
Package ‘UMR’
October 12, 2022

Title Unmatched Monotone Regression

Version 1.1.0

Description Unmatched regression refers to the regression setting where
covariates and predictors are collected separately/independently and so are not paired to-
gether, as in the usual regression setting. Balab-
daoui, Doss, and Durot (2021) <arXiv:2007.00830> study the unmatched regression set-
ting where the univariate regression function is known to be monotone. This package imple-
ments methods for computing the estimator developed in Balab-
daoui, Doss, and Durot (2021). The main method is an active-set-trust-region-based method.

License GPL (>= 3)

Encoding UTF-8

Depends decon, trust, distr

Suggests purrr, Iso

RoxygenNote 7.1.1

NeedsCompilation no

Author Charles Doss [aut, cre] (<https://orcid.org/0000-0003-1364-5222>)

Maintainer Charles Doss <cdoss@stat.umn.edu>

Repository CRAN

Date/Publication 2021-08-14 09:00:09 UTC

R topics documented:
AA . 2
gradDesc_fixed_df . 5
objective_fn_numint . 6
UMR . 7
UMRactiveSet . 7
UMRactiveSet_trust . 8
UMRactiveSet_trust2 . 10
UMRgradDesc . 11
UMRgradDesc_fixed_df . 13
UMRgradDesc_PC . 14

1

https://arxiv.org/abs/2007.00830
https://orcid.org/0000-0003-1364-5222

2 AA

UMRgrad_generic . 16
UMRhess . 17
UMR_curv_generic . 18
umr_deconv . 19

Index 22

AA Helper functions for calculating gradient of least-squares Shuffled Iso-
tonic Regression criterion, for Laplace or for Gaussian errors

Description

Helper functions for calculating gradient of least-squares Shuffled Isotonic Regression criterion, for
Laplace or for Gaussian errors

Usage

AA(yy, mm, func)

BB(mm, func)

AAfunc_Laplace_generic(dd, LL)

AAfunc_Gauss_generic(dd, sig)

BBfunc_Laplace_generic(dd, LL)

BBfunc_Gauss_generic(dd, sig)

getAAfunc_est_outer(eps, ww = 1/length(eps))

getBBfunc_est_outer(eps, ww = 1/length(eps))

BBfunc_mixGauss_generic(dd, locs, wws, sigs)

BBpfunc_mixGauss_generic(dd, locs, wws, sigs)

BBpfunc_Gauss_generic(xx, sig)

BBpfunc_Laplace_generic(xx, myLL)

Arguments

yy Y (response) observation vector (numeric). Will apply as.vector() so it may be
a matrix or array with all dimensions trivial except 1.

AA 3

mm Current (unsorted) estimate/iterate at which to compute gradient. (Length equals
length of yy). Will apply as.vector() so it may be a matrix or array with all
dimensions trivial except 1.

func This is a function; should be the actual "A" or "B" function from the paper;
AA and BB are just wrappers that call outer() with func(). func() should accept
vector or matrix arguments.

dd generic argument to the "A" function; usually of the form m - mmhat, where m
is just some value of the regression function

LL Double Exponential "mean" parameter: corresponding density is $exp(-|d|/LL)
/ (2LL)$.

sig is standard deviation of the normal distribution.

eps is a vector of residuals (or estimated residuals). In current coding, it should have
been preprocessed to be *unique*. (If there are repeats this should be encoded
in ww).

ww is vector of weights of same length as eps, and summing to 1. Default is a weight
of 1/length(eps) for each value of eps; if eps has been pre-binned then ww is the
weights from binning.

locs Vector (length LL) of mixture locations

wws Vector (length LL, sum to 1) of mixture weights

sigs Vector (length LL, positive) of component standard deviations ## here dd should
be a matrix (usually from a call to outer())

xx Point at which to evaluate function

myLL is Laplace parameter.

Details

See helper functions "A" and "B" in paper.

For getAAfunc_est: returns a function(yy,mm) which is analogous to passing in an estimated ’func’
argument to the AA function. (Reason to not do it that way relates to making sure matrix arguments
are handled correctly.)

getBBfunc_est returns a function which as of this coding *MUST* take only a numeric vector of
length 1; longer vectors will not work. Be careful! Note that ecdf objects are not intended to be
stored permanently so storing functions returned by getBBfunc_est_outer or getAAfunc_est_outer
may cause issues.

Examples

the "!!" de-quote (see ?partial) so e.g., can save mygradSIR for future runs.

