 450.0 NA 160.8 NA 208.5 NA 268.4 NA
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#T_1 [2,] NA 413.5 NA 124.6 NA 212.30 NA 287.1
S1_0 [3,] 160.8 NA 174.2 NA 160.3 NA 142.8 NA
S1_.1 [4,] NA 124.6 NA 157.5 NA 134.30 NA 130.4
S2_0 [5,] 208.5 NA 160.3 NA 244.0 NA 209.3 NA
s2_1 [6,] NA 212.3 NA 134.3 NA 229.99 NA 214.7
S3_0 [7,] 268.4 NA 142.8 NA 209.3 NA 294.2 NA
S3_1 [8,] NA 287.1 NA 130.4 NA 214.70 NA 302.5

% o H W

# Conduct analysis
ICA <- ICA.ContCont.MultS.PC(M=1000, N=200, Show.Progress = TRUE,
Sigma=s, Seed=c(123))

# Explore results
summary (ICA)
plot(ICA)

## End(Not run)

ICA.ContCont.MultS_alt
Assess surrogacy in the causal-inference single-trial setting (Individ-
ual Causal Association, ICA) using a continuous univariate T and
multiple continuous S, alternative approach

Description

The function ICA.ContCont.MultS_alt quantifies surrogacy in the single-trial causal-inference
framework where T is continuous and there are multiple continuous S. This function provides an
alternative for ICA.ContCont.MultS.

Usage

ICA.ContCont.MultS_alt(M = 500, N, Sigma,

G = seq(from=-1, to=1, by = .00001),

Seed=c(123), Model = "Delta_T ~ Delta_S1 + Delta_S2",
Show.Progress=FALSE)

Arguments

M The number of multivariate ICA values (R%,) that should be sampled. Default
M=500.

N The sample size of the dataset.

Sigma A matrix that specifies the variance-covariance matrix between Ty, 11, S19, S11,
S50, 521, ..., Sko, and Si1. The unidentifiable covariances should be defined as
NA (see example below).

G A vector of the values that should be considered for the unidentified correlations.

Default G=seq(-1, 1, by=.00001), i.e., values with range —1 to 1.
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Seed The seed that is used. Default Seed=123.

Model The multivariate ICA (R%) is essentially the coefficient of determination of a
regression model in which AT is regressed on AS;, ASs, ... and so on. The
Model= argument specifies the regression model to be used in the analysis. For
example, for 2 surrogates, Model = "Delta_T ~ Delta_S1 + Delta_S2").

Show.Progress  Should progress of runs be graphically shown? (i.e., 1% done..., 2% done...,
etc). Mainly useful when a large number of S have to be considered (to follow
progress and estimate total run time).

Details

The multivariate ICA (R%,) is not identifiable because the individual causal treatment effects on 7',
S1, ..., Sk cannot be observed. A simulation-based sensitivity analysis is therefore conducted in
which the multivariate ICA (R%) is estimated across a set of plausible values for the unidentifiable
correlations. To this end, consider the variance covariance matrix of the potential outcomes 3 (0
and 1 subscripts refer to the control and experimental treatments, respectively):

OTo Ty

OToT O\ T,

0TyS1o O0TyS1y 0S13S1g

0TyS1;, 01181, 0S13581; 051,51,

3 = 0TyS20 O0T1820 0810520 0811529 0520529

0TyS821 O0T1827 0810527 081,52, 082,82, 082,52

0Ty Sko OT1Sko O0S19Sko 0S11Sko 08520Sko 0S521Sko -« OSkoSko
UTQSkl JTlskl JSIQSkl JShSkl O-SQUSkl 0'521.91@1 JSkgS’kl US’kIS’kl'

The ICA.ContCont.MultS_alt function requires the user to specify a distribution G for the uniden-
tified correlations. Next, the identifiable correlations are fixed at their estimated values and the
unidentifiable correlations are independently and randomly sampled from G. In the function call,
the unidentifiable correlations are marked by specifying NA in the Sigma matrix (see example sec-
tion below). The algorithm generates a large number of ’completed’ matrices, and only those that
are positive definite are retained (the number of positive definite matrices that should be obtained is
specified by the M= argument in the function call). Based on the identifiable variances, these positive
definite correlation matrices are converted to covariance matrices 3 and the multiple-surrogate ICA
are estimated.

An issue with this approach (i.e., substituting unidentified correlations by random and independent
samples from G) is that the probability of obtaining a positive definite matrix is very low when the
dimensionality of the matrix increases. One approach to increase the efficiency of the algorithm
is to build-up the correlation matrix in a gradual way. In particular, the property that a (k x k)
matrix is positive definite if and only if all principal minors are positive (i.e., Sylvester’s criterion)
can be used. In other words, a (k x k) matrix is positive definite when the determinants of the
upper-left (2 x 2), (3 x 3), ..., (k x k) submatrices all have a positive determinant. Thus, when
a positive definite (k x k) matrix has to be generated, one can start with the upper-left (2 x 2)
submatrix and randomly sample a value from the unidentified correlation (here: pr,7;,) from G.
When the determinant is positive (which will always be the case for a (2 x 2) matrix), the same
procedure is used for the upper-left (3 x 3) submatrix, and so on. When a particular draw from
G for a particular submatrix does not give a positive determinant, new values are sampled for the
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unidentified correlations until a positive determinant is obtained. In this way, it can be guaranteed
that the final (k x k) submatrix will be positive definite. The latter approach is used in the current
function. This procedure is used to generate many positive definite matrices. These positive definite
matrices are used to generate M datasets which contain AT, AS;, ASs, ..., ASk. Finally, the
multivariate ICA (R%) is estimated by regressing AT on AS;, ASs, ..., AS) and computing the
multiple coefficient of determination.

Value
An object of class ICA.ContCont.MultS_alt with components,

R2_H The multiple-surrogate individual causal association value(s).

Corr.R2_H The corrected multiple-surrogate individual causal association value(s).
Res_Err_Delta_T
The residual errors (prediction errors) for intercept-only models of AT (i.e.,
models that do not include AS7, AS,, etc as predictors).
Res_Err_Delta_T_Given_S
The residual errors (prediction errors) for models where AT is regressed on
ASl, ASQ, etc.
Lower.Dig.Corrs.All
A data. frame that contains the matrix that contains the identifiable and uniden-
tifiable correlations (lower diagonal elements) that were used to compute (R%)
in the run.

Author(s)
Wim Van der Elst, Ariel Alonso, & Geert Molenberghs

References

Van der Elst, W., Alonso, A. A., & Molenberghs, G. (2017). Univariate versus multivariate surro-
gate endpoints.

See Also

MICA.ContCont, ICA.ContCont, Single.Trial.RE.AA, plot Causal-Inference ContCont

Examples

## Not run: #time-consuming code parts
# Specify matrix Sigma (var-cavar matrix T_0, T_1, S1_0, S1_1, ...)
# here for 1 true endpoint and 3 surrogates

s<-matrix(rep(NA, times=64),8)

s[1,1] <- 450; s[2,2] <- 413.5; s[3,3] <- 174.2; s[4,4] <- 157.5;
s[5,5] <- 244.0; s[6,6] <- 229.99; s[7,7] <- 294.2; s[8,8] <- 302.5
s[3,1] <- 160.8; s[5,1] <- 208.5; s[7,1] <- 268.4

s[4,2] <- 124.6; s[6,2] <- 212.3; s[8,2] <- 287.1

s[5,3] <- 160.3; s[7,3] <- 142.8

s[6,4] <- 134.3; s[8,4] <- 130.4
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s[7,5] <- 209.3;
s[8,6] <- 214.7
sfupper.tri(s)] = t(s)[upper.tri(s)]

# Marix looks like (NA indicates unidentified covariances):

# T T_.1 S1.0 S1.1 S2.0 S2_.1 S2.0 S2_1
# .11 [,21 ,31 [,41 [,51 [,61 [,71 [,8]
#T0 [1,] 450.0  NA 160.8  NA 208.5 NA 268.4  NA
#T_1 [2,] NA413.5  NA 124.6  NA 212.30  NA 287.1
# S1.0 [3,] 160.8  NA 174.2  NA 160.3 NA 142.8  NA
#S1_1[4,] NA124.6  NA 157.5  NA 134.30  NA 130.4
#52_0 [5,] 208.5  NA 160.3  NA 244.0 NA 209.3  NA
# 521 [6,] NA212.3  NA 134.3  NA 229.99  NA 214.7
# S3_0 [7,] 268.4  NA 142.8  NA 209.3 NA 294.2  NA
# 53_1 [8,1  NA 287.1 NA 130.4  NA 214.70  NA 302.5

# Conduct analysis

ICA <- ICA.ContCont.MultS_alt(M=100, N=200, Show.Progress = TRUE,
Sigma=s, G = seq(from=-1, to=1, by = .00001), Seed=c(123),
Model = "Delta_T ~ Delta_S1 + Delta_S2 + Delta_S3")

# Explore results
summary (ICA)
plot(ICA)

## End(Not run)

ICA.Sample.ContCont Assess surrogacy in the causal-inference single-trial setting (Individ-
ual Causal Association, ICA) in the Continuous-continuous case using
the grid-based sample approach

Description
The function ICA. Sample.ContCont quantifies surrogacy in the single-trial causal-inference frame-
work. It provides a faster alternative for ICA.ContCont. See Details below.

Usage

ICA.Sample.ContCont(T0S@, T1S1, TOTO=1, T1T1=1, SS0=1, S1S1=1, T@T1=seq(-1, 1, by=.001),
TeS1=seq(-1, 1, by=.001), T1S0=seq(-1, 1, by=.001), S@S1=seq(-1, 1, by=.001), M=50000)

Arguments
TS0 A scalar or vector that specifies the correlation(s) between the surrogate and the
true endpoint in the control treatment condition that should be considered in the
computation of pa.
T1s1 A scalar or vector that specifies the correlation(s) between the surrogate and the

true endpoint in the experimental treatment condition that should be considered
in the computation of pa .
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ToTo A scalar that specifies the variance of the true endpoint in the control treatment
condition that should be considered in the computation of pa. Default 1.

T A scalar that specifies the variance of the true endpoint in the experimental treat-
ment condition that should be considered in the computation of p. Default 1.

S0S0 A scalar that specifies the variance of the surrogate endpoint in the control treat-
ment condition that should be considered in the computation of pa. Default
1.

S181 A scalar that specifies the variance of the surrogate endpoint in the experimental
treatment condition that should be considered in the computation of pa. Default
1.

TOT1 A scalar or vector that contains the correlation(s) between the counterfactuals TO
and T1 that should be considered in the computation of pa. Default seq(-1, 1,
by=.001).

TOS1 A scalar or vector that contains the correlation(s) between the counterfactuals
TO and S1 that should be considered in the computation of pa. Default seq(-1,
1, by=.001).

T1S0 A scalar or vector that contains the correlation(s) between the counterfactuals
T1 and SO that should be considered in the computation of pa. Default seq(-1,
1, by=.001).

S0S1 A scalar or vector that contains the correlation(s) between the counterfactuals
SO and S1 that should be considered in the computation of pa. Default seq(-1,
1, by=.001).

M The number of runs that should be conducted. Default 50000.

Details

Based on the causal-inference framework, it is assumed that each subject j has four counterfactuals
(or potential outcomes), i.e., Tp;, 115, So;, and S1;. Let Tp; and T7; denote the counterfactuals
for the true endpoint (1) under the control (Z = 0) and the experimental (Z = 1) treatments
of subject j, respectively. Similarly, So; and S;; denote the corresponding counterfactuals for the
surrogate endpoint (.5) under the control and experimental treatments, respectively. The individual
causal effects of Z on 7" and S for a given subject j are then defined as AT]. = Ty; — Tp; and
Ag; = S15 — Soj, respectively.

In the single-trial causal-inference framework, surrogacy can be quantified as the correlation be-
tween the individual causal effects of Z on S and T (for details, see Alonso et al., submitted):

/080800 ToToPSoTo T V051810 TIPS TI — /0S50S0 0T TiPSoT1 — 4/051510TyToPS1To
pA:p(ATJaASJ): 3

\/(UTOTO +onT — 2\/ JTOTUUTlTlpTOTl)(USOSO +0s,8 — 2\/ JSUSOJSISIPSOSI)

where the correlations ps, 7y, ps,7,> PToT:» a0d pg,s, are not estimable. It is thus warranted to
conduct a sensitivity analysis.

The function ICA.ContCont constructs all possible matrices that can be formed based on the spec-
ified vectors for ps, 1y, ps, 1> PT,T:» a0d pg, s, , and retains the positive definite ones for the com-
putation of pa.
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In contrast, the function ICA.ContCont samples random values for pg, 1, ps 1y PT, Ty > a0d ps, S,
based on a uniform distribution with user-specified minimum and maximum values, and retains the
positive definite ones for the computation of pa.

The obtained vector of pa values can subsequently be used to examine (i) the impact of different
assumptions regarding the correlations between the counterfactuals on the results (see also plot
Causal-Inference ContCont), and (ii) the extent to which proponents of the causal-inference and
meta-analytic frameworks will reach the same conclusion with respect to the appropriateness of the
candidate surrogate at hand.

The function ICA.Sample.ContCont also generates output that is useful to examine the plausibility
of finding a good surrogate endpoint (see GoodSurr in the Value section below). For details, see
Alonso et al. (submitted).

Notes

A single pa value is obtained when all correlations in the function call are scalars.

Value
An object of class ICA.ContCont with components,

Total.Num.Matrices

An object of class numeric that contains the total number of matrices that can
be formed as based on the user-specified correlations in the function call.

Pos.Def A data.frame that contains the positive definite matrices that can be formed
based on the user-specified correlations. These matrices are used to compute the
vector of the pa values.

ICA A scalar or vector that contains the individual causal association (ICA; pa)
value(s).
GoodSurr A data. frame that contains the ICA (pa), oA, and 6.
Author(s)

Wim Van der Elst, Ariel Alonso, & Geert Molenberghs

References

Alonso, A., Van der Elst, W., Molenberghs, G., Buyse, M., & Burzykowski, T. (submitted). On
the relationship between the causal-inference and meta-analytic paradigms for the validation of
surrogate markers.

See Also

MICA.ContCont, ICA.ContCont, Single.Trial .RE.AA, plot Causal-Inference ContCont

Examples

# Generate the vector of ICA values when rho_T0S@=rho_T1S1=.95,

# sigma_T0OT0=90, sigma_T1T1=100,sigma_ S0S0=10, sigma_S1S1=15, and
# min=-1 max=1 is considered for the correlations

# between the counterfactuals:
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SurICA2 <- ICA.Sample.ContCont(T@S@=.95, T1S1=.95, TQT0=90, T1T1=100, S0S0=10,
S1S1=15, M=5000)

# Examine and plot the vector of generated ICA values:
summary (SurICA2)
plot(SurICA2)

ica_SurvSurv_sens Sensitivity analysis for individual causal association

Description
The ica_SurvSurv_sens() function performs the sensitivity analysis for the individual causal as-
sociation (ICA) as described by Stijven et al. (2022).

Usage

ica_SurvSurv_sens(
fitted_model,

n_sim,

n_prec,
minfo_prec = 0,
restr = TRUE,
copula_family2,
ncores = 1,

get_marg_tau = FALSE,
cond_ind = FALSE

Arguments

fitted_model Returned value from fit_model_SurvSurv(). This object contains the esti-
mated identifiable part of the joint distribution for the potential outcomes.

n_sim Number of replications in the sensitivity analysis. This value should be large
enough to sufficiently explore all possible values of the ICA. The minimally
sufficient number depends to a large extent on which inequality assumptions are
subsequently imposed (see Additional Assumptions).

n_prec Number of Monte-Carlo samples for the numerical approximation of the ICA in
each replication of the sensitivity analysis.

minfo_prec Number of quasi Monte-Carlo samples for the numerical integration to obtain
the mutual information. If this value is O (default), the mutual information is not
computed and NA is returned for that column.

restr Default value should not be modified by the user.

copula_family2 Parametric family of the unidentifiable copulas in the D-vine copula. One of
the following parametric copula families: "clayton”, "frank”, "gaussian”,
or "gumbel”.
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ncores Number of cores used in the sensitivity analysis. The computations are compu-
tationally heavy, and this option can speed things up considerably.

get_marg_tau  Boolean.

* TRUE: Return marginal association measures in each replication in terms of
Spearman’s rho. The proportion of harmed, protected, never diseased, and
always diseased is also returned. See also Value.

e FALSE (default): No additional measures are returned.
cond_ind Boolean.

* TRUE: Assume conditional independence (see Additional Assumptions).
* FALSE (default): Conditional independence is not assumed.

Value

A data frame is returned. Each row represents one replication in the sensitivity analysis. The
returned data frame always contains the following columns:

* kendall, sp_rho, minfo: ICA as quantified by Kendall’s 7, Spearman’s p, and the mutual
information, respectively.

* 23, c13_2, c24_3, c14_23: sampled copula parameters of the unidentifiable copulas in the
D-vine copula. The parameters correspond to the parameterization of the copula_family?2
copula as in the copula R-package.

* r23,r13_2,r24_3, r14_23: sampled rotation parameters of the unidentifiable copulas in the
D-vine copula. These values are constant for the Gaussian copula family since that copula is
invariant to rotations.

The returned data frame also contains the following columns when get_marg_tau is TRUE:

* sp_s@s1, sp_s0t0, sp_s0Ot1, sp_s1t0, sp_s1tl, sp_t@t1: Spearman’s p between the cor-
responding potential outcomes. Note that these associations refer to the potential time-to-
composite events and/or time-to-true endpoint event. In contrary, the estimated association
parameters from fit_model_SurvSurv() refer to associations between the time-to-surrogate
event and time-to true endpoint event.

* prop_harmed, prop_protected, prop_always, prop_never: proportions of the correspond-
ing population strata in each replication. These are defined in Nevo and Gorfine (2022).

Quantifying Surrogacy

In the causal-inference framework to evaluate surrogate endpoints, the ICA is the measure of pri-
mary interest. This measure quantifies the association between the individual causal treatment
effects on the surrogate (AS) and on the true endpoint (AT'). Stijven et al. (2022) proposed to
quantify this association through the squared informational coefficient of correlation (SICC or R%,),
which is based on information-theoretic principles. Indeed, R? is a transformation of the mutual
information between AS and AT,

R% — 1 — ¢~ 21(ASAT)

By token of that transformation, R?, is restricted to the unit interval where 0 indicates indepen-
dence, and 1 a functional relationship between AS and AT'. The mutual information is returned by
ica_SurvSurv_sens() if a non-zero value is specified for minfo_prec (see Arguments).
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The association between AS and AT can also be quantified by Spearman’s p (or Kendall’s 7). This
quantity requires appreciably less computing time than the mutual information. This quantity is
therefore always returned for every replication of the sensitivity analysis.

Sensitivity Analysis

Because Sy and .S; are never simultaneously observed in the same patient, AS is not observable,
and analogously for AT. Consequently, the ICA is unidentifiable. This is solved by considering a
(partly identifiable) model for the full vector of potential outcomes, (Tp, Sy, S1,71)’. The identi-
fiable parameters are estimated. The unidentifiable parameters are sampled from their parameters
space in each replication of a sensitivity analysis. If the number of replications (n_sim) is suffi-
ciently large, the entire parameter space for the unidentifiable parameters will be explored/sampled.
In each replication, all model parameters are "known" (either estimated or sampled). Consequently,
the ICA can be computed in each replication of the sensitivity analysis.

The sensitivity analysis thus results in a set of values for the ICA. This set can be interpreted as
all values for the ICA that are compatible with the observed data. However, the range of this set
is often quite broad; this means there remains too much uncertainty to make judgements regarding
the worth of the surrogate. To address this unwieldy uncertainty, additional assumptions can be
used that restrict the parameter space of the unidentifiable parameters. This in turn reduces the
uncertainty regarding the ICA.

Additional Assumptions

There are two possible types of assumptions that restrict the parameter space of the unidentifiable
parameters: (i) equality type of assumptions, and (ii) inequality type of assumptions. These are
discussed in turn in the next two paragraphs.

The equality assumptions have to be incorporated into the sensitivity analysis itself. Only one type
of equality assumption has been implemented; this is the conditional independence assumption
which can be specified to ica_SurvSurv_sens() through the cond_ind argument:

So AL T1|S’1 and S’l AL T0|§O-

This can informally be interpreted as “what the control treatment does to the surrogate does not
provide information on the survival time under experimental treatment if we already know what
the experimental treatment does to the surrogate”, and analogously when control and experimental
treatment are interchanged.

The inequality type of assumptions have to be imposed on the data frame that is returned by the
ica_SurvSurv_sens() function; those assumptions are thus imposed after running the sensitivity
analysis. If get_marg_tau is set to TRUE, the returned data frame contains two types of additional
unverifiable quantities that differ across replications of the sensitivity analysis: (i) the unconditional
Spearman’s p for all pairs of potential outcomes, and (ii) the proportions of the population strata as
defined by Nevo and Gorfine (2022). More details on the interpretation and use of these assumptions
can be found in Stijven et al. (2022).

References

Stijven, F., Alonso, a., Molenberghs, G., Van Der Elst, W., Van Keilegom, I. (2022). An information-
theoretic approach to the evaluation of time-to-event surrogates for time-to-event true endpoints
based on causal inference.
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Nevo, D., & Gorfine, M. (2022). Causal inference for semi-competing risks data. Biostatistics, 23
4), 1115-1132

Examples

library(Surrogate)
data("Ovarian")
# For simplicity, data is not recoded to semi-competing risks format, but the
# data are left in the composite event format.
data = data.frame(
Ovarian$Pfs,
Ovarian$Surv,
Ovarian$Treat,
Ovarian$PfsInd,
Ovarian$SurvInd
)
ovarian_fitted =
fit_model_SurvSurv(data = data,
copula_family = "clayton”,
nknots = 1)
# Illustration with small number of replications and low precision
ica_SurvSurv_sens(ovarian_fitted,
n_sim = 5,
n_prec = 2000,
copula_family2 = "clayton")

ISTE.ContCont Individual-level surrogate threshold effect for continuous normally
distributed surrogate and true endpoints.

Description

Computes the individual-level surrogate threshold effect in the causal-inference single-trial setting
where both the surrogate and the true endpoint are continuous normally distributed variables. For
details, see paper in the references section.

Usage

ISTE.ContCont(Mean_T1, Mean_T@, Mean_S1, Mean_S@, N, Delta_S=c(-10, 0, 10),
zeta.PI=0.05, PI.Bound=0, PI.Lower=TRUE, Show.Prediction.Plots=TRUE, Save.Plots="No",
ToS0, T1S1, TeTe=1, T1T1=1, S@S0=1, S1S1=1, TOTl1=seq(-1, 1, by=.001),

TeS1=seq(-1, 1, by=.001), T1S0=seq(-1, 1, by=.001),

S0S1=seq(-1, 1, by=.001), M.PosDef=500, Seed=123)
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Arguments

Mean_T1 A scalar or vector that specifies the mean of the true endpoint in the experimental
treatment condition (a vector is used to account for estimation uncertainty).

Mean_To@ A scalar or vector that specifies the mean of the true endpoint in the control
condition (a vector is used to account for estimation uncertainty).

Mean_S1 A scalar or vector that specifies the mean of the surrogate endpoint in the ex-
perimental treatment condition (a vector is used to account for estimation uncer-
tainty).

Mean_S@ A scalar or vector that specifies the mean of the surrogate endpoint in the control
condition (a vector is used to account for estimation uncertainty).

N The sample size of the clinical trial.

Delta_S The vector or scalar of AS values for which the expected AT and its prediction
error has to be computed.

zeta.PI The alpha-level to be used in the computation of the prediction interval around
E(AT). Default zeta.PI=0.05, i.e., the 95% prediction interval.

PI.Bound The ISTE is defined as the value of AS for which the lower (or upper) bound of

the (1 — )% prediction interval around E(AT) is 0. If another threshold value
than O is desired, this can be requested by using the PI.Bound argument. For
example, the argument PI.Bound=5 can be used in the function call to obtain the
values of AS for which the lower (or upper) bound of the (1 — «)% prediction
intervals (in the different runs of the algorithm)around AT equal 5.

PI.Lower Logical. Should a lower (PI.Lower=TRUE) or upper (PI.Lower=FALSE) predic-
tion interval be used in the computation of ISTE? Default PI.Lower=TRUE.

Show.Prediction.Plots
Logical. Should plots that depict E(AT) against AS (prediction function),
the prediction interval, and the ISTE for the different runs of the algorithm be
shown? Default Show.Prediction.Plots=TRUE.

Save.Plots Should the prediction plots (see previous item) be saved? If Save.Plots="No"
is used (the default argument), the plots are not saved. If the plots have to be
saved, replace "No" by the desired location, e.g., Save.Plots="C:/Analysis
directory/" on a windows computer or Save.Plots="/Users/wim/Desktop/Analysis
directory/" on macOS or Linux.

Toso A scalar or vector that specifies the correlation(s) between the surrogate and the
true endpoint in the control treatment condition that should be considered in the
computation of ISTE.

T1S1 A scalar or vector that specifies the correlation(s) between the surrogate and the
true endpoint in the experimental treatment condition that should be considered
in the computation of ISTE.

ToTO A scalar that specifies the variance of the true endpoint in the control treatment
condition that should be considered in the computation of ISTE. Default 1.

T1T1 A scalar that specifies the variance of the true endpoint in the experimental treat-
ment condition that should be considered in the computation of ISTE. Default
1.
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S0S0 A scalar that specifies the variance of the surrogate endpoint in the control treat-
ment condition that should be considered in the computation of ISTE. Default
1.

S181 A scalar that specifies the variance of the surrogate endpoint in the experimen-
tal treatment condition that should be considered in the computation of ISTE.
Default 1.

TOT1 A scalar or vector that contains the correlation(s) between the counterfactuals TO
and T1 that should be considered in the computation of ISTE. Default seq(-1,
1, by=.001).

TOS1 A scalar or vector that contains the correlation(s) between the counterfactuals TO
and S1 that should be considered in the computation of ISTE. Default seq(-1,
1, by=.001).

T1S0 A scalar or vector that contains the correlation(s) between the counterfactuals T1
and SO that should be considered in the computation of ISTE. Default seq(-1,
1, by=.001).

S0S1 A scalar or vector that contains the correlation(s) between the counterfactuals SO
and S1 that should be considered in the computation of ISTE. Default seq(-1,
1, by=.001).

M.PosDef The number of positive definite > matrices that should be identified. This
will also determine the amount of ISTE values that are identified. Default
M.PosDef=500.

Seed The seed to be used in the analysis (for reproducibility). Default Seed=123.

Details

See paper in the references section.

Value

An object of class ICA.ContCont with components,

ISTE_Low_PI The vector of individual surrogate threshold effect (ISTE) values, i.e., the values
of AS for which the lower bound of the (1 —«)% prediction interval around AT
is O (or another threshold value, which can be requested by using the PI.Bound
argument in the function call).

ISTE_Up_PI Same as ISTE_Low_PI, but using the upper bound of the (1 — «)% prediction
interval.

MSE The vector of mean squared error values that are obtained in the prediction of
AT based on AS.

gamma@ The vector of intercepts that are obtained in the prediction of AT based on AS.

gammal The vector of slope that are obtained in the prediction of AT based on AS.

Delta_S_For_Which_Delta_T_equal_0
The vector of AS values for which E(AT = 0).

S_squared_pred The vector of variances of the prediction errors for AT
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Predicted_Delta_T
The vector/matrix of predicted values of AT for the AS values that were re-
quested in the function call (argument Delta_S).

PI_Interval_Low
The vector/matrix of lower bound values of the (1 — «)% prediction interval
around AT for the AS values that were requested in the function call (argument
Delta_S).

PI_Interval_Up The vector/matrix of upper bound values of the (1 — «)% prediction interval
around AT for the AS values that were requested in the function call (argument

Delta_S).

ToTO The vector of variances of TO (true endpoint in the control treatment) that are
used in the computation (this is a constant if the variance is fixed in the function
call).

TIm The vector of variances of T1 (true endpoint in the experimental treatment) that

are used in the computations (this is a constant if the variance is fixed in the
function call).

S0S0 The vector of variances of SO (surrogate endpoint in the control treatment) that
are used in the computations (this is a constant if the variance is fixed in the
function call).

S1S1 The vector of variances of S1 (surrogate endpoint in the experimental treatment)
that are used in the computations (this is a constant if the variance is fixed in the
function call).

Mean_DeltaT The vector of treatment effect values on the true endpoint that are used in the
computations (this is a constant if the means of TO and T1 are fixed in the func-
tion call).

Mean_DeltaS The vector of treatment effect values on the surrogate endpoint that are used in

the computations (this is a constant if the means of SO and S1 are fixed in the
function call).

Total.Num.Matrices
An object of class numeric that contains the total number of matrices that can
be formed as based on the user-specified correlations in the function call.

Pos.Def A data.frame that contains the positive definite matrices that can be formed
based on the user-specified correlations. These matrices are used to compute the
vector of the ISTE values.

ICA Apart from ISTE, ICA is also computed (the individual causal association). For
details, see ICA.ContCont.
zeta.PI The zeta.PI value specified in the function call.
PI.Bound The PI.Bound value specified in the function call.
PI.Lower The PI.Lower value specified in the function call.
Delta_S The Delta_S value(s) specified in the function call.
Author(s)

Wim Van der Elst, Ariel Alonso, & Geert Molenberghs
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References

Van der Elst, W., Alonso, A. A., and Molenberghs, G. (submitted). The individual-level surrogate
threshold effect in a causal-inference setting.

See Also

ICA.ContCont

Examples

Define input for analysis using the Schizo dataset,
with S=BPRS and T = PANSS.

For each of the identifiable quantities,

uncertainty is accounted for by specifying a uniform
distribution with min, max values corresponding to
the 95% confidence interval of the quantity.

TOSO <- runif(min = ©.9524, max = 0.9659, n = 1000)
T1S1 <= runif(min = 0.9608, max = ©0.9677, n = 1000)

N I

S@S@ <- runif(min=160.811, max=204.5009, n=1000)
S1S1 <= runif(min=168.989, max = 194.219, n=1000)
TOTO <- runif(min=484.462, max = 616.082, n=1000)
T1T1 <= runif(min=514.279, max = 591.062, n=1000)

Mean_TO <- runif(min=-13.455, max=-9.489, n=1000)
Mean_T1 <- runif(min=-17.17, max=-14.86, n=1000)
Mean_S0@ <- runif(min=-7.789, max=-5.503, n=1000)
Mean_S1 <- runif(min=-9.600, max=-8.276, n=1000)

# Do the ISTE analysis

## Not run:

ISTE <- ISTE.ContCont(Mean_T1=Mean_T1, Mean_T@=Mean_TO,
Mean_S1=Mean_S1, Mean_S0=Mean_S@, N=2128, Delta_S=c(-50:50),
zeta.PI=0.05, PI.Bound=0, Show.Prediction.Plots=TRUE,
Save.Plots="No", T@S0=T0SQ, T1S1=T1S1, TOTO=TQTQ, TI1T1=T1T1,
S0S0=S0S0, S151=S1S1)

# Examine results:
summary (ISTE)

# Plots of results.
# Plot ISTE
plot (ISTE)
# Other plots, see plot.ISTE.ContCont for details
plot(ISTE, Outcome="MSE")
plot (ISTE, Outcome="gamma0d")
plot (ISTE, Outcome="gammal")
plot(ISTE, Outcome="Exp.DeltaT")
plot (ISTE, Outcome="Exp.DeltaT.Low.PI")
plot (ISTE, Outcome="Exp.DeltaT.Up.PI")

## End(Not run)
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LongToWide

LongToWide

Reshapes a dataset from the ’long’ format (i.e., multiple lines per pa-
tient) into the 'wide’ format (i.e., one line per patient)

Description

Reshapes a dataset that is in the ’long’ format into the *wide’ format. The dataset should contain a
single surrogate endpoint and a single true endpoint value per subject.

