
Package ‘VisitorCounts’
October 12, 2022

Type Package

Title Modeling and Forecasting Visitor Counts Using Social Media

Version 1.0.1

Date 2022-4-19

Author Russell Goebel [aut],
Robert Bowen [aut, cre],
Beth Ann Brackett [ctb],
Kimihiro Noguchi [aut],
Dylan Way [aut]

Maintainer Robert Bowen <robertbowen.bham@gmail.com>

Description Performs modeling and forecasting of park visitor counts
using social media data and (partial) on-site visitor counts.
Specifically, the model is built based on an automatic decomposition
of the trend and seasonal components of the social media-based park visitor counts,
from which short-term forecasts of the visitor counts and percent changes
in the visitor counts can be made. A reference for generating social media-based
visitor counts can be found at
Wood, Guerry, Silver, and Lacayo (2013) <doi:10.1038/srep02976>.

License GPL-3

Encoding UTF-8

RoxygenNote 7.1.2

Imports Rssa, methods

Suggests knitr, rmarkdown, testthat

VignetteBuilder knitr

Depends R (>= 2.10)

LazyData true

NeedsCompilation no

Repository CRAN

Date/Publication 2022-04-22 02:20:02 UTC

1

https://doi.org/10.1038/srep02976

2 auto_decompose

R topics documented:
auto_decompose . 2
check_arguments . 4
decompose_proxy . 5
estimate_lag . 8
estimate_parameters . 10
fit_model . 12
flickr_userdays . 12
generate_proxy_trend_forecasts . 13
new_decomposition . 14
new_visitation_forecast . 14
new_visitation_model . 15
park_visitation . 17
plot.decomposition . 18
plot.visitation_forecast . 19
plot.visitation_model . 20
predict.decomposition . 21
predict.visitation_model . 22
print.decomposition . 23
print.visitation_forecast . 24
print.visitation_model . 25
summary.decomposition . 26
summary.visitation_forecast . 27
summary.visitation_model . 28
visitation_model . 29

Index 34

auto_decompose Automatic Decomposition Function

Description

Automatically decomposes a time series using singular spectrum analysis. See package Rssa for
details on singular spectrum analysis.

Usage

auto_decompose(
time_series,
suspected_periods = c(12, 6, 4, 3),
proportion_of_variance_type = c("leave_out_first", "total"),
max_proportion_of_variance = 0.995,
log_ratio_cutoff = 0.2,
window_length = "auto",
num_trend_components = 2

)

auto_decompose 3

Arguments

time_series A vector which stores the time series of interest in the log scale.
suspected_periods

A vector which stores the suspected periods in the descending order of impor-
tance. The default option is c(12,6,4,3), corresponding to 12, 6, 4, and 3 months.

proportion_of_variance_type

A character string specifying the option for choosing the maximum number of
eigenvalues based on the proportion of total variance explained. If "leave_out_first"
is chosen, then the contribution made by the first eigenvector is ignored; other-
wise, if "total" is chosen, then the contribution made by all the eigenvectors is
considered.

max_proportion_of_variance

A numeric specifying the proportion of total variance explained using the method
specified in proportion_of_variance_type. The default option is 0.995.

log_ratio_cutoff

A numeric specifying the threshold for the deviation between the estimated
period and candidate periods in suspected_periods. The default option is 0.2,
which means that, if the absolute log ratio between the estimated and candidate
period is within 0.2 (approximately a 20% difference), then the estimated period
is deemed equal to the candidate period.

window_length A character string or positive integer specifying the window length for the SSA
estimation. If "auto" is chosen, then the algorithm automatically selects the
window length by taking a multiple of 12 which does not exceed half the length
of time_series. The default option is "auto".

num_trend_components

A positive integer specifying the number of eigenvectors to be chosen for de-
scribing the trend in SSA. The default option is 2.

Value

reconstruction A list containing important information about the reconstructed time series. In
particular, it contains the reconstructed main trend component, overall trend
component, seasonal component for each period specified in suspected_periods,
and overall seasonal component.

grouping A matrix containing information about the locations of the eigenvalue groups
for each period in suspected_periods and trend component. The locations are
indicated by ’1’.

window_length A numeric indicating the window length.

ts_ssa An ssa object storing the singular spectrum analysis decomposition.

Examples

data("park_visitation")

Decompose national parks service visitor counts and flickr photo user-days

parameters ---

4 check_arguments

suspected_periods <- c(12,6,4,3)
proportion_of_variance_type = "leave_out_first"
max_proportion_of_variance <- 0.995
log_ratio_cutoff <- 0.2

load data --

park <- "YELL" #for Yellowstone National Park

nps_ts <- ts(park_visitation[park_visitation$park == park,]$nps, start = 2005, freq = 12)
nps_ts <- log(nps_ts)

pud_ts <- ts(park_visitation[park_visitation$park == park,]$pud, start = 2005, freq = 12)
pud_ts <- log(pud_ts)

decompose time series and plot decompositions -----------
decomp_pud <- auto_decompose(pud_ts,

suspected_periods,
proportion_of_variance_type = proportion_of_variance_type,

max_proportion_of_variance,
log_ratio_cutoff)

plot(decomp_pud)

decomp_nps <- auto_decompose(nps_ts,suspected_periods,
proportion_of_variance_type = proportion_of_variance_type,

max_proportion_of_variance,log_ratio_cutoff)

plot(decomp_nps)

check_arguments Check Arguments

Description

Check arguments.

Usage

check_arguments(
log_scale,
popularity_proxy,
onsite_usage,
ref_series,
constant,
omit_trend,
...