####### gradient settings/setup for Gaussian

set.seed(501)

4 AA

library(distr)
mysig <- 1 ## std dev
errdist <- Norm(0, sd=mysig)
mm0 <- function(xx){xx}
nn <- 300
xx <- sort(runif(n=nn, 0, 7))
yy <- mm0(xx) + errdist@r(nn)
plot(xx,yy)

myScale <- mysig

AAfunc_Gauss <- purrr::partial(AAfunc_Gauss_generic, sig=!!mysig)
AA_Gauss <- purrr::partial(AA, func=!!AAfunc_Gauss)
BBfunc_Gauss <- purrr::partial(BBfunc_Gauss_generic, sig=!!mysig)
BB_Gauss <- purrr::partial(BB, func=!!BBfunc_Gauss)
mygradSIR <-

grad_SIR_Gauss <- ## just for ease of reference
purrr::partial(grad_SIR_generic,

rescale=TRUE, ## factor of nn/2
AAfunc=!!AA_Gauss, BBfunc=!!BB_Gauss)

####### gradient settings/setup for Laplace

set.seed(501)
library(distr)
myLL <- .7 ## (1/"rate") parameter, aka "mean" parameter (except Laplace mean is 0)
errdist <- DExp(1/myLL)

nn <- 200
mm0 <- function(xx){

(xx<=0)*0 + (0<=xx & xx<=2)*1 +
(2<xx & xx<=3)*3 +
(3<xx)*6

}
xx <- sort(runif(n=nn, 0, 7))
yy <- mm0(xx) + errdist@r(nn)

myScale <- myLL;

CS settings
#'mysig <- sqrt(2) * myLL;
#'
AAfunc_Laplace <- purrr::partial(AAfunc_Laplace_generic, LL=!!myLL)
AA_Laplace <- purrr::partial(AA, func=!!AAfunc_Laplace)
BBfunc_Laplace <- purrr::partial(BBfunc_Laplace_generic, LL=!!myLL)
BB_Laplace <- purrr::partial(BB, func=!!BBfunc_Laplace)
mygradSIR <-

grad_SIR_Laplace <- purrr::partial(grad_SIR_generic,
rescale=TRUE, ## factor of nn/2

gradDesc_fixed_df 5

AAfunc=!!AA_Laplace, BBfunc=!!BB_Laplace)

gradDesc_fixed_df Gradient Descent with a fixed number of constant pieces (degrees of
freedom)

Description

Gradient Descent with a fixed number of constant pieces (degrees of freedom)

Usage

gradDesc_fixed_df(
yy,
grad,
init = stats::median(yy),
counts = length(yy),
stepsize,
MM,
tol = 1e-07,
printevery = Inf,
filename

)

Arguments

yy Y (response) observation vector (numeric)

grad a function(yy, mm) where mm may be shorter length than yy and is the previous
iterate value (i.e., the estimate vector).

init Initial value of estimate (’mm’). I.e., numeric vector of length <= length(mm).
The output will be of length length(init).

counts Vector of length length(init); each entry indicates how many values of yy the
corresponding value of init (and output) corresponds to. Alternatively, can think
of counts as a vector of weights for each estimator value.

stepsize Gradient descent stepsize. Set carefully!

MM Number of iterations in which "support reduction" (combining of approximately
equal values into a region of constancy) is done (see details and paper). Depend-
ing on tol, may not use all MM iterations.

tol Tolerance: end algorithm once sum(abs(mm-mmprev)) < tol or you hit MM
iterations.

printevery integer value (generally « MM). Every ’printevery’ iterations, a count will be
printed and the output saved.

filename path1/path2/filename to save output to.

6 objective_fn_numint

Details

Prefer using UMRgradDesc_fixed_df now; this function deprecated.
xxxx Implements a gradient descent. See paper for details. Right now stepsize is fixed. Right now:
init gets sorted in gradDesc_PC so does not need to be sorted on input. Roughly, the difference
between this algorithm and gradDesc() (which is just vanilla gradient descent on this problem) is
that: if mm is the current value of the output estimate, then gradDesc_PC ’collapses’ or combines
values of mm that are (roughly, up to tolerance ’eps’) equal. Because the solution is generally
piecewise constant with a relatively small number of constant regions this enormously speeds up
the later stages of the algorithm. Note that once points are combined/collapsed they contribute
identically to the objective function, so they will never be "uncombined".

objective_fn_numint Compute Unlinked Monotone Regression objective function numeri-
cally

