
Package ‘adaptTest’
October 12, 2022

Title Adaptive Two-Stage Tests

Version 1.1

Date 2022-03-03

Description The functions defined in this program serve for implementing adaptive
two-stage tests. Currently, four tests are included: Bauer and Koehne (1994),
Lehmacher and Wassmer (1999), Vandemeulebroecke (2006), and the horizontal conditional
error function. User-defined tests can also be implemented. Reference: Vandemeulebroecke,
An investigation of two-stage tests, Statistica Sinica 2006.

License GPL (>= 2)

Encoding UTF-8

RoxygenNote 7.1.1

Imports graphics, lattice, stats

NeedsCompilation no

Author Marc Vandemeulebroecke [aut, cre]

Maintainer Marc Vandemeulebroecke <marc.vandemeulebroecke@novartis.com>

Repository CRAN

Date/Publication 2022-03-04 12:00:06 UTC

R topics documented:
adaptTest-package . 2
a1Table . 3
CEF . 5
getpar . 7
OrderComparisons . 8
ovP . 9
parconv . 12
pathCEF . 13
plotBounds . 15
plotCEF . 16
tsT . 19

Index 22

1

2 adaptTest-package

adaptTest-package Adaptive two-stage tests

Description

The functions defined in this program serve for implementing adaptive two-stage tests.

Details

Package: adaptTest
Type: Package
Version: 1.0
Date: 2009-10-14
License: GPL (version 2 or later)
LazyLoad: yes

An adaptive two-stage test can be considered as a family of decreasing functions f [c](p1) in the
unit square. Each of these functions is a conditional error function, specifying the type I error
conditional on the p-value p1 of the first stage. For example, f [c](p1) = min(1, c/p1) corresponds
to Fisher’s combination test (Bauer and Koehne, 1994). Based on this function family, the test can
be put into practice by specifying the desired overall level α, stopping bounds α1 <= α0 and a
parameter α2. After computing p1, the test stops with or without rejection of the null hypothesis
if p1 <= α1 or p1 > α0, respectively. Otherwise, the null hypothesis is rejected if and only if
p2 <= f [c](p1) holds for the p-value p2 of the second stage, where c is such that the local level of
this latter test is α2 (e.g., c = c(α2) = exp(−χ2

4,α2
/2) for Fisher’s combination test).

This package provides functions for handling conditional error functions, performing calculations
among the different parameters (α, α0, α1, α2 and c) and computing overall p-values, in addi-
tion to graphical visualization routines. Currently, four predefined tests are included: Bauer and
Koehne (1994), Lehmacher and Wassmer (1999), Vandemeulebroecke (2006), and the horizontal
conditional error function. User-defined tests can also be implemented.

This package contains the following functions:

• Key functions are CEF, plotCEF, tsT, ovP.

• Further functions are a1Table, getpar, parconv, pathCEF, plotBounds, eq, ne, ge, gt, le,
lt.

The functions a1Table, getpar, parconv and tsT can handle the four predefined tests mentioned
above. The functions CEF, plotCEF, pathCEF and ovP can also handle these, and user-defined tests
in addition. The functions plotBounds, eq, ne, ge, gt, le and lt do not directly handle tests.

Note

Note that a family of conditional error functions can be parameterized in two alternative ways: more
"traditionally" by some parameter c that, in turn, depends on the local level α2 of the test after the
second stage, or - perhaps more conveniently - by α2 itself.

a1Table 3

In this implementation, early stopping bounds are not part of the conditional error function. Rather,
they are specified separately and "imposed" on it.

I want to thank Niklas Hack for technical support.

Author(s)

Marc Vandemeulebroecke

Maintainer: Marc Vandemeulebroecke <marc.vandemeulebroecke(at)novartis.com>

References

Bauer, P., Koehne, K. (1994). Evaluation of experiments with adaptive interim analyses. Biometrics
50, 1029-1041.

Brannath, W., Posch, M., Bauer, P. (2002). Recursive combination tests. J. Amer. Statist. Assoc.
97, 236-244.

Lehmacher, W., Wassmer, G. (1999). Adaptive sample size calculations in group sequential trials.
Biometrics 55, 1286-1290.

Vandemeulebroecke, M. (2006). An investigation of two-stage tests. Statistica Sinica 16, 933-951.

Vandemeulebroecke, M. (2006). A general approach to two-stage tests. Doctoral thesis, Otto-von-
Guericke-Universitaet Magdeburg, http://www.dissertation.de.

Vandemeulebroecke, M. (2008). Group sequential and adaptive designs - a review of basic concepts
and points of discussion. Biometrical Journal 50, 541-557.