Usage

LongToWide(Dataset, OutcomelIndicator, IdIndicator, TreatIndicator, OutcomeValue)

Arguments
Dataset A data.frame in the ’long’ format that contains (at least) five columns, i.e.,
one that contains the subject ID, one that contains the trial ID, one that contains
the endpoint indicator, one that contains the treatment indicator, and one that
contains the endpoint values.
OutcomeIndicator
The name of the variable in Dataset that contains the indicator that distin-
guishes between the surrogate and true endpoints.
IdIndicator The name of the variable in Dataset that contains the subject ID.
TreatIndicator The name of the variable in Dataset that contains the treatment indicator. For
the subsequent surrogacy analyses, the treatment indicator should either be coded
as 1 for the experimental group and —1 for the control group, or as 1 for the
experimental group and O for the control group. The —1/1 coding is recom-
mended.
OutcomeValue  The name of the variable in Dataset that contains the endpoint values.
Value

A data.frame in the 'wide’ format, i.e., a data. frame that contains one line per subject. Each line
contains a surrogate value, a true endpoint value, a treatment indicator, a patient ID, and a trial ID.

Author(s)

Wim Van der Elst, Ariel Alonso, and Geert Molenberghs

Examples

# Generate a dataset in the 'long' format that contains

# S and T values for 100 patients

Outcome <- rep(x=c(@, 1), times=100)

ID <- rep(seq(1:100), each=2)

Treat <- rep(seq(c(0,1)), each=100)

Outcomes <- as.numeric(matrix(rnorm(1%*200, mean=100, sd=10),



MarginalProbs 97

ncol=200))
Data <- data.frame(cbind(Outcome, ID, Treat, Outcomes))

# Reshapes the Data object
LongToWide(Dataset=Data, OutcomelIndicator=Outcome, IdIndicator=ID,
TreatIndicator=Treat, OutcomeValue=Outcomes)

MarginalProbs Computes marginal probabilities for a dataset where the surrogate
and true endpoints are binary

Description

This function computes the marginal probabilities associated with the distribution of the potential
outcomes for the true and surrogate endpoint.

Usage

MarginalProbs(Dataset=Dataset, Surr=Surr, True=True, Treat=Treat)

Arguments

Dataset A data. frame that should consist of one line per patient. Each line contains
(at least) a binary surrogate value, a binary true endpoint value, and a treatment
indicator.

Surr The name of the variable in Dataset that contains the binary surrogate endpoint
values. Should be coded as 0 and 1.

True The name of the variable in Dataset that contains the binary true endpoint val-
ues. Should be coded as 0 and 1.

Treat The name of the variable in Dataset that contains the treatment indicators. The
treatment indicator should be coded as 1 for the experimental group and —1 for
the control group.

Value

Theta_ToSe The odds ratio for S and 7T in the control group.

Theta_T1S1 The odds ratio for S and T in the experimental group.

Freq.Cont The frequencies for .S and T in the control group.

Freq.Exp The frequencies for .S and 7" in the experimental group.

pil_1_ The estimated 77.1.

pio_1_ The estimated 7(.1.

pil_0_ The estimated 71.g.

piod_o_ The estimated 7g.g.

pi_1_1 The estimated 7.1.1

pi_1_0 The estimated 7.1.¢

pi_0_1 The estimated 7.¢.1

pi_0_0 The estimated 7.¢.¢
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Author(s)

Wim Van der Elst, Ariel Alonso, & Geert Molenberghs

See Also

ICA.BinBin

Examples

# Open the ARMD dataset and recode Diff24 and Diff52 as 1
# when the original value is above 0, and @ otherwise
data(ARMD)

ARMD$Diff24_Dich <- ifelse(ARMD$Diff24>0, 1, @)
ARMD$Diff52_Dich <- ifelse(ARMD$Diff52>0, 1, @)

# Obtain marginal probabilities and ORs
MarginalProbs(Dataset=ARMD, Surr=Diff24_Dich, True=Diff52_Dich,
Treat=Treat)

marginal_gof_scr Marginal survival function goodness of fit

Description

The marginal_gof_scr() function plots the estimated marginal survival functions for the fitted
model. This results in four plots of survival functions, one for each of Sy, Sy, Tp, T1.

Usage

marginal_gof_scr(fitted_model, data, grid, time_unit = "years")

Arguments

fitted_model Returned value from fit_model_SurvSurv(). This object essentially contains
the estimated identifiable part of the joint distribution for the potential outcomes.

data data that was supplied to fit_model_SurvSurv().
grid grid of time-points for which to compute the estimated survival functions.

time_unit character vector that reflects the time unit of the endpoints, defaults to "years”.
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Examples

library(Surrogate)
data("Ovarian")

#For simplicity, data is not recoded to semi-competing risks format, but is

#left in the composite event format.
data = data.frame(
Ovarian$Pfs,
Ovarian$Surv,
Ovarian$Treat,
Ovarian$PfsInd,
Ovarian$SurvInd
)
ovarian_fitted =
fit_model_SurvSurv(data = data,
copula_family = "clayton”,
nknots = 1)
grid = seq(from = @, to = 2, length.out = 200)
marginal_gof_scr(ovarian_fitted, data, grid)
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MaxEntContCont

Use the maximum-entropy approach to compute ICA in the
continuous-continuous sinlge-trial setting

Description

In a surrogate evaluation setting where both S and 7" are continuous endpoints, a sensitivity-
based approach where multiple "plausible values’ for ICA are retained can be used (see functions
ICA.ContCont). The function MaxEntContCont identifies the estimate which has the maximuum

entropy.

Usage

MaxEntContCont(x, TOTQ, T1T1, S0S0@, S1S1)

Arguments

X

TOTO

T1T1

S0S0

S151

A fitted object of class ICA.ContCont.

A scalar that specifies the variance of the true endpoint in the control treatment
condition.

A scalar that specifies the variance of the true endpoint in the experimental treat-
ment condition.

A scalar that specifies the variance of the surrogate endpoint in the control treat-
ment condition.

A scalar that specifies the variance of the surrogate endpoint in the experimental
treatment condition.
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Value

ICA.Max.Ent The ICA value with maximum entropy.

Max.Ent The maximum entropy.
Entropy The vector of entropies corresponding to the vector of ’plausible values’ for
ICA.

Table.ICA.Entropy
A data. frame that contains the vector of ICA, their entropies, and the correla-
tions between the counterfactuals.

ICA.Fit The fitted ICA.ContCont object.

Author(s)

Wim Van der Elst, Ariel Alonso, Paul Meyvisch, & Geert Molenberghs

References

Add

See Also

ICA.ContCont, MaxEntICABinBin

Examples

## Not run: #time-consuming code parts
# Compute ICA for ARMD dataset, using the grid
# G={-1, -.80, ..., 1} for the undidentifiable correlations

ICA <- ICA.ContCont(T@S0 = ©.769, T1S1 = 0.712, S0S0 = 188.926,
S1S1 = 132.638, TOTO = 264.797, T1T1 = 231.771,

TOT1 seq(-1, 1, by = 0.2), TeS1 = seq(-1, 1, by
T1S0 = seq(-1, 1, by = 0.2), S0S1 = seq(-1, 1, by

0.2),
0.2))

# Identify the maximum entropy ICA
MaxEnt_ARMD <- MaxEntContCont(x = ICA, S@S@ = 188.926,
S1S1 = 132.638, TOTO = 264.797, T1T1 = 231.771)

# Explore results using summary() and plot() functions
summary (MaxEnt_ARMD)
plot(MaxEnt_ARMD)
plot(MaxEnt_ARMD, Entropy.By.ICA = TRUE)

## End(Not run)
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MaxEntICABinBin Use the maximum-entropy approach to compute ICA in the binary-
binary setting

Description

In a surrogate evaluation setting where both S and 7" are binary endpoints, a sensitivity-based ap-
proach where multiple *plausible values’ for ICA are retained can be used (see functions ICA.BinBin,
ICA.BinBin.Grid.Full, or ICA.BinBin.Grid.Sample). Alternatively, the maximum entropy dis-
tribution of the vector of potential outcomes can be considered, based upon which ICA is subse-
quently computed. The use of the distribution that maximizes the entropy can be justified based on
the fact that any other distribution would necessarily (i) assume information that we do not have, or
(ii) contradict information that we do have. The function MaxEntICABinBin implements the latter
approach.

Usage

MaxEntICABinBin(pil1_1_, pil_@_, pi_1_1,
pi_1_0, pio_1_, pi_0_1, Method="BFGS",
Fitted.ICA=NULL)

Arguments
pil_1_ A scalar that contains the estimated value for P(T' = 1,5 = 1|Z = 0), i.e., the
probability that S = 7" = 1 when under treatment Z = 0.
pil_e_ A scalar that contains the estimated value for P(T'= 1,5 = 0|Z = 0).
pi_1_1 A scalar that contains the estimated value for P(T'= 1,5 =1|Z = 1).
pi_1_0 A scalar that contains the estimated value for P(T'=1,5 = 0|Z = 1).
pio_1_ A scalar that contains the estimated value for P(T' = 0,5 = 1|Z = 0).
pi_0_1 A scalar that contains the estimated value for P(T' = 0,5 = 1|Z = 1).
Method The maximum entropy frequency vector p* is calculated based on the optimal

solution to an unconstrained dual convex programming problem (for details, see
Alonso et al., 2015). Two different optimization methods can be specified, i.e.,
Method="BFGS" and Method="CG", which implement the quasi-Newton BFGS
(Broyden, Fletcher, Goldfarb, and Shanno) and the conjugent gradient (CG)
methods (for details on these methods, see the help files of the optim() function
and the references theirin). Alternatively, the 7 vector (obtained when the func-
tions ICA.BinBin, ICA.BinBin.Grid.Full, or ICA.BinBin.Grid.Sample are
executed) that is ’closest’ to the vector 7 can be retained. Here, the ’closest’
vector is defined as the vector where the sum of the squared differences between
the components in the vectors 7 and 7 is smallest. The latter "Minimum Differ-
ence’ method can re requested by specifying the argument Method="MD" in the
function call. Default Method="BFGS".

Fitted.ICA A fitted object of class ICA.BinBin, ICA.BinBin.Grid.Full, or ICA.BinBin.Grid. Sample.
Only required when Method="MD" is used.
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Value
R2_H The R2_H value.
Vector_p The maximum entropy frequency vector p*
H_max The entropy of p*

Author(s)

Wim Van der Elst, Ariel Alonso, & Geert Molenberghs

References

Alonso, A., & Van der Elst, W. (2015). A maximum-entropy approach for the evluation of surrogate
endpoints based on causal inference.

See Also
ICA.BinBin, ICA.BinBin.Grid.Sample, ICA.BinBin.Grid.Full, plot MaxEntICA BinBin

Examples

# Sensitivity-based ICA results using ICA.BinBin.Grid.Sample

ICA <- ICA.BinBin.Grid.Sample(pil_1_=0.341, pi0_1_=0.119, pil1_0_=0.254,
pi_1_1=0.686, pi_1_0=0.088, pi_0_1=0.078, Seed=1,
Monotonicity=c("No"), M=5000)

# Maximum-entropy based ICA
MaxEnt <- MaxEntICABinBin(pi1_1_=0.341, pi@_1_=0.119, pi1_0_=0.254,
pi_1_1=0.686, pi_1_0=0.088, pi_0_1=0.078)

# Explore maximum-entropy results
summary (MaxEnt)

# Plot results
plot(x=MaxEnt, ICA.Fit=ICA)

MaxEntSPFBinBin Use the maximum-entropy approach to compute SPF (surrogate pre-
dictive function) in the binary-binary setting

Description

In a surrogate evaluation setting where both S and 7T are binary endpoints, a sensitivity-based
approach where multiple *plausible values’ for vector 7 (i.e., vectors 7 that are compatible with the
observable data at hand) can be used (for details, see SPF.BinBin). Alternatively, the maximum
entropy distribution for vector 7 can be considered (Alonso et al., 2015). The use of the distribution
that maximizes the entropy can be justified based on the fact that any other distribution would
necessarily (i) assume information that we do not have, or (ii) contradict information that we do
have. The function MaxEntSPFBinBin implements the latter approach.
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Based on vector 7, the surrogate predictive function (SPF) is computed, i.e., r(i,j) = P(AT =
i|AS = j). For example, r(—1, 1) quantifies the probability that the treatment has a negative effect
on the true endpoint (AT = —1) given that it has a positive effect on the surrogate (AS = 1).

Usage

MaxEntSPFBinBin(pil1_1_, pil_0@_, pi_1_1,
pi_1_0, pio_1_, pi_0_1, Method="BFGS",
Fitted.ICA=NULL)

Arguments
pil_1_ A scalar that contains the estimated value for P(T' = 1,5 = 1|Z = 0), i.e., the
probability that S = T = 1 when under treatment Z = 0.
pil_o_ A scalar that contains the estimated value for P(T = 1,5 = 0/Z = 0).
pi_1_1 A scalar that contains the estimated value for P(T' = 1,5 =1|Z = 1).
pi_1_0 A scalar that contains the estimated value for P(T'=1,5 = 0|Z = 1).
pio_1_ A scalar that contains the estimated value for P(T = 0,5 = 1|Z = 0).
pi_0_1 A scalar that contains the estimated value for P(T' = 0,5 = 1|Z = 1).
Method The maximum entropy frequency vector p* is calculated based on the optimal

solution to an unconstrained dual convex programming problem (for details, see
Alonso et al., 2015). Two different optimization methods can be specified, i.e.,
Method="BFGS" and Method="CG", which implement the quasi-Newton BFGS
(Broyden, Fletcher, Goldfarb, and Shanno) and the conjugent gradient (CG)
methods (for details on these methods, see the help files of the optim() function
and the references theirin). Alternatively, the 7 vector (obtained when the func-
tions ICA.BinBin, ICA.BinBin.Grid.Full, or ICA.BinBin.Grid.Sample are
executed) that is ’closest’ to the vector 7 can be retained. Here, the ’closest’
vector is defined as the vector where the sum of the squared differences between
the components in the vectors 7 and 7 is smallest. The latter "Minimum Differ-
ence’ method can re requested by specifying the argument Method="MD" in the
function call. Default Method="BFGS".

Fitted.ICA A fitted object of class ICA.BinBin, ICA.BinBin.Grid.Full, or ICA.BinBin.Grid.Sample.
Only required when Method="MD" is used.

Value
Vector_p The maximum entropy frequency vector p*
r_1.1 The vector of values for r(1,1), i.e., P(AT = 1]AS = 1).
r_mini_1 The vector of values for r(—1, 1).
r_o_1 The vector of values for 7 (0, 1)
r_1_0 The vector of values for (1, 0).
r_min1_0 The vector of values for r(—1,0).
r_0_o The vector of values for (0, 0).
r_1_min1 The vector of values for (1, )
r_minl_min1 The vector of values for r(—1, —
r_o_min1 The vector of values for (0, — )
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Author(s)
Wim Van der Elst, Ariel Alonso, & Geert Molenberghs

References

Alonso, A., & Van der Elst, W. (2015). A maximum-entropy approach for the evluation of surrogate
endpoints based on causal inference.

See Also

ICA.BinBin, ICA.BinBin.Grid.Sample, ICA.BinBin.Grid.Full, plot MaxEntSPF BinBin

Examples

# Sensitivity-based ICA results using ICA.BinBin.Grid.Sample

ICA <- ICA.BinBin.Grid.Sample(pil_1_=0.341, pi0_1_=0.119, pil1_0_=0.254,
pi_1_1=0.686, pi_1_0=0.088, pi_0_1=0.078, Seed=1,
Monotonicity=c("No"), M=5000)

# Sensitivity-based SPF
SPFSens <- SPF.BinBin(ICA)

# Maximum-entropy based SPF
SPFMaxEnt <- MaxEntSPFBinBin(pil1_1_=0.341, pi@_1_=0.119, pil1_0_=0.254,
pi_1_1=0.686, pi_1_0=0.088, pi_0_1=0.078)

# Explore maximum-entropy results
summary (SPFMaxEnt)

# Plot results
plot(x=SPFMaxEnt, SPF.Fit=SPFSens)

MICA.ContCont Assess surrogacy in the causal-inference multiple-trial setting (Meta-
analytic Individual Causal Association;, MICA) in the continuous-
continuous case

Description

The function MICA.ContCont quantifies surrogacy in the multiple-trial causal-inference framework.
See Details below.

Usage

MICA.ContCont(Trial.R, D.aa, D.bb, T@S@, T1S1, TeTe=1, T1T1=1, S@S0=1, S1S1=1,
TOT1=seq(-1, 1, by=.1), TeSl=seq(-1, 1, by=.1), T1S0=seq(-1, 1, by=.1),
SeS1=seq(-1, 1, by=.1))



MICA.ContCont

Arguments

Trial.R

D.aa

D.bb

TS0

T1S51

TOTO

T1T1

S0S0

S1S1

TOT1

TOS1

T1S0

S0351

Details
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A scalar that specifies the trial-level correlation coefficient (i.e., Ryy;q;) that
should be used in the computation of pj;.

A scalar that specifies the between-trial variance of the treatment effects on the
surrogate endpoint (i.e., d,,) that should be used in the computation of py;.

A scalar that specifies the between-trial variance of the treatment effects on the
true endpoint (i.e., dpp) that should be used in the computation of py;.

A scalar or vector that specifies the correlation(s) between the surrogate and the
true endpoint in the control treatment condition that should be considered in the
computation of py;.

A scalar or vector that specifies the correlation(s) between the surrogate and the
true endpoint in the experimental treatment condition that should be considered
in the computation of p,;.

A scalar that specifies the variance of the true endpoint in the control treatment
condition that should be considered in the computation of pj,. Default 1.

A scalar that specifies the variance of the true endpoint in the experimental treat-
ment condition that should be considered in the computation of p,;. Default 1.

A scalar that specifies the variance of the surrogate endpoint in the control treat-
ment condition that should be considered in the computation of p;;. Default
1.

A scalar that specifies the variance of the surrogate endpoint in the experimental
treatment condition that should be considered in the computation of p,;. Default
1.

A scalar or vector that contains the correlation(s) between the counterfactuals TO
and T1 that should be considered in the computation of pp;. Default seq(-1,
1, by=.1), i.e., the values —1, —0.9, —0.8, ..., 1.

A scalar or vector that contains the correlation(s) between the counterfactuals TO
and S1 that should be considered in the computation of pj;. Default seq(-1,
1, by=.1).
A scalar or vector that contains the correlation(s) between the counterfactuals T1
and SO that should be considered in the computation of py;. Default seq(-1,
1, by=.1).
A scalar or vector that contains the correlation(s) between the counterfactuals SO
and S1 that should be considered in the computation of py;. Default seq(-1,
1, by=.1).

Based on the causal-inference framework, it is assumed that each subject j in trial i has four coun-
terfactuals (or potential outcomes), i.e., Tos;, 1145, Soij, and Syi;. Let Tp;; and T, denote the
counterfactuals for the true endpoint (7°) under the control (Z = 0) and the experimental (Z = 1)
treatments of subject j in trial i, respectively. Similarly, So;; and Sy;; denote the corresponding
counterfactuals for the surrogate endpoint (S) under the control and experimental treatments of
subject j in trial i, respectively. The individual causal effects of Z on 7" and S for a given subject j
in trial 7 are then defined as Az,; = T1;; — Toij and Ag,; = S145 — Soij, respectively.
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In the multiple-trial causal-inference framework, surrogacy can be quantified as the correlation
between the individual causal effects of Z on S and T (for details, see Alonso et al., submitted):

VdpwdaaRiriat + \/V (eari;)V (Easij)pa
pv = p(Arij, Agij) = ;
VV(Ari)V(Asij)

where

V(earij) = ory1y + 0Ty — 2\/OTy Ty OT T, PTo T 5
V(easij) = 05,50 + 08,81 — 24/0505005: 81 PSS »
V(ATij) = dpp + 0T, Ty T 0Ty1y — 2\/ OToTo 0Ty T1 PToTy s

V(Asij) = daa + 055, + 08181 — 21/05050 8,51 PSoSs -

The correlations between the counterfactuals (i.e., ps,1y, Ps, 70 PT, Ty > and ps,s, ) are not identifi-
able from the data. It is thus warranted to conduct a sensitivity analysis (by considering vectors of
possible values for the correlations between the counterfactuals — rather than point estimates).

When the user specifies a vector of values that should be considered for one or more of the cor-
relations that are involved in the computation of pjs, the function MICA.ContCont constructs all
possible matrices that can be formed as based on the specified values, identifies the matrices that
are positive definite (i.e., valid correlation matrices), and computes p,; for each of these matrices.
An examination of the vector of the obtained pj; values allows for a straightforward examination
of the impact of different assumptions regarding the correlations between the counterfactuals on the
results (see also plot Causal-Inference ContCont), and the extent to which proponents of the
causal-inference and meta-analytic frameworks will reach the same conclusion with respect to the
appropriateness of the candidate surrogate at hand.

Notes

A single pjs value is obtained when all correlations in the function call are scalars.

Value
An object of class MICA.ContCont with components,

Total.Num.Matrices

An object of class numeric which contains the total number of matrices that can
be formed as based on the user-specified correlations.

Pos.Def A data.frame that contains the positive definite matrices that can be formed
based on the user-specified correlations. These matrices are used to compute the
vector of the pys values.

ICA A scalar or vector of the pa values.

MICA A scalar or vector of the py; values.
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Warning

The theory that relates the causal-inference and the meta-analytic frameworks in the multiple-
trial setting (as developped in Alonso et al., submitted) assumes that a reduced or semi-reduced
modelling approach is used in the meta-analytic framework. Thus Ry,;qi, dgeq and dp;, should be
estimated based on a reduced model (i.e., using the Model=c("Reduced”) argument in the func-
tions UnifixedContCont, UnimixedContCont, BifixedContCont, or BimixedContCont) or based
on a semi-reduced model (i.e., using the Model=c("SemiReduced"”) argument in the functions
UnifixedContCont, UnimixedContCont, or BifixedContCont).

Author(s)
Wim Van der Elst, Ariel Alonso, & Geert Molenberghs

References

Alonso, A., Van der Elst, W., Molenberghs, G., Buyse, M., & Burzykowski, T. (submitted). On
the relationship between the causal-inference and meta-analytic paradigms for the validation of
surrogate markers.

See Also

ICA.ContCont, MICA.Sample.ContCont, plot Causal-Inference ContCont, UnifixedContCont,
UnimixedContCont, BifixedContCont, BimixedContCont

Examples

## Not run: #time-consuming code parts

# Generate the vector of MICA values when R_trial=.8, rho_T0S@=rho_T151=.8,

# sigma_TOT0=90, sigma_T1T1=100,sigma_ SO@S0=10, sigma_S1S1=15, D.aa=5, D.bb=10,
# and when the grid of values {0, .2, ..., 1} is considered for the

# correlations between the counterfactuals:

SurMICA <- MICA.ContCont(Trial.R=.80, D.aa=5, D.bb=10, T0S0=.8, T1S1=.8,
TOTO=90, T1T1=100, S@S0=10, S1S1=15, TOT1=seq(@, 1, by=.2),

TOS1=seq(@, 1, by=.2), T1S0=seq(@, 1, by=.2), S0S1=seq(@, 1, by=.2))

# Examine and plot the vector of the generated MICA values:
summary (SurMICA)
plot(SurMICA)

# Same analysis, but now assume that D.aa=.5 and D.bb=.1:

SurMICA <- MICA.ContCont(Trial.R=.80, D.aa=.5, D.bb=.1, T@S0=.8, T1S1=.8,
TOTO=90, T1T1=100, S@S@=10@, S1S1=15, TOT1=seq(@, 1, by=.2),

TeS1=seq(@, 1, by=.2), T1Se=seq(@, 1, by=.2), S0S1=seq(@, 1, by=.2))

# Examine and plot the vector of the generated MICA values:

summary (SurMICA)
plot (SurMICA)

# Same as first analysis, but specify vectors for rho_T0S@ and rho_T1S1:
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# Sample from normal with mean .8 and SD=.1 (to account for uncertainty
# in estimation)

SurMICA <- MICA.ContCont(Trial.R=.8@, D.aa=5, D.bb=10,
TOS@=rnorm(n=10000000, mean=.8, sd=.1),

T1S1=rnorm(n=10000000, mean=.8, sd=.1),

TOTO=90, T1T1=100, S0SO=10, S1S1=15, TOT1=seq(@, 1, by=.2),

ToS1=seq(@, 1, by=.2), T1Se=seq(@, 1, by=.2), S0S1=seq(@, 1, by=.2))

## End(Not run)

MICA.Sample.ContCont  Assess surrogacy in the causal-inference multiple-trial setting (Meta-
analytic Individual Causal Association;, MICA) in the continuous-
continuous case using the grid-based sample approach

Description

The function MICA.Sample.ContCont quantifies surrogacy in the multiple-trial causal-inference
framework. It provides a faster alternative for MICA.ContCont. See Details below.

Usage

MICA.Sample.ContCont(Trial.R, D.aa, D.bb, T@S@, T1S1, ToTe=1, T1T1=1, S@S0=1, S1S1=1,
ToT1=seq(-1, 1, by=.001), TeSl=seq(-1, 1, by=.001), T1S0=seq(-1, 1, by=.001),
SeS1=seq(-1, 1, by=.001), M=50000)

Arguments

Trial.R A scalar that specifies the trial-level correlation coefficient (i.e., Ryy;q;) that
should be used in the computation of pj;.

D.aa A scalar that specifies the between-trial variance of the treatment effects on the
surrogate endpoint (i.e., d,,) that should be used in the computation of py;.

D.bb A scalar that specifies the between-trial variance of the treatment effects on the
true endpoint (i.e., dpp) that should be used in the computation of py;.

TeSe A scalar or vector that specifies the correlation(s) between the surrogate and the
true endpoint in the control treatment condition that should be considered in the
computation of pp;.

T1S1 A scalar or vector that specifies the correlation(s) between the surrogate and the
true endpoint in the experimental treatment condition that should be considered
in the computation of pj;.

ToTo A scalar that specifies the variance of the true endpoint in the control treatment
condition that should be considered in the computation of pj;. Default 1.

T1T1 A scalar that specifies the variance of the true endpoint in the experimental treat-

ment condition that should be considered in the computation of p,;. Default 1.
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S0S0

S151

TOT1

ToS1

T150

S0S1

Details

A scalar that specifies the variance of the surrogate endpoint in the control treat-
ment condition that should be considered in the computation of p;;. Default
1.

A scalar that specifies the variance of the surrogate endpoint in the experimental
treatment condition that should be considered in the computation of p,;. Default
1.

A scalar or vector that contains the correlation(s) between the counterfactuals TO
and T1 that should be considered in the computation of py;. Default seq(-1,
1, by=.001).

A scalar or vector that contains the correlation(s) between the counterfactuals TO
and S1 that should be considered in the computation of p;. Default seq(-1,
1, by=.001).

A scalar or vector that contains the correlation(s) between the counterfactuals T1
and SO that should be considered in the computation of py;. Default seq(-1,
1, by=.001).

A scalar or vector that contains the correlation(s) between the counterfactuals SO
and S1 that should be considered in the computation of pj;. Default seq(-1,
1, by=.001).

The number of runs that should be conducted. Default 50000.

Based on the causal-inference framework, it is assumed that each subject j in trial i has four coun-
terfactuals (or potential outcomes), i.e., To;5, T1ij, Soij, and Sy;5. Let Tp;; and T;; denote the
counterfactuals for the true endpoint (7°) under the control (Z = 0) and the experimental (Z = 1)
treatments of subject j in trial i, respectively. Similarly, So;; and Si;; denote the corresponding
counterfactuals for the surrogate endpoint (S) under the control and experimental treatments of
subject j in trial i, respectively. The individual causal effects of Z on T" and S for a given subject j
in trial i are then defined as A7,; = T1;; — Toi; and Ag,, = S1i; — Soij, respectively.

In the multiple-trial causal-inference framework, surrogacy can be quantified as the correlation
between the individual causal effects of Z on S and T (for details, see Alonso et al., submitted):

where

 VdyydaaRirial + \/V(eariy)V (€asij) pa

pv = p(Arij, Agij) = ,

VV(A7i)V(Asij)

V(EATij) =017, T oy — 2\/UTOTOUT1T1PTOT1;
V(easij) = 05,50 + 08181 — 24/050 5005181 PSS »
V(Arij) = dp + o131 + 0Ty — 29/OT0T0 O Ty PTO T »
V(ASU) = daa + 0808y + 08,8, — 2\/mp5051'

The correlations between the counterfactuals (i.e., ps, 1y, ps, 1, PT, Ty > a0d ps, s, ) are not identifi-
able from the data. It is thus warranted to conduct a sensitivity analysis (by considering vectors of
possible values for the correlations between the counterfactuals — rather than point estimates).
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When the user specifies a vector of values that should be considered for one or more of the cor-
relations that are involved in the computation of p,;, the function MICA.ContCont constructs all
possible matrices that can be formed as based on the specified values, and retains the positive defi-
nite ones for the computation of py;.

In contrast, the function MICA. Sample.ContCont samples random values for ps,1,, ps,Ty> PToT: >
and pg,s, based on a uniform distribution with user-specified minimum and maximum values, and
retains the positive definite ones for the computation of p,;.

An examination of the vector of the obtained p,; values allows for a straightforward examination
of the impact of different assumptions regarding the correlations between the counterfactuals on the
results (see also plot Causal-Inference ContCont), and the extent to which proponents of the
causal-inference and meta-analytic frameworks will reach the same conclusion with respect to the
appropriateness of the candidate surrogate at hand.

Notes

A single pjs value is obtained when all correlations in the function call are scalars.

Value
An object of class MICA.ContCont with components,

Total.Num.Matrices
An object of class numeric which contains the total number of matrices that can
be formed as based on the user-specified correlations.

Pos.Def A data.frame that contains the positive definite matrices that can be formed
based on the user-specified correlations. These matrices are used to compute the
vector of the pjs values.

ICA A scalar or vector of the pa values.
MICA A scalar or vector of the pps values.
Warning

The theory that relates the causal-inference and the meta-analytic frameworks in the multiple-
trial setting (as developped in Alonso et al., submitted) assumes that a reduced or semi-reduced
modelling approach is used in the meta-analytic framework. Thus Ryy;qi, daq and dpp, should be
estimated based on a reduced model (i.e., using the Model=c("Reduced”) argument in the func-
tions UnifixedContCont, UnimixedContCont, BifixedContCont, or BimixedContCont) or based
on a semi-reduced model (i.e., using the Model=c(”SemiReduced"”) argument in the functions
UnifixedContCont, UnimixedContCont, or BifixedContCont).