Description

Compute Unlinked Monotone Regression objective function numerically

Usage

objective_fn_numint(
mm,
ww_m = NULL,
yy,
ww_y = NULL,
Phi,
subdivisions = 1000L

)

Arguments

mm Current (unsorted) estimate/iterate at which to compute gradient. (Length is <=
than the number of X observations in the problem).

ww_m Weights (nonnegative, sum to 1) corresponding to mm. Same length as mm.
yy Y (response) observation vector (numeric vector). Alternatively, yy may be an

ecdf, i.e. ecdf(yy) or getEcdf(yy, weights).
ww_y Weights (nonnegative, sum to 1) corresponding to yy. Same length as yy. De-

fault is just 1/length(yy) for each value. If yy is non-numeric i.e. yy is an ecdf()
then ww_y is ignored.

Phi This is the error (cumulative) distribution function, a function object (Balab-
daoui, Doss, Durot (2020+). Function accepting vector or matrix arguments.

subdivisions Passed argument to integrate().

Details

See paper for derivations.

UMR 7

UMR UMR: For computing an estimator in Unlinked Monotone Regression.

Description

A package for computing an estimator in the problem of univariate Unlinked Monotone Regression.
See Balabdaoui, Doss, and Durot (2021).

UMR functions

The main function is UMRactiveSet_trust, which uses the trust region for second order optimization
of the nonconvex objective function as a subroutine. Other functions for optimizing are also pro-
vided, for comparisons; these include gradDesc_PC (for Gradient Descent for Piecwise Constant
functions), gradDesc. The former is faster than the latter (but slower than the second order method).
The latter is the more naive vanilla gradient descent method (can be used for instance to double
check results from gradDesc_PC).

UMRactiveSet An active set approach to minimizing objective in Unlinked Monotone
Regression

Description

An active set approach to minimizing objective in Unlinked Monotone Regression

Usage

UMRactiveSet(
yy,
grad,
CC_SIR,
init,
counts = rep(1, length(init)),
stepsize,
MM,
tol_end = 1e-04,
tol_collapse,
printevery,
filename

)

8 UMRactiveSet_trust

Arguments

yy Y (response) observation vector (numeric)

grad a function(yy, mm) where mm is the previous iterate value (i.e., the estimate
vector).

CC_SIR A curvature function object (denoted "C" in the paper). See CC_SIR_generic()
and examples.

init Initial value of estimate (’mm’). Vector, length may be different than length(yy).
See ’counts’ input.

counts Together ’init’ and ’counts’ serve as the initialization; the implied initial vector
is rep.int(init, counts).

stepsize Gradient descent stepsize.

MM A number of iterations. May not use them all. MM is not exactly the total
number of iterations used in the sense that within each of MM iterations, we
will possibly run another algorithm which may take up to MM iterations (but
usually takes many fewer).

tol_end Used as tolerance at various points . Generally algorithm (and some subalgo-
rithms) end once sum(abs(mm-mmprev)) < tol, or you hit MM iterations.

tol_collapse Collapsing roughly equal mm values into each other.

printevery integer value (generally « MM). Every ’printevery’ iterations, a count will be
printed and the output saved.

filename filename (path) to save output to.

param ww_y Weights (nonnegative, sum to 1) corresponding to yy. Same length
as yy.

Details

Uses first order (gradient) for optimization, and uses certain second derivative computations to
leave saddle points. See Balabdaoui, Doss, and Durot (20xx). Note that yy and mm (i.e., number
covariates) may have different length.

UMRactiveSet_trust An active set approach to minimizing objective in Unlinked Monotone
Regression

Description

An active set approach to minimizing objective in Unlinked Monotone Regression

UMRactiveSet_trust 9

Usage

UMRactiveSet_trust(
yy,
ww_y = NULL,
grad,
hess,
UMR_curv,
CDF,
init,
counts = rep(1, length(init)),
stepsize,
MM,
tol_end = 1e-04,
tol_collapse,
printevery,
filename

)

Arguments

yy Y (response) observation vector (numeric)

ww_y Weights (nonnegative, sum to 1) corresponding to yy. Samelength as yy. Or
NULL in which yy are taken as being evenly weighted.

grad Is function(mm, ww_m). (Will be defined based on yy [and maybe ww_y] be-
fore being passed in.) Returns vector of length(mm). Gradient of objective
function.

hess Is function(mm, ww_m). (Will be defined based on yy [and maybe ww_y] be-
fore being passed in.) Returns matrix of dimensions length(mm) by length(mm).
Hessian of objective function.