See Also

CEF, tsT

Examples

Example from Bauer and Koehne (1994)
alpha <- 0.1
alpha2 <- 0.1
alpha0 <- 0.5
alpha1 <- tsT(typ="b", a=alpha, a0=alpha0, a2=alpha2)
plotCEF(typ="b", a2=alpha2, add=FALSE)
plotBounds(alpha1, alpha0)
CEF(typ="b", a2=alpha2)

a1Table Function to produce tables of alpha1

Description

This function produces tables of α1 for a grid of different choices of α and α0.

4 a1Table

Usage

a1Table(typ, a = NA, a0 = NA, Pocock = FALSE, round = FALSE)

Arguments

typ type of test: "b" for Bauer and Koehne (1994), "l" for Lehmacher and Wass-
mer (1999), "v" for Vandemeulebroecke (2006) and "h" for the horizontal con-
ditional error function

a vector of different choices of α, the overall test level

a0 vector of different choices of α0, the futility stopping bound

Pocock logical determining whether the "Pocock-type" should be calculated or the full
level should be applied after the second stage (see details; default: full level after
second stage).

round rounding specification, logical or integer (see details; default: no rounding)

Details

This function produces tables of α1 on a grid spanned by the vectors a and a0 (i.e., α and α0). This
is done either for the "Pocock-type" (i.e., under the condition α1 = α2: Pocock = TRUE) or using
the full level after the second stage (α = α2: Pocock = FALSE (the default)). The function a1Table
can be a convenient shortcut for a repeated use of tsT; see this latter function for further details.

The result is rounded to round digits after the comma (round = TRUE rounds to 1 digit; round =
FALSE and round = 0 prevent rounding).

Value

a1Table returns a matrix of α1 values, with the corresponding α and α0 values being displayed as
dimnames.

Author(s)

Marc Vandemeulebroecke

References

Bauer, P., Koehne, K. (1994). Evaluation of experiments with adaptive interim analyses. Biometrics
50, 1029-1041.

Lehmacher, W., Wassmer, G. (1999). Adaptive sample size calculations in group sequential trials.
Biometrics 55, 1286-1290.

Vandemeulebroecke, M. (2006). An investigation of two-stage tests. Statistica Sinica 16, 933-951.

See Also

adaptTest package description, tsT

CEF 5

Examples

Produce basic reference tables for the test by Vandemeulebroecke (2006)
alpha <- c(0.1, 0.05, 0.025, 0.01)
alpha0 <- 1:10/10
a1Table(typ="v", a=alpha, a0=alpha0, Pocock=FALSE)
a1Table(typ="v", a=alpha, a0=alpha0, Pocock=TRUE)

CEF Function to specify a conditional error function

Description

This function returns a conditional error function.

Usage

CEF(typ = NA, fun = NA, dis = NA, a2 = NA, c = NA, p1 = NA, p2 = p1)

Arguments

typ type of test: "b" for Bauer and Koehne (1994), "l" for Lehmacher and Wass-
mer (1999), "v" for Vandemeulebroecke (2006) and "h" for the horizontal con-
ditional error function

c the parameter c

a2 α2, the local level of the test after the second stage

p1 the p-value p1 of the test after the first stage

p2 the p-value p2 of the test after the second stage, defaults to p1

fun a conditional error function

dis a distortion method for a supplied conditional error function (see details): "pl"
for power lines, "vt" for vertical translation

Details

There are two alternative ways of specifying the desired conditional error function:

• through a type typ, and either a parameter (either a2 or c) or a point (p1,p2), OR

• through an initial conditional error function fun, and possibly a distortion method dis together
with either the parameter a2 or a point (p1,p2)

Most people will only need the first of these two ways; the second leads to user-defined non-standard
tests.

If typ is specified, a parameter a2 or c or the point (p1,p2) must be provided. In this case, CEF
returns the conditional error function of the chosen type with the given parameter or running through
the given point.

6 CEF

If typ is not specified, a conditional error function (i.e., a nonincreasing function defined on [0,1]
with values in [0,1]) fun must be provided. If no distortion method is selected (dis = NA), fun is
returned unchanged. Otherwise, the function is distorted using the chosen distortion method, either
to match a desired second stage level a2 or to run through a specified point (p1,p2) (one of which
must be provided). Currently, two distortion methods are implemented:

• dis = "pl", Power lines: For an initial function f , define f [r](x) = (f(xr))(1/r), r>0. Note
that if f is a conditional error function of type "b" (Bauer and Koehne, 1994), so is f [r].

• dis = "pl", Vertical translation: The initial function is shifted vertically.

See parconv for more information on the two alternative parameterizations by α2 and c.

Value

These functions return a conditional error function (see details).

Note

Provide either typ or fun, not both! If typ is provided, then also specify a2, c, or p1 (and possibly
p2). If fun is provided, then also specify dis and a2, or dis and p1 (and possibly p2), or none of
these.