Author(s)
Wim Van der Elst, Ariel Alonso, & Geert Molenberghs

References

Alonso, A., Van der Elst, W., Molenberghs, G., Buyse, M., & Burzykowski, T. (submitted). On
the relationship between the causal-inference and meta-analytic paradigms for the validation of
surrogate markers.
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See Also

ICA.ContCont,MICA.ContCont, plot Causal-Inference ContCont, UnifixedContCont, UnimixedContCont,
BifixedContCont, BimixedContCont

Examples

## Not run: #Time consuming (>5 sec) code part

# Generate the vector of MICA values when R_trial=.8, rho_T0S@=rho_T151=.8,

# sigma_TOT0=90, sigma_T1T1=100,sigma_ SO@S0=10, sigma_S1S1=15, D.aa=5, D.bb=10,
# and when the grid of values {-1, -0.999, ..., 1} is considered for the

# correlations between the counterfactuals:

SurMICA <- MICA.Sample.ContCont(Trial.R=.80, D.aa=5, D.bb=10, T@S0=.8, T1S1=.8,
TOTO=90, T1T1=100, S0S0=10, S1S1=15, TOT1=seq(-1, 1, by=.001),

TOS1=seq(-1, 1, by=.001), T1S0=seq(-1, 1, by=.001),

S@S1=seq(-1, 1, by=.001), M=10000)

# Examine and plot the vector of the generated MICA values:
summary (SurMICA)
plot(SurMICA, ICA=FALSE, MICA=TRUE)

# Same analysis, but now assume that D.aa=.5 and D.bb=.1:

SurMICA <- MICA.Sample.ContCont(Trial.R=.80, D.aa=.5, D.bb=.1, T0S0=.8, T1S1=.8,
TOTO=90, T1T1=100, SO@S0=10, S1S1=15, TOT1=seq(-1, 1, by=.001),

TeS1=seq(-1, 1, by=.001), T1S0=seq(-1, 1, by=.001),

S@S1=seq(-1, 1, by=.001), M=10000)

# Examine and plot the vector of the generated MICA values:
summary (SurMICA)
plot(SurMICA)

## End(Not run)

MinSurrContCont Examine the plausibility of finding a good surrogate endpoint in the
Continuous-continuous case

Description

The function MinSurrContCont examines the plausibility of finding a good surrogate endpoint in
the continuous-continuous setting. For details, see Alonso et al. (submitted).

Usage

MinSurrContCont(TQT@, T1T1, Delta, TOT1=seq(from=0, to=1, by=.01))
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Arguments

ToTO A scalar that specifies the variance of the true endpoint in the control treatment
condition.

T1T1 A scalar that specifies the variance of the true endpoint in the experimental treat-
ment condition.

Delta A scalar that specifies an upper bound for the prediction mean squared error
when predicting the individual causal effect of the treatment on the true endpoint
based on the individual causal effect of the treatment on the surrogate.

TOT1 A scalar or vector that contains the correlation(s) between the counterfactuals TO
and T1 that should be considered in the computation of p? ;. Default seq(@,
1, by=.1), i.e., the values 0, 0.10, 0.20, ..., 1.

Value

An object of class MinSurrContCont with components,
TOT1 A scalar or vector that contains the correlation(s) between the counterfactuals
TO and T1 that were considered (i.e., pr, T, )-

Sigma.Delta.T A scalar or vector that contains the standard deviations of the individual causal
treatment effects on the true endpoint as a function of pr, 7, .

Rho2.Min A scalar or vector that contains the p2, . values as a function of pr, 7 -

Author(s)
Wim Van der Elst, Ariel Alonso, & Geert Molenberghs

References

Alonso, A., Van der Elst, W., Molenberghs, G., Buyse, M., & Burzykowski, T. (submitted). On
the relationship between the causal-inference and meta-analytic paradigms for the validation of
surrogate markers.

See Also

ICA.ContCont, plot Causal-Inference ContCont, plot MinSurrContCont

Examples

# Assess the plausibility of finding a good surrogate when
# sigma_TOTO = sigma_T1T1 = 8 and Delta = 1

## Not run:

MinSurr <- MinSurrContCont(TOTQ = 8, T1T1 = 8, Delta = 1)
summary (MinSurr)

plot(MinSurr)

## End(Not run)
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MixedContContIT Fits (univariate) mixed-effect models to assess surrogacy in the
continuous-continuous case based on the Information-Theoretic
framework

Description

The function MixedContContIT uses the information-theoretic approach (Alonso & Molenberghs,
2007) to estimate trial- and individual-level surrogacy based on mixed-effect models when both S
and T are continuous endpoints. The user can specify whether a (weighted or unweighted) full,
semi-reduced, or reduced model should be fitted. See the Details section below.

Usage
MixedContContIT(Dataset, Surr, True, Treat, Trial.ID, Pat.ID,
Model=c("Full"), Weighted=TRUE, Min.Trial.Size=2, Alpha=.05, ...)
Arguments
Dataset A data. frame that should consist of one line per patient. Each line contains (at

least) a surrogate value, a true endpoint value, a treatment indicator, a patient
ID, and a trial ID.

Surr The name of the variable in Dataset that contains the surrogate endpoint values.
True The name of the variable in Dataset that contains the true endpoint values.
Treat The name of the variable in Dataset that contains the treatment indicators. The

treatment indicator should either be coded as 1 for the experimental group and
—1 for the control group, or as 1 for the experimental group and 0 for the control

group.
Trial.ID The name of the variable in Dataset that contains the trial ID to which the
patient belongs.

Pat.ID The name of the variable in Dataset that contains the patient’s ID.

Model The type of model that should be fitted, i.e., Model=c("Full"), Model=c("Reduced"),
or Model=c("SemiReduced”). See the Details section below. Default Model=c("Full").

Weighted Logical. In practice it is often the case that different trials (or other clustering
units) have different sample sizes. Univariate models are used to assess surro-
gacy in the information-theoretic approach, so it can be useful to adjust for het-
erogeneity in information content between the trial-specific contributions (par-
ticularly when trial-level surrogacy measures are of primary interest and when
the heterogeneity in sample sizes is large). If Weighted=TRUE, weighted regres-
sion models are fitted. If Weighted=FALSE, unweighted regression analyses are
conducted. See the Details section below. Default TRUE.

Min.Trial.Size The minimum number of patients that a trial should contain to be included in the
analysis. If the number of patients in a trial is smaller than the value specified by
Min.Trial.Size, the data of the trial are excluded from the analysis. Default 2.
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Alpha The a-level that is used to determine the confidence intervals around R7 and
R2,. Default 0.05.

Other arguments to be passed to the function 1mer (of the R package 1me4) that
is used to fit the geralized linear mixed-effect models in the function BimixedContCont.

Details

Individual-level surrogacy

The following generalised linear mixed-effect models are fitted:

gT(E(Tij)) = pr +mqi + BZi; + by Zij,
g1 (E(T35|Si5)) = 0o + cri + 01 Zi5 + aiZij + 02i555,

where ¢ and j are the trial and subject indicators, g is an appropriate link function (i.e., an identity
link when a continuous true endpoint is considered), 5;; and T;; are the surrogate and true endpoint
values of subject j in trial ¢, and Z;; is the treatment indicator for subject j in trial 7. pr and 3
are a fixed intercept and a fixed treatment-effect on the true endpoint, while mz; and b; are the
corresponding random effects. 6y and 6; are the fixed intercept and the fixed treatment effect on
the true endpoint after accounting for the effect of the surrogate endpoint, and cp; and a; are the
corresponding random effects.

The —2 log likelihood values of the previous models (i.e., Ly and Lo, respectively) are subse-
quently used to compute individual-level surrogacy (based on the so-called Variance Reduction
Factor, VFR; for details, see Alonso & Molenberghs, 2007):

Ly — L
=1 (2512),

where N is the number of trials.
Trial-level surrogacy

When a full or semi-reduced model is requested (by using the argument Model=c("Full”) or
Model=c("SemiReduced") in the function call), trial-level surrogacy is assessed by fitting the fol-
lowing mixed models:

Sij = ps +ms; + (o +a;) Zij + €sij, (1)
Tij = pr +mri + (B4 b)) Zij + eij, (1)

where 7 and j are the trial and subject indicators, S;; and T;; are the surrogate and true endpoint
values of subject j in trial 4, Z;; is the treatment indicator for subject j in trial 4, p5 and 7 are the
fixed intercepts for S and T, mg; and mq; are the corresponding random intercepts, o and 3 are the
fixed treatment effects on S and T, and a; and b; are the corresponding random effects. The error
terms £g;; and e7;; are assumed to be independent.

When a reduced model is requested by the user (by using the argument Model=c("Reduced”) in
the function call), the following univariate models are fitted:

Sij = us + (a + ai)Zij + €515, (2)
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Tij = pr + (B+bi) Zij + e7ij, (2)

where ps and pr are the common intercepts for S and T. The other parameters are the same as
defined above, and £g;; and e7;; are again assumed to be independent.

When the user requested that a full model approach is used (by using the argument Model=c("Full")
in the function call, i.e., when models (1) were fitted), the following model is subsequently fitted:

~

Bi = Ao + Mfigi 4 Ao@; + &4, (3)

where the parameter estimates for 3;, jg;, and «; are based on models (1) (see above). When a
weighted model is requested (using the argument Weighted=TRUE in the function call), model (3) is
a weighted regression model (with weights based on the number of observations in trial 7). The —2
log likelihood value of the (weighted or unweighted) models (3) (L) is subsequently compared to
the —2 log likelihood value of an intercept-only model (Ei = A3; Lo), and R?, is computed based
on the Variance Reduction Factor (VFR; for details, see Alonso & Molenberghs, 2007):

Li—L
2 1 0
RZ —=1— it )
ht emp( N )7

where N is the number of trials.

When a semi-reduced or reduced model is requested (by using the argument Model=c (" SemiReduced")
or Model=c("Reduced") in the function call), the following model is fitted:

~

Bi = Xo + \idy; + ¢4,

where the parameter estimates for 3; and «; are based on models (2). The —2 log likelihood value
of this (weighted or unweighted) model (L1) is subsequently compared to the —2 log likelihood
value of an intercept-only model (@ = A3; Lg), and Rit is computed based on the reduction in the
likelihood (as described above).

Value

An object of class MixedContContIT with components,

Data.Analyze Prior to conducting the surrogacy analysis, data of patients who have a missing
value for the surrogate and/or the true endpoint are excluded. In addition, the
data of trials (i) in which only one type of the treatment was administered, and
(i1) in which either the surrogate or the true endpoint was a constant (i.e., all
patients within a trial had the same surrogate and/or true endpoint value) are
excluded. In addition, the user can specify the minimum number of patients that
a trial should contain in order to include the trial in the analysis. If the number
of patients in a trial is smaller than the value specified by Min.Trial.Size,
the data of the trial are excluded. Data.Analyze is the dataset on which the
surrogacy analysis was conducted.

Obs.Per.Trial A data.frame that contains the total number of patients per trial and the number
of patients who were administered the control treatment and the experimental
treatment in each of the trials (in Data.Analyze).
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Trial.Spec.Results
A data.frame that contains the trial-specific intercepts and treatment effects
for the surrogate and the true endpoints (when a full or semi-reduced model is
requested), or the trial-specific treatment effects for the surrogate and the true
endpoints (when a reduced model is requested).

R2ht A data. frame that contains the trial-level surrogacy estimate and its confidence
interval.
R2h.ind A data. frame that contains the individual-level surrogacy estimate and its con-

fidence interval.

Cor.Endpoints A data.frame that contains the correlations between the surrogate and the true
endpoint in the control treatment group (i.e., proso) and in the experimental
treatment group (i.e., pr1s1), their standard errors and their confidence intervals.

Residuals A data.frame that contains the residuals for the surrogate and true endpoints
(s:; and e7;;) that are obtained when models (1) or models (2) are fitted (see
the Details section above).

Author(s)
Wim Van der Elst, Ariel Alonso, & Geert Molenberghs

References

Alonso, A, & Molenberghs, G. (2007). Surrogate marker evaluation from an information theory
perspective. Biometrics, 63, 180-186.

See Also

FixedContContIT, plot Information-Theoretic

Examples

# Example 1

# Based on the ARMD data:

data(ARMD)

# Assess surrogacy based on a full mixed-effect model

# in the information-theoretic framework:

Sur <- MixedContContIT(Dataset=ARMD, Surr=Diff24, True=Diff52, Treat=Treat, Trial.ID=Center,
Pat.ID=Id, Model="Full")

# Obtain a summary of the results:

summary (Sur)

## Not run: # Time consuming (>5sec) code part

# Example 2

# Conduct an analysis based on a simulated dataset with 2000 patients, 200 trials,
# and Rindiv=Rtrial=.8

# Simulate the data:

Sim.Data.MTS(N.Total=2000, N.Trial=200, R.Trial.Target=.8, R.Indiv.Target=.8,
Seed=123, Model="Full")

# Assess surrogacy based on a full mixed-effect model

# in the information-theoretic framework:
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Sur2 <- MixedContContIT(Dataset=Data.Observed.MTS, Surr=Surr, True=True, Treat=Treat,
Trial.ID=Trial.ID, Pat.ID=Pat.ID, Model="Full")

# Show a summary of the results:
summary (Sur2)
## End(Not run)

model_fit_measures Goodness of fit information for survival-survival model

Description

This function returns several goodness-of-fit measures for a model fitted by fit_model_SurvSurv().
These are primarily intended for model selection.

Usage

model_fit_measures(fitted_model)

Arguments

fitted_model returned value from fit_model_SurvSurv().

Details
The following goodness-of-fit measures are returned in a named vector:

e tau_0 and tau_1: (latent) value for Kendall’s tau in the estimated model.
* log_lik: the maximized log-likelihood value.

e AIC: the Aikaike information criterion of the fitted model.

Value

a named vector containing the goodness-of-fit measures

Examples

library(Surrogate)
data("Ovarian™)
#For simplicity, data is not recoded to semi-competing risks format, but is
#left in the composite event format.
data = data.frame(
Ovarian$Pfs,
Ovarian$Surv,
Ovarian$Treat,
Ovarian$PfsInd,
Ovarian$SurvInd

)

ovarian_fitted =
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fit_model_SurvSurv(data = data,
copula_family = "clayton”,

nknots = 1)

model_fit_measures(ovarian_fitted)

Ovarian The Ovarian dataset

Description

This dataset combines the data that were collected in four double-blind randomized clinical trials in
advanced ovarian cancer (Ovarian Cancer Meta-Analysis Project, 1991). In these trials, the objec-
tive was to examine the efficacy of cyclophosphamide plus cisplatin (CP) versus cyclophosphamide
plus adriamycin plus cisplatin (CAP) to treat advanced ovarian cancer.

Usage

data("Ovarian”)

Format

A data frame with 1192 observations on the following 7 variables.

Patient The ID number of a patient.
Center The center in which a patient was treated.

Treat The treatment indicator, coded as 0=CP (active control) and 1=CAP (experimental treat-
ment).

Pfs Progression-free survival (the candidate surrogate).
PfsInd Censoring indicator for progression-free survival.
Surv Survival time (the true endpoint).

SurvInd Censoring indicator for survival time.

References

Ovarian Cancer Meta-Analysis Project (1991). Cclophosphamide plus cisplatin plus adriamycin
versus cyclophosphamide, doxorubicin, and cisplatin chemotherapy of ovarian carcinoma: a meta-
analysis. Classic papers and current comments, 3, 237-234.

Examples

data(Ovarian)
str(Ovarian)
head(Ovarian)
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plot Causal-Inference BinBin
Plots the (Meta-Analytic) Individual Causal Association and related
metrics when S and T are binary outcomes

Description

This function provides a plot that displays the frequencies, percentages, cumulative percentages or
densities of the individual causal association (ICA; R%I or Ry), and/or the odds ratios for S and T’
(95 and QT)

Usage

## S3 method for class 'ICA.BinBin'

plot(x, R2_H=TRUE, R_H=FALSE, Theta_T=FALSE,

Theta_S=FALSE, Type="Density", Labels=FALSE, Xlab.R2_H,

Main.R2_H, Xlab.R_H, Main.R_H, Xlab.Theta_S, Main.Theta_S, Xlab.Theta_T,
Main.Theta_T, Cex.Legend=1, Cex.Position="topright"”,

col, Par=par(oma=c(@, @, @, @), mar=c(5.1, 4.1, 4.1, 2.1)), ylim, ...)
Arguments

X An object of class ICA.BinBin. See ICA.BinBin.

R2_H Logical. When R2_H=TRUE, a plot of the R% is provided. Default TRUE.

R_H Logical. When R_H=TRUE, a plot of the R is provided. Default FALSE.

Theta_T Logical. When Theta_T=TRUE, a plot of the f1 is provided. Default FALSE.

Theta_S Logical. When Theta_S=TRUE, a plot of the g is provided. Default FALSE.

Type The type of plot that is produced. When Type="Freq" or Type="Percent”,

the Y-axis shows frequencies or percentages of R%{, Ry, 07, or 5. When
Type="CumPerc”, the Y-axis shows cumulative percentages. When Type="Density",
the density is shown. When the fitted object of class ICA.BinBin was obtained
using a general analysis (i.e., using the Monotonicity=c("General") argument

in the function call), sperate plots are provided for the different monotonicity
scenarios. Default "Density".

Labels Logical. When Labels=TRUE, the percentage of R%,, Ry, 07, or g values that
are equal to or larger than the midpoint value of each of the bins are displayed
(on top of each bin). Default FALSE.

Xlab.R2_H The legend of the X-axis of the R%; plot.
Main.R2_H The title of the R plot.
Xlab.R_H The legend of the X-axis of the R plot.
Main.R_H The title of the Ry plot.

Xlab.Theta_S The legend of the X-axis of the A5 plot.
Main.Theta_S  The title of the 65 plot.
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Xlab.Theta_T  The legend of the X-axis of the 6 plot.
Main.Theta_T  The title of the 61 plot.
Cex.Legend The size of the legend when Type="Al1.Densities" isused. Default Cex.Legend=1.

Cex.Position The position of the legend, Cex.Position="topright"” or Cex.Position="topleft".
Default Cex.Position="topright".

col The color of the bins. Default col <- c(8).

Par Graphical parameters for the plot. Default par (oma=c(@, 0, @, @), mar=c(5.1,
4.1,4.1,2.1)).

ylim The (min, max) values for the Y-axis.

Extra graphical parameters to be passed to hist ().

Author(s)

Wim Van der Elst, Ariel Alonso, & Geert Molenberghs

References

Alonso, A., Van der Elst, W., Molenberghs, G., Buyse, M., & Burzykowski, T. (submitted). A
causal-inference approach for the validation of surrogate endpoints based on information theory
and sensitivity analysis.

See Also

ICA.BinBin

Examples

# Compute R2_H given the marginals,

# assuming monotonicity for S and T and grids

# pi_0111=seq(@, 1, by=.001) and

# pi_1100=seq(@, 1, by=.001)

ICA <- ICA.BinBin.Grid.Sample(pil_1_=0.261, pil1_0_=0.285,
pi_1_1=0.637, pi_1_0=0.078, pi0_1_=0.134, pi_0_1=0.127,
Monotonicity=c("General"), M=2500, Seed=1)

# Plot the results (density of R2_H):
plot(ICA, Type="Density"”, R2_H=TRUE, R_H=FALSE,
Theta_T=FALSE, Theta_S=FALSE)
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plot Causal-Inference BinCont

Plots the (Meta-Analytic) Individual Causal Association and related
metrics when S is continuous and T is binary

Description

This function provides a plot that displays the frequencies, percentages, cumulative percentages or
densities of the individual causal association (ICA; R%I) in the setting where S is continuous and T
is binary.

Usage

## S3 method for class 'ICA.BinCont'
plot(x, Histogram.ICA=TRUE, Mixmean=TRUE,
Mixvar=TRUE, Deviance=TRUE,

Type="Percent”, Labels=FALSE, ...)
Arguments
X An object of class ICA.BinCont. See ICA.BinCont.

Histogram.ICA Logical. Should a histogram of ICA be provided? Default Histogram. ICA=TRUE.

Mixmean Logical. Should a plot of the calculated means of the fitted mixtures for S[0]
and S[1] across the different runs be provided? Default Mixmean=TRUE.

Mixvar Logical. Should a plot of the calculated variances of the fitted mixtures for S[0]
and S[1] across the different runs be provided? Default Mixvar=TRUE.

Deviance Logical. Should a box plot of the deviances for the fitted mixtures of S[0] and
S[1] be provided? Default Deviance=TRUE.

Type The type of plot that is produced for the histogram of ICA. When Type="Freq"
or Type="Percent”, the Y-axis shows frequencies or percentages of ?%,. When
Type="CumPerc”, the Y-axis shows cumulative percentages. When Type="Density",
the density is shown.

Labels Logical. When Labels=TRUE, the percentage of R? values that are equal to or
larger than the midpoint value of each of the bins are added in the histogram of
ICA (on top of each bin). Default FALSE.

Extra graphical parameters to be passed to hist().

Author(s)
Wim Van der Elst, Paul Meyvisch, & Ariel Alonso

References

Alonso, A., Van der Elst, W., & Meyvisch, P. (2016). Surrogate markers validation: the continuous-
binary setting from a causal inference perspective.
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See Also
ICA.BinCont

Examples

## Not run: # Time consuming code part
Fit <- ICA.BinCont(Dataset = Schizo, Surr = BPRS, True = PANSS_Bin,
Treat=Treat, M=50, Seed=1)

summary (Fit)
plot(Fit)

## End(Not run)

plot Causal-Inference ContCont

Plots the (Meta-Analytic) Individual Causal Association when S and
T are continuous outcomes

Description

This function provides a plot that displays the frequencies, percentages, or cumulative percentages
of the individual causal association (ICA; p ) and/or the meta-analytic individual causal association
(MICA; pps) values. These figures are useful to examine the sensitivity of the obtained results with
respect to the assumptions regarding the correlations between the counterfactuals (for details, see
Alonso et al., submitted; Van der Elst et al., submitted). Optionally, it is also possible to obtain plots
that are useful in the examination of the plausibility of finding a good surrogate endpoint when an
object of class ICA.ContCont is considered.

Usage

## S3 method for class 'ICA.ContCont'

plot(x, Xlab.ICA, Main.ICA, Type="Percent”,

Labels=FALSE, ICA=TRUE, Good.Surr=FALSE, Main.Good.Surr,
Par=par(oma=c(@, 0, @, @), mar=c(5.1, 4.1, 4.1, 2.1)), col, ...)

## S3 method for class 'MICA.ContCont'
plot(x, ICA=TRUE, MICA=TRUE, Type="Percent",
Labels=FALSE, Xlab.ICA, Main.ICA, Xlab.MICA, Main.MICA,

Par=par(oma=c(@, @, 0, 0), mar=c(5.1, 4.1, 4.1, 2.1)), col, ...)
Arguments
X An object of class ICA.ContCont or MICA.ContCont. See ICA.ContCont or

MICA.ContCont.
ICA Logical. When ICA=TRUE, a plot of the ICA is provided. Default TRUE.
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MICA

Type

Labels

Xlab.ICA
Main.ICA
Xlab.MICA
Main.MICA

Good. Surr

Main.Good. Surr

Par

col

Author(s)

Logical. This argument only has effect when the plot() function is applied to
an object of class MICA.ContCont. When MICA=TRUE, a plot of the MICA is
provided. Default TRUE.

The type of plot that is produced. When Type=Freq or Type=Percent, the Y-
axis shows frequencies or percentages of pa, par, and/or §. When Type=CumPerc,
the Y-axis shows cumulative percentages of pa, pas, and/or §. Default "Per-
cent".

Logical. When Labels=TRUE, the percentage of pa, pas, and/or § values that
are equal to or larger than the midpoint value of each of the bins are displayed
(on top of each bin). Default FALSE.

The legend of the X-axis of the ICA plot. Default "pa".
The title of the ICA plot. Default "ICA".

The legend of the X-axis of the MICA plot. Default "pp,".
The title of the MICA plot. Default "MICA".

Logical. When Good. Surr=TRUE, a plot of § is provided. This plot is useful in
the context of examinating the plausibility of finding a good surrogate endpoint.
Only applies when an object of class ICA.ContCont is considered. For details,
see Alonso et al. (submitted). Default FALSE.

The title of the plot of §. Only applies when an object of class ICA.ContCont is
considered. For details, see Alonso et al. (submitted).

Graphical parameters for the plot. Default par (oma=c (@, @, 0, @), mar=c(5.1,
4.1,4.1,2.1)).

The color of the bins. Default col <- c(8).

Extra graphical parameters to be passed to hist().

Wim Van der Elst, Ariel Alonso, & Geert Molenberghs

References

Alonso, A., Van der Elst, W., Molenberghs, G., Buyse, M., & Burzykowski, T. (submitted). On
the relationship between the causal inference and meta-analytic paradigms for the validation of

surrogate markers.

Van der Elst, W., Alonso, A., & Molenberghs, G. (submitted). An exploration of the relationship
between causal inference and meta-analytic measures of surrogacy.

See Also

ICA.ContCont, MICA.ContCont, plot MinSurrContCont
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Examples

# Plot of ICA

# Generate the vector of ICA values when rho_T@S@=rho_T1S1=.95, and when the

# grid of values {0, .2, ..., 1} is considered for the correlations

# between the counterfactuals:

SurICA <- ICA.ContCont(TQS0=.95, T1S1=.95, TOT1=seq(@, 1, by=.2), T0S1=seq(@, 1, by=.2),
T1S0=seq(@, 1, by=.2), S0S1=seq(@, 1, by=.2))

# Plot the results:
plot(SurICA)

# Same plot but add the percentages of ICA values that are equal to or larger
# than the midpoint values of the bins
plot(SurICA, Labels=TRUE)

# Plot of both ICA and MICA

# Generate the vector of ICA and MICA values when R_trial=.8, rho_T@S@=rho_T1S1=.8,
# D.aa=5, D.bb=10, and when the grid of values {0, .2, ..., 1} is considered

# for the correlations between the counterfactuals:

SurMICA <- MICA.ContCont(Trial.R=.80, D.aa=5, D.bb=10, T0S0=.8, T1S1=.8,
TOT1=seq(@, 1, by=.2), TOS1=seq(@, 1, by=.2), T1S0=seq(@, 1, by=.2),

S0S1=seq(@, 1, by=.2))

# Plot the vector of generated ICA and MICA values
plot(SurMICA, ICA=TRUE, MICA=TRUE)

plot FixedDiscrDiscrIT
Provides plots of trial-level surrogacy in the Information-Theoretic
framework

Description
Produces plots that provide a graphical representation of trial level surrogacy R7, based on the
Information-Theoretic approach of Alonso & Molenberghs (2007).
Usage
## S3 method for class 'FixedDiscrDiscrIT'
plot(x, Weighted=TRUE, Xlab.Trial, Ylab.Trial, Main.Trial,
Par=par(oma=c(@, 0, @, @), mar=c(5.1, 4.1, 4.1, 2.1)), ...)
Arguments

X An object of class FixedDiscrDiscrIT.
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Weighted Logical. This argument only has effect when the user requests a trial-level surro-
gacy plot (i.e., when Trial.Level=TRUE in the function call). If Weighted=TRUE,
the circles that depict the trial-specific treatment effects on the true endpoint
against the surrogate endpoint are proportional to the number of patients in the
trial. If Weighted=FALSE, all circles have the same size. Default TRUE.

Xlab.Trial The legend of the X-axis of the plot that depicts trial-level surrogacy. Default
"Treatment effect on the surrogate endpoint (a;)".

Ylab.Trial The legend of the Y-axis of the plot that depicts trial-level surrogacy. Default
"Treatment effect on the true endpoint (53;)".

Main.Trial The title of the plot that depicts trial-level surrogacy. Default "Trial-level surro-
gacy".

Par Graphical parameters for the plot. Default par (oma=c(@, @, @, @) ,mar=c(5.1,

4.1,4.1,2.1)).
Extra graphical parameters to be passed to plot ().

Author(s)
Hannah M. Ensor & Christopher J. Weir

References

Alonso, A, & Molenberghs, G. (2007). Surrogate marker evaluation from an information theory
perspective. Biometrics, 63, 180-186.

See Also
FixedDiscrDiscrIT

Examples

## Not run: # Time consuming (>5sec) code part

# Simulate the data:

Sim.Data.MTS(N.Total=2000, N.Trial=100, R.Trial.Target=.8, R.Indiv.Target=.8,
Seed=123, Model="Full")

# create a binary true and ordinal surrogate outcome

Data.Observed.MTS$True<-findInterval (Data.Observed.MTS$True,
c(quantile(Data.Observed.MTS$True,0.5)))

Data.Observed.MTS$Surr<-findInterval (Data.Observed.MTS$Surr,
c(quantile(Data.Observed.MTS$Surr,@.333),quantile(Data.Observed.MTS$Surr,0.666)))

# Assess surrogacy based on a full fixed-effect model

# in the information-theoretic framework for a binary surrogate and ordinal true outcome:
SurEval <- FixedDiscrDiscrIT(Dataset=Data.Observed.MTS, Surr=Surr, True=True, Treat=Treat,
Trial.ID=Trial.ID, Setting="ordbin")

## Request trial-level surrogacy plot. In the trial-level plot,
## make the size of the circles proportional to the number of patients in a trial:
plot(SurEval, Weighted=FALSE)
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## End(Not run)

plot ICA.ContCont.MultS
Plots the Individual Causal Association in the setting where there are
multiple continuous S and a continuous T

Description

This function provides a plot that displays the frequencies, percentages, or camulative percentages
of the multivariate individual causal association (R%). These figures are useful to examine the
sensitivity of the obtained results with respect to the assumptions regarding the correlations between
the counterfactuals.

Usage

## S3 method for class 'ICA.ContCont.MultS'
plot(x, R2_H=FALSE, Corr.R2_H=TRUE,
Type="Percent"”, Labels=FALSE,
Par=par(oma=c(@, 0, @, @), mar=c(5.1, 4.1, 4.1, 2.1)), col,

Prediction.Error.Reduction=FALSE, ...)
Arguments
X An object of class ICA.ContCont.MultS. See ICA.ContCont.MultSor ICA.ContCont.MultS_alt.
R2_H Should a plot of the k%, be provided? Default FALSE.
Corr.R2_H Should a plot of the corrected R?,; be provided? Default TRUE.
Type The type of plot that is produced. When Type=Freq or Type=Percent, the Y-

axis shows frequencies or percentages of R%,. When Type=CumPerc, the Y-axis
shows cumulative percentages of R%. Default "Percent".

Labels Logical. When Labels=TRUE, the percentage of R%, values that are equal to or
larger than the midpoint value of each of the bins are displayed (on top of each
bin). Default FALSE.

Par Graphical parameters for the plot. Default par (oma=c(@, 0, @, @), mar=c(5.1,
4.1,4.1,2.1)).
col The color of the bins. Default col <- c(8).

Prediction.Error.Reduction
Should a plot be shown that shows the prediction error (reisdual error) in pre-
dicting DeltaT using an intercept only model, and that shows the prediction
error (reisdual error) in predicting DeltaT using DeltaS:, DeltaSs, ...? De-
fault Prediction.Error.Reduction=FALSE.

Extra graphical parameters to be passed to hist ().
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Author(s)

Wim Van der Elst, Ariel Alonso, & Geert Molenberghs

References
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Van der Elst, W., Alonso, A. A., & Molenberghs, G. (2017). Univariate versus multivariate surro-
gate endpoints.