)

decompose_proxy 5

Arguments

log_scale A Boolean specifying whether or not the results should be returned in the log
scale.

popularity_proxy

A vector which stores a time series which may be used as a proxy for the social
media time series in the log scale. The length of popularity_proxy must be the
same as that of onsite_usage.

onsite_usage A vector which stores on-site usage in the log scale for a particular social media
platform and recreational site.

ref_series A numeric vector specifying the original visitation series in the log scale. If such
series is available, then its length must be the same as that of time_series.

constant A numeric specifying the constant term in the model. This constant is under-
stood as the mean of the trend-adjusted time_series. If ref_series is supplied, the
constant is overwritten by the least squares estimate.

omit_trend A Boolean specifying whether or not to consider the trend component to be 0.

... Additional arguments.

Value

No return value, called for extra information.

decompose_proxy Decompose Popularity Proxy

Description

Decomposes the popularity proxy time series into trend and seasonality components.

Usage

decompose_proxy(
onsite_usage,
popularity_proxy = NULL,
suspected_periods = c(12, 6, 4, 3),
proportion_of_variance_type = c("leave_out_first", "total"),
max_proportion_of_variance = 0.995,
log_ratio_cutoff = 0.2,
window_length = "auto",
num_trend_components = 2,
criterion = c("cross-correlation", "MSE", "rank"),
possible_lags = -36:36,
leave_off = 6,
estimated_change = 0,
order_of_polynomial_approximation = 7,
order_of_derivative = 1,

6 decompose_proxy

ref_series = NULL,
beta = "estimate",
constant = 0,
log_scale = TRUE,
spline = FALSE,
parameter_estimates = c("separate", "joint"),
omit_trend = TRUE,
onsite_usage_decomposition,
...

)

Arguments

onsite_usage A vector which stores on-site usage in the log scale for a particular social media
platform and recreational site.

popularity_proxy

A vector which stores a time series which may be used as a proxy for the social
media time series in the log scale. The length of popularity_proxy must be the
same as that of onsite_usage. The default option is NULL, in which case, no
proxy needs to be supplied.

suspected_periods

A vector which stores the suspected periods in the descending order of impor-
tance. The default option is c(12,6,4,3), corresponding to 12, 6, 4, and 3 months
if observations are monthly.

proportion_of_variance_type

A character string specifying the option for choosing the maximum number of
eigenvalues based on the proportion of total variance explained. If "leave_out_first"
is chosen, then the contribution made by the first eigenvector is ignored; other-
wise, if "total" is chosen, then the contribution made by all the eigenvectors is
considered.

max_proportion_of_variance

A numeric specifying the proportion of total variance explained using the method
specified in proportion_of_variance_type. The default option is 0.995.

log_ratio_cutoff

A numeric specifying the threshold for the deviation between the estimated
period and candidate periods in suspected_periods. The default option is 0.2,
which means that if the absolute log ratio between the estimated and candidate
period is within 0.2 (approximately a 20 percent difference), then the estimated
period is deemed equal to the candidate period.

window_length A character string or positive integer specifying the window length for the SSA
estimation. If "auto" is chosen, then the algorithm automatically selects the
window length by taking a multiple of 12 which does not exceed half the length
of onsite_usage. The default option is "auto".

num_trend_components

A positive integer specifying the number of eigenvectors to be chosen for de-
scribing the trend in SSA. The default option is 2. This is relevant only when
omit_trend is FALSE.

decompose_proxy 7

criterion A character string specifying the criterion for estimating the lag in popular-
ity_proxy. If "cross-correlation" is chosen, it chooses the lag that maximizes
the correlation coefficient between lagged popularity_proxy and onsite_usage.
If "MSE" is chosen, it does so by identifying the lagged popularity_proxy whose
derivative is closest to that of onsite_usage by minimizing the mean squared er-
ror. If "rank" is chosen, it does so by firstly ranking the square errors of the
derivatives and identifying the lag which would minimize the mean rank.

possible_lags A numeric vector specifying all the candidate lags for popularity_proxy. The
default option is -36:36. This is relevant only when omit_trend is FALSE.

leave_off A positive integer specifying the number of observations to be left off when
estimating the lag. The default option is 6. This is relevant only when omit_trend
is FALSE.

estimated_change

A numeric specifying the estimated change in the visitation trend. The default
option is 0, implying no change in the trend.

order_of_polynomial_approximation

A numeric specifying the order of the polynomial approximation of the differ-
ence between time series used in estimate_lag. The default option is 7, the
seventh-degree polynomial. This is relevant only when omit_trend is FALSE.

order_of_derivative

A numeric specifying the order of derivative for the approximated difference
between time_series1 and lagged time_series2. The default option is 1, the first
derivative. This is relevant only when omit_trend is FALSE.

ref_series A numeric vector specifying the original visitation series in the log scale. The
default option is NULL, implying that no such series is available. If such series
is available, then its length must be the same as that of time_series.

beta A numeric or a character string specifying the seasonality adjustment factor. The
default option is "estimate", in which case, it is estimated by using the Fisher’s
z-transformed lag-12 autocorrelation. Even if an actual value is supplied, if
ref_series is supplied, it is overwritten by the least squares estimate.

constant A numeric specifying the constant term in the model. This constant is under-
stood as the mean of the trend-adjusted time_series. The default option is 0,
implying that the time_series well represents the actual visitation counts, which
is rarely the case. If ref_series is supplied, the constant is overwritten by the
least squares estimate.

log_scale A Boolean specifying whether or not the results should be returned in the log
scale. The default option is TRUE, in which case, the results are returned in the
log scale.

spline A Boolean specifying whether or not to use a smoothing spline for the lag esti-
mation. This is relevant only when omit_trend is FALSE.

parameter_estimates

A character string specifying how to estimate beta and constant parameters
should a reference series be supplied. Both options use least squares estimates,
but "separate" indicates that the differenced series should be used to estimate
beta separately from the constant, while "joint" indicates to estimate both using
non-differenced detrended series.