Warning: Values of a2 close to 0 or 1 may not work for dis = "pl".

Note that in this implementation of adaptive two-stage tests, early stopping bounds are not part of
the conditional error function. Rather, they are specified separately (see also tsT).

Author(s)

Marc Vandemeulebroecke

References

Bauer, P., Koehne, K. (1994). Evaluation of experiments with adaptive interim analyses. Biometrics
50, 1029-1041.

Lehmacher, W., Wassmer, G. (1999). Adaptive sample size calculations in group sequential trials.
Biometrics 55, 1286-1290.

Vandemeulebroecke, M. (2006). An investigation of two-stage tests. Statistica Sinica 16, 933-951.

See Also

adaptTest package description, parconv, plotCEF, tsT

Examples

Plot two conditional error functions of the Lehmacher-Wassmer (1999) type:
one to the local level alpha2=0.1, and one that runs through (p1,p2)=(0.3,0.7)
foo1 <- CEF(typ="l", a2=0.1)
foo2 <- CEF(typ="l", p1=0.3, p2=0.7)
plot(foo1, xlim=0:1)
plot(foo2, add=TRUE)

getpar 7

A different way of doing the same
plotCEF(typ="l", a2=0.1, add=FALSE)
plotCEF(typ="l", p1=0.3, p2=0.7, plt.pt=FALSE)

getpar Function to calculate the parameter that specifies the conditional er-
ror function running through a given point

Description

This function calculates the parameter that specifies the conditional error function running through
a given point (p1, p2), based on a chosen family of conditional error functions.

Usage

getpar(typ, p1 = NA, p2 = p1, c = FALSE)

Arguments

typ type of test: "b" for Bauer and Koehne (1994), "l" for Lehmacher and Wass-
mer (1999), "v" for Vandemeulebroecke (2006) and "h" for the horizontal con-
ditional error function

p1 the p-value p1 of the test after the first stage
p2 the p-value p2 of the test after the second stage, defaults to p1

c logical determining whether the parameter α2 or the parameter c is returned (α2

is the default).

Details

See parconv for more information on the two alternative parameterizations by α2 and c.

Value

getpar returns the parameter (either α2 or c, depending on the chosen parameterization) that spec-
ifies the conditional error function running through (p1, p2).

Author(s)

Marc Vandemeulebroecke

References

Bauer, P., Koehne, K. (1994). Evaluation of experiments with adaptive interim analyses. Biometrics
50, 1029-1041.

Lehmacher, W., Wassmer, G. (1999). Adaptive sample size calculations in group sequential trials.
Biometrics 55, 1286-1290.

Vandemeulebroecke, M. (2006). An investigation of two-stage tests. Statistica Sinica 16, 933-951.

8 OrderComparisons

See Also

adaptTest package description, parconv, CEF

Examples

Plot the conditional error function of the Lehmacher-Wassmer (1999)
type that runs through (p1,p2)=(0.3,0.7)
alpha2 <- getpar(typ="l", p1=0.3, p2=0.7)
plotCEF(typ="l", a2=alpha2, add=FALSE)

Other ways of doing the same as above
plotCEF(typ="l", p1=0.3, p2=0.7, add=FALSE)
plot(CEF(typ="l", p1=0.3, p2=0.7), xlim=0:1)

OrderComparisons Functions to perform simple order comparisons

Description

These functions perform simple order comparisons for two arguments, dealing with the machine
inaccuracy for floating point arithmetics.

Usage

eq(x, y, tol = .Machine$double.eps^0.5)
ne(x, y, tol = .Machine$double.eps^0.5)
ge(x, y, tol = .Machine$double.eps^0.5)
gt(x, y, tol = .Machine$double.eps^0.5)
le(x, y, tol = .Machine$double.eps^0.5)
lt(x, y, tol = .Machine$double.eps^0.5)

Arguments

x first argument (must be a numeric scalar)

y second argument (must be a numeric scalar)

tol comparison tolerance; differences smaller than tol are not considered.

Details

When comparing two numeric scalars (e.g., for equality), machine inaccuracy can be the source of
obviously erroneous results. These functions perform binary order comparisons that are tolerant
towards machine inaccuracy, as an alternative to the standard comparators ==, !=, >=, >, <= and <.

ovP 9

Value

The functions return a logical TRUE if their condition holds, and a logical FALSE otherwise.

eq(x, y) checks whether x is equal to y

ne(x, y) checks whether x is not equal to y

ge(x, y) checks whether x is greater than or equal to y

gt(x, y) checks whether x is greater than y

le(x, y) checks whether x is less than or equal to y

lt(x, y) checks whether x is less than y

Note

These functions cannot be used in a vectorized fashion.