See Also

ICA.ContCont, ICA.ContCont.MultS, ICA.ContCont.MultS_alt, MICA.ContCont, plot MinSur-

rContCont

Examples

## Not run:

#time-consuming code parts
# Specify matrix Sigma (var-cavar matrix T_@, T_1, S1_0, S1_1,

# here for 1 true endpoint and 3 surrogates

s<-matrix(rep(NA, times=64),8)

450; s[2,2] <- 413.5; s[3,3] <- 174.2; s[4,4] <- 157.5;
<- 229.99; s[7,7] <- 294.2; s[8,8] <- 302.5
<- 208.5; s[7,1] <- 268.4

<- 212.3; s[8,2] <- 287.1

s[1,1] <-
s[5,5] <-
s[3,1] <-
s[4,2] <-
s[5,3] <-
s[6,4] <-
s[7,5] <=
s[8,6] <-

s[upper.tri(s)] = t(s)[upper.tri(s)]

244.0; s[6,6]
160.8; s[5,1]
124.6; s[6,2]
160.3; s[7,3]
134.3; s[8,4]
209.3;

214.7

# Marix looks like:

T E E E E R

# Conduct

ICA <- ICA.ContCont.MultS(M=100, N=200, Show.Progress = TRUE,

T_0 [1,
T_1 [2,
s1.0 [3,
S1_1 [4,
s2_0 [5,
s2_1 [6,
S3_0 [7,
S3_1 [8,

T_0 T_1

(,11 [,21]
1 450.0 NA
] NA 413.5
] 160.8 NA
] NA 124.6
] 208.5 NA
] NA 212.3
] 268.4 NA
] NA 287.1

analysis

<- 142.8
<- 130.4

S1_0
[,3]
160.8
NA
174.2
NA
160.3
NA
142.8
NA

S1_1
[,4]
NA
124.6
NA
157.5
NA
134.3
NA
130.4

S2_0
[,5]
208.5
NA
160.3
NA
244.0
NA
209.3
NA

S2_1

L,
212.
134.
229.

214.

6]
NA
30
NA
30
NA
99
NA
70

S2_0 S2_1
[,71 [,8]
268.4 NA
NA 287.1
142.8 NA
NA 130.4
209.3 NA
NA 214.7
294.2 NA
NA 302.5

Sigma=s, G = seq(from=-1, to=1, by = .00001), Seed=c(123),
Model = "Delta_T ~ Delta_S1 + Delta_S2 + Delta_S3")

# Explore

results

summary (ICA)

plot(ICA)

## End(Not run)
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plot Information-Theoretic

Provides plots of trial- and individual-level surrogacy in the
Information-Theoretic framework

Description

Produces plots that provide a graphical representation of trial- and/or individual-level surrogacy
(R2_ht and R2_h) based on the Information-Theoretic approach of Alonso & Molenberghs (2007).

Usage

## S3 method for class 'FixedContContIT'

plot(x, Trial.Level=TRUE, Weighted=TRUE, Indiv.lLevel=TRUE,

Xlab.Indiv, Ylab.Indiv, Xlab.Trial, Ylab.Trial, Main.Trial, Main.Indiv,
Par=par(oma=c(@, 0, @, @), mar=c(5.1, 4.1, 4.1, 2.1)), ...)

## S3 method for class 'MixedContContIT'
plot(x, Trial.Level=TRUE, Weighted=TRUE, Indiv.lLevel=TRUE,
Xlab.Indiv, Ylab.Indiv, Xlab.Trial, Ylab.Trial, Main.Trial, Main.Indiv,

Par=par(oma=c(@, 0, 0, @), mar=c(5.1, 4.1, 4.1, 2.1)), ...)
Arguments
X An object of class MixedContContIT or FixedContContIT.

Trial.Level

Weighted

Indiv.Level

Xlab.Indiv

Ylab.Indiv

Xlab.Trial

Ylab.Trial

Logical. If Trial.Level=TRUE, a plot of the trial-specific treatment effects on
the true endpoint against the trial-specific treatment effect on the surrogate end-
points is provided (as a graphical representation of Rj;). Default TRUE.

Logical. This argument only has effect when the user requests a trial-level surro-
gacy plot (i.e., when Trial.Level=TRUE in the function call). If Weighted=TRUE,
the circles that depict the trial-specific treatment effects on the true endpoint
against the surrogate endpoint are proportional to the number of patients in the
trial. If Weighted=FALSE, all circles have the same size. Default TRUE.

Logical. If Indiv.Level=TRUE, a plot of the trial- and treatment-corrected resid-
uals of the true and surrogate endpoints is provided. This plot provides a graph-
ical representation of Rj,. Default TRUE.

The legend of the X-axis of the plot that depicts individual-level surrogacy. De-
fault "Residuals for the surrogate endpoint (£g;;)".

The legend of the Y-axis of the plot that depicts individual-level surrogacy. De-
fault "Residuals for the true endpoint (e7;;)".

The legend of the X-axis of the plot that depicts trial-level surrogacy. Default
"Treatment effect on the surrogate endpoint (o;)".

The legend of the Y-axis of the plot that depicts trial-level surrogacy. Default
"Treatment effect on the true endpoint (/3;)".



plot Information-Theoretic 129

Main.Indiv The title of the plot that depicts individual-level surrogacy. Default "Individual-
level surrogacy".

Main.Trial The title of the plot that depicts trial-level surrogacy. Default "Trial-level surro-
gacy".

Par Graphical parameters for the plot. Default par (oma=c(@, @, 0, @), mar=c(5.1,

4.1,4.1,2.1)).
Extra graphical parameters to be passed to plot().

Author(s)
Wim Van der Elst, Ariel Alonso, & Geert Molenberghs

References

Alonso, A, & Molenberghs, G. (2007). Surrogate marker evaluation from an information theory
perspective. Biometrics, 63, 180-186.

See Also
MixedContContIT, FixedContContIT

Examples

## Load ARMD dataset
data(ARMD)

## Conduct a surrogacy analysis, using a weighted reduced univariate fixed effect model:
Sur <- MixedContContIT(Dataset=ARMD, Surr=Diff24, True=Diff52, Treat=Treat, Trial.ID=Center,
Pat.ID=Id, Model=c("Full"))

## Request both trial- and individual-level surrogacy plots. In the trial-level plot,
## make the size of the circles proportional to the number of patients in a trial:
plot(Sur, Trial.Level=TRUE, Weighted=TRUE, Indiv.Level=TRUE)

## Make a trial-level surrogacy plot using filled blue circles that

## are transparent (to make sure that the results of overlapping trials remain
## visible), and modify the title and the axes labels of the plot:

plot(Sur, pch=16, col=rgh(.3, .2, 1, 0.3), Indiv.Level=FALSE, Trial.Level=TRUE,
Weighted=TRUE, Main.Trial=c("Trial-level surrogacy (ARMD dataset)"),
Xlab.Trial=c("Difference in vision after 6 months (Surrogate)"),
Ylab.Trial=c("Difference in vision after 12 months (True enpoint)"))

## Add the estimated R2_ht value in the previous plot at position (X=-2.2, Y=0)
## (the previous plot should not have been closed):

R2ht <- format(round(as.numeric(Sur$R2ht[1]), 3))

text(x=-2.2, y=0, cex=1.4, labels=(bquote(paste(”"R"[ht]*{2}, "="~.(R2ht)))))

## Make an Individual-level surrogacy plot with red squares to depict individuals
## (rather than black circles):
plot(Sur, pch=15, col="red"”, Indiv.Level=TRUE, Trial.lLevel=FALSE)
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plot Information-Theoretic BinCombn
Provides plots of trial- and individual-level surrogacy in the
Information-Theoretic framework when both S and T are binary, or
when S is binary and T is continuous (or vice versa)

Description

Produces plots that provide a graphical representation of trial- and/or individual-level surrogacy
(R2_ht and R2_hlInd per cluster) based on the Information-Theoretic approach of Alonso & Molen-
berghs (2007).

Usage

## S3 method for class 'FixedBinBinIT'

plot(x, Trial.Level=TRUE, Weighted=TRUE, Indiv.Level.By.Trial=TRUE,
Xlab.Indiv, Ylab.Indiv, Xlab.Trial, Ylab.Trial, Main.Trial, Main.Indiv,
Par=par(oma=c(@, @, 0, 0), mar=c(5.1, 4.1, 4.1, 2.1)), ...)

## S3 method for class 'FixedBinContIT'

plot(x, Trial.Level=TRUE, Weighted=TRUE, Indiv.Level.By.Trial=TRUE,
Xlab.Indiv, Ylab.Indiv, Xlab.Trial, Ylab.Trial, Main.Trial, Main.Indiv,
Par=par(oma=c(@, @, 0, 0), mar=c(5.1, 4.1, 4.1, 2.1)), ...)

## S3 method for class 'FixedContBinIT'
plot(x, Trial.Level=TRUE, Weighted=TRUE, Indiv.Level.By.Trial=TRUE,
Xlab.Indiv, Ylab.Indiv, Xlab.Trial, Ylab.Trial, Main.Trial, Main.Indiv,

Par=par(oma=c(@, @, 0, 0), mar=c(5.1, 4.1, 4.1, 2.1)), ...)
Arguments
X An object of class FixedBinBinIT, FixedBinContIT, or FixedContBinIT.

Trial.Level Logical. If Trial.Level=TRUE, a plot of the trial-specific treatment effects on
the true endpoint against the trial-specific treatment effect on the surrogate end-
points is provided (as a graphical representation of Rp;). Default TRUE.

Weighted Logical. This argument only has effect when the user requests a trial-level surro-
gacy plot (i.e., when Trial.Level=TRUE in the function call). If Weighted=TRUE,
the circles that depict the trial-specific treatment effects on the true endpoint
against the surrogate endpoint are proportional to the number of patients in the
trial. If Weighted=FALSE, all circles have the same size. Default TRUE.

Indiv.Level.By.Trial
Logical. If Indiv.Level.By.Trial=TRUE, a plot that shows the estimated R% ,
for each trial (and confidence intervals) is provided. Default TRUE.

Xlab.Indiv The legend of the X-axis of the plot that depicts the estimated R? , , per trial.
Default "R[h.ind)?.
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Ylab.Indiv The legend of the Y-axis of the plot that shows the estimated R? , , per trial.
Default "Trial".

Xlab.Trial The legend of the X-axis of the plot that depicts trial-level surrogacy. Default
"Treatment effect on the surrogate endpoint (a;)".

Ylab.Trial The legend of the Y-axis of the plot that depicts trial-level surrogacy. Default
"Treatment effect on the true endpoint (/3;)".

Main.Indiv The title of the plot that depicts individual-level surrogacy. Default "Individual-
level surrogacy".

Main.Trial The title of the plot that depicts trial-level surrogacy. Default "Trial-level surro-
gacy".

Par Graphical parameters for the plot. Default par (oma=c(@, 0, @, @), mar=c(5.1,

4.1,4.1,2.1)).
Extra graphical parameters to be passed to plot().

Author(s)
Wim Van der Elst, Ariel Alonso, & Geert Molenberghs

References

Alonso, A, & Molenberghs, G. (2007). Surrogate marker evaluation from an information theory
perspective. Biometrics, 63, 180-186.

See Also
FixedBinBinIT, FixedBinContIT, FixedContBinIT

Examples

## Not run: # Time consuming (>5sec) code part

# Generate data with continuous Surr and True

Sim.Data.MTS(N.Total=5000, N.Trial=50, R.Trial.Target=.9, R.Indiv.Target=.9,
Fixed.Effects=c(@, @, @, @), D.aa=10, D.bb=10, Seed=1,
Model=c("Full"))

# Dichtomize Surr and True

Surr_Bin <- Data.Observed.MTS$Surr

Surr_Bin[Data.Observed.MTS$Surr>.5] <- 1

Surr_Bin[Data.Observed.MTS$Surr<=.5] <- @

True_Bin <- Data.Observed.MTS$True

True_Bin[Data.Observed.MTS$True>.15] <- 1

True_Bin[Data.Observed.MTS$True<=.15] <- @

Data.Observed.MTS$Surr <- Surr_Bin

Data.Observed.MTS$True <- True_Bin

# Assess surrogacy using info-theoretic framework

Fit <- FixedBinBinIT(Dataset = Data.Observed.MTS, Surr = Surr,
True = True, Treat = Treat, Trial.ID = Trial.ID,

Pat.ID = Pat.ID, Number.Bootstraps=100)
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# Examine results
summary (Fit)

plot(Fit, Trial.L
plot(Fit, Trial.L

## End(Not run)

plot ISTE.ContCont

evel = FALSE, Indiv.Level.By.Trial=TRUE)
evel = TRUE, Indiv.Level.By.Trial=FALSE)

plot ISTE.ContCont Plots the individual-level surrogate threshold effect (STE) values and

related metrics

Description

This function plots

the individual-level surrogate threshold effect (STE) values and related metrics,

e.g., the expected AT values for a vector of AS values.

Usage

## S3 method for class 'ISTE.ContCont'
plot(x, Outcome="ISTE", breaks=50, ...)

Arguments

X

Qutcome

breaks

Author(s)

An object of class ISTE.ContCont. See ISTE.ContCont.

The outcome for which a histogram has to be produced. When Outcome="ISTE",
a histogram of the ISTE is produced. When Outcome="MSE", a histogram of the
MSE values (of regression models in which AT is regressed on AS) is given.
When Outcome="gamma@", a histogram of ~[0] values (of regression models
in which AT is regressed on AS) is given. When Outcome="gamma1", a his-
togram of y[1] values (of regression models in which AT is regressed on AS) is
given. When Outcome="Exp.DeltaT", a histogram of the expected AT values
for a vector of AS values (specified in the call of the ISTE.ContCont func-
tion) values is given. When Outcome="Exp.DeltaT.Low.PI", a histogram of
the lower prediction intervals of the expected AT values for a vector of ASS val-
ues (specified in the call of the ISTE.ContCont function) values is given. When
Outcome="Exp.DeltaT.Up.PI", a histogram of the upper prediction intervals
of the expected AT values for a vector of AS values (specified in the call of
the ISTE.ContCont function) values is given. Dafault Outcome="ISTE". When
Outcome="Delta_S_For_Which_Delta_T_equal_0", a histogram of omega is
shown with E(DeltaT|DeltaS > omega) > 0.

The number of breaks used in the histogram(s). Default breaks=50.

Extra graphical parameters to be passed to hist ().

Wim Van der Elst, Ariel Alonso, & Geert Molenberghs
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References

Van der Elst, W., Alonso, A. A., and Molenberghs, G. (submitted). The individual-level surrogate
threshold effect in a causal-inference setting.

See Also
ISTE.ContCont
Examples
# Define input for analysis using the Schizo dataset,
# with S=BPRS and T = PANSS.
# For each of the identifiable quantities,
# uncertainty is accounted for by specifying a uniform
# distribution with min, max values corresponding to
# the 95% confidence interval of the quantity.

TOSO <- runif(min = ©.9524, max = 0.9659, n = 1000)
T1S1 <= runif(min = 0.9608, max = ©0.9677, n = 1000)

S@S@ <- runif(min=160.811, max=204.5009, n=1000)
S1S1 <= runif(min=168.989, max = 194.219, n=1000)
TOTO <- runif(min=484.462, max = 616.082, n=1000)
T1T1 <= runif(min=514.279, max = 591.062, n=1000)

Mean_TO <- runif(min=-13.455, max=-9.489, n=1000)
Mean_T1 <- runif(min=-17.17, max=-14.86, n=1000)
Mean_S0@ <- runif(min=-7.789, max=-5.503, n=1000)
Mean_S1 <- runif(min=-9.600, max=-8.276, n=1000)

# Do the ISTE analysis

## Not run:

ISTE <- ISTE.ContCont(Mean_T1=Mean_T1, Mean_T@=Mean_TO,
Mean_S1=Mean_S1, Mean_S0=Mean_S@, N=2128, Delta_S=c(-50:50),
alpha.PI=0.05, PI.Bound=0@, Show.Prediction.Plots=TRUE,
Save.Plots="No", T@S0=T0SQ, T1S1=T1S1, TOTO=TQTQ, TI1T1=T1T1,
S0S0=S0S0, S151=S1S1)

# Examine results:
summary (ISTE)

# Plots of results.
# Plot main ISTE results
plot (ISTE)
# Other plots
plot(ISTE, Outcome="MSE")
plot (ISTE, Outcome="gamma0d")
plot (ISTE, Outcome="gammal")
plot(ISTE, Outcome="Exp.DeltaT")
plot (ISTE, Outcome="Exp.DeltaT.Low.PI")
plot (ISTE, Outcome="Exp.DeltaT.Up.PI")

## End(Not run)
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plot MaxEnt ContCont  Plots the sensitivity-based and maximum entropy based Individual
Causal Association when S and T are continuous outcomes in the
single-trial setting

Description

This function provides a plot that displays the frequencies or densities of the individual causal asso-
ciation (ICA; rho[Deltal) as identified based on the sensitivity- (using the functions ICA.ContCont)
and maximum entropy-based (using the function MaxEntContCont) approaches.

Usage

## S3 method for class 'MaxEntContCont'
plot(x, Type="Freq", Xlab, col,

Main, Entropy.By.ICA=FALSE, ...)
Arguments
X An object of class MaxEntContCont. See MaxEntContCont.
Type The type of plot that is produced. When Type="Freq", the Y-axis shows fre-
quencies of ICA. When Type="Density", the density is shown. Default Type="Freq".
Xlab The legend of the X-axis of the plot.
col The color of the bins (frequeny plot) or line (density plot). Default col <- c(8).
Main The title of the plot.

Entropy.By.ICA Plot with ICA on Y-axis and entropy on X-axis.

Other arguments to be passed to plot()

Author(s)

Wim Van der Elst, Ariel Alonso, Paul Meyvisch, & Geert Molenberghs

References

Add

See Also

ICA.ContCont, MaxEntContCont
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Examples

## Not run: #time-consuming code parts
# Compute ICA for ARMD dataset, using the grid
# G={-1, -.80, ..., 1} for the undidentifiable correlations

ICA <- ICA.ContCont(T@SO = 0.769, T1S1 = 0.712, S@S0@ = 188.926,
S1S1T = 132.638, TOTO = 264.797, T1T1 = 231.771,

TOT1 = seq(-1, 1, by = 0.2), TeS1 = seq(-1, 1, by
T1S0 = seq(-1, 1, by = 0.2), S0S1 = seq(-1, 1, by

0.2),
0.2))

# Identify the maximum entropy ICA
MaxEnt_ARMD <- MaxEntContCont(x = ICA, S0S@ = 188.926,
S1S1 = 132.638, TOTO = 264.797, T1T1 = 231.771)

# Explore results using summary() and plot() functions
summary (MaxEnt_ARMD)
plot(MaxEnt_ARMD)
plot(MaxEnt_ARMD, Entropy.By.ICA = TRUE)

## End(Not run)

plot MaxEntICA BinBin Plots the sensitivity-based and maximum entropy based Individual
Causal Association when S and T are binary outcomes

Description

This function provides a plot that displays the frequencies or densities of the individual causal
association (ICA; qu) as identified based on the sensitivity- (using the functions ICA.BinBin,
ICA.BinBin.Grid.Sample, or ICA.BinBin.Grid.Full) and maximum entropy-based (using the
function MaxEntICABinBin) approaches.

Usage

## S3 method for class 'MaxEntICA.BinBin'
plot(x, ICA.Fit,

Type="Density", Xlab, col, Main, ...)
Arguments
X An object of class MaxEntICABinBin. See MaxEntICABinBin.
ICA.Fit An object of class ICA.BinBin. See ICA.BinBin.
Type The type of plot that is produced. When Type="Freq", the Y-axis shows fre-
quencies of R%{. When Type="Density", the density is shown.
Xlab The legend of the X-axis of the plot.
col The color of the bins (frequeny plot) or line (density plot). Default col <- c(8).
Main The title of the plot.

Other arguments to be passed to plot()
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Author(s)

Wim Van der Elst, Ariel Alonso, & Geert Molenberghs

References

Alonso, A., & Van der Elst, W. (2015). A maximum-entropy approach for the evluation of surrogate
endpoints based on causal inference.

See Also

ICA.BinBin, MaxEntICABinBin

Examples

# Sensitivity-based ICA results using ICA.BinBin.Grid.Sample

ICA <- ICA.BinBin.Grid.Sample(pi1_1_=0.341, pi0_1_=0.119, pi1_0_=0.254,
pi_1_.1=0.686, pi_1_0=0.088, pi_0_1=0.078, Seed=1,
Monotonicity=c("No"), M=5000)

# Maximum-entropy based ICA
MaxEnt <- MaxEntICABinBin(pi1_1_=0.341, pi@_1_=0.119, pi1_0_=0.254,
pi_1_1=0.686, pi_1_0=0.088, pi_0_1=0.078)

# Plot results
plot(x=MaxEnt, ICA.Fit=ICA)

plot MaxEntSPF BinBin Plots the sensitivity-based and maximum entropy based surrogate pre-
dictive function (SPF) when S and T are binary outcomes.

Description

Plots the sensitivity-based (Alonso et al., 2015a) and maximum entropy based (Alonso et al., 2015b)
surrogate predictive function (SPF), i.e., 7(4, j) = P(AT = i|AS = j), in the setting where both S
and T are binary endpoints. For example, r(—1, 1) quantifies the probability that the treatment has

a negative effect on the true endpoint (AT = —1) given that it has a positive effect on the surrogate
(AS =1).
Usage

## S3 method for class 'MaxEntSPF.BinBin'
plot(x, SPF.Fit, Type="All.Histograms"”, Col="grey", ...)
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Arguments
X A fitted object of class MaxEntSPF.BinBin. See MaxEntSPFBinBin.
SPF.Fit A fitted object of class SPF.BinBin. See SPF.BinBin.
Type The type of plot that is requested. Possible choices are: Type="Al1l.Histograms",
the histograms of all 9 (i, j) = P(AT = i|AS = j) vectors arranged in a 3
by 3 grid; Type="All.Densities”, plots of densities of all r(i,j) = P(AT =
i|AS = j) vectors. Default Type="All.Densities".
Col The color of the bins or lines when histograms or density plots are requested.
Default "grey"”.
Other arguments to be passed to the plot() function.
Author(s)

Wim Van der Elst, Ariel Alonso, & Geert Molenberghs

References

Alonso, A., Van der Elst, W., & Molenberghs, G. (2015a). Assessing a surrogate effect predictive
value in a causal inference framework.

Alonso, A., & Van der Elst, W. (2015b). A maximum-entropy approach for the evluation of surro-
gate endpoints based on causal inference.

See Also

SPE.BinBin

Examples

# Sensitivity-based ICA results using ICA.BinBin.Grid.Sample

ICA <- ICA.BinBin.Grid.Sample(pil_1_=0.341, pi0_1_=0.119, pil_0_=0.254,
pi_1_1=0.686, pi_1_0=0.088, pi_0_1=0.078, Seed=1,
Monotonicity=c("No"), M=5000)

# Sensitivity-based SPF
SPFSens <- SPF.BinBin(ICA)

# Maximum-entropy based SPF
SPFMaxEnt <- MaxEntSPFBinBin(pil1_1_=0.341, pi0_1_=0.119, pil1_0_=0.254,
pi_1_1=0.686, pi_1_0=0.088, pi_0_1=0.078)

# Plot results
plot(x=SPFMaxEnt, SPF.Fit=SPFSens)
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plot Meta-Analytic Provides plots of trial- and individual-level surrogacy in the meta-
analytic framework

Description

Produces plots that provide a graphical representation of trial- and/or individual-level surrogacy
based on the meta-analytic approach of Buyse & Molenberghs (2000) in the single- and multiple-
trial settings.

Usage

## S3 method for class 'BifixedContCont'’

plot(x, Trial.Level=TRUE, Weighted=TRUE,

Indiv.Level=TRUE, ICA=TRUE, Entropy.By.ICA=FALSE, Xlab.Indiv, Ylab.Indiv,
Xlab.Trial, Ylab.Trial, Main.Trial, Main.Indiv, Par=par(oma=c(@, @, @, 0),
mar=c(5.1, 4.1, 4.1, 2.1)), ...)

## S3 method for class 'BimixedContCont'

plot(x, Trial.Level=TRUE, Weighted=TRUE,

Indiv.Level=TRUE, ICA=TRUE, Entropy.By.ICA=FALSE, Xlab.Indiv, Ylab.Indiv,
Xlab.Trial, Ylab.Trial, Main.Trial, Main.Indiv, Par=par(oma=c(@, @, @, @),
mar=c(5.1, 4.1, 4.1, 2.1)), ...)

## S3 method for class 'UnifixedContCont'

plot(x, Trial.Level=TRUE, Weighted=TRUE,
Indiv.Level=TRUE, ICA=TRUE, Entropy.By.ICA=FALSE,
Xlab.Indiv, Ylab.Indiv, Xlab.Trial, Ylab.Trial,
Main.Trial, Main.Indiv, Par=par(oma=c(@, 0, 0, @),
mar=c(5.1, 4.1, 4.1, 2.1)), ...)

## S3 method for class 'UnimixedContCont'

plot(x, Trial.Level=TRUE, Weighted=TRUE,
Indiv.Level=TRUE, ICA=TRUE, Entropy.By.ICA=FALSE,
Xlab.Indiv, Ylab.Indiv, Xlab.Trial, Ylab.Trial,
Main.Trial, Main.Indiv, Par=par(oma=c(0, 0, 0, 0),

mar=c(5.1, 4.1, 4.1, 2.1)), ...)
Arguments
X An object of class UnifixedContCont, BifixedContCont, UnimixedContCont,

BimixedContCont, or Single.Trial.RE.AA.

Trial.Level Logical. If Trial.Level=TRUE and an object of class UnifixedContCont,BifixedContCont,
UnimixedContCont, or BimixedContCont is considered, a plot of the trial-
specific treatment effects on the true endpoint against the trial-specific treatment
effect on the surrogate endpoints is provided (as a graphical representation of
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Ririqr). If Trial.Level=TRUE and an object of class Single.Trial .RE.AA is
considered, a plot of the treatment effect on the true endpoint against the treat-
ment effect on the surrogate endpoint is provided, and a regression line that goes
through the origin with slope RE is added to the plot (to depict the constant RE
assumption, see Single.Trial.RE.AA for details). If Trial.Level=FALSE, this
plot is not provided. Default TRUE.

Weighted Logical. This argument only has effect when the user requests a trial-level sur-
rogacy plot (i.e., when Trial.Level=TRUE in the function call) and when an
object of class UnifixedContCont, BifixedContCont, UnimixedContCont, or
BimixedContCont is considered (not when an object of class Single.Trial.RE.AA
is considered). If Weighted=TRUE, the circles that depict the trial-specific treat-
ment effects on the true endpoint against the surrogate endpoint are proportional
to the number of patients in the trial. If Weighted=FALSE, all circles have the
same size. Default TRUE.

Indiv.Level Logical. If Indiv.Level=TRUE, a plot of the trial- and treatment-corrected resid-
uals of the true and surrogate endpoints is provided (when an object of class
UnifixedContCont, BifixedContCont, UnimixedContCont, or BimixedContCont
is considered), or a plot of the treatment-corrected residuals (when an object of
class Single.Trial.RE.AA is considered). This plot provides a graphical rep-
resentation of R, q;,. If Indiv.Level=FALSE, this plot is not provided. Default
TRUE.

ICA Logical. Should a plot of the individual level causal association be shown?
Default ICA=TRUE.

Entropy.By.ICA Logical. Should a plot that shows ICA against the entropy be shown? Default
Entropy.By.ICA=FALSE.

Xlab.Indiv The legend of the X-axis of the plot that depicts individual-level surrogacy. De-
fault "Residuals for the surrogate endpoint (eg;;)" (without the ¢ subscript when
an object of class Single.Trial.RE.AA is considered).

Ylab.Indiv The legend of the Y-axis of the plot that depicts individual-level surrogacy. De-
fault "Residuals for the true endpoint (e7;;)" (without the ¢ subscript when an
object of class Single.Trial.RE.AA is considered).

Xlab.Trial The legend of the X-axis of the plot that depicts trial-level surrogacy. Default
"Treatment effect on the surrogate endpoint (c;)" (without the ¢ subscript when
an object of class Single.Trial.RE.AA is considered).

Ylab.Trial The legend of the Y-axis of the plot that depicts trial-level surrogacy. Default
"Treatment effect on the true endpoint (/3;)" (without the ¢ subscript when an
object of class Single.Trial.RE.AA is considered).

Main.Indiv The title of the plot that depicts individual-level surrogacy. Default "Individual-
level surrogacy" when an object of class UnifixedContCont, BifixedContCont,
UnimixedContCont, or BimixedContCont is considered, and "Adjusted Asso-
ciation (rhoyz) when an object of class Single.Trial.RE.AA is considered.

Main.Trial The title of the plot that depicts trial-level surrogacy. Default "Trial-level surro-
gacy" (when an object of class UnifixedContCont, BifixedContCont, UnimixedContCont,
or BimixedContCont is considered) or "Relative Effect (RE)" (when an object
of class Single.Trial.RE.AA is considered).
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Par Graphical parameters for the plot. Default par (oma=c(@, 0, @, @), mar=c(5.1,
4.1,4.1,2.1)).

Extra graphical parameters to be passed to plot().

Author(s)
Wim Van der Elst, Ariel Alonso, & Geert Molenberghs

References

Buyse, M., Molenberghs, G., Burzykowski, T., Renard, D., & Geys, H. (2000). The validation of
surrogate endpoints in meta-analysis of randomized experiments. Biostatistics, 1, 49-67.

See Also
UnifixedContCont, BifixedContCont, UnifixedContCont, BimixedContCont, Single.Trial. RE.AA

Examples

## Not run: # time consuming code part
##### Multiple-trial setting

## Load ARMD dataset
data(ARMD)

## Conduct a surrogacy analysis, using a weighted reduced univariate fixed effect model:
Sur <- UnifixedContCont(Dataset=ARMD, Surr=Diff24, True=Diff52, Treat=Treat, Trial.ID=Center,
Pat.ID=Id, Number.Bootstraps=100, Model=c("Reduced"), Weighted=TRUE)

## Request both trial- and individual-level surrogacy plots. In the trial-level plot,
## make the size of the circles proportional to the number of patients in a trial:
plot(Sur, Trial.Level=TRUE, Weighted=TRUE, Indiv.Level=TRUE)

## Make a trial-level surrogacy plot using filled blue circles that

## are transparent (to make sure that the results of overlapping trials remain
## visible), and modify the title and the axes labels of the plot:

plot(Sur, pch=16, col=rgbh(.3, .2, 1, 0.3), Indiv.Level=FALSE, Trial.Level=TRUE,
Weighted=TRUE, Main.Trial=c("Trial-level surrogacy (ARMD dataset)"),
Xlab.Trial=c("Difference in vision after 6 months (Surrogate)"),
Ylab.Trial=c("Difference in vision after 12 months (True enpoint)"))

## Add the estimated R2_trial value in the previous plot at position (X=-7, Y=11)
## (the previous plot should not have been closed):

R2trial <- format(round(as.numeric(Sur$Trial.R2[1]), 3))

text(x=-7, y=11, cex=1.4, labels=(bquote(paste("R"[triall”{2}, "="~.(R2trial)))))

## Make an Individual-level surrogacy plot with red squares to depict individuals
## (rather than black circles):
plot(Sur, pch=15, col="red"”, Indiv.Level=TRUE, Trial.lLevel=FALSE)

## Same plot as before, but now with smaller squares, a y-axis with range [-40; 401,
## and the estimated R2_indiv value in the title of the plot:
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R2ind <- format(round(as.numeric(Sur$Indiv.R2[1]), 3))
plot(Sur, pch=15, col="red”, Indiv.Level=TRUE, Trial.Level=FALSE, cex=.5,
ylim=c(-40, 40), Main.Indiv=bquote(paste("R"[indiv]*{2}, "="~.(R2ind))))

#i##HH# Single-trial setting

## Conduct a surrogacy analysis in the single-trial meta-analytic setting:
SurSTS <- Single.Trial.RE.AA(Dataset=ARMD, Surr=Diff24, True=Diff52, Treat=Treat, Pat.ID=Id)

# Request a plot of individual-level surrogacy and a plot that depicts the Relative effect
# and the constant RE assumption:

plot(SurSTS, Trial.Level=TRUE, Indiv.Level=TRUE)

## End(Not run)

plot MinSurrContCont  Graphically illustrates the theoretical plausibility of finding a good
surrogate endpoint in the continuous-continuous case

Description

This function provides a plot that displays the frequencies, percentages, or cumulative percentages
of p2,,, for a fixed value of § (given the observed variances of the true endpoint in the control
and experimental treatment conditions and a specified grid of values for the unidentified parameter
P,y 5 see MinSurrContCont). For details, see the online appendix of Alonso et al., submitted.