UMR_curv A curvature function object (giving mathfrak(C) in the paper; and related to
"C" in the paper). See UMR_curv_generic() and examples. This is generally a
"curried" version of UMR_curv_generic with densfunc and BBp passed in.

CDF This is the error (cumulative) distribution function, a function object. Function
accepting vector or matrix arguments.

init Initial value of estimate (’mm’). Vector, length may be different than length(yy).
See ’counts’ input.

counts Together ’init’ and ’counts’ serve as the initialization; the implied initial vector
is rep.int(init, counts).

stepsize Stepsize for moving out of saddle points.

MM A number of iterations. May not use them all. MM is not exactly the total
number of iterations used in the sense that within each of MM iterations, we
will possibly run another algorithm which may take up to MM iterations (but
usually takes many fewer).

tol_end Used as tolerance at various points . Generally algorithm (and some subalgo-
rithms) end once sum(abs(mm-mmprev)) < tol, or you hit MM iterations.

10 UMRactiveSet_trust2

tol_collapse Collapsing roughly equal mm values into each other.

printevery integer value (generally « MM). Every ’printevery’ iterations, a count will be
printed and the output saved.

filename filename (path) to save output to.

Details

Uses first order (gradient) for optimization, and uses certain second derivative computations to
leave saddle points. See Balabdaoui, Doss, and Durot (2021). Note that yy and mm (i.e., number
covariates) may have different length.

UMRactiveSet_trust2 An active set approach to minimizing objective in Unlinked Monotone
Regression

Description

An active set approach to minimizing objective in Unlinked Monotone Regression

Usage

UMRactiveSet_trust2(
yy,
ww_y = NULL,
grad,
hess,
UMR_curv,
CDF,
init,
counts = rep(1, length(init)),
stepsize,
MM,
tol_end = 1e-04,
tol_collapse,
printevery,
filename

)

Arguments

yy Y (response) observation vector (numeric)

ww_y Weights (nonnegative, sum to 1) corresponding to yy. Samelength as yy. Or
NULL in which yy are taken as being evenly weighted.

grad Is function(mm, ww_m). (Will be defined based on yy [and maybe ww_y] be-
fore being passed in.) Returns vector of length(mm). Gradient of objective
function.

UMRgradDesc 11

hess Is function(mm, ww_m). (Will be defined based on yy [and maybe ww_y] be-
fore being passed in.) Returns matrix of dimensions length(mm) by length(mm).
Hessian of objective function.

UMR_curv A curvature function object (giving mathfrak(C) in the paper; and related to
"C" in the paper). See UMR_curv_generic() and examples. This is generally a
"curried" version of UMR_curv_generic with densfunc and BBp passed in.

CDF This is the error (cumulative) distribution function, a function object. Function
accepting vector or matrix arguments.

init Initial value of estimate (’mm’). Vector, length may be different than length(yy).
See ’counts’ input.

counts Together ’init’ and ’counts’ serve as the initialization; the implied initial vector
is rep.int(init, counts).

stepsize Stepsize for moving out of saddle points.

MM A number of iterations. May not use them all. MM is not exactly the total
number of iterations used in the sense that within each of MM iterations, we
will possibly run another algorithm which may take up to MM iterations (but
usually takes many fewer).

tol_end Used as tolerance at various points . Generally algorithm (and some subalgo-
rithms) end once sum(abs(mm-mmprev)) < tol, or you hit MM iterations.

tol_collapse Collapsing roughly equal mm values into each other.

printevery integer value (generally « MM). Every ’printevery’ iterations, a count will be
printed and the output saved.

filename filename (path) to save output to.

Details

Uses first order (gradient) for optimization, and uses certain second derivative computations to
leave saddle points. See Balabdaoui, Doss, and Durot (2021). Note that yy and mm (i.e., number
covariates) may have different length.

dens and bbp are deprecated

param dens This is the error density, a function object. Function accepting vector or matrix argu-
ments.

param BBp This is derivative of "B" function ("B prime"), where B is defined in the paper (Balab-
daoui, Doss, Durot (2020+)). Function accepting vector or matrix arguments.

