Getting Started with TidyDensity

library(TidyDensity)

Example

This is a basic example which shows you how easy it is to generate data with {TidyDensity}:

library(TidyDensity)
library(dplyr)
library(ggplot2)

tidy_normal()
#> # A tibble: 50 × 7
#>    sim_number     x       y    dx       dy     p       q
#>    <fct>      <int>   <dbl> <dbl>    <dbl> <dbl>   <dbl>
#>  1 1              1  0.306  -3.65 0.000261 0.620  0.306 
#>  2 1              2 -0.119  -3.51 0.000820 0.453 -0.119 
#>  3 1              3  1.33   -3.37 0.00218  0.909  1.33  
#>  4 1              4  0.0612 -3.23 0.00491  0.524  0.0612
#>  5 1              5  0.620  -3.09 0.00942  0.732  0.620 
#>  6 1              6 -0.733  -2.95 0.0155   0.232 -0.733 
#>  7 1              7 -0.148  -2.81 0.0221   0.441 -0.148 
#>  8 1              8 -0.364  -2.67 0.0282   0.358 -0.364 
#>  9 1              9 -0.502  -2.53 0.0340   0.308 -0.502 
#> 10 1             10 -0.529  -2.39 0.0412   0.298 -0.529 
#> # … with 40 more rows

An example plot of the tidy_normal data.

tn <- tidy_normal(.n = 100, .num_sims = 6)

tidy_autoplot(tn, .plot_type = "density")

tidy_autoplot(tn, .plot_type = "quantile")

tidy_autoplot(tn, .plot_type = "probability")

tidy_autoplot(tn, .plot_type = "qq")

We can also take a look at the plots when the number of simulations is greater than nine. This will automatically turn off the legend as it will become too noisy.

tn <- tidy_normal(.n = 100, .num_sims = 20)

tidy_autoplot(tn, .plot_type = "density")

tidy_autoplot(tn, .plot_type = "quantile")

tidy_autoplot(tn, .plot_type = "probability")

tidy_autoplot(tn, .plot_type = "qq")