8 estimate_lag

omit_trend A Boolean specifying whether or not to consider the trend component to be 0.
The default option is TRUE, in which case, the trend component is 0.

onsite_usage_decomposition

A "decomposition" class object containing decomposition data for the onsite
usage time series (outputs from ‘auto_decompose‘).

... Additional arguments to be passed onto the smoothing spline (smooth.spline).

Value
proxy_decomposition

A "decomposition" object representing the automatic decomposition obtained
from popularity_proxy (see auto_decompose())

lagged_proxy_trend_and_forecasts_window

A ‘ts‘ object storing the potentially lagged popularity proxy trend and any fore-
casts needed due to the lag

ts_trend_window

A ‘ts‘ object storing the trend component of the onsite social media usage. This
trend component is potentially truncated to match available popularity proxy
data.

ts_seasonality_window

A ‘ts‘ object storing the seasonality component of the onsite social media usage.
This seasonality component is potentially truncated to match available popular-
ity proxy data.

latest_starttime

A ‘tsp‘ attribute of a ‘ts‘ object representing the latest of the two start times of
the potentially lagged populairty proxy and the onsite social media usage.

endtime A ‘tsp‘ attribute of a ‘ts‘ object representing the time of the final onsite usage
observation.

forecasts_needed

An integer representing the number of forecasts of popularity_proxy needed to
obtain all fitted values. Negative values indicate extra observations which may
be useful for predictions.

lag_estimate A list storing both the MSE-based esitmate and Rank-based estimates for the
lag.

estimate_lag Estimate Lag Function

Description

Uses polynomial approximation and derivatives for time series objects to estimate lag between
series.

estimate_lag 9

Usage

estimate_lag(
time_series1,
time_series2,
possible_lags,
method = c("cross-correlation", "MSE", "rank"),
leave_off,
estimated_change = 0,
order_of_polynomial_approximation = 7,
order_of_derivative = 1,
spline = FALSE,
...

)

Arguments

time_series1 A numeric vector which stores the time series of interest in the log scale.
time_series2 A numeric vector which stores the trend proxy time series in the log scale. The

length of trend_proxy must be the same as that of time_series1.
possible_lags A numeric vector specifying all the candidate lags for trend_proxy. The default

option is -36:36.
method A character vector specifying the method used to obtain the lag estimate. "poly-

nomial" uses polynomial approximation, while "cross-correlation" uses cross-
correlation.

leave_off A positive integer specifying the number of observations to be left off when
estimating the lag.

estimated_change

A numeric specifying the estimated change in the visitation trend. The default
option is 0, implying no change in the trend.

order_of_polynomial_approximation

A numeric specifying the order of the polynomial approximation of the differ-
ence between time series used in estimate_lag. The default option is 7, the
seventh-degree polynomial.

order_of_derivative

A numeric specifying the order of derivative for the approximated difference
between time_series1 and lagged time_series2. The default option is 1, the first
derivative.

spline A Boolean specifying whether or not to use a smoothing spline for the lag esti-
mation.

... Additional arguments to be passed onto the smooth.spline function, if method
is "polynomial".

Value

cc_lag A numeric indicating the estimated lag with the cross-correlation criterion.
mse_criterion A numeric indicating the estimated lag with the MSE criterion.
rank_criterion A numeric indicating the estimate lag with the rank criterion.

10 estimate_parameters

Examples

Generate dataset with known lag and recover this lag --------------#'

lag <- 3
n <- 156
start_year <- 2005
frequency <- 12
trend_function <- function(x) x^2

x <- seq(-3,3, length.out = n)

y1 <- ts(trend_function(x),start = start_year, freq = frequency)
y2 <- stats::lag(y1, k = lag)

Recover lag
estimate_lag(y1,y2, possible_lags = -36:36,

method = "rank",leave_off = 0, spline = FALSE)

estimate_parameters Estimate Parameters for Visitation Model

Description

Estimate the two parameters (y-intercept and seasonality factor) for the visitation model.

Usage

estimate_parameters(
popularity_proxy_decomposition_data = NULL,
onsite_usage,
onsite_usage_decomposition,
omit_trend,
ref_series,
beta,
constant,
parameter_estimates,
...

)

Arguments

popularity_proxy_decomposition_data

A "decomposition" class object containing decomposition data for the popular-
ity proxy time series (outputs from ‘auto_decompose‘).

estimate_parameters 11

onsite_usage A vector which stores on-site usage in the log scale for a particular social media
platform and recreational site.

onsite_usage_decomposition

A "decomposition" class object containing decomposition data for the onsite
usage time series (outputs from ‘auto_decompose‘).

omit_trend A Boolean specifying whether or not to consider the trend component to be 0.

ref_series A numeric vector specifying the original visitation series in the log scale.

beta A numeric or a character string specifying the seasonality adjustment factor. The
default option is "estimate", in which case, it is estimated by using the Fisher’s
z-transformed lag 12 autocorrelation. Even if an actual value is supplied, if
ref_series is supplied, it is overwritten by the least squares estimate.

constant A numeric specifying the constant term in the model. This constant is under-
stood as the mean of the trend-adjusted time_series. If ref_series is supplied, the
constant is overwritten by the least squares estimate.

parameter_estimates

A character string specifying how to estimate beta and constant parameters
should a reference series be supplied. Both options use least squares estimates,
but "separate" indicates that the differenced series should be used to estimate
beta separately from the constant, while "joint" indicates to estimate both using
non-differenced detrended series.

... Additional arguments.

