
Package ‘adjustedCurves’
November 22, 2022

Title Confounder-Adjusted Survival Curves and Cumulative Incidence
Functions

Version 0.9.1

Maintainer Robin Denz <robin.denz@rub.de>

Description Estimate and plot confounder-adjusted survival curves using
either 'Direct Adjustment', 'Direct Adjustment with Pseudo-Values',
various forms of 'Inverse Probability of Treatment Weighting', two
forms of 'Augmented Inverse Probability of Treatment Weighting',
'Empirical Likelihood Estimation' and 'Targeted Maximum Likelihood
Estimation'. Also includes a significance test for the difference
between two adjusted survival curves and the calculation of adjusted
restricted mean survival times. Additionally enables the user to
estimate and plot cause-specific confounder-adjusted cumulative
incidence functions in the competing risks setting using the same
methods (with some exceptions).

For details, see Denz et. al (2022) <arXiv:2203.10002v1>.

License GPL (>= 3)

URL https://github.com/RobinDenz1/adjustedCurves,

https://robindenz1.github.io/adjustedCurves/

BugReports https://github.com/RobinDenz1/adjustedCurves/issues

Imports R.utils, doParallel, doRNG, dplyr (>= 1.0.0), foreach, rlang

Suggests MASS, Matching (>= 4.9), R6, SuperLearner (>= 2.0.0),
WeightIt (>= 0.11.0), cmprsk (>= 2.2), eventglm (>= 1.1.1),
geepack (>= 1.3), ggplot2 (>= 3.0.0), knitr, mice (>= 3.0.0),
nnet, pammtools (>= 0.5), pec (>= 2020.11.17), prodlim (>=
2019.11.13), riskRegression (>= 2020.12.08), rmarkdown,
survival (>= 3.0.0), survtmle (>= 1.1), testthat (>= 3.0.0),
tidyr, ggpp (>= 0.4.3), vdiffr (>= 1.0.0), covr

VignetteBuilder knitr

Config/testthat/edition 3

Contact <robin.denz@rub.de>

1

https://arxiv.org/abs/2203.10002v1
https://github.com/RobinDenz1/adjustedCurves
https://robindenz1.github.io/adjustedCurves/
https://github.com/RobinDenz1/adjustedCurves/issues

2 R topics documented:

Encoding UTF-8

RoxygenNote 7.2.1

NeedsCompilation no

Author Robin Denz [aut, cre]

Repository CRAN

Date/Publication 2022-11-22 15:00:05 UTC

R topics documented:
adjustedCurves-package . 3
adjustedcif . 5
adjustedsurv . 11
adjusted_curve_diff . 17
adjusted_curve_test . 21
adjusted_rmst . 25
adjusted_rmtl . 28
adjusted_surv_quantile . 32
as_ggsurvplot_df . 34
cif_aalen_johansen . 35
cif_aiptw . 37
cif_aiptw_pseudo . 39
cif_direct . 42
cif_direct_pseudo . 45
cif_iptw . 48
cif_iptw_pseudo . 50
cif_matching . 53
cif_tmle . 55
CSC_MI . 58
FGR_MI . 59
models_cif_direct . 61
models_surv_direct . 62
plot.adjustedcif . 63
plot.adjustedsurv . 67
plot.curve_test . 72
plot_curve_diff . 74
plot_rmst_curve . 79
plot_rmtl_curve . 82
print.curve_test . 85
sim_confounded_crisk . 85
sim_confounded_surv . 88
surv_aiptw . 90
surv_aiptw_pseudo . 93
surv_direct . 96
surv_direct_pseudo . 99
surv_emp_lik . 102
surv_iptw_cox . 104

adjustedCurves-package 3

surv_iptw_km . 107
surv_iptw_pseudo . 110
surv_km . 113
surv_matching . 115
surv_ostmle . 117
surv_strat_amato . 120
surv_strat_cupples . 122
surv_strat_nieto . 124
surv_tmle . 126

Index 130

adjustedCurves-package

Confounder-Adjusted Survival Curves and Cumulative Incidence
Functions

Description

What is this package about?

This package aims to unite all available adjustments methods for calculating confounder-adjusted
survival curves and cause-specific confounder-adjusted cumulative incidence functions under one
consistent framework. We try to make the usage of these methods and the calculation of associated
statistics as easy as possible for the user, while still providing substantial functionality.

What exactly are adjusted survival curves / adjusted cumulative incidence functions?