UMRgradDesc Basic gradient descent implementation

Description

Basic gradient descent implementation

12 UMRgradDesc

Usage

gradDesc(yy, grad, init, stepsize, MM, printevery, filename)

Arguments

yy Y (response) observation vector (numeric)

grad a function(yy, mm) where mm is same length of yy and is the previous iterate
value (i.e., the estimate vector).

init Initial value of estimate (’mm’). I.e., numeric vector of same length as yy.

stepsize Gradient descent stepsize. Set carefully! (I often use nn^2 / 2 where nn =
length(yy), or nn if gradient is ’rescaled’.)

MM Number of iterations

printevery integer value (generally « MM). Every ’printevery’ iterations, a count will be
printed and the output saved.

filename filename (path) to save output to.

Details

Implements a very basic gradient descent. Right now stepsize is fixed.

Examples

Set up the gradient function
mysig <- 1 ## std dev

errdist <- distr::Norm(0, sd=mysig)
modeldistname <- truedistname <- "Gauss" ## used for savefile name
mm0 <- function(xx){xx}
nn <- 300
xx <- sort(runif(n=nn, 0, 7))
yy <- mm0(xx) + errdist@r(nn)
plot(xx,yy)

myScale <- mysig

AAfunc_Gauss <- purrr::partial(AAfunc_Gauss_generic, sig=!!mysig)
AA_Gauss <- purrr::partial(AA, func=!!AAfunc_Gauss)
BBfunc_Gauss <- purrr::partial(BBfunc_Gauss_generic, sig=!!mysig)
BB_Gauss <- purrr::partial(BB, func=!!BBfunc_Gauss)
mygradSIR <-

grad_SIR_Gauss <- ## just for ease of reference
purrr::partial(grad_SIR_generic,

rescale=TRUE, ## factor of nn/2
AAfunc=!!AA_Gauss, BBfunc=!!BB_Gauss)

Now run the gradient descent
savefilenameUnique <- paste("graddesc_", modeldistname, "_", truedistname,

"_n", nn,

UMRgradDesc_fixed_df 13

"_", format(Sys.time(), "%Y-%m-%d-%T"), ".rsav", sep="")
print(paste("The unique save file name for this run is", savefilenameUnique))
stepsize <- nn^(1/2) ## Has to be tuned
MM <- 100 ## Total number iterations is MM * JJ
JJ <- 2
eps <- (max(yy)-min(yy)) / (1000 * nn^(1/5) * myScale)
print *and* SAVE every 'printevery' iterations.
here no save occurs, printevery > MM
printevery <- 1000
init <- yy

mmhat <- UMRgradDesc(yy=yy, grad=mygradSIR, ## from settings file
init=init,
stepsize=stepsize, MM=MM,
printevery=printevery,
filename=paste0("../saves/", savefilenameUnique))

some classical/matched [oracle] estimators
isoreg_std <- Iso::ufit(y=yy, x=xx, lmode=Inf)
mmhat_std = isoreg_std$y ## Isotonic regression
linreg_std <- lm(yy~xx)

UMRgradDesc_fixed_df Gradient Descent with a fixed number of constant pieces (degrees of
freedom)

Description

Gradient Descent with a fixed number of constant pieces (degrees of freedom)

Usage

UMRgradDesc_fixed_df(
grad,
init,
stepsize,
MM,
tol = 1e-07,
printevery = Inf,
filename

)

Arguments

grad a function(mm) where mm is the previous iterate value (i.e., the estimate vector).

init Initial value of estimate (’mm’). The output will be of length length(init).

stepsize Gradient descent stepsize. Set carefully!

14 UMRgradDesc_PC

MM Number of iterations in which "support reduction" (combining of approximately
equal values into a region of constancy) is done (see details and paper). Depend-
ing on tol, may not use all MM iterations.

tol Tolerance: end algorithm once sum(abs(mm-mmprev)) < tol or you hit MM
iterations.

printevery integer value (generally « MM). Every ’printevery’ iterations, a count will be
printed and the output saved.

filename path1/path2/filename to save output to.

Details

UMRgradDesc_fixed_df does a gradient descent with a fixed (upper bound) on the number of con-
stant segments of the function.

Output of UMRgradDesc_fixed_df is unsorted. Note weights for ’mm’ are not passed in; rather
they will be contained/used in grad().

UMRgradDesc_PC Gradient Descent implemented for Piecewise Constant functions

Description

Gradient Descent implemented for Piecewise Constant functions

Usage

UMRgradDesc_PC(
yy,
grad,
init,
stepsize,
MM,
eps,
JJ = 50,
printevery,
filename

)

Arguments

yy Y (response) observation vector (numeric)

grad a function(yy, mm) where mm may be shorter length than yy and is the previous
iterate value (i.e., the estimate vector).

init Initial value of estimate (’mm’). I.e., numeric vector usually of same length as
yy.

stepsize Gradient descent stepsize. Set carefully!