Value
lagged_proxy_trend_and_forecasts_window

A ‘ts‘ object storing the potentially lagged popularity proxy trend and any fore-
casts needed due to the lag

ts_trend_window

A ‘ts‘ object storing the trend component of the onsite social media usage. This
trend component is potentially truncated to match available popularity proxy
data.

ts_seasonality_window

A ‘ts‘ object storing the seasonality component of the onsite social media usage.
This seasonality component is potentially truncated to match available popular-
ity proxy data.

latest_starttime

A ‘tsp‘ attribute of a ‘ts‘ object representing the latest of the two start times of
the potentially lagged populairty proxy and the onsite social media usage.

endtime A ‘tsp‘ attribute of a ‘ts‘ object representing the time of the final onsite usage
observation.

beta A numeric storing the estimated seasonality adjustment factor.

constant A numeric storing estimated constant term used in the model.

12 flickr_userdays

fit_model Fit Model

Description

Fit the visitation model.

Usage

fit_model(
parameter_estimates_and_time_series_windows,
omit_trend,
log_scale,
...

)

Arguments

parameter_estimates_and_time_series_windows

a list storing the outputs of ‘estimate_parameters‘, including parameter esti-
mates ‘beta‘ and ‘constant‘ as well as data pertaining to time series windows.

omit_trend A Boolean specifying whether or not to consider the trend component to be 0.

log_scale A Boolean specifying whether or not the results should be returned in the log
scale.

... Additional arguments

Value

visitation_fit A vector storing fitted values of visitation model.

flickr_userdays Popularity of Flickr, in User-Days

Description

A time series representing the popularity of Flickr in the United States, as measured in user-days.
Here, user-days count the number of unique users posting on Flickr on a given day.

Usage

flickr_userdays

Format

A time series object with 156 observations.

generate_proxy_trend_forecasts 13

Source

Flickr. (2019). Retrieved October, 2019, from https://flickr.com/

generate_proxy_trend_forecasts

Generate Proxy Trend Forecasts

Description

Generating proxy trend forecasts from objects of the class "visitation_model".

Usage

generate_proxy_trend_forecasts(
object,
n_ahead,
starttime,
endtime,
proxy_trend_correction,
ts_frequency

)

Arguments

object A visitation model object.

n_ahead The number of desired forecasts.

starttime The start time of the desired forecasts.

endtime The end time of the desired forecasts.
proxy_trend_correction

The lag correction needed on the proxy trend.

ts_frequency Frequency of the time series to forecast.

Value

A time series object storing forecasts for the proxy trend.

14 new_visitation_forecast

new_decomposition "decomposition" Constructor Function

Description

Constructs objects of the "decomposition" class.

Usage

new_decomposition(reconstruction_list, grouping_matrix, window_length, ts_ssa)

Arguments

reconstruction_list

A list containing important information about the reconstructed time series. In
particular, it contains the reconstructed main trend component, overall trend
component, seasonal component for each period specified in suspected_periods,
and overall seasonal component.

grouping_matrix

A matrix containing information about the locations of the eigenvalue groups
for each period in suspected_periods and trend component. The locations are
indicated by ’1’.

window_length A numeric indicating the window length.

ts_ssa An object of the class "ssa".

Value

A list of the class "decomposition".

new_visitation_forecast

visitation_forecast Class

Description

Class for visitation_model predictions (for use with predict.visitation_model()).

Usage

new_visitation_forecast(
forecasts,
n_ahead,
proxy_forecasts,
onsite_usage_forecasts,
beta,

new_visitation_model 15

constant,
criterion,
past_observations,
lag_estimate

)

Arguments

forecasts A time series of forecasts for the visitation model.

n_ahead An integer describing the number of forecasts made.

proxy_forecasts

A time series of forecasts of the popularity proxy series.

onsite_usage_forecasts

A time series of forecasts of the original time series.

beta A numeric or a character string specifying the seasonality adjustment factor. The
default option is "estimate", in which case, it is estimated by using the Fisher’s
z-transformed lag-12 autocorrelation. Even if an actual value is supplied, if
ref_series is supplied, it is overwritten by the least squares estimate.

constant A numeric specifying the constant term in the model. This constant is under-
stood as the mean of the trend-adjusted time_series. The default option is 0,
implying that the time_series well represents the actual visitation counts, which
is rarely the case. If ref_series is supplied, the constant is overwritten by the
least squares estimate.

criterion One of "MSE" or "Nonparametric", to specify the criterion used to select the
lag.

past_observations

One of "none", "fitted", or "ref_series". If "fitted", past model fitted values are
used. If "ref_series", the reference series in the visitation model object is used.
Note that if difference = TRUE, one of these is needed to forecast the first dif-
ference.

lag_estimate A numeric value specifying the estimated lag in the visitation model.

Value

Object of class "Visitation_forecast".

new_visitation_model "visitation_model" Constructor Function

Description

Constructs objects of the "visitation_model" class.

16 new_visitation_model

Usage

new_visitation_model(
visitation_fit,
differenced_fit,
beta,
constant,
lag_estimate,
proxy_decomposition,
onsite_usage_decomposition,
forecasts_needed,
ref_series,
criterion,
omit_trend,
call

)

Arguments

visitation_fit A time series storing the fitted values of the visitation model.

differenced_fit

A time series storing the differenced fitted values of the visitation model.

beta Seasonality adjustment factor.

constant A double describing the constant term used in the model.

lag_estimate An integer representing the lag parameter for the model fit.

proxy_decomposition

A decomposition class object representing the decomposition of a popularity
measure (e.g., US Photo-User-Days).

onsite_usage_decomposition

A decomposition class object representing the decomposition of time series
(e.g., park Photo-User-Days).

forecasts_needed

An integer describing how many forecasts for the proxy_decomposition are
needed for the fit.

ref_series A reference time series (or NULL) used in the model fit.

criterion A character string specifying the criterion for estimating the lag in popular-
ity_proxy. If "cross-correlation" is chosen, it chooses the lag that maximizes
the correlation coefficient between lagged popularity_proxy and onsite_usage.
If "MSE" is chosen, it does so by identifying the lagged popularity_proxy whose
derivative is closest to that of onsite_usage by minimizing the mean squared er-
ror. If "rank" is chosen, it does so by firstly ranking the square errors of the
derivatives and identifying the lag which would minimize the mean rank.

omit_trend A Boolean specifying whether or not to consider the NPS trend to be zero.

call A call for the visitation model.

park_visitation 17

Value

A list of the class "model_forecast".

park_visitation National Park Visitation Counts and Associated Photo-User-Days
Data.