Author(s)

Marc Vandemeulebroecke

See Also

identical, all.equal

Examples

v <- seq(0.7, 0.8, by=0.1)
v[2]==0.8
eq(v[2], 0.8)

ovP Function to compute and visualize overall p-values

Description

This function computes and plots overall p-values for adaptive two-stage tests.

Usage

ovP(typ = NA, fun = NA, dis = NA, p1 = 1:49/50, p2 = p1,
a1 = 0, a0 = 1, grid = FALSE, plt = FALSE,
invisible = FALSE, wire = FALSE, round = FALSE)

10 ovP

Arguments

typ type of test: "b" for Bauer and Koehne (1994), "l" for Lehmacher and Wass-
mer (1999), "v" for Vandemeulebroecke (2006) and "h" for the horizontal con-
ditional error function

fun a conditional error function
dis a distortion method for a supplied conditional error function (see details): "pl"

for power lines, "vt" for vertical translation
p1 the p-value p1 of the test after the first stage, or a vector of such p-values
p2 the p-value p2 of the test after the second stage, or a vector of such p-values;

defaults to p1

a1 α1, the efficacy stopping bound and local level of the test after the first stage
(default: no stopping for efficacy)

a0 α0, the futility stopping bound (default: no stopping for futility)
grid logical determining whether a grid should be spanned by p1 and p2 (default: no

grid is spanned)
plt logical determining whether the overall p-values should be plotted or not (de-

fault: not)
invisible logical determining whether the printing of the overall p-values should be sup-

pressed or not (default: not)
wire logical determining whether the overall p-values should be plotted in wireframe-

style or in cloud-style (default: cloud-style)
round rounding specification, logical or integer (see details; default: no rounding)

Details

The overall p-value for an adaptive two-stage test is computed as p1 if p1 <= α1 or p1 > α0, and
as

α1 +

∫ α0

α1

cef(p1,p2)(x)dx

otherwise, where cef(p1,p2) is the conditional error function (of a specified family) running through
the observed pair of p-values (p1,p2).

There are two alternative ways of specifying the family of conditional error functions (i.e., the test):
through a type typ, or through an initial conditional error function fun and a distortion method dis;
see CEF for details.

If p1 and p2 are of length 1, a single overall p-value is computed (and not plotted). Otherwise, the
behavior of ovP depends on grid:

• If grid = FALSE, overall p-values are computed (and not plotted) for the elementwise pairs of
p1 and p2. Here, p1 and p2 must be of the same length.

• If grid = TRUE, a grid is spanned by p1 and p2, and p-values are computed (and possibly
plotted) over this grid. Here, p1 and p2 may be of different length. Plotting is triggered by
plt = TRUE, and the style of the plot (wireframe or cloud) is determined by wire. invisible
= TRUE suppresses the printing of the p-values.

The p-values are rounded to round digits after the comma (round = TRUE rounds to 1 digit; round
= FALSE and round = 0 prevent rounding). The plot always shows unrounded values.

ovP 11

Value

A p-value, a vector of p-values or a matrix of p-values.

Note

Provide either typ or fun, not both! If fun is provided, then also specify dis.

Author(s)

Marc Vandemeulebroecke

References

Bauer, P., Koehne, K. (1994). Evaluation of experiments with adaptive interim analyses. Biometrics
50, 1029-1041.

Brannath, W., Posch, M., Bauer, P. (2002). Recursive combination tests. J. Amer. Statist. Assoc.
97, 236-244.

Lehmacher, W., Wassmer, G. (1999). Adaptive sample size calculations in group sequential trials.
Biometrics 55, 1286-1290.

Vandemeulebroecke, M. (2006). An investigation of two-stage tests. Statistica Sinica 16, 933-951.

See Also

adaptTest package description, CEF

Examples

Visualize a Lehmacher Wassmer (1999) test to the overall level 0.1
and compute and visualize the overall p-value for an observed (p1,p2)=(0.3,0.7)
alpha <- .1
alpha0 <- .5
alpha1 <- .05
plotBounds(a1=alpha1, a0=alpha0, add=FALSE)
plotCEF(typ="l", a2=tsT(typ="l", a=alpha, a0=alpha0, a1=alpha1))
plotCEF(typ="l", p1=.3, p2=.7)
ovP(typ="l", p1=.3, p2=.7, a1=alpha1, a0=alpha0)
The overall p-value is the area left of alpha1, plus the area below the
conditional error function running though (0.3,0.7) between alpha1 and alpha0.

Investigate the p-values of the Lehmacher Wassmer (1999) test from above
ovP(typ="l", a1=alpha1, a0=alpha0, grid=TRUE, p1=1:9/10, round=3)
ovP(typ="l", a1=alpha1, a0=alpha0, grid=TRUE, plt=TRUE, invisible=TRUE, wire=TRUE)

12 parconv

parconv Function to convert between two different parameterizations of a fam-
ily of conditional error functions

Description

This function converts between two different parameterizations of a family of conditional error
functions: a (more ‘traditional’) parameter c, and a (more convenient) parameter α2 specifying the
local level of the test after the second stage.