UMRgradDesc_PC 15

MM Number of iterations in which "support reduction" (combining of approximately
equal values into a region of constancy) is done (see details and paper).

eps Roughly, points that are eps apart are considered to be equal and are thus col-
lapsed into a single region of piecewise constancy of the output. (This is not
precisely true because one can have a long sorted-increasing vector of points
that are each eps from their two neighboring points but such that the first and
last points are not eps apart. See algorithm description in paper for details.)

JJ Total number of gradient steps is MM*JJ. JJ gradient steps are taken for each of
the MM steps.

printevery integer value (generally « MM). Every ’printevery’ iterations, a count will be
printed and the output saved.

filename path1/path2/filename to save output to.

Details

Implements a gradient descent. See paper for details. Right now stepsize is fixed. Right now: init
gets sorted in gradDesc_PC so does not need to be sorted on input. Roughly, the difference between
this algorithm and gradDesc() (which is just vanilla gradient descent on this problem) is that: if mm
is the current value of the output estimate, then gradDesc_PC ’collapses’ or combines values of mm
that are (roughly, up to tolerance ’eps’) equal. Because the solution is generally piecewise constant
with a relatively small number of constant regions this enormously speeds up the later stages of the
algorithm. Note that once points are combined/collapsed they contribute identically to the objective
function, so they will never be "uncombined".

Examples

#'
Set up the gradient function
mysig <- 1 ## std dev

errdist <- distr::Norm(0, sd=mysig)
modeldistname <- truedistname <- "Gauss" ## used for savefile name
mm0 <- function(xx){xx}
nn <- 300
xx <- sort(runif(n=nn, 0, 7))
yy <- mm0(xx) + errdist@r(nn)
plot(xx,yy)

myScale <- mysig

AAfunc_Gauss <- purrr::partial(AAfunc_Gauss_generic, sig=!!mysig)
AA_Gauss <- purrr::partial(AA, func=!!AAfunc_Gauss)
BBfunc_Gauss <- purrr::partial(BBfunc_Gauss_generic, sig=!!mysig)
BB_Gauss <- purrr::partial(BB, func=!!BBfunc_Gauss)
mygradSIR <-

grad_SIR_Gauss <- ## just for ease of reference
purrr::partial(grad_SIR_generic,

rescale=TRUE, ## factor of nn/2
AAfunc=!!AA_Gauss, BBfunc=!!BB_Gauss)

16 UMRgrad_generic

Now run the gradient descent
savefilenameUnique <- paste("graddesc_", modeldistname, "_", truedistname,

"_n", nn,
"_", format(Sys.time(), "%Y-%m-%d-%T"), ".rsav", sep="")

print(paste("The unique save file name for this run is", savefilenameUnique))
stepsize <- nn^(1/2) ## Has to be tuned
MM <- 200 ## Total number iterations is MM * JJ
JJ <- 2
eps <- (max(yy)-min(yy)) / (1000 * nn^(1/5) * myScale)
print *and* SAVE every 'printevery' iterations;
here no save occurs, printevery > MM
printevery <- 1000
init <- yy

mmhat <- UMRgradDesc_PC(yy=yy, grad=mygradSIR, ## from settings file
init=init,
stepsize=stepsize, MM=MM,
JJ=JJ, eps=eps,
printevery=printevery,
filename=paste0("../saves/", savefilenameUnique))

some classical/matched [oracle] estimators
isoreg_std <- Iso::ufit(y=yy, x=xx, lmode=Inf)
mmhat_std = isoreg_std$y ## Isotonic regression
linreg_std <- lm(yy~xx)

UMRgrad_generic Gradient of least-squares Shuffled Isotonic Regression criterion

Description

Gradient of least-squares Shuffled Isotonic Regression criterion

Usage

UMRgrad_generic(
yy,
ww_y = rep(1/length(yy), length(yy)),
mm,
ww_m = rep(1/length(mm), length(mm)),
AAfunc,
BBfunc

)

grad_SIR_generic(
yy,
mm,
counts = rep(1, length(mm)),

UMRhess 17

AAfunc,
BBfunc,
rescale = FALSE

)

Arguments

yy Y (response) observation vector (numeric)

ww_y Weight vector for yy.

mm Current (unsorted) estimate/iterate at which to compute gradient. (Length equals
length of yy).

ww_m Weight vector for mm.