Description

A data frame storing monthly visitation counts by National Park Service (NPS) for 20 popular US
national parks and associated Flickr photo-user-days (PUD). Here, photo-user-days (PUD) count
the number of unique users posting a photo on Flickr on a given day from within the boundaries of
a given National Park.

Usage

park_visitation

Format

A data frame with 3276 rows and 4 variables.

date Date of monthly observation, in year-month-day format.

park National Park alpha code identifying a National Park.

pud Flickr photo-user-days (PUD). Here, PUD count the number of unique users posting a photo
on flickr on a given day from within the boundaries of a given National Park.

nps Visitation count for the corresponding park and month given by the National Park Service
(NPS).

Source

National Park Service (2018). National park service visitor use statistics. Retrieved May 10, 2018
from https://irma.nps.gov/Stats/

Flickr (2019). Retrieved October, 2019, from https://flickr.com/

18 plot.decomposition

plot.decomposition Decomposition Plot Methods

Description

Methods for plotting objects of the class "decomposition".

Usage

S3 method for class 'decomposition'
plot(x, type = c("full", "period", "classical"), legend = TRUE, ...)

Arguments

x An object of class "decomposition".

type A character string. One of "full","period", or "classical". If "full", the full re-
construction is plotted. If "period", the reconstruction of each period is plotted
individually. If "classical", the trend and seasonality are plotted.

legend A Boolean specifying whether a legend should be added when type is "full".
The default option is TRUE.

... Additional arguments.

Value

A plot of the reconstruction in the "decomposition" class object.

Examples

data("park_visitation")

park <- "YELL"
nps_ts <- ts(park_visitation[park_visitation$park == park,]$nps, start = 2005, frequency = 12)
nps_ts <- log(nps_ts)

pud_ts <- ts(park_visitation[park_visitation$park == park,]$pud, start = 2005, frequency = 12)
pud_ts <- log(pud_ts)
nps_ts <- ts(park_visitation[park_visitation$park == park,]$nps, start = 2005, frequency = 12)
nps_ts <- log(nps_ts)

decomposition_pud <- auto_decompose(pud_ts)
decomposition_nps <- auto_decompose(nps_ts)

plot(decomposition_pud,lwd = 2)
plot(decomposition_pud,type = "period")
plot(decomposition_pud,type = "classical")

plot.visitation_forecast 19

plot(decomposition_nps,legend = TRUE)

plot(decomposition_nps,type = "period")
plot(decomposition_nps,type = "classical")

plot.visitation_forecast

visitation_forecast Plot Methods

Description

Methods for plotting objects of the class "visitation_forecast".

Usage

S3 method for class 'visitation_forecast'
plot(x, type = c("fitted"), difference = FALSE, ...)

Arguments

x An object of class "decomposition".

type A character string. One of "full","period", or "classical". If "full", the full re-
construction is plotted. If "period", the reconstruction of each period is plotted
individually. If "classical", the trend and seasonality are plotted.

difference A Boolean specifying whether to plot the original fit or differenced series. The
default option is FALSE, in which case, the series is not differenced.

... Additional arguments.

Value

No return value, called for plotting objects of the class "visitation_forecast".

Examples

#' #Example:

data("park_visitation")
data("flickr_userdays")

n_ahead <- 12
park <- "YELL"
pud_ts <- ts(park_visitation[park_visitation$park == park,]$pud, start = 2005, freq = 12)
pud_ts <- log(pud_ts)
trend_proxy <- log(flickr_userdays)

20 plot.visitation_model

mf <- visitation_model(pud_ts,trend_proxy)
vf <- predict(mf,12, only_new = TRUE)
plot(vf)

plot.visitation_model visitation_model Plot Methods

Description

Methods for plotting objects of the class "decomposition".

Usage

S3 method for class 'visitation_model'
plot(x, type = c("fitted"), difference = FALSE, ...)

Arguments

x An object of class "decomposition".
type A character string. One of "full","period", or "classical". If "full", the full re-

construction is plotted. If "period", the reconstruction of each period is plotted
individually. If "classical", the trend and seasonality are plotted.

difference A Boolean specifying whether to plot the original fit or differenced series. The
default option is FALSE, in which case, the series is not differenced.

... Additional arguments.

Value

No return value, called for plotting objects of the class "decomposition".

Examples

data("park_visitation")
data("flickr_userdays")

park <- "YELL"
pud_ts <- ts(park_visitation[park_visitation$park == park,]$pud, start = 2005, freq = 12)
pud_ts <- log(pud_ts)

nps_ts <- ts(park_visitation[park_visitation$park == park,]$nps, start = 2005, freq = 12)
nps_ts <- log(nps_ts)

nps_decomp <- auto_decompose(nps_ts)

trend_proxy <- log(flickr_userdays)

vm <- visitation_model(pud_ts,trend_proxy,ref_series = nps_ts)
plot(vm)

predict.decomposition 21

predict.decomposition Predict Decomposition

Description

Methods for generating predictions from objects of the class "decomposition".

Usage

S3 method for class 'decomposition'
predict(object, n_ahead, only_new = TRUE, ...)

Arguments

object An object of class "decomposition".

n_ahead An integer describing the number of forecasts to make.

only_new A boolean describing whether or not to include past values.

... Additional arguments.

Value

forecasts A vector with overall forecast values.
trend_forecasts

A vector with trend forecast values.
seasonality_forecasts

A vector with seasonality forecast values.