Usage

## S3 method for class 'MinSurrContCont'
plot(x, main, col, Type="Percent"”, Labels=FALSE,

Par=par(oma=c(@, 0, @, @), mar=c(5.1, 4.1, 4.1, 2.1)), ...)
Arguments
X An object of class MinSurrContCont. See MinSurrContCont.
main The title of the plot.
col The color of the bins.
Type The type of plot that is produced. When Type=Freq or Type=Percent, the Y-

axis shows frequencies or percentages of p2 . . When Type=CumPerc, the Y-
axis shows cumulative percentages of p2,;,,. Default "Percent".

Labels Logical. When Labels=TRUE, the percentage of p2,;, values that are equal to or
larger than the midpoint value of each of the bins are displayed (on top of each
bin). Only applies when Type=Freq or Type=Percent. Default FALSE.

Par Graphical parameters for the plot. Default par (oma=c(@, 0, @, @), mar=c(5.1,
4.1,4.1,2.1)).

Extra graphical parameters to be passed to hist ().
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Author(s)

Wim Van der Elst, Ariel Alonso, & Geert Molenberghs

References

Alonso, A., Van der Elst, W., Molenberghs, G., Buyse, M., & Burzykowski, T. (submitted). On
the relationship between the causal inference and meta-analytic paradigms for the validation of
surrogate markers.

See Also

MinSurrContCont

Examples

# compute rho”2_min in the setting where the variances of T in the control
# and experimental treatments equal 100 and 120, delta is fixed at 50,

# and the grid G={@, .01, ..., 1} is considered for the counterfactual

# correlation rho_ToT1:

MinSurr <- MinSurrContCont(T@T@ = 100, T1T1 = 120, Delta = 50,

TOT1 = seq(@, 1, by = 0.01))

# Plot the results (use percentages on Y-axis)
plot(MinSurr, Type="Percent")

# Same plot, but add the percentages of ICA values that are equal to or
# larger than the midpoint values of the bins
plot(MinSurr, Labels=TRUE)

plot PredTrialTContCont
Plots the expected treatment effect on the true endpoint in a new trial
(when both S and T are normally distributed continuous endpoints)

Description

The key motivation to evaluate a surrogate endpoint is to be able to predict the treatment effect
on the true endpoint 7" based on the treatment effect on S in a new trial ¢ = 0. The function
Pred.TrialT.ContCont allows for making such predictions. The present plot function shows the
results graphically.

Usage

## S3 method for class 'PredTrialTContCont'
plot(x, Size.New.Trial=5, CI.Segment=1, ...)
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Arguments

X

A fitted object of class Pred. TrialT.ContCont, for details see Pred. TrialT.ContCont.

Size.New.Trial The expected treatment effect on 7' is drawn as a black circle with size specified

by Size.New.Trial. Default Size.New.Trial=5.

CI.Segment The confidence interval around the expected treatment effect on 7' is depicted by

Author(s)

a dashed horizontal line. By default, the width of the horizontal line of the hori-
zontal section of the confidence interval indicator is 2 times the values specified
by CI.Segment. Default CI.Segment = 1.

Extra graphical parameters to be passed to plot().

Wim Van der Elst, Ariel Alonso, & Geert Molenberghs

See Also
Pred.TrialT.ContCont
Examples
## Not run: # time consuming code part

# Generate dataset

Sim.Data.MTS(N.Total=2000, N.Trial=15, R.Trial.Target=.95,
R.Indiv.Target=.8, D.aa=10, D.bb=50,

Fixed.Effects=c(1, 2, 30, 90), Seed=1)

# Evaluate surrogacy using a reduced bivariate mixed-effects model
BimixedFit <- BimixedContCont(Dataset = Data.Observed.MTS,

Surr =
Pat.ID

Surr, True = True, Treat = Treat, Trial.ID = Trial.ID,
= Pat.ID, Model="Reduced")

# Suppose that in a new trial, it was estimated alpha_0 = 30
# predict beta_0 in this trial

Pred_Beta <- Pred.TrialT.ContCont(Object = BimixedFit,
alpha_0 = 30)

# Examine the results
summary (Pred_Beta)

# Plot

the results

plot(Pred_Beta)

## End(Not run)
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plot SPF BinBin Plots the surrogate predictive function (SPF) in the binary-binary set-
tinf.

Description

Plots the surrogate predictive function (SPF), i.e., r(i,j) = P(AT = i|AS = j), in the setting
where both S and T are binary endpoints. For example, r(—1, 1) quantifies the probability that the
treatment has a negative effect on the true endpoint (A7 = —1) given that it has a positive effect
on the surrogate (AS = 1).

Usage

## S3 method for class 'SPF.BinBin'
plot(x, Type="All.Histograms"”, Specific.Pi="r_0_0", Col="grey",

Box.Plot.Outliers=FALSE, Legend.Pos="topleft”, Legend.Cex=1, ...)
Arguments
X A fitted object of class SPF.BinBin. See ICA.BinBin.
Type The type of plot that is requested. Possible choices are: Type="Al1l.Histograms",

the histograms of all 9 (i, j) = P(AT = i|AS = j) vectors arranged in a 3
by 3 grid; Type="All.Densities", plots of densities of all r(i,j) = P(AT =
i|AS = j) vectors; Type="Histogram”, the histogram of a particular r (3, j) =
P(AT = i|AS = j) vector (the Specific.Pi= argument has to be used
to specify the desired (7, j)); Type="Density"”, the density of a particular
r(i,j) = P(AT = i|AS = j) vector (the Specific.Pi= argument has to be
used to specify the desired (i, §)); Type="Box.Plot", abox plotof all r(4, j) =
P(AT = i|AS = j) vectors; Type="Lines.Mean", a line plot the depicts the
means of all r(i,j) = P(AT = i|AS = j) vectors; Type="Lines.Median",
a line plot the depicts the medians of all r(i,j) = P(AT = i{|AS = j) vec-
tors; Type="Lines.Mode", a line plot the depicts the modes of all r(i,j) =
P(AT = i|AS = j) vectors; Type="3D.Mean", a 3D bar plot the depicts the
means of all 7(4,j) = P(AT = i|AS = j) vectors; Type="3D.Median", a 3D
bar plot the depicts the medians of all r(i, j) = P(AT = i|AS = j) vectors;
Type="3D.Mode", a 3D bar plot the depicts the modes of all (i, j) = P(AT =
i|AS = j) vectors.

Specific.Pi When Type="Histogram” or Type="Density" , the histogram/density of a par-
ticular (4, j) = P(AT = i|AS = j) vector is shown. The Specific.Pi=
argument is used to specify the desired (3, j)). Default r_o_o.

Col The color of the bins or lines when histograms or density plots are requested.
Default "grey".

Box.Plot.Outliers
Logical. Should outliers be depicted in the box plots?. Default FALSE.

Legend.Pos Position of the legend when a type="Box.Plot", type="Lines.Mean", type="Lines.Median",
or type="Lines.Mode" is requested. Default "topleft".
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Legend. Cex Size of the legend when a type="Box.Plot", type="Lines.Mean", type="Lines.Median",
or type="Lines.Mode" is requested. Default 1.

Arguments to be passed to the plot, histogram, ... functions.

Author(s)

Wim Van der Elst, Ariel Alonso, & Geert Molenberghs

References

Alonso, A., Van der Elst, W., & Molenberghs, G. (2015). Assessing a surrogate effect predictive
value in a causal inference framework.

See Also

SPE.BinBin

Examples

## Not run:

# Generate plausible values for Pi

ICA <- ICA.BinBin.Grid.Sample(pil_1_=0.341, pi0_1_=0.119,
pil_0_=0.254, pi_1_1=0.686, pi_1_0=0.088, pi_0_1=0.078, Seed=1,
Monotonicity=c("General”), M=2500)

# Compute the surrogate predictive function (SPF)
SPF <- SPF.BinBin(ICA)

# Explore the results
summary (SPF)

# Examples of plots

plot(SPF, Type="All.Histograms")

plot(SPF, Type="All.Densities")

plot(SPF, Type="Histogram", Specific.Pi="r_0_0")
plot(SPF, Type="Box.Plot"”, Legend.Pos="topleft", Legend.Cex=.7)
plot(SPF, Type="Lines.Mean")

plot(SPF, Type="Lines.Median")

plot(SPF, Type="3D.Mean")

plot(SPF, Type="3D.Median")

plot(SPF, Type="3D.Spinning.Mean")

plot(SPF, Type="3D.Spinning.Median")

## End(Not run)
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plot SPF BinCont Plots the surrogate predictive function (SPF) in the binary-continuous
setting.

Description

Plots the surrogate predictive function (SPF) based on sensitivity-analyis, i.e., P(AT|AS € I[ab]),
in the setting where S is continuous and 7" is a binary endpoint.

Usage
## S3 method for class 'SPF.BinCont'
plot(x, Type="Frequency"”, Col="grey"”, Main, Xlab=TRUE, ...)
Arguments
X A fitted object of class SPF.BinCont. See ICA.BinCont.
Type The type of plot that is requested. The argument Type="Frequency” requests

histograms for P(AT|AS € Ifab]). The argument Type="Percentage" re-

quests relative frequenties for P(AT|AS € I[ab]). The argument Type="Most.Likely.DeltaT"

requests a histogram of the most likely AT values. For example, when in one
run of the sensitivity analysis, P(AT = —1|AS € I[ab]) = .6, P(AT =
0|AS € I[ab]) = .3, and P(AT = —1|AS € I[ab]) = .1, the most likely out-

come in this run would be P(AT = —1. The argument Type="Most.Likely.DeltaT"

generates a plot with percentages for the most likely P(AT') value across all ob-
tained values in the sensitivity analysis.

Col The color of the bins or lines when histograms or density plots are requested.
Default "grey".

Main The title of the plot.

Xlab Logical. Should labels on the X-axis be shown? Default X1ab=TRUE.

Arguments to be passed to the plot, histogram, ... functions.

Author(s)
‘Wim Van der Elst & Ariel Alonso

References
Alonso, A., Van der Elst, W., Molenberghs, G., & Verbeke, G. (2017). Assessing the predictive
value of a continuous surogate for a binary true endpoint based on causal inference.

See Also
SPFE.BinCont
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Examples

## Not run: # time consuming code part

data(Schizo_BinCont)

# Use ICA.BinCont to examine surrogacy

Result_BinCont <- ICA.BinCont(M = 1000, Dataset = Schizo_BinCont,
Surr = PANSS, True = CGI_Bin, Treat=Treat, Diff.Sigma=TRUE)

# Obtain SPF
Fit <- SPF.BinCont(x=Result_BinCont, a = -30, b = -3)

# examine results
summary (Fit1)
plot(Fit1)

plot(Fit1, Type="Most.Likely.DeltaT")

## End(Not run)

plot TriallLevelIT Provides a plots of trial-level surrogacy in the information-theoretic
Jframework based on the output of the TriallLevelIT() function

Description

Produces a plot that provides a graphical representation of trial-level surrogacy based on the output
of the TriallLevelIT() function (information-theoretic framework).

Usage

## S3 method for class 'TriallevellT'
plot(x, Xlab.Trial,
Ylab.Trial, Main.Trial, Par=par(oma=c(0, @, @, 0),

mar=c(5.1, 4.1, 4.1, 2.1)), ...)
Arguments

X An object of class TriallLevellT.

Xlab.Trial The legend of the X-axis of the plot that depicts trial-level surrogacy. Default
"Treatment effect on the surrogate endpoint (c;)".

Ylab.Trial The legend of the Y-axis of the plot that depicts trial-level surrogacy. Default
"Treatment effect on the true endpoint (/3;)".

Main.Trial The title of the plot that depicts trial-level surrogacy. Default "Trial-level surro-
gacy".

Par Graphical parameters for the plot. Default par (oma=c (@, @, 0, @), mar=c(5.1,

4.1,4.1,2.1)).
Extra graphical parameters to be passed to plot ().
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Author(s)

Wim Van der Elst, Ariel Alonso, & Geert Molenberghs

References

Buyse, M., Molenberghs, G., Burzykowski, T., Renard, D., & Geys, H. (2000). The validation of
surrogate endpoints in meta-analysis of randomized experiments. Biostatistics, 1, 49-67.

See Also

UnifixedContCont, BifixedContCont, UnifixedContCont, BimixedContCont, TrialLevellT

Examples

# Generate vector treatment effects on S
set.seed(seed = 1)
Alpha.Vector <- seq(from = 5, to = 10, by=.1) + runif(min = -.5, max = .5, n = 51)

# Generate vector treatment effects on T
set.seed(seed=2)
Beta.Vector <- (Alpha.Vector * 3) + runif(min = -5, max = 5, n = 51)

# Apply the function to estimate R*2_{h.t}
Fit <- TriallLevelIT(Alpha.Vector=Alpha.Vector,
Beta.Vector=Beta.Vector, N.Trial=50, Model="Reduced")

# Plot the results

plot(Fit)
plot TrialLevelMA Provides a plots of trial-level surrogacy in the meta-analytic frame-
work based on the output of the TrialLevelMA() function
Description

Produces a plot that provides a graphical representation of trial-level surrogacy based on the output
of the TriallLevel() function (meta-analytic framework).

Usage

## S3 method for class 'TriallevelMA'

plot(x, Weighted=TRUE, Xlab.Trial,

Ylab.Trial, Main.Trial, Par=par(oma=c(0, @, @, 0),
mar=c(5.1, 4.1, 4.1, 2.1)), ...)
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Arguments

X An object of class TrialLevelMA.

Weighted Logical. If Weighted=TRUE, the circles that depict the trial-specific treatment
effects on the true endpoint against the surrogate endpoint are proportional to
the number of patients in the trial. If Weighted=FALSE, all circles have the same
size. Default TRUE.

Xlab.Trial The legend of the X-axis of the plot that depicts trial-level surrogacy. Default
"Treatment effect on the surrogate endpoint (o;)".

Ylab.Trial The legend of the Y-axis of the plot that depicts trial-level surrogacy. Default
"Treatment effect on the true endpoint (/3;)".

Main.Trial The title of the plot that depicts trial-level surrogacy. Default "Trial-level surro-
gacy".

Par Graphical parameters for the plot. Default par (oma=c(@, @, 0, @), mar=c(5.1,
4.1,4.1,2.1)).

Extra graphical parameters to be passed to plot().
Author(s)

Wim Van der Elst, Ariel Alonso, & Geert Molenberghs

References

Buyse, M., Molenberghs, G., Burzykowski, T., Renard, D., & Geys, H. (2000). The validation of
surrogate endpoints in meta-analysis of randomized experiments. Biostatistics, 1, 49-67.

See Also
UnifixedContCont, BifixedContCont, UnifixedContCont, BimixedContCont, TrialLevelMA

Examples

# Generate vector treatment effects on S

set.seed(seed = 1)

Alpha.Vector <- seq(from = 5, to = 10, by=.1) + runif(min = -.5, max = .5, n = 51)
# Generate vector treatment effects on T

set.seed(seed=2)

Beta.Vector <- (Alpha.Vector * 3) + runif(min = -5, max = 5, n = 51)

# Vector of sample sizes of the trials (here, all n_i=10)

N.Vector <- rep(10, times=51)

# Apply the function to estimate R*2_{trial}
Fit <- TriallLevelMA(Alpha.Vector=Alpha.Vector,
Beta.Vector=Beta.Vector, N.Vector=N.Vector)

# Plot the results and obtain summary
plot(Fit)
summary(Fit)
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plot TwoStageSurvSurv Plots trial-level surrogacy in the meta-analytic framework when two
survival endpoints are considered.

Description
Produces a plot that graphically depicts trial-level surrogacy when the surrogate and true endpoints
are survival endpoints.

Usage

## S3 method for class 'TwoStageSurvSurv'
plot(x, Weighted=TRUE, xlab, ylab, main,

Par=par(oma=c(@, @, 0, @), mar=c(5.1, 4.1, 4.1, 2.1)), ...)
Arguments
X An object of class TwoStageContCont.
Weighted Logical. If Weighted=TRUE, the circles that depict the trial-specific treatment

effects on the true endpoint against the surrogate endpoint are proportional to
the number of patients in the trial. If Weighted=FALSE, all circles have the same
size. Default TRUE.

x1ab The legend of the X-axis, default "Treatment effect on the surrogate endpoint
(aq)".

ylab The legend of the Y-axis, default "Treatment effect on the true endpoint (3;)".

main The title of the plot, default "Trial-level surrogacy".

Par Graphical parameters for the plot. Default par (oma=c (@, @, 0, @), mar=c(5.1,

4.1,4.1,2.1)).
Extra graphical parameters to be passed to plot().

Author(s)
Wim Van der Elst, Ariel Alonso, & Geert Molenberghs

See Also

TwoStageSurvSurv

Examples

# Open Ovarian dataset

data(Ovarian)

# Conduct analysis

Results <- TwoStageSurvSurv(Dataset = Ovarian, Surr = Pfs, SurrCens = PfsInd,
True = Surv, TrueCens = SurvInd, Treat = Treat, Trial.ID = Center)

# Examine results of analysis

summary (Results)

plot(Results)



plot.comb27.BinBin 151

plot.comb27.BinBin Plots the distribution of prediction error functions in decreasing order
of appearance.

Description

The function plot.comb27.BinBin plots each of the selected prediction functions in decreasing
order in the single-trial causal-inference framework when both the surrogate and the true endpoints
are binary outcomes. The distribution of frequencies at which each of the 27 possible predicton
functions are selected provides additional insights regarding the association between S (Ag) and T’
(A7).. See Details below.

Usage

## S3 method for class 'comb27.BinBin'
plot(x,lab,...)

Arguments
X An object of class comb27.BinBin. See comb27.BinBin.
lab a supplementary label to the graph.
Other arguments to be passed
Details

Each of the 27 prediction functions is coded as x/y/z with X, y and z taking values in —1,0, 1. As an
example, the combination 0/0/0 represents the prediction function that projects every value of Ag
to 0. Similarly, the combination -1/0/1 is the identity function projecting every value of Ag to the
same value for Ar.

Value

An object of class comb27.BinBin with components,

index count variable

Monotonicity The vector of Monotonicity assumptions

Pe The vector of the prediction error values.

combo The vector containing the codes for the each of the 27 prediction functions.
R2_H The vector of the R?, values.

H_Delta_T The vector of the entropies of Ar.

H_Delta_S The vector of the entropies of Ag.

I_Delta_T_Delta_S
The vector of the mutual information of Ag and Ar.
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Author(s)
Paul Meyvisch, Wim Van der Elst, Ariel Alonso

References

Alonso A, Van der Elst W, Molenberghs G, Buyse M and Burzykowski T. (2016). An information-
theoretic approach for the evaluation of surrogate endpoints based on causal inference.

Alonso A, Van der Elst W and Meyvisch P (2016). Assessing a surrogate predictive value: A causal
inference approach.

See Also

comb27.BinBin

Examples

## Not run: # time consuming code part

CIGTS_27 <- comb27.BinBin(pi1_1_ = ©.3412, pil1_0_ = 0.2539, pi0_1_ = 0.119,
pi_1_1 = 0.6863, pi_1_0 = 0.0882, pi_0_1 = 0.0784,
Seed=1,Monotonicity=c("No"), M=500000)

plot.comb27.BinBin(CIGTS_27,1ab="CIGTS")

## End(Not run)

plot.Fano.BinBin Plots the distribution of R"2_H L either as a density or as function of
w_10 in the setting where both S and T are binary endpoints

Description

The function plot.Fano.BinBin plots the distribution of R%; which is fully identifiable for given
values of m1g. See Details below.

Usage

## S3 method for class 'Fano.BinBin'
plot(x,Type="Density",Xlab.R2_HL,main.R2_HL,
ylab="density",Par=par(mfrow=c(1,1),oma=c(0,0,0,0),mar=c(5.1,4.1,4.1,2.1)),
Cex.Legend=1,Cex.Position="top", 1lwd=3,linety=c(5,6,7),color=c(8,9,3),...)

Arguments
X An object of class Fano.BinBin. See Fano.BinBin.
Type The type of plot that is produced. When Type="Freq”, a histogram of R%,,

is produced. When Type="Density", the density of R%, is produced. When
Type="Scatter", a scatter plot of R%IL is produced as a function of my. De-
fault Type="Scatter".
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Xlab.R2_HL The label of the X-axis when density plots or histograms are produced.
main.R2_HL Title of the density plot or histogram.
ylab The label of the Y-axis when density plots or histograms are produced. Default
ylab="density".
Par Graphical parameters for the plot. Default par (mfrow=c(1,1),oma=c(@,0,0,0),mar=c(5.1,4.1,4.1,
Cex.Legend The size of the legend. Default Cex.Legend=1.
Cex.Position  The position of the legend. Default Cex.Position="top".
lwd The line width for the density plot . Default 1wd=3.
linety The line types corresponding to each level of fano_delta. Default linety=c(5,6,7).
color The color corresponding to each level of fano_delta . Default color=c(8,9, 3).

Other arguments to be passed.

Details

Values for 71 have to be uniformly sampled from the interval [0, min(7;., 7.)]. Any sampled value
for 1o will fully determine the bivariate distribution of potential outcomes for the true endpoint.

The vector Ty, fully determines R%;; .

Value

An object of class Fano.BinBin with components,

R2_HL The sampled values for R%;; .
H_Delta_T The sampled values for HAT'.
minpilo The minimum value for 7.
maxpilo The maximum value for 7.
samplepilo The sampled value for 7.
delta The specified vector of upper bounds for the prediction errors.
uncertainty Indexes the sampling of pil_.
pi_00 The sampled values for .
pi_11 The sampled values for ;.
pi_01 The sampled values for mp;.
pi_10 The sampled values for 1.
Author(s)

Paul Meyvisch, Wim Van der Elst, Ariel Alonso

References

Alonso, A., Van der Elst, W., & Molenberghs, G. (2014). Validation of surrogate endpoints: the
binary-binary setting from a causal inference perspective.
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See Also

Fano.BinBin

Examples

# Conduct the analysis assuming no montonicity

# for the true endpoint, using a range of

# upper bounds for prediction errors
FANO<-Fano.BinBin(pil_ = ©.5951 , pi_1 = 0.7745,
fano_delta=c(0.05, 0.1, 0.2), M=1000)

plot (FANO, Type="Scatter"”, color=c(3,4,5),Cex.Position="bottom")

plot.PPE.BinBin Plots the distribution of either PPE, RPE or R"2_H either as a
density or as a histogram in the setting where both S and T' are binary
endpoints

Description

The function plot.PPE.BinBin plots the distribution of PPFE, RPFE or R%{ in the setting where
both surrogate and true endpoints are binary in the single-trial causal-inference framework. See
Details below.

Usage

## S3 method for class 'PPE.BinBin'
plot(x,Type="Density",Param="PPE",6Xlab.PE,main.PE,
ylab="density",Cex.Legend=1,Cex.Position="bottomright”, lwd=3,linety=1,color=1,
Breaks=0.05, xlimits=c(0,1), ...)

Arguments
X An object of class PPE.BinBin. See PPE.BinBin.
Type The type of plot that is produced. When Type="Freq", a histogram is produced.

When Type="Density", a density is produced. Default Type="Density".

Param Parameter to be plotted: is either "PPE", "RPE" or "ICA"
Xlab.PE The label of the X-axis when density plots or histograms are produced.
main.PE Title of the density plot or histogram.
ylab The label of the Y-axis for the density plots. Default ylab="density".
Cex.Legend The size of the legend. Default Cex.Legend=1.

Cex.Position  The position of the legend. Default Cex.Position="bottomright”.
lwd The line width for the density plot. Default 1wd=3.
linety The line types for the density. Default linety=1.
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color The color of the density or histogram. Default color=1.
Breaks The breaks for the histogram. Default Breaks=0.05.
xlimits The limits for the X-axis. Default x1imits=c(0,1).

Other arguments to be passed.

Details

In the continuous normal setting, surroagacy can be assessed by studying the association between
the individual causal effects on .S and 7" (see ICA.ContCont). In that setting, the Pearson correlation
is the obvious measure of association.

When S and T are binary endpoints, multiple alternatives exist. Alonso et al. (2016) proposed
the individual causal association (ICA; qu), which captures the association between the individual
causal effects of the treatment on S (Ag) and T' (A7) using information-theoretic principles.

The function PPE.BinBin computes R using a grid-based approach where all possible combina-
tions of the specified grids for the parameters that are allowed that are allowed to vary freely are
considered. It additionally computes the minimal probability of a prediction error (PPE) and the re-
duction on the PPE using information that .S conveys on 7'. Both measures provide complementary
information over the R? and facilitate more straightforward clinical interpretation.

Value

An object of class PPE.BinBin with components,

index count variable

PPE The vector of the PPE values.

RPE The vector of the RPE values.

PPE_T The vector of the PP Er values indicating the probability on a prediction error
without using information on S.

R2_H The vector of the R?; values.

H_Delta_T The vector of the entropies of Ap.

H_Delta_S The vector of the entropies of Ag.

I_Delta_T_Delta_S
The vector of the mutual information of Ag and Ar.

Pi.Vectors An object of class data. frame that contains the valid 7 vectors.

Author(s)
Paul Meyvisch, Wim Van der Elst, Ariel Alonso, Geert Molenberghs

References

Alonso A, Van der Elst W, Molenberghs G, Buyse M and Burzykowski T. (2016). An information-
theoretic approach for the evaluation of surrogate endpoints based on causal inference.

Meyvisch P., Alonso A.,Van der Elst W, Molenberghs G. (2018). Assessing the predictive value
of a binary surrogate for a binary true endpoint, based on the minimum probability of a prediction
error.
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See Also
PPE.BinBin

Examples

## Not run: # Time consuming part

PANSS <- PPE.BinBin(pi1_1_=0.4215, pi@_1_=0.0538, pil1_0_=0.0538,
pi_1_.1=0.5088, pi_1_0=0.0307,pi_0_1=0.0482,
Seed=1, M=2500)

plot (PANSS, Type="Freq",Param="RPE",color="grey" ,Breaks=0.05,x1limits=c(@,1),main="PANSS")

## End(Not run)

plot.SurvSurv Provides plots of trial- and individual-level surrogacy in the
Information-Theoretic framework when both S and T are time-to-event
endpoints
Description

Produces plots that provide a graphical representation of trial- and/or individual-level surrogacy
(R2_ht and R2_hlInd per cluster) based on the Information-Theoretic approach of Alonso & Molen-
berghs (2007).

Usage

## S3 method for class 'SurvSurv'

plot(x, Trial.Level=TRUE, Weighted=TRUE,
Indiv.Level.By.Trial=TRUE, Xlab.Indiv, Ylab.Indiv, Xlab.Trial,
Ylab.Trial, Main.Trial, Main.Indiv,

Par=par(oma=c(@, 0, 0, @), mar=c(5.1, 4.1, 4.1, 2.1)), ...)
Arguments
X An object of class FixedBinBinIT.

Trial.Level Logical. If Trial.Level=TRUE, a plot of the trial-specific treatment effects on
the true endpoint against the trial-specific treatment effect on the surrogate end-
points is provided (as a graphical representation of Rp;). Default TRUE.

Weighted Logical. This argument only has effect when the user requests a trial-level surro-
gacy plot (i.e., when Trial.Level=TRUE in the function call). If Weighted=TRUE,
the circles that depict the trial-specific treatment effects on the true endpoint
against the surrogate endpoint are proportional to the number of patients in the
trial. If Weighted=FALSE, all circles have the same size. Default TRUE.

Indiv.Level.By.Trial
Logical. If Indiv.Level.By.Trial=TRUE, a plot that shows the estimated R? , ,
for each trial (and confidence intervals) is provided. Default TRUE.
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Xlab.Indiv The legend of the X-axis of the plot that depicts the estimated R3 , , per trial.
Default "R[h.ind)?.

Ylab.Indiv The legend of the Y-axis of the plot that shows the estimated R3 ., per trial.
Default "Trial".

Xlab.Trial The legend of the X-axis of the plot that depicts trial-level surrogacy. Default
"Treatment effect on the surrogate endpoint (a;)".

Ylab.Trial The legend of the Y-axis of the plot that depicts trial-level surrogacy. Default
"Treatment effect on the true endpoint (53;)".

Main.Indiv The title of the plot that depicts individual-level surrogacy. Default "Individual-
level surrogacy".

Main.Trial The title of the plot that depicts trial-level surrogacy. Default "Trial-level surro-
gacy".

Par Graphical parameters for the plot. Default par (oma=c (@, @, 0, @), mar=c(5.1,

4.1,4.1,2.1)).

Extra graphical parameters to be passed to plot().

Author(s)

Wim Van der Elst, Ariel Alonso, & Geert Molenberghs

References

Alonso, A, & Molenberghs, G. (2007). Surrogate marker evaluation from an information theory
perspective. Biometrics, 63, 180-186.

See Also

SurvSurv

Examples

# Open Ovarian dataset
data(Ovarian)

# Conduct analysis

Fit <- SurvSurv(Dataset = Ovarian, Surr = Pfs, SurrCens = PfsInd,
True = Surv, TrueCens = SurvInd, Treat = Treat,

Trial.ID = Center, Alpha=.05)

# Examine results

summary(Fit)

plot(Fit, Trial.Level = FALSE, Indiv.Level.By.Trial=TRUE)
plot(Fit, Trial.Level = TRUE, Indiv.Level.By.Trial=FALSE)
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Pos.Def.Matrices Generate 4 by 4 correlation matrices and flag the positive definite ones

Description

Based on vectors (or scalars) for the six off-diagonal correlations of a 4 by 4 matrix, the function
Pos.Def.Matrices constructs all possible matrices that can be formed by combining the specified
values, computes the minimum eigenvalues for each of these matrices, and flags the positive definite
ones (i.e., valid correlation matrices).

Usage

Pos.Def.Matrices(T0T1=seq(@, 1, by=.2), T0S0=seq(@, 1, by=.2), T0S1=seq(o, 1,
by=.2), T1S0=seq(@, 1, by=.2), T1S1=seq(@, 1, by=.2), S0S1=seq(@, 1, by=.2))

Arguments

TOT1 A vector or scalar that specifies the correlation(s) between TO and T1 that should
be considered to construct all possible 4 by 4 matrices. Default seq(9, 1,
by=.2), i.e., the values 0, 0.20, ..., 1.

TS0 A vector or scalar that specifies the correlation(s) between TO and SO that should
be considered to construct all possible 4 by 4 matrices. Default seq(9, 1,
by=.2).

T0S1 A vector or scalar that specifies the correlation(s) between TO and S1 that should
be considered to construct all possible 4 by 4 matrices. Default seq(9, 1,
by=.2).

T1S0 A vector or scalar that specifies the correlation(s) between T1 and SO that should
be considered to construct all possible 4 by 4 matrices. Default seq(9, 1,
by=.2).