Usage

parconv(typ, a2 = NA, c = NA)

Arguments

typ type of test: "b" for Bauer and Koehne (1994), "l" for Lehmacher and Wass-
mer (1999), "v" for Vandemeulebroecke (2006) and "h" for the horizontal con-
ditional error function

a2 α2, the local level of the test after the second stage (see details)

c the parameter c (see details)

Details

Traditionally, a family of conditional error functions is often parameterized by some parameter c
that, in turn, depends on the local level α2 of the test after the second stage. However, it can be
convenient to parameterize the family directly by α2. The function parconv converts one parameter
into the other: provide one, and it returns the other.

Essentially, the relation between the two parameterizations is implemented as:

• c = exp(−χ2
4,α2

/2) for Fisher’s combination test (Bauer and Koehne, 1994)

• c = Φ−1(1− α2) for the inverse normal method (Lehmacher and Wassmer, 1999)

• α2 = (Γ(1 + 1/r))2/Γ(1 + 2/r) for Vandemeulebroecke (2006)

• c = α2 for the family of horizontal conditional error functions

Value

parconv returns α2 corresponding to the supplied c, or c corresponding to the supplied α2.

Note

Provide either a2 or c, not both!

α2 is the local level of the test after the second stage, and it equals the integral under the corre-
sponding conditional error function:

α2 =

∫ 1

0

cefα2
(p1)dp1,

pathCEF 13

where cefα2 is the conditional error function (of a specified family) with parameter α2.

Note that in this implementation of adaptive two-stage tests, early stopping bounds are not part of
the conditional error function. Rather, they are specified separately (see also tsT).

α2 can take any value in [0, 1]; c can take values in

• [0, 1] for Fisher’s combination test (Bauer and Koehne, 1994)

• (−∞,∞) for the inverse normal method (Lehmacher and Wassmer, 1999)

• [0,∞) for Vandemeulebroecke (2006)

• [0, 1] for the family of horizontal conditional error functions

Author(s)

Marc Vandemeulebroecke

References

Bauer, P., Koehne, K. (1994). Evaluation of experiments with adaptive interim analyses. Biometrics
50, 1029-1041.

Lehmacher, W., Wassmer, G. (1999). Adaptive sample size calculations in group sequential trials.
Biometrics 55, 1286-1290.

Vandemeulebroecke, M. (2006). An investigation of two-stage tests. Statistica Sinica 16, 933-951.

See Also

adaptTest package description, getpar, CEF

Examples

Obtain the parameter c for Fisher's combination test, using
the local level 0.05 for the test after the second stage
parconv(typ="b", a2=0.05)

pathCEF Function to plot several conditional error functions running through a
"path" of given points

Description

This function plots several conditional error functions of the same family such that each one runs
through one of several given points.

Usage

pathCEF(typ = NA, fun = NA, dis = NA, p1 = 1:49/50, p2 = p1,
x = 0:200/200, plt.pt = FALSE, plt.ptann = FALSE, xlab = NA, ylab = NA, ...)

14 pathCEF

Arguments

typ type of test: "b" for Bauer and Koehne (1994), "l" for Lehmacher and Wass-
mer (1999), "v" for Vandemeulebroecke (2006) and "h" for the horizontal con-
ditional error function

fun a conditional error function

dis a distortion method for a supplied conditional error function (see details): "pl"
for power lines, "vt" for vertical translation

p1 a vector (at least of length 2) of p-values p1 of the test after the first stage

p2 a vector (at least of length 2) of p-values p2 of the test after the second stage,
defaults to p1; must be of same length as p1

x vector on which the conditional error functions are plotted (should be relatively
dense in [0,1])

plt.pt logical determining whether the points that the conditional error functions are
made to run through should be plotted or not (default: not)

plt.ptann logical determining whether the points that the conditional error functions are
made to run through should be annotated or not (default: not)

xlab a label for the x axis (default: no label)

ylab a label for the y axis (default: no label)

... arguments to be passed on to the underlying plot and points functions (e.g.,
graphical parameters)

Details

It can be instructive to plot not only one conditional error function, but to visualize a whole family.
This can easily be done with pathCEF. The function is used in a similar way as plotCEF, but p1
and p2 are now vectors (of the same length, at least of length 2). Conditional error functions are
plotted that run through the specified elementwise points (p1,p2) (which by default lie on the main
diagonal).

Internally, pathCEF uses plotCEF to plot the individual conditional error functions; see this latter
function for further details.

Value

The function pathCEF is invoked for its plotting effect; it returns no meaningful value.