Examples

data("park_visitation")
suspected_periods <- c(12,6,4,3)
proportion_of_variance_type = "leave_out_first"
max_proportion_of_variance <- 0.995
log_ratio_cutoff <- 0.2

park <- "DEVA"

nps_ts <- ts(park_visitation[park_visitation$park == park,]$nps, start = 2005, freq = 12)
nps_ts <- log(nps_ts)

pud_ts <- ts(park_visitation[park_visitation$park == park,]$pud, start = 2005, freq = 12)
pud_ts <- log(pud_ts)

nps_ts <- ts(park_visitation[park_visitation$park == park,]$nps, start = 2005, freq = 12)
nps_ts <- log(nps_ts)

decomp_pud <- auto_decompose(pud_ts,

22 predict.visitation_model

suspected_periods,
proportion_of_variance_type = proportion_of_variance_type,

max_proportion_of_variance,
log_ratio_cutoff)

n_ahead = 36
pud_predictions <- predict(decomp_pud,n_ahead = n_ahead, only_new = FALSE)

predict.visitation_model

Predict Visitation Model

Description

Methods for generating predictions from objects of the class "visitation_model".

Usage

S3 method for class 'visitation_model'
predict(
object,
n_ahead,
only_new = TRUE,
difference = FALSE,
past_observations = c("fitted", "reference"),
...

)

Arguments

object An object of class "visitation_model".

n_ahead An integer indicating how many observations to forecast.

only_new A Boolean specifying whether to include only the forecasts (if TRUE) or the full
reconstruction (if FALSE). The default option is TRUE.

difference A Boolean specifying whether to forecast differences (if TRUE) or the original
series (if FALSE). The default option is FALSE.

past_observations

A character string; one of "fitted" or "reference". Here, "fitted" uses the fit-
ted values of the visitation model, while "reference" uses values supplied in
‘ref_series’.

... Additional arguments.

print.decomposition 23

Value

A predictions for the automatic decomposition.

forecasts A vector with forecast values.

n_ahead A numeric that shows the number of steps ahead.
proxy_forecasts

A vector for the proxy of trend forecasts.
onsite_usage_forecasts

A vector for the visitation forecasts.

beta A numeric for the seasonality adjustment factor.

constant A numeric for the value of the constant in the model.

criterion A string which specifies the method used to select the appropriate lag. Only
applicable if the trend component is part of the forecasts.

past_observations

A vector which specifies the fitted values for the past observations.

lag_estimate A numeric for the estimated lag. Only applicable if the trend component is part
of the forecasts.

Examples

data("park_visitation")
data("flickr_userdays")

n_ahead <- 36
park <- "ROMO"
pud_ts <- ts(park_visitation[park_visitation$park == park,]$pud, start = 2005, frequency = 12)
pud_ts <- log(pud_ts)

nps_ts <- ts(park_visitation[park_visitation$park == park,]$nps, start = 2005, frequency = 12)
nps_ts <- log(nps_ts)
popularity_proxy <- log(flickr_userdays)

vm <- visitation_model(pud_ts,popularity_proxy, ref_series = nps_ts,omit_trend = TRUE)
predict_vm <- predict(vm,n_ahead, difference = TRUE,

only_new = FALSE, past_observations = "reference")
plot(predict_vm, difference = FALSE)
predict_vm2 <- predict(vm,n_ahead, difference = TRUE,

only_new = FALSE, past_observations = "reference")
plot(predict_vm2, difference = FALSE)

print.decomposition Decomposition Summary Method

Description

S3 method for summarizing objects of the class "decomposition".

24 print.visitation_forecast

Usage

S3 method for class 'decomposition'
print(x, ...)

Arguments

x An object of class "decomposition".

... Additional arguments.

Value

A "decomposition" class object.

Examples

data("park_visitation")

park <- "YELL"
nps_ts <- ts(park_visitation[park_visitation$park == park,]$nps, start = 2005, freq = 12)
nps_ts <- log(nps_ts)

pud_ts <- ts(park_visitation[park_visitation$park == park,]$pud, start = 2005, freq = 12)
pud_ts <- log(pud_ts)
nps_ts <- ts(park_visitation[park_visitation$park == park,]$nps, start = 2005, freq = 12)
nps_ts <- log(nps_ts)

decomposition_pud <- auto_decompose(pud_ts)
decomposition_nps <- auto_decompose(nps_ts)
summary(decomposition_pud)
summary(decomposition_nps)

print.visitation_forecast

visitation_forecast Summary Method

Description

Methods for summarizing objects of the class "decomposition".

Usage

S3 method for class 'visitation_forecast'
print(x, ...)

Arguments

x An object of class "decomposition".

... Additional arguments.

print.visitation_model 25

Value

A "decomposition" class object.

Examples

#Example:

data("park_visitation")
data("flickr_userdays")

n_ahead <- 12
park <- "YELL"
pud_ts <- ts(park_visitation[park_visitation$park == park,]$pud, start = 2005, freq = 12)
pud_ts <- log(pud_ts)
trend_proxy <- log(flickr_userdays)

mf <- visitation_model(pud_ts,trend_proxy)
vf <- predict(mf,12, only_new = FALSE)
summary(vf)

print.visitation_model

visitation_model Summary Method

Description

Methods for summarizing objects of the class "decomposition".

Usage

S3 method for class 'visitation_model'
print(x, ...)

Arguments

x An object of class "decomposition".

... Additional arguments.

Value

A "decomposition" class object.

26 summary.decomposition

Examples

#Example:

data("park_visitation")
data("flickr_userdays")

n_ahead <- 12
park <- "YELL"
pud_ts <- ts(park_visitation[park_visitation$park == park,]$pud, start = 2005, freq = 12)
pud_ts <- log(pud_ts)
trend_proxy <- log(flickr_userdays)

vm <- visitation_model(pud_ts,trend_proxy)
summary(vm)

summary.decomposition Decomposition Summary Method

Description

S3 method for summarizing objects of the class "decomposition".