T181 A vector or scalar that specifies the correlation(s) between T1 and S1 that should
be considered to construct all possible 4 by 4 matrices. Default seq(9, 1,
by=.2).

S0S1 A vector or scalar that specifies the correlation(s) between SO and S1 that should
be considered to construct all possible 4 by 4 matrices. Default seq(9, 1,
by=.2).

Details

The generated object Generated.Matrices (of class data. frame) is placed in the workspace (for
easy access).

Author(s)
Wim Van der Elst, Ariel Alonso, & Geert Molenberghs
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See Also

159

Sim.Data.Counterfactuals

Examples

## Generate all 4x4 matrices that can be formed using rho(T0,S0)=rho(T1,S1)=.5
## and the grid of values @, .2, ..., 1 for the other off-diagonal correlations:
Pos.Def.Matrices(T0T1=seq(@, 1, by=.2), T0Se=.5, TOS1=seq(@, 1, by=.2),
T1S0=seq(@, 1, by=.2), T1S1=.5, S0S1=seq(@, 1, by=.2))

## Examine the first 10 rows of the the object Generated.Matrices:
Generated.Matrices[1:10,]

## Check how many of the generated matrices are positive definite
## (counts and percentages):
table(Generated.Matrices$Pos.Def.Status)
table(Generated.Matrices$Pos.Def.Status)/nrow(Generated.Matrices)

## Make an object PosDef which contains the positive definite matrices:
PosDef <- Generated.Matrices[Generated.Matrices$Pos.Def.Status==1,]

## Shows the 10 first matrices that are positive definite:

PosDef[1:10,]

PPE.BinBin Evaluate a surrogate predictive value based on the minimum probabil-
ity of a prediction error in the setting where both S and T are binary
endpoints

Description

The function PPE.BinBin assesses a surrogate predictive value using the probability of a prediction
error in the single-trial causal-inference framework when both the surrogate and the true endpoints
are binary outcomes. It additionally assesses the indivdiual causal association (ICA). See Details

below.

Usage

PPE.BinBin(pil_1_, pil_0_, pi_1_1, pi_1_0,
pi@_1_, pi_0_1, M=10000, Seed=1)

Arguments

pil_1_

pil_0_
pi_1_1

A scalar that contains values for P(T' = 1,S = 1|Z = 0), i.e., the probability
that S = T" = 1 when under treatment Z = 0.

A scalar that contains values for P(T'= 1,5 = 0|Z = 0).
A scalar that contains values for P(T'= 1,5 = 1|Z = 1).
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pi_1_0 A scalar that contains values for P(T'= 1,5 =0|Z = 1).
pio_1_ A scalar that contains values for P(T'= 0,5 = 1|Z = 0).
pi_0_1 A scalar that contains values for P(T'=0,5 = 1|Z = 1).
M The number of valid vectors that have to be obtained. Default M=10000.
Seed The seed to be used to generate 7,.. Default Seed=1.
Details

In the continuous normal setting, surroagacy can be assessed by studying the association between
the individual causal effects on .S and T (see ICA.ContCont). In that setting, the Pearson correlation
is the obvious measure of association.

When S and T are binary endpoints, multiple alternatives exist. Alonso et al. (2016) proposed
the individual causal association (ICA; R%,), which captures the association between the individual
causal effects of the treatment on S (Ag) and T' (A7) using information-theoretic principles.

The function PPE.BinBin computes R using a grid-based approach where all possible combi-
nations of the specified grids for the parameters that are allowed to vary freely are considered. It
additionally computes the minimal probability of a prediction error (PPE) and the reduction on
the PPE using information that .S conveys on 7. Both measures provide complementary informa-
tion over the R? and facilitate more straightforward clinical interpretation. No assumption about
monotonicity can be made.

Value

An object of class PPE.BinBin with components,

index count variable

PPE The vector of the PPE values.

RPE The vector of the RPE values.

PPE_T The vector of the PP Er values indicating the probability on a prediction error
without using information on S.

R2_H The vector of the R?; values.

H_Delta_T The vector of the entropies of Ar.

H_Delta_S The vector of the entropies of Ag.

I_Delta_T_Delta_S
The vector of the mutual information of Ag and Ar.

Author(s)
Paul Meyvisch, Wim Van der Elst, Ariel Alonso, Geert Molenberghs

References

Alonso A, Van der Elst W, Molenberghs G, Buyse M and Burzykowski T. (2016). An information-
theoretic approach for the evaluation of surrogate endpoints based on causal inference.

Meyvisch P., Alonso A.,Van der Elst W, Molenberghs G. (2018). Assessing the predictive value
of a binary surrogate for a binary true endpoint, based on the minimum probability of a prediction
error.



Pred.TrialT.ContCont

See Also

161

ICA.BinBin.Grid.Sample

Examples

# Conduct the analysis

## Not run:

# time consuming code part

PPE.BinBin(pil_1_=0.4215, pi0_1_=0.0538, pil_0_=0.0538,

## End(Not run)

pi_1_1=0.5088, pi_1_0=0.0307,pi_0_1=0.0482,
Seed=1, M=10000)

Pred.TrialT.ContCont  Compute the expected treatment effect on the true endpoint in a new

trial (when both S and T are normally distributed continuous end-
points)

Description

The key motivation to evaluate a surrogate endpoint is to be able to predict the treatment effect
on the true endpoint 7' based on the treatment effect on S in a new trial 7 = 0. The func-
tion Pred.TrialT.ContCont allows for making such predictions based on fitted models of class
BimixedContCont, BifixedContCont, UnimixedContCont and UnifixedContCont.

Usage

Pred.TrialT.ContCont(Object, mu_S@, alpha_0, alpha.CI=0.05)

Arguments

Object

mu_S@

alpha_o

alpha.CI

A fitted object of class BimixedContCont, BifixedContCont, UnimixedContCont
and UnifixedContCont. Some of the components in these fitted objects are
needed to estimate F(3 + by) and its variance.

The intercept of a regression model in the new trial ¢ = 0 where the surrogate
endpoint is regressed on the true endpoint, i.e., So; = fLso+a0Zo;+<505, Where
S is the surrogate endpoint, j is the patient indicator, and Z is the treatment. This
argument only needs to be specified when a full model was used to examine
surroacy.

The regression weight of the treatment in the regression model specified under
argument mu_S@.

The a-level to be used to determine the confidence interval around E(S + by).
Default alpha.CI=0.05.
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Details

The key motivation to evaluate a surrogate endpoint is to be able to predict the treatment effect on
the true endpoint 7" based on the treatment effect on S in a new trial ¢ = 0.

When a so-called full (fixed or mixed) bi- or univariate model was fitted in the surrogate evaluation
phase (for details, see BimixedContCont, BifixedContCont, UnimixedContCont and UnifixedContCont),
this prediction is made as:

T -1
d d Dgq —
E(ﬁ + b0|m507a’0) = B + < dSZ ) < 58 dS > ( fiso Hs )

dsq ap — o

T -1
dss dss Dsgq dsp
Var(p + bg|mso,ao) = dpy, + ,
@ b =+ (20 ) (520 0 da
where all components are defined as in BimixedContCont. When the univariate mixed-effects

models are used or the (univariate or bivariate) fixed effects models, the fitted components contained
in D.Equiv are used instead of those in D.

When a reduced-model approach was used in the surrogate evaluation phase, the prediction is made
as:

da
E(B + bolag) = §+ 5 + (a0 — a),

2

d
Var(B + bolao) = dp, — dab7

where all components are defined as in BimixedContCont. When the univariate mixed-effects
models are used or the (univariate or bivariate) fixed effects models, the fitted components contained
in D.Equiv are used instead of those in D.

A (1 —~)100% prediction interval for E (5 + bg|mso, ag) can be obtained as E (/5 + bo|mso, ag) £
21—~ /2 \/Var(ﬁ + bo|mso, ag) (and similarly for E(S3 + bg|ag)).

Value

Beta_0 The predicted 3.

Variance The variance of the prediction.

Lower The lower bound of the confidence interval around the expected 3y, see Details

above.

Upper The upper bound of the confidence interval around the expected .

alpha.CI The a-level used to establish the confidence interval.

Surr.Model The model that was used to compute .

alpha_o The slope of the regression model specified in the Arguments section.
Author(s)

Wim Van der Elst, Ariel Alonso, & Geert Molenberghs
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References

Burzykowski, T., Molenberghs, G., & Buyse, M. (2005). The evaluation of surrogate endpoints.
New York: Springer-Verlag.

See Also

UnifixedContCont, BifixedContCont, UnimixedContCont

Examples

## Not run: #time-consuming code parts

# Generate dataset

Sim.Data.MTS(N.Total=2000, N.Trial=15, R.Trial.Target=.8,
R.Indiv.Target=.8, D.aa=10, D.bb=50, Fixed.Effects=c(1, 2, 30, 90),
Seed=1)

# Evaluate surrogacy using a reduced bivariate mixed-effects model
BimixedFit <- BimixedContCont(Dataset = Data.Observed.MTS, Surr = Surr,
True = True, Treat = Treat, Trial.ID = Trial.ID, Pat.ID = Pat.ID,
Model="Reduced")

# Suppose that in a new trial, it was estimated alpha_0 = 30
# predict beta_@ in this trial

Pred_Beta <- Pred.TrialT.ContCont(Object = BimixedFit,
alpha_0 = 30)

# Examine the results
summary (Pred_Beta)

# Plot the results
plot(Pred_Beta)

## End(Not run)

Prentice Evaluates surrogacy based on the Prentice criteria for continuous end-
points (single-trial setting)

Description

The function Prentice evaluates the validity of a potential surrogate based on the Prentice criteria
(Prentice, 1989) in the setting where the candidate surrogate and the true endpoint are normally
distributed endpoints.

Warning The Prentice approach is included in the Surrogate package for illustrative purposes (as it
was the first formal approach to assess surrogacy), but this method has some severe problems that
renders its use problematic (see Details below). It is recommended to replace the Prentice approach
by a more statistically-sound approach to evaluate a surrogate (e.g., the meta-analytic methods; see
the functions UnifixedContCont, BifixedContCont, UnimixedContCont, BimixedContCont).
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Usage
Prentice(Dataset, Surr, True, Treat, Pat.ID, Alpha=.05)

Arguments
Dataset A data. frame that should consist of one line per patient. Each line contains (at
least) a surrogate value, a true endpoint value, a treatment indicator, a patient
ID, and a trial ID.
Surr The name of the variable in Dataset that contains the surrogate values.
True The name of the variable in Dataset that contains the true endpoint values.
Treat The name of the variable in Dataset that contains the treatment indicators. The
treatment indicator should either be coded as 1 for the experimental group and
—1 for the control group, or as 1 for the experimental group and 0 for the control
group.
Pat.ID The name of the variable in Dataset that contains the patient’s ID.
Alpha The a-level that is used to examine whether the Prentice criteria are fulfilled.
Default 0.05.
Details

The Prentice criteria are examined by fitting the following regression models (when the surrogate
and true endpoints are continuous variables):

S; =ps +aZj+esj, (1)

T; = pr + BZ; +er;, (2)
T, =p+~Z; +¢5,(3)
T; = fir + BsZ; +vzS; + érj, (4)

where the error terms of (1) and (2) have a joint zero-mean normal distribution with variance-

covariance matrix
o
» SS
osTt OTT

and where j is the subject indicator, S; and T} are the surrogate and true endpoint values of subject
J,and Z; is the treatment indicator for subject j.

)

To be in line with the Prentice criteria, Z should have a significant effect on S in model 1 (Prentice
criterion 1), Z should have a significant effect on T in model 2 (Prentice criterion 2), S should have
a significant effect on T in model 3 (Prentice criterion criterion 3), and the effect of Z on T should
be fully captured by S in model 4 (Prentice criterion 4).

The Prentice approach to assess surrogavy has some fundamental limitations. For example, the
fourth Prentice criterion requires that the statistical test for the S5 in model 4 is non-significant.
This criterion is useful to reject a poor surrogate, but it is not suitable to validate a good surrogate
(i.e., a non-significant result may always be attributable to a lack of statistical power). Even when
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lack of power would not be an issue, the result of the statistical test to evaluate the fourth Prentice
criterion cannot prove that the effect of the treatment on the true endpoint is fully captured by the
surrogate.

The use of the Prentice approach to evaluate a surrogate is not recommended. Instead, consider
using the single-trial meta-anlytic method (if no multiple clinical trials are available or if there is
no other clustering unit in the data; see function Single.Trial.RE.AA) or the multiple-trial meta-
analytic methods (see UnifixedContCont, BifixedContCont, UnimixedContCont, and BimixedContCont).

Value

Prentice.Model.1
An object of class 1m that contains the fitted model 1 (using the Prentice ap-
proach).

Prentice.Model.2
An object of class 1m that contains the fitted model 2 (using the Prentice ap-
proach).

Prentice.Model.3
An object of class 1m that contains the fitted model 3 (using the Prentice ap-
proach).

Prentice.Model.4
An object of class 1m that contains the fitted model 4 (using the Prentice ap-
proach).

Prentice.Passed
Logical. If all four Prentice criteria are fulfilled, Prentice.Passed=TRUE. If at
least one criterion is not fulfilled, Prentice.Passed=FALSE.

Author(s)
Wim Van der Elst, Ariel Alonso, & Geert Molenberghs

References

Burzykowski, T., Molenberghs, G., & Buyse, M. (2005). The evaluation of surrogate endpoints.
New York: Springer-Verlag.

Prentice, R. L. (1989). Surrogate endpoints in clinical trials: definitions and operational criteria.
Statistics in Medicine, 8, 431-440.

Examples

## Load the ARMD dataset
data(ARMD)

## Evaluate the Prentice criteria in the ARMD dataset
Prent <- Prentice(Dataset=ARMD, Surr=Diff24, True=Diff52, Treat=Treat, Pat.ID=Id)

# Summary of results
summary (Prent)
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PROC.BinBin

Evaluate the individual causal association (ICA) and reduction in
probability of a prediction error (RPE) in the setting where both S
and T’ are binary endpoints

Description

The function PROC.BinBin assesses the ICA and RPE in the single-trial causal-inference framework
when both the surrogate and the true endpoints are binary outcomes. It additionally allows to
account for sampling variability by means of bootstrap. See Details below.

Usage

PROC.BinBin(Dataset=Dataset, Surr=Surr, True=True, Treat=Treat,
BS=FALSE, seqs=250, MC_samples=1000, Seed=1)

Arguments

Dataset

Surr

True

Treat

BS

seqs

MC_samples

Seed

Details

A data.frame that should consist of one line per patient. Each line contains
(at least) a binary surrogate value, a binary true endpoint value, and a treatment
indicator.

The name of the variable in Dataset that contains the binary surrogate endpoint
values. Should be coded as 0 and 1.

The name of the variable in Dataset that contains the binary true endpoint val-
ues. Should be coded as 0 and 1.

The name of the variable in Dataset that contains the treatment indicators. The
treatment indicator should be coded as 1 for the experimental group and —1 for
the control group.

Logical. If TRUE, then Dataset will be bootstrapped to account for sampling
variability. If FALSE, then no bootstrap is performed. See the Details section
below. Default FALSE.

The number of copies of the dataset that are produced or alternatively the num-
ber of bootstrap datasets that are produced. Default seqs=250.

The number of Monte Carlo samples that need to be obtained per copy of the
data set. Default MC_samples=1000.

The seed to be used. Default Seed=1.

In the continuous normal setting, surroagacy can be assessed by studying the association between
the individual causal effects on .S and 7" (see ICA.ContCont). In that setting, the Pearson correlation
is the obvious measure of association.

When S and T are binary endpoints, multiple alternatives exist. Alonso et al. (2016) proposed
the individual causal association (ICA; R%,), which captures the association between the individual
causal effects of the treatment on S (Ag) and T' (A7) using information-theoretic principles.
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The function PPE.BinBin computes R% using a grid-based approach where all possible combi-
nations of the specified grids for the parameters that are allowed to vary freely are considered. It
additionally computes the minimal probability of a prediction error (PPE) and the reduction on
the PPE using information that S conveys on 7" (RPE). Both measures provide complementary in-
formation over the R?; and facilitate more straightforward clinical interpretation. No assumption
about monotonicity can be made. The function PROC.BinBin makes direct use of the function
PPE.BinBin. However, it is computationally much faster thanks to equally dividing the number of
Monte Carlo samples over copies of the input data. In addition, it allows to account for sampling
variability using a bootstrap procedure. Finally, the function PROC.BinBin computes the marginal
probabilities directly from the input data set.

Value

An object of class PPE.BinBin with components,

PPE The vector of the PPE values.
RPE The vector of the RPE values.
PPE_T The vector of the PP Er values indicating the probability on a prediction error
without using information on S.
R2_H The vector of the R?; values.
Author(s)

Paul Meyvisch, Wim Van der Elst, Ariel Alonso, Geert Molenberghs

References

Alonso A, Van der Elst W, Molenberghs G, Buyse M and Burzykowski T. (2016). An information-
theoretic approach for the evaluation of surrogate endpoints based on causal inference.

Meyvisch P., Alonso A.,Van der Elst W, Molenberghs G.. Assessing the predictive value of a binary
surrogate for a binary true endpoint, based on the minimum probability of a prediction error.

See Also
PPE.BinBin

Examples

# Conduct the analysis

## Not run: # time consuming code part

library(Surrogate)

# load the CIGTS data

data(CIGTS)

CIGTS_25000<-PROC.BinBin(Dataset=CIGTS, Surr=I0P_12, True=IOP_96,
Treat=Treat, BS=FALSE,seqs=250, MC_samples=100, Seed=1)

## End(Not run)
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RandVec Generate random vectors with a fixed sum

Description

This function generates an n by m array x, each of whose m columns contains n random values
lying in the interval [a,b], subject to the condition that their sum be equal to s. The distribu-
tion of values is uniform in the sense that it has the conditional probability distribution of a uni-
form distribution over the whole n-cube, given that the sum of the x’s is s. The function uses
the randfixedsum algorithm, written by Roger Stafford and implemented in MatLab. For de-
tails, see http://www.mathworks.com/matlabcentral/fileexchange/9700-random-vectors-with-fixed-
sum/content/randfixedsum.m

Usage

RandVec(a=0, b=1, s=1, n=9, m=1, Seed=sample(1:1000, size = 1))

Arguments
a The function RandVec generates an n by m matrix Xx. Each of the m columns
contain n random values lying in the interval [a,b]. The argument a specifies the
lower limit of the interval. Default 0.
b The argument b specifies the upper limit of the interval. Default 1.
s The argument s specifies the value to which each of the m generated columns
should sum to. Default 1.
n The number of requested elements per column. Default 9.
m The number of requested columns. Default 1.
Seed The seed that is used. Default sample(1:1000, size =1).
Value

An object of class RandVec with components,

RandVecOutput The randomly generated vectors.

Author(s)
Wim Van der Elst, Ariel Alonso, & Geert Molenberghs

References

The function is an R adaptation of a matlab program written by Roger Stafford. For details on
the original Matlab algorithm, see: http://www.mathworks.com/matlabcentral/fileexchange/9700-
random-vectors-with-fixed-sum/content/randfixedsum.m
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Examples

# generate two vectors with 10 values ranging between @ and 1
# where each vector sums to 1

# (uniform distribution over the whole n-cube)

Vectors <- RandVec(a=0, b=1, s=1, n=10, m=2)
sum(Vectors$RandVecOutput[,1])

sum(Vectors$RandVecOutput[,2])

Restrictions.BinBin Examine restrictions in 7_f under different montonicity assumptions
for binary S and T

Description
The function Restrictions.BinBin gives an overview of the restrictions in 7y under different
assumptions regarding montonicity when both S and T are binary.

Usage

Restrictions.BinBin(pil_1_, pil_0_, pi_1_1, pi_1_0, pi0_1_, pi_0_1)

Arguments
pil_1_ A scalar that contains P(T = 1,5 = 1|Z = 0), i.e., the proability that S =
T = 1 when under treatment Z = 0.
pil_e_ A scalar that contains P(T'= 1,5 =0|Z = 0).
pi_1_1 A scalar that contains P(T' =1, =1|Z = 1).
pi_1_0 A scalar that contains P(T'= 1,5 =0|Z = 1).
pio_1_ A scalar that contains P(T'= 0,5 = 1|Z = 0).
pi_0_1 A scalar that contains P(T'=0,S =1|Z = 1).
Value

An overview of the restrictions for the freely varying parameters imposed by the data is provided

Author(s)
Wim Van der Elst, Ariel Alonso, & Geert Molenberghs

References

Alonso, A., Van der Elst, W., & Molenberghs, G. (2014). Validation of surrogate endpoints: the
binary-binary setting from a causal inference perspective.

See Also

MarginalProbs
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Examples

Restrictions.BinBin(pil1_1_=0.262, pi0_1_=0.135, pil1_0_=0.286,
pi_1.1=0.637, pi_1_0=0.078, pi_0_1=0.127)

Schizo Data of five clinical trials in schizophrenia

Description

These are the data of five clinical trials in schizophrenia. A total of 2128 patients were treated
by 198 investiagators (psychiatrists). Patients’ schizophrenic symptoms were measured using the
PANSS, BPRS, and CGI. There were two treatment conditions (risperidone and control).

Usage

data(Schizo)

Format

A data. frame with 2128 observations on 9 variables.

Id The patient ID.
InvestID The ID of the investigator (psychiatrist) who treated the patient.
Treat The treatment indicator, coded as —1 = control and 1 = Risperidone.

CGI The change in the CGI score (= score at the start of the treatment - score at the end of the
treatment).

PANSS The change in the PANSS score.
BPRS The change in the PANSS score.

PANSS_Bin The dichotomized PANSS change score, coded as 1 = a reduction of 20% or more in
the PANSS score (score at the end of the treatment relative to score at the beginning of the
treatment), O = otherwise.

BPRS_Bin The dichotomized BPRS change score, coded as 1 = a reduction of 20% or more in
the BPRS score (score at the end of the treatment relative to score at the beginning of the
treatment), 0 = otherwise.

CGI_Bin The sichtomized change in the CGI score, coded as 1 = a change of more than 3 points
on the original scale (score at the end of the treatment relative to score at the beginning of the
treatment), O = otherwise.



Schizo_Bin 171

Schizo_Bin Data of a clinical trial in Schizophrenia (with binary outcomes).

Description

These are the data of a clinical trial in Schizophrenia (a subset of the dataset Schizo_Bin, study 1
where the patients were administered 10 mg. of haloperidol or 8 mg. of risperidone). A total of
454 patients were treated by 117 investigators (psychiatrists). Patients’ schizophrenia symptoms at
baseline and at the end of the study (after 8 weeks) were measured using the PANSS and BPRS.
The variables BPRS_Bin and PANSS_Bin are binary outcomes that indicate whether clinically
meaningful change had occurred (1 = a reduction of 20% or higher in the PANSS/BPRS scores at
the last measurement compared to baseline; 0 = no such reduction; Leucht et al., 2005; Kay et al.,
1988).

Usage

data(Schizo_Bin)

Format

A data. frame with 454 observations on 5 variables.

Id The patient ID.
InvestI The ID of the investigator (psychiatrist) who treated the patient.

Treat The treatment indicator, coded as —1 = control treatment (10 mg. haloperidol) and 1 =
experimental treatment (8 mg. risperidone).

PANSS_Bin The dichotomized change in the PANSS score (1 = a reduction of 20% or more in the
PANSS score, O=otherwise)

BPRS_Bin The dichotomized change in the BPRS score (1 = a reduction of 20% or more in the
BPRS score, O=otherwise)

CGI_Bin The sichtomized change in the CGI score, coded as 1 = a change of more than 3 points
on the original scale (score at the end of the treatment relative to score at the beginning of the
treatment), O = otherwise.

References

Kay, S.R., Opler, L.A., & Lindenmayer, J.P. (1988). Reliability and validity of the Positive and
Negative Syndrome Scale for schizophrenics. Psychiatric Research, 23, 99-110.

Leucht, S., et al. (2005). Clinical implications of Brief Psychiatric Rating Scale scores. The British
Journal of Psychiarty, 187, 366-371.
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Schizo_BinCont Data of a clinical trial in schizophrenia, with binary and continuous
endpoints

Description

These are the data of a clinical trial in schizophrenia. Patients’ schizophrenic symptoms were
measured using the PANSS, BPRS, and CGI. There were two treatment conditions (risperidone and
control).

Usage

data(Schizo)

Format

A data. frame with 446 observations on 9 variables.

Id The patient ID.
InvestID The ID of the investigator (psychiatrist) who treated the patient.
Treat The treatment indicator, coded as —1 = control and 1 = Risperidone.

CGI The change in the CGI score (= score at the start of the treatment - score at the end of the
treatment).

PANSS The change in the PANSS score.
BPRS The change in the PANSS score.

PANSS_Bin The dichotomized PANSS change score, coded as 1 = a reduction of 20% or more in
the PANSS score (score at the end of the treatment relative to score at the beginning of the
treatment), 0 = otherwise.

BPRS_Bin The dichotomized BPRS change score, coded as 1 = a reduction of 20% or more in
the BPRS score (score at the end of the treatment relative to score at the beginning of the
treatment), O = otherwise.

CGI_Bin The sichtomized change in the CGI score, coded as 1 = a change of more than 3 points
on the original scale (score at the end of the treatment relative to score at the beginning of the
treatment), 0 = otherwise.
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Schizo_PANSS Longitudinal PANSS data of five clinical trials in schizophrenia

Description

These are the longitudinal PANSS data of five clinical trial in schizophrenia. A total of 2151 patients
were treated by 198 investiagators (psychiatrists). There were two treatment conditions (risperidone
and control). Patients’ schizophrenic symptoms were measured using the PANSS at different time
moments following start of the treatment. The variables Week1-Week8 express the change scores
over time using the raw (semi-continuous) PANSS scores. The variables Week1_bin - Week8_bin
are binary indicators of a 20% or higher reduction in PANSS score versus baseline. The latter
corresponds to a commonly accepted criterion for defining a clinically meaningful response (Kay
et al., 1988).

Usage

data(Schizo_PANSS)

Format
A data. frame with 2151 observations on 6 variables.

Id The patient ID.
InvestID The ID of the investigator (psychiatrist) who treated the patient.
Treat The treatment indicator, coded as —1 = placebo and 1 = Risperidone.

Week1 The change in the PANSS score 1 week after starting the treatment (= score at the end of the
treatment - score at 1 week after starting the treatment).

Week2 The change in the PANSS score 2 weeks after starting the treatment.
Week4 The change in the PANSS score 4 weeks after starting the treatment.
Week6 The change in the PANSS score 6 weeks after starting the treatment.
Week8 The change in the PANSS score 8 weeks after starting the treatment.

Week1_bin The dichotomized change in the PANSS score 1 week after starting the treatment (1=a
20% or higher reduction in PANSS score versus baseline, 0=otherwise).

Week2_bin The dichotomized change in the PANSS score 2 weeks after starting the treatment.
Week4_bin The dichotomized change in the PANSS score 4 weeks after starting the treatment.
Week6_bin The dichotomized change in the PANSS score 6 weeks after starting the treatment.

Week8_bin The dichotomized change in the PANSS score 8 weeks after starting the treatment.

References

Kay, S.R., Opler, L.A., & Lindenmayer, J.P. (1988). Reliability and validity of the Positive and
Negative Syndrome Scale for schizophrenics. Psychiatric Research, 23, 99-110.
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Sim.Data.Counterfactuals

Simulate a dataset that contains counterfactuals

Description

The function Sim.Data.Counterfactuals simulates a dataset that contains four (continuous) coun-
terfactuals (i.e., potential outcomes) and a (binary) treatment indicator. The counterfactuals 7 and
Ty denote the true endpoints of a patient under the control and the experimental treatments, respec-
tively, and the counterfactuals Sy and S; denote the surrogate endpoints of the patient under the
control and the experimental treatments, respectively. The user can specify the number of patients,
the desired mean values for the counterfactuals (i.e., ), and the desired correlations between the
counterfactuals (i.e., the off-diagonal values in the standardized 3, matrix). For details, see the
papers of Alonso et al. (submitted) and Van der Elst et al. (submitted).

Usage

Sim.Data.Counterfactuals(N.Total=2000,
mu_c=c(@, 0, @, @), T0S0=0, T1S1=0, TOT1=0, TOS1=0,
T1S0=0, S0S1=0, Seed=sample(1:1000, size=1))

Arguments

N.Total

mu_c

T0SO

T151

TOT1

TOS1

T150

S0S1

Seed

The total number of patients in the simulated dataset. Default 2000.

A vector that specifies the desired means for the counterfactuals Sy, S1, Ty, and
Ty, respectively. Default c(0, @, 0, 0).

A scalar that specifies the desired correlation between the counterfactuals TO
and SO that should be used in the generation of the data. Default 0.

A scalar that specifies the desired correlation between the counterfactuals T1
and S1 that should be used in the generation of the data. Default 0.

A scalar that specifies the desired correlation between the counterfactuals TO
and T1 that should be used in the generation of the data. Default 0.

A scalar that specifies the desired correlation between the counterfactuals TO
and S1 that should be used in the generation of the data. Default 0.

A scalar that specifies the desired correlation between the counterfactuals T1
and SO that should be used in the generation of the data. Default 0.

A scalar that specifies the desired correlation between the counterfactuals TO
and T1 that should be used in the generation of the data. Default 0.

A seed that is used to generate the dataset. Default sample(x=1:1000, size=1),
i.e., a random number between 1 and 1000.
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Details

The generated object Data.Counterfactuals (of class data. frame) is placed in the workspace.

The specified values for TOSO, T1S1, TOT1, TOS1, T1S0, and SOS1 in the function call should form
a matrix that is positive definite (i.e., they should form a valid correlation matrix). When the user
specifies values that form a matrix that is not positive definite, an error message is given and the
object Data.Counterfactuals is not generated. The function Pos.Def.Matrices can be used to
examine beforehand whether a 4 by 4 matrix is positive definite.

Author(s)
Wim Van der Elst, Ariel Alonso, & Geert Molenberghs

References

Alonso, A., Van der Elst, W., Molenberghs, G., Buyse, M., & Burzykowski, T. (submitted). On
the relationship between the causal inference and meta-analytic paradigms for the validation of
surrogate markers.

Van der Elst, W., Alonso, A., & Molenberghs, G. (submitted). An exploration of the relationship
between causal inference and meta-analytic measures of surrogacy.

See Also

Sim.Data.MTS, Sim.Data.STS

Examples

## Generate a dataset with 2000 patients, cor(S0,T@)=cor(S1,T1)=.5,

## cor(T0,T1)=cor(T0,S1)=cor(T1,S0)=cor(S0,S1)=0, with means

## 5, 9, 12, and 15 for S@, S1, T@, and T1, respectively:
Sim.Data.Counterfactuals(N=2000, T0S0=.5, T1S1=.5, TOT1=0, T0S1=0, T1S0=0, S0S1=0,
mu_c=c(5, 9, 12, 15), Seed=1)

Sim.Data.CounterfactualsBinBin
Simulate a dataset that contains counterfactuals for binary endpoints

Description

The function Sim.Data.CounterfactualsBinBin simulates a dataset that contains four (binary)
counterfactuals (i.e., potential outcomes) and a (binary) treatment indicator. The counterfactuals
Ty and T3 denote the true endpoints of a patient under the control and the experimental treatments,
respectively, and the counterfactuals Sy and S; denote the surrogate endpoints of the patient under
the control and the experimental treatments, respectively. The user can specify the number of
patients and the desired probabilities of the vector of potential outcomes (i.e., Y/ .=(T_0, T_1,S_0,
S_1)).
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Usage

Sim.Data.CounterfactualsBinBin(Pi_s=rep(1/16, 16),
N.Total=2000, Seed=sample(1:1000, size=1))

Arguments
Pi_s The vector of probabilities of the potential outcomes, i.e., Pigooo, P£0100> PL0010s
Piooo1, PEo101> PE1000> PE1010s PE1001> Pi11105 Pi1101> Pi1011s Pi1111> Po110s
Ploo1l, Plo111, Pii1oo- Default rep(1/16, 16).
N.Total The desired number of patients in the simulated dataset. Default 2000.
Seed A seed that is used to generate the dataset. Default sample (x=1:1000, size=1),
i.e., arandom number between 1 and 1000.
Details

The generated object Data.STSBinBin.Counter (which contains the counterfactuals) and Data.STSBinBin.Obs
(the "observable data") (of class data. frame) is placed in the workspace.