Note

Provide either typ or fun, not both! If fun is provided, then also specify dis.

Unlike plotCEF, it is not possible with pathCEF to specify the conditional error functions by the
parameter α2 or the parameter c.

plt.ptann is not considered if plt.pt = FALSE.

Author(s)

Marc Vandemeulebroecke

plotBounds 15

References

Bauer, P., Koehne, K. (1994). Evaluation of experiments with adaptive interim analyses. Biometrics
50, 1029-1041.

Lehmacher, W., Wassmer, G. (1999). Adaptive sample size calculations in group sequential trials.
Biometrics 55, 1286-1290.

Vandemeulebroecke, M. (2006). An investigation of two-stage tests. Statistica Sinica 16, 933-951.

See Also

adaptTest package description, CEF, plotCEF, tsT

Examples

Compare the tests by Bauer and Koehne (1994),
Lehmacher and Wassmer (1999) and Vandemeulebroecke (2006)
oldmfcol <- par(mfcol=c(1,3))
pathCEF(typ="b", main="BK 94")
pathCEF(typ="l", main="LW 99")
pathCEF(typ="v", main="V 06")
par(oldmfcol)

plotBounds Function to plot the stopping bounds of an adaptive two-stage test

Description

This function plots the stopping bounds of an adaptive two-stage test.

Usage

plotBounds(a1 = 0, a0 = 1, add = TRUE, xlab = NA, ylab = NA, ...)

Arguments

a1 α1, the efficacy stopping bound and local level of the test after the first stage
(default: no stopping for efficacy)

a0 α0, the futility stopping bound (default: no stopping for futility)

add logical determining whether the bounds should be added to an existing plot (de-
fault) or a new plot should be opened

xlab a label for the x axis (default: no label)

ylab a label for the y axis (default: no label)

... arguments to be passed on to the underlying lines functions (e.g., graphical
parameters)

16 plotCEF

Details

This function plots the stopping bounds α1 and α0 of an adaptive two-stage test, either onto an
existing plot or into a new plot.

Value

The function plotBounds is invoked for its plotting effect; it returns no meaningful value.

Note

Note that in this implementation of adaptive two-stage tests, early stopping bounds are not part of
the conditional error function. Rather, they are specified separately (see also tsT).

Author(s)

Marc Vandemeulebroecke

See Also

adaptTest package description, plotCEF

Examples

Example from Bauer and Koehne (1994): full level after final stage, alpha0 = 0.5
alpha <- 0.1
alpha2 <- 0.1
alpha0 <- 0.5
alpha1 <- tsT(typ="b", a=alpha, a0=alpha0, a2=alpha2)
plotCEF(typ="b", a2=alpha2, add=FALSE)
plotBounds(alpha1, alpha0)

plotCEF Function to plot a conditional error function

Description

This function plots a conditional error function.

Usage

plotCEF(typ = NA, fun = NA, dis = NA, a2 = NA, c = NA, p1 = NA, p2 = p1,
x = 0:200/200, add = TRUE, xlim = c(0, 1), ylim = c(0, 1),
plt.pt = TRUE, plt.ptann = TRUE, xlab = NA, ylab = NA, ...)

plotCEF 17

Arguments

typ type of test: "b" for Bauer and Koehne (1994), "l" for Lehmacher and Wass-
mer (1999), "v" for Vandemeulebroecke (2006) and "h" for the horizontal con-
ditional error function

fun a conditional error function

dis a distortion method for a supplied conditional error function (see details): "pl"
for power lines, "vt" for vertical translation

a2 α2, the local level of the test after the second stage

c the parameter c

p1 the p-value p1 of the test after the first stage

p2 the p-value p2 of the test after the second stage, defaults to p1

x vector on which the conditional error function is plotted (should be relatively
dense in [0,1])

add logical determining whether the bounds should be added to an existing plot (de-
fault) or a new plot should be opened

xlim the x limits of the plot (default: c(0, 1); other choices can be used to "zoom
in")

ylim the y limits of the plot (default: c(0, 1); other choices can be used to "zoom
in")

plt.pt logical determining whether the point that the conditional error function is made
to run through should be plotted or not (default: yes)

plt.ptann logical determining whether the point that the conditional error function is made
to run through should be annotated or not (default: yes)

xlab a label for the x axis (default: no label)

ylab a label for the y axis (default: no label)

... arguments to be passed on to the underlying plot and points functions (e.g.,
graphical parameters)

Details

There are two alternative ways of specifying the desired conditional error function:

• through a type typ, and either a parameter (either a2 or c) or a point (p1,p2), OR

• through an initial conditional error function fun, and possibly a distortion method dis together
with either the parameter a2 or a point (p1,p2)

Most people will only need the first of these two ways; the second leads to user-defined non-standard
tests.