AAfunc This is the function "A" defined in the gradient calculations in the paper (Balab-
daoui, Doss, Durot (2020+).

BBfunc This is the function "B" defined in the gradient calculations in the paper (Balab-
daoui, Doss, Durot (2020+).
@details Returns gradient as a column matrix. See calculations in the paper.
@examples #### See help for gradDesc_PC, gradDesc, or grad_helpers

counts If the function that mm represents is piecewise constant, then mm may be passed
in as only the unique entries. In that case counts contains the number of times
each element of mm is repeated. Thus length(counts)==length(mm). (Default
for counts is thus a vector of all 1’s.)

rescale Boolean: if False then the final return value is the

UMRhess Compute Hessian of Unlinked Monotone Regression objective function
from Balabdaoui, Doss, and Durot

Description

Compute Hessian of Unlinked Monotone Regression objective function from Balabdaoui, Doss,
and Durot

Usage

UMRhess_generic(mm, ww_m, yy, ww_y = rep(1/length(yy), length(yy)), dens, BBp)

Arguments

mm Current (unsorted) estimate/iterate at which to compute gradient. (Length is <=
than the number of X observations in the problem).

ww_m Weights (nonnegative, sum to 1) corresponding to mm. Same length as mm.

yy Y (response) observation vector (numeric)

18 UMR_curv_generic

ww_y Weights (nonnegative, sum to 1) corresponding to yy. Same length as yy. De-
fault is just 1/length(yy) for each value.

dens This is the error density, a function object (Balabdaoui, Doss, Durot (2020+).
Function accepting vector or matrix arguments.

BBp This is derivative of "B" function ("B prime"), where B is defined in the paper.
Function accepting vector or matrix arguments.

Details

See paper for derivations.

UMR_curv_generic @title Second derivative computations of least-squares Unlinked Iso-
tonic Regression criterion ("SIR" comes from "shuffled isotonic regres-
sion" although this terminology is now outdated).

Description

@title Second derivative computations of least-squares Unlinked Isotonic Regression criterion ("SIR"
comes from "shuffled isotonic regression" although this terminology is now outdated).

Usage

UMR_curv_generic(
yy,
mm,
ww_y = rep(1/length(yy), length(yy)),
ww_m = rep(1/length(mm), length(mm)),
densfunc,
BBpfunc

)

UMR_curv_generic2(
yy,
mm,
ww_y = rep(1/length(yy), length(yy)),
ww_m = rep(1/length(mm), length(mm)),
densfunc,
DDfunc

)

UMR_CC_generic(
yy,
mm,
ww_y = rep(1/length(yy), length(yy)),
ww_m = rep(1/length(mm), length(mm)),

umr_deconv 19

densfunc,
DDfunc

)

Arguments

yy Y (response) observation vector (numeric)

mm Current (unsorted) estimate/iterate at which to compute gradient. (Length is <=
than the number of X observations in the problem).

ww_y Weights (nonnegative, sum to 1) corresponding to yy. Same length as yy. De-
fault is just 1/length(yy) for each value.

ww_m Weights (nonnegative, sum to 1) corresponding to mm. Same length as mm.

densfunc This is the error density, a function object (Balabdaoui, Doss, Durot (2021+).

BBpfunc This is the function B’, i.e. derivative of "B" function in the paper.
@details The "CC" or "curv" functions are used to be passed in to UMRac-
tiveSet_trust() (generally after ’currying’/substituting in for the parameter argu-
ments). UMR_CC_generic returns a 1xlength(mm) matrix giving the C function
defined in the paper. UMR_curv_generic is returning also a 1xlength(mm) ma-
trix giving the (d^2/dtheta^2)(objective function), where "theta" is as defined in
the paper. [This is mathfrakC in the paper.] These are similar quantities, the
"curv" quantity is just C rescaled by the weight. See calculations in paper. The
more substantive difference is that UMR_CC_generic requires a closed form for
the "D" function whereas UMR_curv_generic simply uses the hessian compu-
tation (i.e., requires B’, the derivative of the "B" function). (The closed form of
the "D" function can be found from the closed form of the hessian, but it is not
necessary.)
UMR_curv_generic2 is analogous to UMR_curv_generic but the latter relies on
UMR_CC_generic.
UMR_CC_generic1 is analogous to UMR_CC_generic (aka CC_SIR_generic)
but the former is calculated in fashion identical to UMR_curv_generic (i.e., re-
lying on UMRhess).
DDfunc_Gauss_generic is the "D" function that can be passed in (after substitut-
ing for sig) for DDfunc in various other functions to compute the "C" function
(e.g., UMR_CC_generic).
Note: "CC" and "DD", etc., refer to the "C" or "D" functions. Double lettering
is a convention often used in the code to refer to the single letter.