Value
An object of class Sim.Data.CounterfactualsBinBin with components,

Data.STSBinBin.Obs
The generated dataset that contains the "observed" surrogate endrpoint, true end-
point, and assigned treatment.

Data.STSBinBin.Counter
The generated dataset that contains the counterfactuals.

Vector_Pi The vector of probabilities of the potential outcomes, i.e., Pigooo, PL0100> PL0010s
Di0001> Pi0101, PE1000s PP1010> PE1001> PE1110> P41101, Pi1o11s Pliiils Pioiios
Pro011,> PL0111> PL1100-

Pi_Marginals The vector of marginal probabilities 71.1., 7g.1., 71.0-> 70-0-> T-1-15 T-1-0> T-0-15
T.0.0-

True.R2_H The true R%, value.

True.Theta_T The true odds ratio for 7T'.

True.Theta_S The true odds ratio for S.

Author(s)
Wim Van der Elst, Ariel Alonso, & Geert Molenberghs

Examples

## Generate a dataset with 2000 patients, and values 1/16
## for all proabilities between the counterfactuals:
Sim.Data.CounterfactualsBinBin(N.Total=2000)
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Sim.Data.MTS

Simulates a dataset that can be used to assess surrogacy in the
multiple-trial setting

Description

The function Sim.Data.MTS simulates a dataset that contains the variables Treat, Trial.ID, Surr,
True, and Pat.ID. The user can specify the number of patients and the number of trials that should
be included in the simulated dataset, the desired R;,;q; and R;,qi, values, the desired variability
of the trial-specific treatment effects for the surrogate and the true endpoints (i.e., dyq and dpp,
respectively), and the desired fixed-effect parameters of the intercepts and treatment effects for the
surrogate and the true endpoints.

Usage

Sim.Data.MTS(N.Total=200@, N.Trial=50, R.Trial.Target=.8, R.Indiv.Target=.8,
Fixed.Effects=c(0, @, @, @), D.aa=10, D.bb=10, Seed=sample(1:1000, size=1),
Model=c("Full"))

Arguments

N.Total
N.Trial
R.Trial.Target
R.Indiv.Target
Fixed.Effects
D.aa

D.bb

Model

Seed

Details

The total number of patients in the simulated dataset. Default 2000.
The number of trials. Default 50.

The desired Ry,;q; value in the sumilated dataset. Default 0.80

The desired R;,4i, value in the simulated dataset. Default 0.80.

A vector that specifies the desired fixed-effect intercept for the surrogate, fixed-
effect intercept for the true endpoint, fixed treatment effect for the surrogate, and
fixed treatment effect for the true endpoint, respectively. Default c(0, @, 0, 0).

The desired variability of the trial-specific treatment effects on the surrogate
endpoint. Default 10.

The desired variability of the trial-specific treatment effects on the true endpoint.
Default 10.

The type of model that will be fitted on the data when surrogacy is assessed,
i.e., a full, semireduced, or reduced model (for details, see UnifixedContCont,
UnimixedContCont, BifixedContCont, BimixedContCont).

The seed that is used to generate the dataset. Default sample (x=1:1000, size=1),
i.e., arandom number between 1 and 1000.

The generated object Data.Observed.MTS (of class data.frame) is placed in the workspace (for

easy access).

The number of patients per trial in the simulated dataset is identical in each trial, and equals the
requested total number of patients divided by the requested number of trials (=N.Total/N.Trial).
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If this is not a whole number, a warning is given and the number of patients per trial is automatically
rounded up to the nearest whole number. See Examples below.

Treatment allocation is balanced when the number of patients per trial is an odd number. If this is
not the case, treatment allocation is balanced up to one patient (the remaining patient is randomly
allocated to the exprimental or the control treatment groups in each of the trials).

Author(s)

Wim Van der Elst, Ariel Alonso, & Geert Molenberghs

See Also

UnifixedContCont, BifixedContCont, UnimixedContCont, BimixedContCont, Sim.Data.STS

Examples

# Simulate a dataset with 2000 patients, 50 trials, Rindiv=Rtrial=.8, D.aa=10,

# D.bb=50, and fixed effect values 1, 2, 30, and 90:

Sim.Data.MTS(N.Total=2000, N.Trial=50, R.Trial.Target=.8, R.Indiv.Target=.8, D.aa=10,
D.bb=50, Fixed.Effects=c(1, 2, 30, 90), Seed=1)

# Sample output, the first 10 rows of Data.Observed.MTS:
Data.Observed.MTS[1:10, ]

# Note: When the following code is used to generate a dataset:
Sim.Data.MTS(N.Total=2000, N.Trial=99, R.Trial.Target=.5, R.Indiv.Target=.8,
D.aa=10, D.bb=50, Fixed.Effects=c(1, 2, 30, 90), Seed=1)

# R gives the following warning:

# > NOTE: The number of patients per trial requested in the function call
# > equals 20.20202 (=N.Total/N.Trial), which is not a whole number.
# > To obtain a dataset where the number of patients per trial is balanced for
# > all trials, the number of patients per trial was rounded to 21 to generate
# > the dataset. Data.Observed.MTS thus contains a total of 2079 patients rather
# > than the requested 2000 in the function call.
Sim.Data.STS Simulates a dataset that can be used to assess surrogacy in the single-
trial setting
Description

The function Sim.Data.STS simulates a dataset that contains the variables Treat, Surr, True, and
Pat.ID. The user can specify the total number of patients, the desired R;,4;, value (also referred to
as the adjusted association (v) in the single-trial meta-analytic setting), and the desired means of
the surrogate and the true endpoints in the experimental and control treatment groups.
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Usage
Sim.Data.STS(N.Total=2000, R.Indiv.Target=.8, Means=c(@, 0, @, @), Seed=
sample(1:1000, size=1))

Arguments

N.Total The total number of patients in the simulated dataset. Default 2000.
R.Indiv.Target The desired R;,q4;» (Or 7y) value in the simulated dataset. Default 0.80.

Means A vector that specifies the desired mean for the surrogate in the control treatment
group, mean for the surrogate in the experimental treatment group, mean for the
true endpoint in the control treatment group, and mean for the true endpoint in
the experimental treatment group, respectively. Default c(@, @, 0, 0).

Seed The seed that is used to generate the dataset. Default sample (x=1:1000, size=1),
i.e., a random number between 1 and 1000.

Details

The generated object Data.Observed. STS (of class data. frame) is placed in the workspace (for
easy access).

Author(s)
Wim Van der Elst, Ariel Alonso, & Geert Molenberghs

See Also

Sim.Data.MTS, Single.Trial.RE.AA

Examples

# Simulate a dataset:
Sim.Data.STS(N.Total=2000, R.Indiv.Target=.8, Means=c(1, 5, 20, 37), Seed=1)

Sim.Data.STSBinBin Simulates a dataset that can be used to assess surrogacy in the single
trial setting when S and T are binary endpoints

Description

The function Sim.Data.STSBinBin simulates a dataset that contains four (binary) counterfactuals
(i.e., potential outcomes) and a (binary) treatment indicator. The counterfactuals 7j and 7 denote
the true endpoints of a patient under the control and the experimental treatments, respectively, and
the counterfactuals Sy and S denote the surrogate endpoints of the patient under the control and
the experimental treatments, respectively. In addition, the function provides the "observable" data
based on the dataset of the counterfactuals, i.e., the S and T’ endpoints given the treatment that was
allocated to a patient. The user can specify the assumption regarding monotonicity that should be
made to generate the data (no monotonicity, monotonicity for S alone, monotonicity for 7" alone,
or monotonicity for both S and 7).
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Usage

Sim.Data.STSBinBin

Sim.Data.STSBinBin(Monotonicity=c("”"No"), N.Total=2000, Seed)

Arguments

Monotonicity

N.Total
Seed

Details

The assumption regarding monotonicity that should be made when the data are

generated, i.e., Monotonicity="No" (no monotonicity assumed), Monotonicity="True.Endp"
(monotonicity assumed for the true endpoint alone), Monotonicity="Surr.Endp”
(monotonicity assumed for the surrogate endpoint alone), and Monotonicity="Surr.True.Endp
(monotonicity assumed for both endpoints). Default Monotonicity="No".

n

The desired number of patients in the simulated dataset. Default 2000.

A seed that is used to generate the dataset. Default sample (x=1:1000, size=1),
i.e., arandom number between 1 and 1000.

The generated objects Data.STSBinBin_Counterfactuals (which contains the counterfactuals)
and Data.STSBinBin_Obs (which contains the observable data) of class data.frame are placed in
the workspace. Other relevant output can be accessed based on the fitted object (see V alue below)

Value

An object of class Sim.Data.STSBinBin with components,

Data.STSBinBin.Obs

The generated dataset that contains the "observed" surrogate endrpoint, true end-
point, and assigned treatment.

Data.STSBinBin.Counter

Vector_Pi

Pi_Marginals

True.R2_H
True.Theta_T
True.Theta_S

Author(s)

The generated dataset that contains the counterfactuals.

The vector of probabilities of the potential outcomes, i.e., Pigoo0, P40100> PL0010s
D001, Pi0101, PE1000, Pi1010s Pi1001, PE1110> PE1101, Pi1011s Phi111, Ploiios
Proo11, PL0111> PL1100-

The vector of marginal probabilities 71.1., 7p.1., T1.0- T0-0-> T-1-15 T-1-0> T-0-15
7.0.0-

The true R%, value.

The true odds ratio for 7.

The true odds ratio for S.

Wim Van der Elst, Ariel Alonso, & Geert Molenberghs

Examples

## Generate a dataset with 2000 patients,
## assuming no monotonicity:
Sim.Data.STSBinBin(Monotonicity=c("”"No"), N.Total=200)
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Single.Trial.RE.AA Conducts a surrogacy analysis based on the single-trial meta-analytic
framework

Description
The function Single.Trial.RE.AA conducts a surrogacy analysis based on the single-trial meta-
analytic framework of Buyse & Molenberghs (1998). See Details below.

Usage

Single.Trial.RE.AA(Dataset, Surr, True, Treat, Pat.ID, Alpha=.05,
Number .Bootstraps=500, Seed=sample(1:1000, size=1))

Arguments

Dataset A data.frame that should consist of one line per patient. Each line contains
(at least) a surrogate value, a true endpoint value, a treatment indicator, and a
patient ID.

Surr The name of the variable in Dataset that contains the surrogate values.

True The name of the variable in Dataset that contains the true endpoint values.

Treat The name of the variable in Dataset that contains the treatment indicators. The
treatment indicator should either be coded as 1 for the experimental group and
—1 for the control group, or as 1 for the experimental group and 0 for the control
group. The —1/1 coding is recommended.

Pat.ID The name of the variable in Dataset that contains the patient’s ID.

Alpha The «-level that is used to determine the confidence intervals around Alpha

(which is a parameter estimate of a model where the surrogate is regressed on
the treatment indicator, see Details below), Beta, RE, and ~. Default 0.05.

Number.Bootstraps

The number of bootstrap samples that are used to obtain the bootstrapp-based
confidence intervals for RE and the adjusted association (). Default 500.

Seed The seed that is used to generate the bootstrap samples. Default sample (x=1:1000,
size=1), i.e., a random number between 1 and 1000.

Details

The Relative Effect (RE) and the adjusted association () are based on the following bivariate
regression model (when the surrogate and the true endpoints are continuous variables):

Sj = us + Ole + 65']‘,
Tj = pr + BZj + erj,

where the error terms have a joint zero-mean normal distribution with variance-covariance matrix:
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and where j is the subject indicator, S; and T} are the surrogate and true endpoint values of patient
J,and Z; is the treatment indicator for patient j.

The parameter estimates of the fitted regression model and the variance-covariance matrix of the
residuals are used to compute RE and the adjusted association (), respectively:

Note

rE="0

«
osT

VOSsSOTT

The single-trial meta-analytic framework is hampered by a number of issues (Burzykowski et al.,
2005). For example, a key motivation to validate a surrogate endpoint is to be able to predict
the effect of Z on T as based on the effect of Z on S in a new clinical trial where T is not (yet)
observed. The RE allows for such a prediction, but this requires the assumption that the relation
between « and /3 can be described by a linear regression model that goes through the origin. In other
words, it has to be assumed that the RE remains constant across clinical trials. The constant RE
assumption is unverifiable in a single-trial setting, but a way out of this problem is to combine the
information of multiple clinical trials and generalize the RE concept to a multiple-trial setting (as
is done in the multiple-trial meta-analytic approach, see UnifixedContCont, BifixedContCont,
UnimixedContCont, and BimixedContCont).

Value

An object of class Single.Trial.RE.AA with components,

Data.Analyze

Alpha

Beta

RE.Delta

RE.Fieller

RE .Boot

Prior to conducting the surrogacy analysis, data of patients who have a missing
value for the surrogate and/or the true endpoint are excluded. Data.Analyze is
the dataset on which the surrogacy analysis was conducted.

An object of class data.frame that contains the parameter estimate for «, its
standard error, and its confidence interval. Note that Alpha is not to be confused
with the Alpha argument in the function call, which specifies the a-level of the
confidence intervals of the parameters.

An object of class data.frame that contains the parameter estimate for 3, its
standard error, and its confidence interval.

An object of class data. frame that contains the estimated RE, its standard error,
and its confidence interval (based on the Delta method).

An object of class data. frame that contains the estimated RE, its standard error,
and its confidence interval (based on Fieller’s theorem).

An object of class data. frame that contains the estimated RE, its standard error,
and its confidence interval (based on bootstrapping). Note that the occurence of
outliers in the sample of bootstrapped RE values may lead to standard errors
and/or confidence intervals that are not trustworthy. Such problems mainly oc-
cur when the parameter estimate for « is close to O (taking its standard error into
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account). To detect possible outliers, studentized deleted residuals are computed
(by fitting an intercept-only model with the bootstrapped RE values as the out-
come variable). Bootstrapped RE values with an absolute studentized residual
larger than ¢(1 — a;/2n; n — 2) are marked as outliers (where n = the number of
bootstrapped RE values; Kutner et al., 2005). A warning is given when outliers
are found, and the position of the outlier(s) in the bootstrap sample is identi-
fied. Inspection of the vector of bootstrapped RE values (see RE.Boot . Samples
below) is recommended in this situation, and/or the use of the confidence in-
tervals that are based on the Delta method or Fieller’s theorem (rather than the
bootstrap-based confidence interval).

AA An object of class data. frame that contains the adjusted association (i.e., ), its
standard error, and its confidence interval (based on the Fisher-Z transformation
procedure).

AA.Boot An object of class data. frame that contains the adjusted association (i.e., 7),

its standard error, and its confidence interval (based on a bootstrap procedure).
RE.Boot.Samples

A vector that contains the RE values that were generated during the bootstrap
procedure.

AA.Boot.Samples

A vector that contains the adjusted association (i.e., ) values that were gener-
ated during the bootstrap procedure.

Cor.Endpoints A data.frame that contains the correlations between the surrogate and the true
endpoint in the control treatment group (i.e., pror1) and in the experimental
treatment group (i.e., pr1s1), their standard errors and their confidence intervals.

Residuals A data.frame that contains the residuals for the surrogate and true endpoints
that are obtained when the surrogate and the true endpoint are regressed on the
treatment indicator.

Author(s)
Wim Van der Elst, Ariel Alonso, & Geert Molenberghs

References

Burzykowski, T., Molenberghs, G., & Buyse, M. (2005). The evaluation of surrogate endpoints.
New York: Springer-Verlag.

Buyse, M., & Molenberghs, G. (1998). The validation of surrogate endpoints in randomized exper-
iments. Biometrics, 54, 1014-1029.

Buyse, M., Molenberghs, G., Burzykowski, T., Renard, D., & Geys, H. (2000). The validation of
surrogate endpoints in meta-analysis of randomized experiments. Biostatistics, 1, 49-67.

Kutner, M. H., Nachtsheim, C. J., Neter, J., & Li, W. (2005). Applied linear statistical models (5th
ed.). New York: McGraw Hill.

See Also

UnifixedContCont, BifixedContCont, UnimixedContCont, BimixedContCont, ICA.ContCont
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Examples

## Not run: # time consuming code part
# Example 1, based on the ARMD data:
data(ARMD)

# Assess surrogacy based on the single-trial meta-analytic approach:
Sur <- Single.Trial.RE.AA(Dataset=ARMD, Surr=Diff24, True=Diff52, Treat=Treat, Pat.ID=Id)

# Obtain a summary and plot of the results
summary (Sur)
plot(Sur)

# Example 2

# Conduct an analysis based on a simulated dataset with 2000 patients
# and Rindiv=.8

# Simulate the data:

Sim.Data.STS(N.Total=2000, R.Indiv.Target=.8, Seed=123)

# Assess surrogacy:
Sur2 <- Single.Trial.RE.AA(Dataset=Data.Observed.STS, Surr=Surr, True=True, Treat=Treat,
Pat.ID=Pat.ID)

# Show a summary and plots of results
summary (Sur2)

plot(Sur2)

## End(Not run)

SPF.BinBin Evaluate the surrogate predictive function (SPF) in the binary-binary
setting (sensitivity-analysis based approach)

Description

Computes the surrogate predictive function (SPF) based on sensitivity-analyis, i.e., 7(i, j) = P(AT =
1|AS = j), in the setting where both S and T are binary endpoints. For example, r(—1, 1) quanti-
fies the probability that the treatment has a negative effect on the true endpoint (A7 = —1) given
that it has a positive effect on the surrogate (AS = 1). All quantities of interest are derived from
the vectors of ’plausible values’ for 7 (i.e., vectors 7 that are compatible with the observable data
at hand). See Details below.

Usage
SPF.BinBin(x)

Arguments

X A fitted object of class ICA.BinBin, ICA.BinBin.Grid.Full, or ICA.BinBin.Grid. Sample.
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Details

All r(i,5) = P(AT = i|AS = j) are derived from 7 (vector of potential outcomes). Denote
by Y' = (T, T4, So, S1) the vector of potential outcomes. The vector Y can take 16 values and
the set of parameters m;;,q = P(Tp = 4,71 = j,So = p,S1 = q) (with 4, j,p,q = 0/1) fully
characterizes its distribution.

Based on the data and assuming SUTVA, the marginal probabilites 7;.1., 71.0., T-1.1, T.1.05 T0-1-»
and 7.9.1 can be computed (by hand or using the function MarginalProbs). Define the vector

/
b' = (1,m.1.,T1.0-, T1.1, T1.0, TO-1-5 T-0-1)

and A is a contrast matrix such that the identified restrictions can be written as a system of linear
equation
Am =b.

The matrix A has rank 7 and can be partitioned as A = (A,|Ay), and similarly the vector 7
can be partitioned as x = (7r;|7r}) (where f refers to the submatrix/vector given by the 9 last
columns/components of A /7). Using these partitions the previous system of linear equations can
be rewritten as

A, + Apmy = b.

The functions ICA.BinBin, ICA.BinBin.Grid.Sample, and ICA.BinBin.Grid.Full contain al-
gorithms that generate plausible distributions for Y (for details, see the documentation of these
functions). Based on the output of these functions, SPF.BinBin computes the surrogate predictive

function.

Value
r_1_1 The vector of values for r(1,1), i.e., P(AT = 1|AS = 1).
r_mini_1 The vector of values for r(—1, 1).
r_o_1 The vector of values for (0, 1).
r_1_0 The vector of values for (1, 0).
r_min1_o The vector of values for r(—1,0).
r_0_o The vector of values for (0, 0).
r_1_min1 The vector of values for (1, —1).
r_minl_min1 The vector of values for r(—1, —1).
r_o_min1 The vector of values for (0, —1).

Monotonicity The assumption regarding monotonicity under which the result was obtained.

Author(s)
Wim Van der Elst, Paul Meyvisch, Ariel Alonso, & Geert Molenberghs

References

Alonso, A., Van der Elst, W., & Molenberghs, G. (2015). Assessing a surrogate effect predictive
value in a causal inference framework.
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See Also
ICA.BinBin, ICA.BinBin.Grid.Sample, ICA.BinBin.Grid.Full, plot.SPF.BinBin

Examples

# Use ICA.BinBin.Grid.Sample to obtain plausible values for pi
ICA_BINBIN_Grid_Sample <- ICA.BinBin.Grid.Sample(pil1_1_=0.341, pi0_1_=0.119,
pi1_0_=0.254, pi_1_1=0.686, pi_1_0=0.088, pi_0_1=0.078, Seed=1,
Monotonicity=c("General”), M=2500)

# Obtain SPF
SPF <- SPF.BinBin(ICA_BINBIN_Grid_Sample)

# examine results

summary (SPF)
plot (SPF)
SPF.BinCont Evaluate the surrogate predictive function (SPF) in the binary-
continuous setting (sensitivity-analysis based approach)
Description

Computes the surrogate predictive function (SPF) based on sensitivity-analyis, i.e., P(AT|AS €
I[ab]), in the setting where .S is continuous and T’ is a binary endpoint.

Usage
SPF.BinCont(x, a, b)

Arguments
X A fitted object of class ICA.BinCont.
a The lower interval a in P(AT|AS € I[ab]).
The upper interval b in P(AT|AS € I[ab)).
Value
a The lower interval a in P(AT|AS € I[ab]).
b The upper interval b in P(AT|AS € I[ab]).

P_Delta_T_min1 The vector of values for P(AT = —1]|AS € I[ab]).
P_Delta_T_0 The vector of values for P(AT = 0|AS € I[ab]).
P_Delta_T_1 The vector of values for P(AT = 1|AS € I]ab]).

Author(s)
‘Wim Van der Elst & Ariel Alonso
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References

Alonso, A., Van der Elst, W., Molenberghs, G., & Verbeke, G. (2017). Assessing the predictive
value of a continuous surogate for a binary true endpoint based on causal inference.

See Also

ICA.BinBin, plot.SPF.BinCont

Examples

## Not run: # time consuming code part

# Use ICA.BinCont to examine surrogacy

data(Schizo_BinCont)

Result_BinCont <- ICA.BinCont(M = 1000, Dataset = Schizo_BinCont,
Surr = PANSS, True = CGI_Bin, Treat=Treat, Diff.Sigma=TRUE)

# Obtain SPF
Fit <- SPF.BinCont(x=Result_BinCont, a = -30, b = -3)

# examine results
summary (Fit1)
plot(Fit1)

## End(Not run)

SurvSurv Assess surrogacy for two survival endpoints based on information the-
ory and a two-stage approach

Description

The function SurvSurv implements the information-theoretic approach to estimate individual-level
surrogacy (i.e., R7 . ) and the two-stage approach to estimate trial-level surrogacy (R?.,,;, R2,)

when both endpoints are time-to-event variables (Alonso & Molenberghs, 2008). See the Details
section below.

Usage
SurvSurv(Dataset, Surr, SurrCens, True, TrueCens, Treat,
Trial.ID, Weighted=TRUE, Alpha=.05)

Arguments

Dataset A data. frame that should consist of one line per patient. Each line contains
(at least) a surrogate value and censoring indicator, a true endpoint value and
censoring indicator, a treatment indicator, and a trial ID.

Surr The name of the variable in Dataset that contains the surrogate endpoint values.
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SurrCens The name of the variable in Dataset that contains the censoring indicator for
the surrogate endpoint values (1 = event, 0 = censored).

True The name of the variable in Dataset that contains the true endpoint values.

TrueCens The name of the variable in Dataset that contains the censoring indicator for
the true endpoint values (1 = event, 0 = censored).

Treat The name of the variable in Dataset that contains the treatment indicators.

Trial.ID The name of the variable in Dataset that contains the trial ID to which the

patient belongs.

Weighted Logical. If TRUE, then a weighted regression analysis is conducted at stage 2
of the two-stage approach. If FALSE, then an unweighted regression analysis is
conducted at stage 2 of the two-stage approach. See the Details section below.
Default TRUE.

Alpha The a-level that is used to determine the confidence intervals around R? ; ; and
Ririar. Default 0.05.

Details

Individual-level surrogacy

Alonso & Molenbergs (2008) proposed to redefine the surrogate endpoint S as a time-dependent
covariate S(t), taking value 0 until the surrogate endpoint occurs and 1 thereafter. Furthermore,
these author considered the models

At | 235, 8] = Kij(t) hoi(t)exp(Brij),
Alt | @iz, s34, B, @) = Kyj(t) Moi(t)exp(Baij + ¢Sij),

where K;;(t) is the risk function for patient j in trial 4, x;; is a p-dimensional vector of (possi-
bly) time-dependent covariates, ( is a p-dimensional vector of unknown coefficients, Ag;(t) is a
trial-specific baseline hazard function, S;; is a time-dependent covariate version of the surrogate
endpoint, and ¢ its associated effect.

The mutual information between S and T is estimated as I(T,S) = %GQ, where n is the number
of patients and G2 is the log likelihood test comparing the previous two models. Individual-level
surrogacy can then be estimated as

1
R} ,u=1—exp <—nG2) :

O’Quigley and Flandre (2006) pointed out that the previous estimator depends upon the censoring
mechanism, even when the censoring mechanism is non-informative. For low levels of censoring
this may not be an issue of much concern but for high levels it could lead to biased results. To
properly cope with the censoring mechanism in time-to-event outcomes, these authors proposed to
estimate the mutual information as I(T,S) = %GQ, where k is the total number of events experi-
enced. Individual-level surrogacy is then estimated as

1
Rl%.md =1—exp <_kG2) .
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Trial-level surrogacy

A two-stage approach is used to estimate trial-level surrogacy, following a procedure proposed by
Buyse et al. (2011). In stage 1, the following trial-specific Cox proportional hazard models are
fitted:

Si (t) = Sio(t)exp(aiZij),
Ti;(t) = Tio(t)exp(Bi Ziz),

where S;(t) and T (¢) are the trial-specific baseline hazard functions, Z;; is the treatment indicator
for subject j in trial 4, and «;, 3; are the trial-specific treatment effects on S and T, respectively.

Next, the second stage of the analysis is conducted:

~

Bi = Ao+ A& + €4,

where the parameter estimates for 3; and a; are based on the full model that was fitted in stage 1.

When the argument Weighted=FALSE is used in the function call, the model that is fitted in stage
2 is an unweighted linear regression model. When a weighted model is requested (using the argu-
ment Weighted=TRUE in the function call), the information that is obtained in stage 1 is weighted
according to the number of patients in a trial.

2

The classical coefficient of determination of the fitted stage 2 model provides an estimate of Ry, ;.

Value

An object of class SurvSurv with components,

Results.Stage.1
The results of stage 1 of the two-stage model fitting approach: a data.frame
that contains the trial-specific log hazard ratio estimates of the treatment effects
for the surrogate and the true endpoints.

Results.Stage.?2
An object of class 1m (linear model) that contains the parameter estimates of the
regression model that is fitted in stage 2 of the analysis.

R2.ht A data. frame that contains the trial-level coefficient of determination (R2,), its
standard error and confidence interval.

R2.hind A data.frame that contains the individual-level coefficient of determination
(R,Q”-n 4)» its standard error and confidence interval.

R2h.ind.QF A data.frame that contains the individual-level coefficient of determination
using the correction proposed by O’Quigley and Flandre (2006), its standard
error and confidence interval.

R2.hInd.By.Trial.QF
A data. frame that contains individual-level surrogacy estimates using the cor-
rection proposed by O’Quigley and Flandre (2006), (cluster-based estimates)
and their confidence interval for each of the trials seperately.

Author(s)
Wim Van der Elst, Ariel Alonso, & Geert Molenberghs
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References
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evaluation of maintenance therapy for patients with acute myeloid leukemia in complete remission.
Haematologica, 96, 1106-1112.

O’Quigly, J., & Flandre, P. (2006). Quantification of the Prentice criteria for surrogate endpoints.
Biometrics, 62, 297-300.

See Also

plot.SurvSurv

Examples

# Open Ovarian dataset
data(Ovarian)

# Conduct analysis

Fit <- SurvSurv(Dataset = Ovarian, Surr = Pfs, SurrCens = PfsInd,
True = Surv, TrueCens = SurvInd, Treat = Treat,

Trial.ID = Center)

# Examine results

plot(Fit)
summary (Fit)
Test.Mono Test whether the data are compatible with monotonicity for S and/or T
(binary endpoints)
Description

For some situations, the observable marginal probabilities contain sufficient information to exclude
a particular monotonicity scenario. For example, under monotonicity for S and 7', one of the
restrictions that the data impose is mg111 < min(mg.1.,7.1.1). If the latter condition does not hold
in the dataset at hand, monotonicity for S and 7" can be excluded.

Usage

Test.Mono(pil_1_, pi@_1_, pil_0_, pi_1_1, pi_1_0, pi_0_1)
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Arguments
pil_1_ A scalar that contains P(T' = 1,5 = 1|Z = 0).
pio_1_ A scalar that contains P(T' = 0,5 = 1|Z = 0).
pil_o_ A scalar that contains P(T' = 1,5 = 0|Z = 0).
pi_1_1 A scalar that contains P(T'= 1,5 =1|Z = 1).
pi_1_0 A scalar that contains P(T'= 1,5 =0|Z = 1).
pi_0_1 A scalar that contains P(T'= 0,5 =1|Z = 1).

Author(s)

Wim Van der Elst, Ariel Alonso, Marc Buyse, & Geert Molenberghs

References

Alonso, A., Van der Elst, W., & Molenberghs, G. (2015). Validation of surrogate endpoints: the
binary-binary setting from a causal inference perspective.

Examples

Test.Mono(pil_1_=0.2619048, pil_0_=0.2857143, pi_1_1=0.6372549,
pi_1_0=0.07843137, pi0_1_=0.1349206, pi_0_1=0.127451)

TrialLevellIT Estimates trial-level surrogacy in the information-theoretic framework

Description
The function TriallLevellT estimates trial-level surrogacy based on the vectors of treatment effects
on S (i.e., ;), intercepts on S (i.e., ;) and 7" (i.e., 3;) in the different trials. See the Details section
below.

Usage
TrialLevellIT(Alpha.Vector, Mu_S.Vector=NULL,
Beta.Vector, N.Trial, Model="Reduced”, Alpha=.05)

Arguments

Alpha.Vector The vector of treatment effects on S in the different trials, i.e., «;.

Mu_S.Vector The vector of intercepts for S in the different trials, i.e., ug;. Only required
when a full model is requested.

Beta.Vector The vector of treatment effects on T in the different trials, i.e., ;.

N.Trial The total number of available trials.

Model The type of model that should be fitted, i.e., Model=c("Full") or Model=c("Reduced").
See the Details section below. Default Model=c("Reduced").