If typ is specified, a parameter a2 or c or the point (p1,p2) must be provided. In this case, plotCEF
plots the conditional error function of the chosen type with the given parameter or running through
the given point.

If typ is not specified, a conditional error function (i.e., a nonincreasing function defined on [0,1]
with values in [0,1]) fun must be provided. If no distortion method is selected (dis = NA), fun is

18 plotCEF

plotted unchanged. Otherwise, the function is distorted using the chosen distortion method, either
to match a desired second stage level a2 or to run through a specified point (p1,p2) (one of which
must be provided). Currently, two distortion methods are implemented:

• dis = "pl", Power lines: For an initial function fun, define f [r](x) = (f(xr))(1/r), r>0.
Note that if fun is a conditional error function of type "b" (Bauer and Koehne, 1994), so is
f[r].

• dis = "pl", Vertical translation: The initial function fun is shifted vertically.

See parconv for more information on the two alternative parameterizations by α2 and c.

Internally, plotCEF uses CEF to compute the conditional error function that is to be plotted.

Value

The function plotCEF is invoked for its plotting effect; it returns no meaningful value.

Note

Provide either typ or fun, not both! If typ is provided, then also specify a2, c, or p1 (and possibly
p2). If fun is provided, then also specify dis and a2, or dis and p1 (and possibly p2), or none of
these.

Warning: Values of a2 close to 0 or 1 may not work for dis = "pl".

plt.pt and plt.ptann are not considered if p1 = NA. plt.ptann is not considered if plt.pt =
FALSE.

Note that in this implementation of adaptive two-stage tests, early stopping bounds are not part of
the conditional error function. Rather, they are specified separately (see also tsT).

Author(s)

Marc Vandemeulebroecke

References

Bauer, P., Koehne, K. (1994). Evaluation of experiments with adaptive interim analyses. Biometrics
50, 1029-1041.

Lehmacher, W., Wassmer, G. (1999). Adaptive sample size calculations in group sequential trials.
Biometrics 55, 1286-1290.

Vandemeulebroecke, M. (2006). An investigation of two-stage tests. Statistica Sinica 16, 933-951.

See Also

adaptTest package description, parconv, CEF, tsT

tsT 19

Examples

Plot two conditional error functions of the Lehmacher-Wassmer (1999) type:
one to the local level alpha2=0.1, and one that runs through (p1,p2)=(0.3,0.7)
plotCEF(typ="l", a2=0.1, add=FALSE)
plotCEF(typ="l", p1=0.3, p2=0.7)

Plot an explicitly defined conditional error function, and distort it
plotCEF(fun=function(x) ifelse(x<.5,(1-x)^2, (1-x)/2), add=FALSE)
plotCEF(fun=function(x) ifelse(x<.5,(1-x)^2, (1-x)/2), dis="pl", a2=.5)
foo <- CEF(fun=function(x) ifelse(x<.5,(1-x)^2, (1-x)/2), dis="pl", a2=.5)
plotCEF(fun=foo, col="red")

tsT Function to implement an adaptive two-stage test

Description

There are four key quantities for the specification of an adaptive two-stage test: the overall test
level α, stopping bounds α1 <= α0 and the local level α2 of the test after the second stage. These
quantities are interrelated through the overall level condition. The function tsT calculates any of
these quantities based on the others.

Usage

tsT(typ, a = NA, a0 = NA, a1 = NA, a2 = NA)

Arguments

typ type of test: "b" for Bauer and Koehne (1994), "l" for Lehmacher and Wass-
mer (1999), "v" for Vandemeulebroecke (2006) and "h" for the horizontal con-
ditional error function

a α, the overall test level

a0 α0, the futility stopping bound

a1 α1, the efficacy stopping bound and local level of the test after the first stage

a2 α2, the local level of the test after the second stage

Details

An adaptive two-stage test can be viewed as a family of decreasing functions f [c](p1) in the unit
square. Each of these functions is a conditional error function, specifying the type I error conditional
on the p-value p1 of the first stage. For example, f [c](p1) = min(1, c/p1) corresponds to Fisher’s
combination test (Bauer and Koehne, 1994). Based on this function family, the test can be put into
practice by specifying the desired overall level α, stopping bounds α1 <= α0 and a parameter α2.
After computing p1, the test stops with or without rejection of the null hypothesis if p1 <= α1 or
p1 > α0, respectively. Otherwise, the null hypothesis is rejected if and only if p2 <= f [c](p1)
holds for the p-value p2 of the second stage, where c is such that the local level of this latter test is
α2 (e.g., c = c(α2) = exp(−χ2

4,α2
/2) for Fisher’s combination test).