Usage

S3 method for class 'decomposition'
summary(object, ...)

Arguments

object An object of class "decomposition".

... Additional arguments.

Value

A "decomposition" class object.

Examples

data("park_visitation")

park <- "YELL"
nps_ts <- ts(park_visitation[park_visitation$park == park,]$nps, start = 2005, freq = 12)
nps_ts <- log(nps_ts)

pud_ts <- ts(park_visitation[park_visitation$park == park,]$pud, start = 2005, freq = 12)
pud_ts <- log(pud_ts)
nps_ts <- ts(park_visitation[park_visitation$park == park,]$nps, start = 2005, freq = 12)
nps_ts <- log(nps_ts)#'

summary.visitation_forecast 27

decomposition_pud <- auto_decompose(pud_ts)
decomposition_nps <- auto_decompose(nps_ts)
summary(decomposition_pud)
summary(decomposition_nps)

summary.visitation_forecast

visitation_forecast Summary Method

Description

Methods for summarizing objects of the class "decomposition".

Usage

S3 method for class 'visitation_forecast'
summary(object, ...)

Arguments

object An object of class "decomposition".

... Additional arguments.

Value

A "decomposition" class object.

Examples

#Example:

data("park_visitation")
data("flickr_userdays")

n_ahead <- 12
park <- "YELL"
pud_ts <- ts(park_visitation[park_visitation$park == park,]$pud, start = 2005, freq = 12)
pud_ts <- log(pud_ts)
trend_proxy <- log(flickr_userdays)

mf <- visitation_model(pud_ts,trend_proxy)
vf <- predict(mf,12, only_new = FALSE)
summary(vf)

28 summary.visitation_model

summary.visitation_model

visitation_model Summary Method

Description

Methods for summarizing objects of the class "decomposition".

Usage

S3 method for class 'visitation_model'
summary(object, ...)

Arguments

object An object of class "decomposition".

... Additional arguments.

Value

A "decomposition" class object.

Examples

#Example:

data("park_visitation")
data("flickr_userdays")

n_ahead <- 12
park <- "YELL"
pud_ts <- ts(park_visitation[park_visitation$park == park,]$pud, start = 2005, freq = 12)
pud_ts <- log(pud_ts)
trend_proxy <- log(flickr_userdays)

vm <- visitation_model(pud_ts,trend_proxy)
summary(vm)

visitation_model 29

visitation_model Visitation Model

Description

Fits a time series model that uses social media posts and popularity of the social media to model
visitation to recreational sites.

Usage

visitation_model(
onsite_usage,
popularity_proxy = NULL,
suspected_periods = c(12, 6, 4, 3),
proportion_of_variance_type = c("leave_out_first", "total"),
max_proportion_of_variance = 0.995,
log_ratio_cutoff = 0.2,
window_length = "auto",
num_trend_components = 2,
criterion = c("cross-correlation", "MSE", "rank"),
possible_lags = -36:36,
leave_off = 6,
estimated_change = 0,
order_of_polynomial_approximation = 7,
order_of_derivative = 1,
ref_series = NULL,
beta = "estimate",
constant = 0,
log_scale = TRUE,
spline = FALSE,
parameter_estimates = c("separate", "joint"),
omit_trend = TRUE,
...

)

Arguments

onsite_usage A vector which stores on-site usage in the log scale for a particular social media
platform and recreational site.

popularity_proxy

A vector which stores a time series which may be used as a proxy for the social
media time series in the log scale. The length of popularity_proxy must be the
same as that of onsite_usage. The default option is NULL, in which case, no
proxy needs to be supplied.

30 visitation_model

suspected_periods

A vector which stores the suspected periods in the descending order of impor-
tance. The default option is c(12,6,4,3), corresponding to 12, 6, 4, and 3 months
if observations are monthly.

proportion_of_variance_type

A character string specifying the option for choosing the maximum number of
eigenvalues based on the proportion of total variance explained. If "leave_out_first"
is chosen, then the contribution made by the first eigenvector is ignored; other-
wise, if "total" is chosen, then the contribution made by all the eigenvectors is
considered.

max_proportion_of_variance

A numeric specifying the proportion of total variance explained using the method
specified in proportion_of_variance_type. The default option is 0.995.

log_ratio_cutoff

A numeric specifying the threshold for the deviation between the estimated
period and candidate periods in suspected_periods. The default option is 0.2,
which means that if the absolute log ratio between the estimated and candidate
period is within 0.2 (approximately a 20 percent difference), then the estimated
period is deemed equal to the candidate period.

window_length A character string or positive integer specifying the window length for the SSA
estimation. If "auto" is chosen, then the algorithm automatically selects the
window length by taking a multiple of 12 which does not exceed half the length
of onsite_usage. The default option is "auto".

num_trend_components

A positive integer specifying the number of eigenvectors to be chosen for de-
scribing the trend in SSA. The default option is 2. This is relevant only when
omit_trend is FALSE.

criterion A character string specifying the criterion for estimating the lag in popular-
ity_proxy. If "cross-correlation" is chosen, it chooses the lag that maximizes
the correlation coefficient between lagged popularity_proxy and onsite_usage.
If "MSE" is chosen, it does so by identifying the lagged popularity_proxy whose
derivative is closest to that of onsite_usage by minimizing the mean squared er-
ror. If "rank" is chosen, it does so by firstly ranking the square errors of the
derivatives and identifying the lag which would minimize the mean rank.

possible_lags A numeric vector specifying all the candidate lags for popularity_proxy. The
default option is -36:36. This is relevant only when omit_trend is FALSE.