Alpha The a-level that is used to determine the confidence intervals around Rfria ; and

Ryyiqr- Default 0.05.
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Details

When a full model is requested (by using the argument Model=c("Full”) in the function call),
trial-level surrogacy is assessed by fitting the following univariate model:

Bi = Ao+ Aipsi + Aoy + €4, (1)

where 3; = the trial-specific treatment effects on 7', ug; = the trial-specific intercepts for .S, and
«; = the trial-specific treatment effects on .S. The —2 log likelihood value of model (1) (L1) is
subsequently compared to the —2 log likelihood value of an intercept-only model (3; = As; L),
and R?, is computed based based on the Variance Reduction Factor (for details, see Alonso &
Molenberghs, 2007):

L1 —L
2 1 0
Re, =1— -
ht 6(Ep( N >7

where N is the number of trials.

When a reduced model is requested (by using the argument Model=c("Reduced”) in the function
call), the following model is fitted:

Bi = Ao+ Aoy + 5.

The —2 log likelihood value of this model (L; for the reduced model) is subsequently compared to
the —2 log likelihood value of an intercept-only model (3; = A3; Lo), and R3, is computed based
on the reduction in the likelihood (as described above).

Value

An object of class TriallLevelIT with components,

Alpha.Vector The vector of treatment effects on S in the different trials.

Beta.Vector The vector of treatment effects on 7" in the different trials.
N.Trial The total number of trials.
R2.ht A data. frame that contains the trial-level coefficient of determination (Rit), its

standard error and confidence interval.

Author(s)
Wim Van der Elst, Ariel Alonso, & Geert Molenberghs

References
Burzykowski, T., Molenberghs, G., & Buyse, M. (2005). The evaluation of surrogate endpoints.
New York: Springer-Verlag.

Buyse, M., Molenberghs, G., Burzykowski, T., Renard, D., & Geys, H. (2000). The validation of
surrogate endpoints in meta-analysis of randomized experiments. Biostatistics, 1, 49-67.
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See Also

UnimixedContCont, UnifixedContCont, BifixedContCont,BimixedContCont, plot.TriallLevellT

Examples

# Generate vector treatment effects on S
set.seed(seed = 1)
Alpha.Vector <- seq(from = 5, to = 10, by=.1) + runif(min = -.5, max = .5, n = 51)

# Generate vector treatment effects on T
set.seed(seed=2)
Beta.Vector <- (Alpha.Vector x 3) + runif(min = -5, max = 5, n = 51)

# Apply the function to estimate R*2_{h.t}
Fit <- TriallLevelIT(Alpha.Vector=Alpha.Vector,
Beta.Vector=Beta.Vector, N.Trial=50, Model="Reduced")

summary (Fit)
plot(Fit)

TriallLevelMA Estimates trial-level surrogacy in the meta-analytic framework

Description

The function TriallLevelMA estimates trial-level surrogacy based on the vectors of treatment effects
on S (i.e., ;) and T (i.e., 3;) in the different trials. In particular, 3; is regressed on «; and the
classical coefficient of determination of the fitted model provides an estimate of Rfmﬂ. In addition,
the standard error and CI are provided.

Usage
TrialLevelMA(Alpha.Vector, Beta.Vector,
N.Vector, Weighted=TRUE, Alpha=.05)
Arguments

Alpha.Vector The vector of treatment effects on .S in the different trials, i.e., ;.

Beta.Vector The vector of treatment effects on 7" in the different trials, i.e., 3;.
N.Vector The vector of trial sizes N;.
Weighted Logical. If TRUE, then a weighted regression analysis is conducted. If FALSE,

then an unweighted regression analysis is conducted. Default TRUE.

Alpha The a-level that is used to determine the confidence intervals around Rfria ; and
Ryyiqr- Default 0.05.
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Value

An object of class TrialLevelMA with components,

Alpha.Vector The vector of treatment effects on S in the different trials.

Beta.Vector The vector of treatment effects on 71" in the different trials.
N.Vector The vector of trial sizes N;.
Trial.R2 A data. frame that contains the trial-level coefficient of determination (Rfm.al),

its standard error and confidence interval.

Trial.R A data.frame that contains the trial-level correlation coefficient (R;r;q;), its
standard error and confidence interval.

Model.2.Fit The fitted stage 2 model.

Author(s)
Wim Van der Elst, Ariel Alonso, & Geert Molenberghs

References

Burzykowski, T., Molenberghs, G., & Buyse, M. (2005). The evaluation of surrogate endpoints.
New York: Springer-Verlag.

Buyse, M., Molenberghs, G., Burzykowski, T., Renard, D., & Geys, H. (2000). The validation of
surrogate endpoints in meta-analysis of randomized experiments. Biostatistics, 1, 49-67.

See Also

UnimixedContCont, UnifixedContCont, BifixedContCont,BimixedContCont, plot Meta-Analytic

Examples

# Generate vector treatment effects on S

set.seed(seed = 1)

Alpha.Vector <- seq(from = 5, to = 10, by=.1) + runif(min = -.5, max = .5, n = 51)
# Generate vector treatment effects on T

set.seed(seed=2)

Beta.Vector <- (Alpha.Vector * 3) + runif(min = -5, max = 5, n = 51)

# Vector of sample sizes of the trials (here, all n_i=10)

N.Vector <- rep(10, times=51)

# Apply the function to estimate R*2_{trial}
Fit <- TriallLevelMA(Alpha.Vector=Alpha.Vector,
Beta.Vector=Beta.Vector, N.Vector=N.Vector)

# Plot the results and obtain summary
plot(Fit)
summary(Fit)
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TwoStageSurvSurv Assess trial-level surrogacy for two survival endpoints using a two-
stage approach
Description

The function TwoStageSurvSurv uses a two-stage approach to estimate R

2

s ia- 10 stage 1, trial-

specific Cox proportional hazard models are fitted and in stage 2 the trial-specific estimated treat-
ment effects on 7" are regressed on the trial-specific estimated treatment effects on S (measured on
the log hazard ratio scale). The user can specify whether a weighted or unweighted model should
be fitted at stage 2. See the Details section below.

Usage

TwoStageSurvSurv(Dataset, Surr, SurrCens, True, TrueCens, Treat,
Trial.ID, Weighted=TRUE, Alpha=.05)

Arguments

Dataset

Surr

SurrCens

True

TrueCens

Treat
Trial.ID

Weighted

Alpha

Details

A data. frame that should consist of one line per patient. Each line contains
(at least) a surrogate value and censoring indicator, a true endpoint value and
censoring indicator, a treatment indicator, and a trial ID.

The name of the variable in Dataset that contains the surrogate endpoint values.

The name of the variable in Dataset that contains the censoring indicator for
the surrogate endpoint values (1 = event, O = censored).

The name of the variable in Dataset that contains the true endpoint values.

The name of the variable in Dataset that contains the censoring indicator for
the true endpoint values (1 = event, 0 = censored).

The name of the variable in Dataset that contains the treatment indicators.
The name of the variable in Dataset that contains the trial ID to which the
patient belongs.

Logical. If TRUE, then a weighted regression analysis is conducted at stage 2
of the two-stage approach. If FALSE, then an unweighted regression analysis is
conducted at stage 2 of the two-stage approach. See the Details section below.
Default TRUE.

The «-level that is used to determine the confidence intervals around R?ria ; and
Ryriqr- Default 0.05.

A two-stage approach is used to estimate trial-level surrogacy, following a procedure proposed by
Buyse et al. (2011). In stage 1, the following trial-specific Cox proportional hazard models are

fitted:

Sij (t) = Si() (t)exp(aiZZ—j),
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T;j(t) = Tio(t)exp(BiZij),

where S;o(t) and T;o(t) are the trial-specific baseline hazard functions, Z;; is the treatment indi-
cator for subject j in trial i, pg;, and «; and (; are the trial-specific treatment effects on S and T,
respectively.

Next, the second stage of the analysis is conducted:

~

Bi = Xo + \idy; + ¢4,

where the parameter estimates for 3;, i1g;, and «; are based on the full model that was fitted in stage
1.

When the argument Weighted=FALSE is used in the function call, the model that is fitted in stage
2 is an unweighted linear regression model. When a weighted model is requested (using the argu-
ment Weighted=TRUE in the function call), the information that is obtained in stage 1 is weighted
according to the number of patients in a trial.

2

The classical coefficient of determination of the fitted stage 2 model provides an estimate of R;, ;.

Value
An object of class TwoStageSurvSurv with components,

Data.Analyze  Prior to conducting the surrogacy analysis, data of trials that do not have at
least three patients per treatment arm are excluded due to estimation constraints
(Burzykowski et al., 2001). Data.Analyze is the dataset on which the surrogacy
analysis was conducted.

Results.Stage.1
The results of stage 1 of the two-stage model fitting approach: a data.frame
that contains the trial-specific log hazard ratio estimates of the treatment effects
for the surrogate and the true endpoints.

Results.Stage.2
An object of class 1m (linear model) that contains the parameter estimates of the
regression model that is fitted in stage 2 of the analysis.

Trial.R2 A data.frame that contains the trial-level coefficient of determination (R2,, ;).
its standard error and confidence interval.

Trial.R A data.frame that contains the trial-level correlation coefficient (Ryy;q7), its
standard error and confidence interval.

Author(s)
Wim Van der Elst, Ariel Alonso, & Geert Molenberghs

References

Burzykowski, T., Molenberghs, G., Buyse, M., Geys, H., & Renard, D. (2001). Validation of surro-
gate endpoints in multiple randomized clinical trials with failure-time endpoints. Applied Statistics,
50, 405-422.

Buyse, M., Michiels, S., Squifflet, P., Lucchesi, K. J., Hellstrand, K., Brune, M. L., Castaigne, S.,
Rowe, J. M. (2011). Leukemia-free survival as a surrogate end point for overall survival in the
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evaluation of maintenance therapy for patients with acute myeloid leukemia in complete remission.
Haematologica, 96, 1106-1112.
See Also

plot. TwoStageSurvSurv

Examples

# Open Ovarian dataset
data(Ovarian)

# Conduct analysis
Results <- TwoStageSurvSurv(Dataset = Ovarian, Surr = Pfs, SurrCens = PfsInd,

True = Surv, TrueCens = SurvInd, Treat = Treat, Trial.ID = Center)

# Examine results of analysis

summary (Results)
plot(Results)
UnifixedContCont Fits univariate fixed-effect models to assess surrogacy in the meta-
analytic multiple-trial setting (continuous-continuous case)
Description

The function UnifixedContCont uses the univariate fixed-effects approach to estimate trial- and
individual-level surrogacy when the data of multiple clinical trials are available. The user can
specify whether a (weighted or unweighted) full, semi-reduced, or reduced model should be fitted.
See the Details section below. Further, the Individual Causal Association (ICA) is computed.

Usage

UnifixedContCont(Dataset, Surr, True, Treat, Trial.ID, Pat.ID, Model=c("Full"),
Weighted=TRUE, Min.Trial.Size=2, Alpha=.05, Number.Bootstraps=500,
Seed=sample(1:1000, size=1), TOT1=seq(-1, 1, by=.2), T@Sl=seq(-1, 1, by=.2),
T1S0=seq(-1, 1, by=.2), S@Sl=seq(-1, 1, by=.2))

Arguments
Dataset A data. frame that should consist of one line per patient. Each line contains (at
least) a surrogate value, a true endpoint value, a treatment indicator, a patient
ID, and a trial ID.
Surr The name of the variable in Dataset that contains the surrogate endpoint values.

True The name of the variable in Dataset that contains the true endpoint values.
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Treat The name of the variable in Dataset that contains the treatment indicators. The
treatment indicator should either be coded as 1 for the experimental group and
—1 for the control group, or as 1 for the experimental group and 0 for the control
group.

Trial.ID The name of the variable in Dataset that contains the trial ID to which the
patient belongs.

Pat.ID The name of the variable in Dataset that contains the patient’s ID.

Model The type of model that should be fitted, i.e., Model=c("Full"), Model=c("Reduced"),
or Model=c("SemiReduced"). See the Details section below. Default Model=c("Full").

Weighted Logical. If TRUE, then a weighted regression analysis is conducted at stage 2
of the two-stage approach. If FALSE, then an unweighted regression analysis is
conducted at stage 2 of the two-stage approach. See the Details section below.
Default TRUE.

Min.Trial.Size The minimum number of patients that a trial should contain to be included in the
analysis. If the number of patients in a trial is smaller than the value specified by
Min.Trial.Size, the data of the trial are excluded from the analysis. Default 2.

2

Alpha The a-level that is used to determine the confidence intervals around R; .,

Ririal, R and R;, 4. Default 0.05.

Number.Bootstraps
The standard errors and confidence intervals for andiv and R;,q4i, are deter-
mined as based on a bootstrap procedure. Number.Bootstraps specifies the
number of bootstrap samples that are used. Default 500.

2
indiv?®

Seed The seed to be used in the bootstrap procedure. Default sample(1 : 1000, size =
1).
TOT1 A scalar or vector that contains the correlation(s) between the counterfactuals TO

and T1 that should be considered in the computation of pa (ICA). For details,
see function ICA.ContCont. Default seq(-1, 1, by=.2).

T0S1 A scalar or vector that contains the correlation(s) between the counterfactuals
TO and S1 that should be considered in the computation of pa. Default seq(-1,
1, by=.2).

T1S0 A scalar or vector that contains the correlation(s) between the counterfactuals
T1 and SO that should be considered in the computation of pa . Default seq(-1,
1, by=.2).

S0S1 A scalar or vector that contains the correlation(s) between the counterfactuals
SO and S1 that should be considered in the computation of pa. Default seq(-1,
1, by=.2).

Details

When the full bivariate mixed-effects model is fitted to assess surrogacy in the meta-analytic frame-
work (for details, Buyse & Molenberghs, 2000), computational issues often occur. In that situation,
the use of simplified model-fitting strategies may be warranted (for details, see see Burzykowski et
al., 2005; Tibaldi et al., 2003).

The function UnifixedContCont implements one such strategy, i.e., it uses a two-stage univariate
fixed-effects modelling approach to assess surrogacy. In the first stage of the analysis, two univariate
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linear regression models are fitted to the data of each of the ¢ trials. When a full or semi-reduced
model is requested (by using the argument Model=c("Full") or Model=c("SemiReduced") in the
function call), the following univariate models are fitted:

Sij = psi + 0 Zi; + €54,
Tij = pri + PiZi; + erij

where 7 and j are the trial and subject indicators, S;; and T;; are the surrogate and true endpoint
values of subject j in trial ¢, Z;; is the treatment indicator for subject j in trial 4, j15; and pi7; are the
fixed trial-specific intercepts for S and T, and «; and 3; are the fixed trial-specific treatment effects
on S and T, respectively. The error terms €g;; and e7;; are assumed to be independent.

When a reduced model is requested by the user (by using the argument Model=c("Reduced”) in
the function call), the following univariate models are fitted:

Sij = ps + ®iZij + €sij,
Tij = pr + BiZij + erij,

where pg and pr are the common intercepts for S and T (i.e., it is assumed that the intercepts for
the surrogate and the true endpoints are identical in each of the trials). The other parameters are the
same as defined above, and €;; and e7;; are again assumed to be independent.

2

An estimate of R ;..

is provided by T(Esm 5Tij)2-

Next, the second stage of the analysis is conducted. When a full model is requested (by using the
argument Model=c("Full"”) in the function call), the following model is fitted:

-~

Bi = Ao + Aifisi + Aoy + &5,

where the parameter estimates for f3;, ug;, and «; are based on the full models that were fitted in
stage 1.

When a semi-reduced or reduced model is requested (by using the argument Model=c (" SemiReduced")
or Model=c("Reduced") in the function call), the following model is fitted:

Bi = Xo + MG + i

where the parameter estimates for 5; and «; are based on the semi-reduced or reduced models that
were fitted in stage 1.

When the argument Weighted=FALSE is used in the function call, the model that is fitted in stage
2 is an unweighted linear regression model. When a weighted model is requested (using the argu-
ment Weighted=TRUE in the function call), the information that is obtained in stage 1 is weighted
according to the number of patients in a trial.

2

The classical coefficient of determination of the fitted stage 2 model provides an estimate of 7, ;.
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Value
An object of class UnifixedContCont with components,

Data.Analyze Prior to conducting the surrogacy analysis, data of patients who have a missing
value for the surrogate and/or the true endpoint are excluded. In addition, the
data of trials (i) in which only one type of the treatment was administered, and
(i1) in which either the surrogate or the true endpoint was a constant (i.e., all
patients within a trial had the same surrogate and/or true endpoint value) are
excluded. In addition, the user can specify the minimum number of patients that
a trial should contain in order to include the trial in the analysis. If the number
of patients in a trial is smaller than the value specified by Min.Trial.Size,
the data of the trial are excluded. Data.Analyze is the dataset on which the
surrogacy analysis was conducted.

Obs.Per.Trial A data.frame that contains the total number of patients per trial and the number
of patients who were administered the control treatment and the experimental
treatment in each of the trials (in Data.Analyze).

Results.Stage.1
The results of stage 1 of the two-stage model fitting approach: a data.frame
that contains the trial-specific intercepts and treatment effects for the surrogate
and the true endpoints (when a full or semi-reduced model is requested), or the
trial-specific treatment effects for the surrogate and the true endpoints (when a
reduced model is requested).

Residuals.Stage.1
A data.frame that contains the residuals for the surrogate and true endpoints
that are obtained in stage 1 of the analysis (¢g;; and e7;;).

Results.Stage.?2
An object of class 1m (linear model) that contains the parameter estimates of the
regression model that is fitted in stage 2 of the analysis.

Trial.R2 A data. frame that contains the trial-level coefficient of determination (Rfm-u D
its standard error and confidence interval.

Indiv.R2 A data.frame that contains the individual-level coefficient of determination
(R?n i) 1ts standard error and confidence interval.

Trial.R A data.frame that contains the trial-level correlation coefficient (R;r;q;), its

standard error and confidence interval.

Indiv.R A data. frame that contains the individual-level correlation coefficient (R;.,4:v ),
its standard error and confidence interval.

Cor.Endpoints A data.frame that contains the correlations between the surrogate and the true
endpoint in the control treatment group (i.e., proso) and in the experimental
treatment group (i.e., pr151), their standard errors and their confidence intervals.

D.Equiv The variance-covariance matrix of the trial-specific intercept and treatment ef-
fects for the surrogate and true endpoints (when a full or semi-reduced model is
fitted, i.e., when Model=c("Full”) or Model=c("SemiReduced") is used in the
function call), or the variance-covariance matrix of the trial-specific treatment
effects for the surrogate and true endpoints (when a reduced model is fitted,
i.e., when Model=c("Reduced”) is used in the function call). The variance-
covariance matrix D.Equiv is equivalent to the D matrix that would be obtained
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when a (full or reduced) bivariate mixed-effect approach is used; see function

BimixedContCont).
ICA A fitted object of class ICA.ContCont.
ToTo The variance of the true endpoint in the control treatment condition.
T1T1 The variance of the true endpoint in the experimental treatment condition.
S0S0 The variance of the surrogate endpoint in the control treatment condition.
S181 The variance of the surrogate endpoint in the experimental treatment condition.

Author(s)
Wim Van der Elst, Ariel Alonso, & Geert Molenberghs

References

Burzykowski, T., Molenberghs, G., & Buyse, M. (2005). The evaluation of surrogate endpoints.
New York: Springer-Verlag.

Buyse, M., Molenberghs, G., Burzykowski, T., Renard, D., & Geys, H. (2000). The validation of
surrogate endpoints in meta-analysis of randomized experiments. Biostatistics, 1, 49-67.

Tibaldi, F., Abrahantes, J. C., Molenberghs, G., Renard, D., Burzykowski, T., Buyse, M., Parmar,
M., et al., (2003). Simplified hierarchical linear models for the evaluation of surrogate endpoints.
Journal of Statistical Computation and Simulation, 73, 643-658.

See Also

UnimixedContCont, BifixedContCont, BimixedContCont, plot Meta-Analytic

Examples

## Not run: #Time consuming (>5 sec) code parts
# Example 1, based on the ARMD data
data(ARMD)

# Fit a full univariate fixed-effects model with weighting according to the

# number of patients in stage 2 of the two stage approach to assess surrogacy:

Sur <- UnifixedContCont(Dataset=ARMD, Surr=Diff24, True=Diff52, Treat=Treat, Trial.ID=Center,
Pat.ID=Id, Model="Full”, Weighted=TRUE)

# Obtain a summary and plot of the results
summary (Sur)
plot(Sur)

# Example 2

# Conduct an analysis based on a simulated dataset with 2000 patients, 100 trials,
# and Rindiv=Rtrial=.8

# Simulate the data:

Sim.Data.MTS(N.Total=2000, N.Trial=100, R.Trial.Target=.8, R.Indiv.Target=.8,
Seed=123, Model="Reduced")

# Fit a reduced univariate fixed-effects model without weighting to assess
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# surrogacy:
Sur2 <- UnifixedContCont(Dataset=Data.Observed.MTS, Surr=Surr, True=True, Treat=Treat,
Trial.ID=Trial.ID, Pat.ID=Pat.ID, Model="Reduced”, Weighted=FALSE)

# Show a summary and plots of results:
summary (Sur2)

plot(Sur2, Weighted=FALSE)

## End(Not run)

UnimixedContCont Fits univariate mixed-effect models to assess surrogacy in the meta-
analytic multiple-trial setting (continuous-continuous case)

Description

The function UnimixedContCont uses the univariate mixed-effects approach to estimate trial- and
individual-level surrogacy when the data of multiple clinical trials are available. The user can
specify whether a (weighted or unweighted) full, semi-reduced, or reduced model should be fitted.
See the Details section below. Further, the Individual Causal Association (ICA) is computed.

Usage

UnimixedContCont(Dataset, Surr, True, Treat, Trial.ID, Pat.ID, Model=c("Full"),
Weighted=TRUE, Min.Trial.Size=2, Alpha=.05, Number.Bootstraps=500,
Seed=sample(1:1000, size=1), TOT1=seq(-1, 1, by=.2), T@Sl=seq(-1, 1, by=.2),

T1S0=seq(-1, 1, by=.2), S@Sl=seq(-1, 1, by=.2), ...)
Arguments
Dataset A data. frame that should consist of one line per patient. Each line contains (at

least) a surrogate value, a true endpoint value, a treatment indicator, a patient
ID, and a trial ID.

Surr The name of the variable in Dataset that contains the surrogate endpoint values.
True The name of the variable in Dataset that contains the true endpoint values.
Treat The name of the variable in Dataset that contains the treatment indicators. The

treatment indicator should either be coded as 1 for the experimental group and
—1 for the control group, or as 1 for the experimental group and 0 for the control

group.
Trial.ID The name of the variable in Dataset that contains the trial ID to which the

patient belongs.
Pat.ID The name of the variable in Dataset that contains the patient’s ID.
Model The type of model that should be fitted, i.e., Model=c("Full”), Model=c("Reduced"),

or Model=c("SemiReduced"). See the Details section below. Default Model=c("Full").
Weighted Logical. If TRUE, then a weighted regression analysis is conducted at stage 2

of the two-stage approach. If FALSE, then an unweighted regression analysis is
conducted at stage 2 of the two-stage approach. See the Details section below.
Default TRUE.
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Min.Trial.Size The minimum number of patients that a trial should contain to be included in the
analysis. If the number of patients in a trial is smaller than the value specified by
Min.Trial.Size, the data of the trial are excluded from the analysis. Default 2.

Alpha The a-level that is used to determine the confidence intervals around R?Z. .,
Ririal, Rzzndiv’ and R;,,4;,. Default 0.05.

Number.Bootstraps
The confidence intervals for andw and R;,q;, are determined as based on a
bootstrap procedure. Number.Bootstraps specifies the number of bootstrap
samples that are to be used. Default 500.

Seed The seed to be used in the bootstrap procedure. Default sample(1 : 1000, size =
1).
TOT1 A scalar or vector that contains the correlation(s) between the counterfactuals TO

and T1 that should be considered in the computation of pa (ICA). For details,
see function ICA.ContCont. Default seq(-1, 1, by=.2).

T0S1 A scalar or vector that contains the correlation(s) between the counterfactuals
TO and S1 that should be considered in the computation of pa . Default seq(-1,
1, by=.2).

T1S0 A scalar or vector that contains the correlation(s) between the counterfactuals
T1 and SO that should be considered in the computation of pa. Default seq(-1,
1, by=.2).

S0s1 A scalar or vector that contains the correlation(s) between the counterfactuals
S0 and S1 that should be considered in the computation of pa. Default seq(-1,
1, by=.2).

Other arguments to be passed to the function 1mer (of the R package 1me4) that
is used to fit the geralized linear mixed-effect models in the function BimixedContCont.

Details

When the full bivariate mixed-effects model is fitted to assess surrogacy in the meta-analytic frame-
work (for details, Buyse & Molenberghs, 2000), computational issues often occur. In that situation,
the use of simplified model-fitting strategies may be warranted (for details, see Burzykowski et al.,
2005; Tibaldi et al., 2003).

The function UnimixedContCont implements one such strategy, i.e., it uses a two-stage univariate
mixed-effects modelling approach to assess surrogacy. In the first stage of the analysis, two uni-
variate mixed-effects models are fitted to the data. When a full or semi-reduced model is requested
(by using the argument Model=c("Full") or Model=c("”"SemiReduced”) in the function call), the
following univariate models are fitted:

Sij = ps +msi + (@ + a;) Zij + €545,
Tij = pr +mp; + (B + b;) Zij + €14,

where 7 and j are the trial and subject indicators, S;; and T;; are the surrogate and true endpoint
values of subject j in trial 4, Z;; is the treatment indicator for subject j in trial 4, pt5 and 7 are the
fixed intercepts for S and T, mg; and mq; are the corresponding random intercepts, o and 3 are the
fixed treatment effects for S and T, and a; and b; are the corresponding random treatment effects,
respectively. The error terms £g;; and e7;; are assumed to be independent.
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When a reduced model is requested (by using the argument Model=c("Reduced”) in the function
call), the following two univariate models are fitted:

Sij = ws + (o + a;) Zij + €s4j,
Tij = pr + (B +bi)Zij + er4j,

where s and pr are the common intercepts for S and T (i.e., it is assumed that the intercepts for
the surrogate and the true endpoints are identical in each of the trials). The other parameters are the
same as defined above, and €g;; and e7;; are again assumed to be independent.

2

. . 2
An estimate of R, ;. is computed as r(eg;;, €7i5)°.

Next, the second stage of the analysis is conducted. When a full model is requested by the user (by
using the argument Model=c("”Full") in the function call), the following model is fitted:

~

Bi = Ao + Aifisi + Aoty + &5,

where the parameter estimates for 3;, us;, and a; are based on the models that were fitted in stage
Lie., B; = B+ bi, i = ps + ms;, and a; = a + a;.

When a reduced or semi-reduced model is requested by the user (by using the arguments Model=c("SemiReduced")
or Model=c("Reduced") in the function call), the following model is fitted:

~

Bi = Xo + \idy; + &5,

where the parameters are the same as defined above.

When the argument Weighted=FALSE is used in the function call, the model that is fitted in stage
2 is an unweighted linear regression model. When a weighted model is requested (using the argu-
ment Weighted=TRUE in the function call), the information that is obtained in stage 1 is weighted
according to the number of patients in a trial.

2

The classical coefficient of determination of the fitted stage 2 model provides an estimate of 127, ;.

Value

An object of class UnimixedContCont with components,

Data.Analyze  Prior to conducting the surrogacy analysis, data of patients who have a missing
value for the surrogate and/or the true endpoint are excluded. In addition, the
data of trials (i) in which only one type of the treatment was administered, and
(i1) in which either the surrogate or the true endpoint was a constant (i.e., all
patients within a trial had the same surrogate and/or true endpoint value) are
excluded. In addition, the user can specify the minimum number of patients that
a trial should contain in order to include the trial in the analysis. If the number
of patients in a trial is smaller than the value specified by Min.Trial.Size,
the data of the trial are excluded. Data.Analyze is the dataset on which the
surrogacy analysis was conducted.

Obs.Per.Trial A data.frame that contains the total number of patients per trial and the number
of patients who were administered the control treatment and the experimental
treatment in each of the trials (in Data.Analyze).
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Results.Stage.1
The results of stage 1 of the two-stage model fitting approach: a data.frame
that contains the trial-specific intercepts and treatment effects for the surrogate
and the true endpoints (when a full or semi-reduced model is requested), or the
trial-specific treatment effects for the surrogate and the true endpoints (when a
reduced model is requested).

Residuals.Stage. 1
A data.frame that contains the residuals for the surrogate and true endpoints
that are obtained in stage 1 of the analysis (eg;; and e7;;).

Fixed.Effect.Pars
A data.frame that contains the fixed intercept and treatment effects for S and
T (i.e., ps, pT, @, and 3) when a full, semi-reduced, or reduced model is fitted
in stage 1.

Random.Effect.Pars
A data.frame that contains the random intercept and treatment effects for S
and T (i.e., mg;, mr;, a; and b;) when a full or semi-reduced model is fitted in
stage 1, or that contains the random treatment effects for S and T (i.e., a;, and
b;) when a reduced model is fitted in stage 1.

Results.Stage.2
An object of class 1m (linear model) that contains the parameter estimates of the
regression model that is fitted in stage 2 of the analysis.

Trial.R2 A data. frame that contains the trial-level coefficient of determination (Rfmal),
its standard error and confidence interval.

Indiv.R2 A data.frame that contains the individual-level coefficient of determination
(an div)» its standard error and confidence interval.

Trial.R A data.frame that contains the trial-level correlation coefficient (R¢y;q7), its

standard error and confidence interval.

Indiv.R A data. frame that contains the individual-level correlation coefficient (R;,, 45 ),
its standard error and confidence interval.

Cor.Endpoints A data.frame that contains the correlations between the surrogate and the true
endpoint in the control treatment group (i.e., proso) and in the experimental
treatment group (i.e., pr151), their standard errors and their confidence intervals.

D.Equiv The variance-covariance matrix of the trial-specific intercept and treatment ef-
fects for the surrogate and true endpoints (when a full or semi-reduced model is
fitted, i.e., when Model=c("Full") or Model=c("SemiReduced") is used in the
function call), or the variance-covariance matrix of the trial-specific treatment
effects for the surrogate and true endpoints (when a reduced model is fitted,
i.e., when Model=c("Reduced") is used in the function call). The variance-
covariance matrix D.Equiv is equivalent to the D matrix that would be obtained
when a (full or reduced) bivariate mixed-effects approach is used; see function

BimixedContCont).
ICA A fitted object of class ICA.ContCont.
ToTo The variance of the true endpoint in the control treatment condition.
T The variance of the true endpoint in the experimental treatment condition.
S0S0 The variance of the surrogate endpoint in the control treatment condition.

S181 The variance of the surrogate endpoint in the experimental treatment condition.
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See Also

UnifixedContCont, BifixedContCont, BimixedContCont, plot Meta-Analytic

Examples

## Not run: #Time consuming code part

# Conduct an analysis based on a simulated dataset with 2000 patients, 100 trials,
# and Rindiv=Rtrial=.8

# Simulate the data:

Sim.Data.MTS(N.Total=2000, N.Trial=100, R.Trial.Target=.8, R.Indiv.Target=.8,
Seed=123, Model="Reduced")

# Fit a reduced univariate mixed-effects model without weighting to assess surrogacy:
Sur <- UnimixedContCont(Dataset=Data.Observed.MTS, Surr=Surr, True=True, Treat=Treat,
Trial.ID=Trial.ID, Pat.ID=Pat.ID, Model="Reduced”, Weighted=FALSE)

# Show a summary and plots of the results:
summary (Sur)

plot(Sur, Weighted=FALSE)

## End(Not run)
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