20 tsT

The four parameters α, α0, α1 and α2 are interdependent: they must satisfy the level condition

α1 +

∫ α0

α1

cefα2
(p1)dp1 = α,

where cefα2
is the conditional error function (of a specified family) with parameter α2. For exam-

ple, this conditon translates to

α = α1 + c(α2) ∗ (log(α0)− log(α1))

for Fisher’s combination test (assuming that c(α2) < α1; Bauer and Koehne, 1994). The function
tsT calculates any of the four parameters based on the remaining ones. Currently, this is imple-
mented for the following four tests: Bauer and Koehne (1994), Lehmacher and Wassmer (1999),
Vandemeulebroecke (2006), and the horizontal conditional error function.

Value

If three of the four quantities α, α0, α1 and α2 are provided, tsT returns the fourth. If only α and
α0 are provided, tsT returns α1 under the condition α1 = α2 (the so-called "Pocock-type").

If the choice of arguments is not allowed (e.g., α0 < α1) or when a test cannot be constructed with
this choice of arguments (e.g., α0 = 1 and α < α2), tsT returns NA.

IMPORTANT: When the result is (theoretically) not unique, tsT returns the maximal α1, maximal
α2 or minimal α0.

In all cases, tsT returns the result for the test specified by typ.

Note

The argument typ, and either exactly three of α, α0, α1 and α2, or only α and α0, must be provided
to tsT.

Author(s)

Marc Vandemeulebroecke

References

Bauer, P., Koehne, K. (1994). Evaluation of experiments with adaptive interim analyses. Biometrics
50, 1029-1041.

Lehmacher, W., Wassmer, G. (1999). Adaptive sample size calculations in group sequential trials.
Biometrics 55, 1286-1290.

Vandemeulebroecke, M. (2006). An investigation of two-stage tests. Statistica Sinica 16, 933-951.

Vandemeulebroecke, M. (2008). Group sequential and adaptive designs - a review of basic concepts
and points of discussion. Biometrical Journal 50, 541-557.

See Also

adaptTest package description

tsT 21

Examples

Example from Bauer and Koehne (1994): full level after final stage, alpha0 = 0.5
alpha <- 0.1
alpha2 <- 0.1
alpha0 <- 0.5
alpha1 <- tsT(typ="b", a=alpha, a0=alpha0, a2=alpha2)
plotCEF(typ="b", a2=alpha2, add=FALSE)
plotBounds(alpha1, alpha0)

See how similar Lehmacher and Wassmer (1999) and Vandemeulebroecke (2006) are
alpha <- 0.1
alpha1 <- 0.05
alpha0 <- 0.5
alpha2l <- tsT(typ="l", a=alpha, a0=alpha0, a1=alpha1)
alpha2v <- tsT(typ="v", a=alpha, a0=alpha0, a1=alpha1)
plotCEF(typ="l", a2=alpha2l, add=FALSE)
plotCEF(typ="v", a2=alpha2v, col="red")
plotBounds(alpha1, alpha0)

A remark about numerics
tsT(typ="b", a=0.1, a1=0.05, a0=0.5)
tsT(typ="b", a=0.1, a2=0.104877, a0=0.5)
tsT(typ="b", a=0.1, a2=tsT(typ="b", a=0.1, a1=0.05, a0=0.5), a0=0.5)

An example of non-uniqueness: the maximal alpha1 is returned; any
smaller value would also be valid
alpha <- 0.05
alpha0 <- 1
alpha2 <- 0.05
alpha1 <- tsT(typ="b", a=alpha, a0=alpha0, a2=alpha2)
tsT(typ="b", a0=alpha0, a1=alpha1, a2=alpha2)
tsT(typ="b", a0=alpha0, a1=alpha1/2, a2=alpha2)

Index

∗ package
adaptTest-package, 2

a1Table, 2, 3
adaptTest, 4, 6, 8, 11, 13, 15, 16, 18, 20
adaptTest (adaptTest-package), 2
adaptTest-package, 2
all.equal, 9

CEF, 2, 3, 5, 8, 10, 11, 13, 15, 18

eq, 2
eq (OrderComparisons), 8

ge, 2
ge (OrderComparisons), 8
getpar, 2, 7, 13
gt, 2
gt (OrderComparisons), 8

identical, 9

le, 2
le (OrderComparisons), 8
lt, 2
lt (OrderComparisons), 8

ne, 2
ne (OrderComparisons), 8

OrderComparisons, 8
ovP, 2, 9

parconv, 2, 6–8, 12, 18
pathCEF, 2, 13
plotBounds, 2, 15
plotCEF, 2, 6, 14–16, 16

tsT, 2–4, 6, 13, 15, 16, 18, 19

22

	adaptTest-package
	a1Table
	CEF
	getpar
	OrderComparisons
	ovP
	parconv
	pathCEF
	plotBounds
	plotCEF
	tsT
	Index