DDfunc This is the function "D" defined in the second derivative calculations in the paper
(Balabdaoui, Doss, Durot (2021+).

umr_deconv Carpentier and Schluter 2016 deconvolution method for unmatched
monotone regression

20 umr_deconv

Description

Carpentier and Schluter 2016 deconvolution method for unmatched monotone regression

Usage

umr_deconv(xx, yy, sig, error = "normal", bw = "dboot1", adjust = 1, n = 512)

quant_deconv(
yy,
sig,
error = "normal",
bw = "dboot1",
adjust = 1,
n = 512,
monotonize = base::cummax

)

Arguments

xx X (covariate or predictor) observation vector

yy Y (response) observation vector (numeric)

sig standard deviation of epsilon (passed to DeconCdf)

error Must be "normal" or "laplacian" or "snormal"; see help("DeconCdf")

bw Bandwidth choice or method for kernel estimator; see help("DeconCdf")

adjust See help("DeconCdf")

n See help("DeconCdf")

monotonize is a function taking a numeric vector argument which returns an increasing nu-
meric vector of the same length. This is used to monotonize the output of the
CDF from deconvolution, which is not guaranteed to be a "bona-fide" CDF in
the sense that it may not be monotone.

Details

quant_deconv implements Carpentier and Schluter 2016 deconvolution method for unmatched mono-
tone regression, using deconv package. Note that because the DeconCdf() function computes the
CDF but there is no direct code for computing the quantile function, we use approxfun to create
the quantile function; this may be slow. quant_deconv() returns a vector of length length(yy). Then
umr_deconv is a wrapper for quant_deconv. NOTE: It returns the output of approxfun, which is
may change over time. The output value is of type function. We linearly interpolate between the
points i/n.

Examples

library(distr)
mysig <- 1 ## std dev

umr_deconv 21

errdist <- distr::Norm(0, sd=mysig)
mm0 <- function(xx){xx}
nn <- 300
xx <- sort(runif(n=nn, 0, 7))
yy <- mm0(xx) + errdist@r(nn)
plot(xx,yy)
modeldistname <- truedistname <- "Gauss" ## used for savefile name

myScale <- mysig

xx <- sort(runif(n=nn, 0, 7))
mmtrue <- mm0(xx)
yy <- mmtrue + errdist@r(nn)
plot(xx,yy)
qq <- quant_deconv(yy, sig=1, error="normal")
lines(xx, ## already sorted

qq)

Index

AA, 2
AAfunc_Gauss_generic (AA), 2
AAfunc_Laplace_generic (AA), 2

BB (AA), 2
BBfunc_Gauss_generic (AA), 2
BBfunc_Laplace_generic (AA), 2
BBfunc_mixGauss_generic (AA), 2
BBpfunc_Gauss_generic (AA), 2
BBpfunc_Laplace_generic (AA), 2
BBpfunc_mixGauss_generic (AA), 2

getAAfunc_est_outer (AA), 2
getBBfunc_est (AA), 2
getBBfunc_est_outer (AA), 2
grad_SIR_generic (UMRgrad_generic), 16
gradDesc (UMRgradDesc), 11
gradDesc_fixed_df, 5

objective_fn_numint, 6

quant_deconv (umr_deconv), 19

UMR, 7
UMR_CC_generic (UMR_curv_generic), 18
UMR_curv_generic, 18
UMR_curv_generic2 (UMR_curv_generic), 18
umr_deconv, 19
UMRactiveSet, 7
UMRactiveSet_trust, 8
UMRactiveSet_trust2, 10
UMRgrad_generic, 16
UMRgradDesc, 11
UMRgradDesc_fixed_df, 13
UMRgradDesc_PC, 14
UMRhess, 17
UMRhess_generic (UMRhess), 17

22

	AA
	gradDesc_fixed_df
	objective_fn_numint
	UMR
	UMRactiveSet
	UMRactiveSet_trust
	UMRactiveSet_trust2
	UMRgradDesc
	UMRgradDesc_fixed_df
	UMRgradDesc_PC
	UMRgrad_generic
	UMRhess
	UMR_curv_generic
	umr_deconv
	Index