leave_off A positive integer specifying the number of observations to be left off when
estimating the lag. The default option is 6. This is relevant only when omit_trend
is FALSE.

estimated_change

A numeric specifying the estimated change in the visitation trend. The default
option is 0, implying no change in the trend.

order_of_polynomial_approximation

A numeric specifying the order of the polynomial approximation of the differ-
ence between time series used in estimate_lag. The default option is 7, the
seventh-degree polynomial. This is relevant only when omit_trend is FALSE.

visitation_model 31

order_of_derivative

A numeric specifying the order of derivative for the approximated difference
between time_series1 and lagged time_series2. The default option is 1, the first
derivative. This is relevant only when omit_trend is FALSE.

ref_series A numeric vector specifying the original visitation series in the log scale. The
default option is NULL, implying that no such series is available. If such series
is available, then its length must be the same as that of time_series.

beta A numeric or a character string specifying the seasonality adjustment factor. The
default option is "estimate", in which case, it is estimated by using the Fisher’s
z-transformed lag-12 autocorrelation. Even if an actual value is supplied, if
ref_series is supplied, it is overwritten by the least squares estimate.

constant A numeric specifying the constant term in the model. This constant is under-
stood as the mean of the trend-adjusted time_series. The default option is 0,
implying that the time_series well represents the actual visitation counts, which
is rarely the case. If ref_series is supplied, the constant is overwritten by the
least squares estimate.

log_scale A Boolean specifying whether or not the results should be returned in the log
scale. The default option is TRUE, in which case, the results are returned in the
log scale.

spline A Boolean specifying whether or not to use a smoothing spline for the lag esti-
mation. This is relevant only when omit_trend is FALSE.

parameter_estimates

A character string specifying how to estimate beta and constant parameters
should a reference series be supplied. Both options use least squares estimates,
but "separate" indicates that the differenced series should be used to estimate
beta separately from the constant, while "joint" indicates to estimate both using
non-differenced detrended series.

omit_trend A Boolean specifying whether or not to consider the trend component to be 0.
The default option is TRUE, in which case, the trend component is 0.

... Additional arguments to be passed onto the smoothing spline (smooth.spline).

Value

visitation_fit A vector storing fitted values of visitation model.
differenced_fit

A vector storing differenced fitted values of visitation model. (Equal to diff(visitation_fit).)

beta A numeric storing the estimated seasonality adjustment factor.

constant A numeric storing estimated constant term used in the model.
proxy_decomposition

A "decomposition" object representing the automatic decomposition obtained
from popularity_proxy (see auto_decompose())

time_series_decomposition

A "decomposition" object representing the automatic decomposition obtained
from time_series (see auto_decompose())

32 visitation_model

forecasts_needed

An integer representing the number of forecasts of popularity_proxy needed to
obtain all fitted values. Negative values indicate extra observations which may
be useful for predictions.

lag_estimate A list storing both the MSE-based estimate and Rank-based estimates for the
lag.

criterion A string; one of "cross-correlation", "MSE", or "rank", specifying the method
used to select the appropriate lag.

ref_series The reference series, if one was supplied.

omit_trend Whether or not trend was considered 0 in the model.

call The model call.

See Also

See predict.visitation_model for forecast methods, estimate_lag for details on the lag esti-
mation, and auto_decompose for details on the automatic decomposition of time series using SSA.
See the package Rssa for details regarding singular spectrum analysis.

Examples

load data --------------------

data("park_visitation")
data("flickr_userdays")

park <- "YELL" #Yellowstone National Park
pud_ts <- ts(park_visitation[park_visitation$park == park,]$pud, start = 2005, frequency = 12)
pud_ts <- log(pud_ts)

nps_ts <- ts(park_visitation[park_visitation$park == park,]$nps, start = 2005, frequency = 12)
nps_ts <- log(nps_ts)
popularity_proxy <- log(flickr_userdays)

fit two models ---------------

vm_pud_only <- visitation_model(pud_ts,popularity_proxy = popularity_proxy, omit_trend = FALSE)
vm_ref_series <- visitation_model(pud_ts,

popularity_proxy,
ref_series = nps_ts,
parameter_estimates = "separate",
possible_lags = -36:36,
omit_trend = TRUE)

visualize fit ------------------

plot(vm_pud_only, ylim = c(-3,3), difference = TRUE)
lines(diff(nps_ts), col = "red")

visitation_model 33

plot(vm_ref_series, ylim = c(-3,3), difference = TRUE)
lines(diff(nps_ts), col = "red")

Index

∗ datasets
flickr_userdays, 12
park_visitation, 17

auto_decompose, 2, 32

check_arguments, 4

decompose_proxy, 5

estimate_lag, 8, 32
estimate_parameters, 10

fit_model, 12
flickr_userdays, 12

generate_proxy_trend_forecasts, 13

new_decomposition, 14
new_visitation_forecast, 14
new_visitation_model, 15

park_visitation, 17
plot.decomposition, 18
plot.visitation_forecast, 19
plot.visitation_model, 20
predict.decomposition, 21
predict.visitation_model, 22, 32
print.decomposition, 23
print.visitation_forecast, 24
print.visitation_model, 25

Rssa, 2, 32

summary.decomposition, 26
summary.visitation_forecast, 27
summary.visitation_model, 28

visitation_model, 29

34

	auto_decompose
	check_arguments
	decompose_proxy
	estimate_lag
	estimate_parameters
	fit_model
	flickr_userdays
	generate_proxy_trend_forecasts
	new_decomposition
	new_visitation_forecast
	new_visitation_model
	park_visitation
	plot.decomposition
	plot.visitation_forecast
	plot.visitation_model
	predict.decomposition
	predict.visitation_model
	print.decomposition
	print.visitation_forecast
	print.visitation_model
	summary.decomposition
	summary.visitation_forecast
	summary.visitation_model
	visitation_model
	Index