It is well known that confounding is a serious problem when analyzing data from non-randomized
studies. This is also true when calculating survival curves or cumulative incidence functions. The
aim is to estimate the population averaged survival probability or cumulative incidence for some
group z, which would have been observed if every individual would have been assigned to group z.
For example, the formal definition for the causal survival curve is:

Sz(t) = E(I(Tz > t))

where Tz is the survival time that would have been observed if treatment z was actually adminis-
tered. See Denz et al. (2022) or Cai and Van der Laan (2020) for more details

What features are included in this package?

This package includes 14 methods to calculate confounder-adjusted survival curves (single event)
and eight methods to calculate confounder adjusted cumulative incidence functions (possibly with
multiple competing events). It provides plot functions to easily produce highly customizable and
publication-ready graphics. It also allows the user to easily calculate relevant statistics, such as
confidence intervals, p-values, and adjusted restricted mean survival time estimates. Multiple Im-
putation is directly supported.

What does a typical workflow using this package look like?

The design of this package is based on the design of the WeightIt package. It includes two main
functions: adjustedsurv and adjustedcif. Every implemented adjustment method has their own

4 adjustedCurves-package

documentation page including a small description, code examples, and relevant literature references.
The typical workflow using this package is as follows (1) calculate confounder-adjusted curves
(survival curves or CIFs) using either adjustedsurv or adjustedcif, (2) plot those using the S3
plot method and sometimes (3) calculate further statistics using adjusted_rmst, adjusted_rmtl
or adjusted_curve_test.

When should I use adjustedsurv and when adjustedcif?

With standard time-to-event data where only one type of event is possible both the confounder-
adjusted survival curves and the confounder-adjusted cumulative incidence function can be esti-
mated using the adjustedsurv function. While the adjustedsurv function only estimates the sur-
vival, the CIF can simply be calculated by 1 − S(t). This transformation from survival curves to
CIFs is directly implemented in the plot function (argument cif).

When competing risks are present, the cause-specific confounder-adjusted survival curves can not
be estimated in an unbiased way (see for example Satagopan et al. (2004) for an explanation). The
cause-specific confounder-adjusted cumulative incidence functions however can be estimated using
the adjustedcif function.

What features are missing from this package?

This package currently does not support time-varying treatments or covariates. It also does not
support left-censoring, interval-censoring or left-truncation. These features may be added in future
releases.

Where can I get more information?

The documentation pages contain a lot of information, relevant examples and literature references.
Additional examples can be found in the vignette of this package, which can be accessed using
vignette(topic="introduction", package="adjustedCurves"). We are also working on a
separate article on this package that is going to be published in a peer-reviewed journal.

I want to suggest a new feature / I want to report a bug. Where can I do this?

Bug reports, suggestions and feature requests are highly welcome. Please file an issue on the official
github page or contact the author directly using the supplied e-mail address.

Author(s)

Robin Denz, <robin.denz@rub.de>

References

Robin Denz, Renate Klaaßen-Mielke, and Nina Timmesfeld (2022). A Comparison of Different
Methods to Adjust Survival Curves for Confounders. arXiv:2203.10002v1

Weixin Cai and Mark J. van der Laan (2020). "One-Step Targeted Maximum Likelihood Estimation
for Time-To-Event Outcomes". In: Biometrics 76, pp. 722-733

J. M. Satagopan, L. Ben-Porat, M. Berwick, M. Robson, D. Kutler, and A. D. Auerbach (2004).
"A Note on Competing Risks in Survival Data Analysis". In: British Journal of Cancer 91, pp.
1229-1235.

adjustedcif 5

adjustedcif Calculate Cause-Specific Confounder-Adjusted Cumulative Incidence
Functions

Description

This is one of two main functions of this R-Package. It allows the user to calculate cause-specific
confounder-adjusted cumulative incidence functions in the presence of competing events using a
variety of different methods. Some of these methods require additional packages to be installed and,
depending on the specified method, there might be additional required arguments in the function
call. More information is available on the documentation page of the respective cif_method.

Usage

adjustedcif(data, variable, ev_time, event, cause,
method, conf_int=FALSE, conf_level=0.95,
times=NULL, bootstrap=FALSE, n_boot=500,
n_cores=1, na.action=options()$na.action,
clean_data=TRUE, ...)

Arguments

data A data.frame object containing the needed time-to-event data in standard for-
mat. Can also be a mids object created with the mice package. See details for
how this works.

variable A character string specifying the variable by which the cumulative incidence
functions should be grouped. Must be a valid column name of data. The vari-
able specified should needs to be a factor variable.

ev_time A character string specifying the variable indicating the time-to-event or time-
to-censoring. Must be a valid column name of data.

event A character string specifying the numeric event indicator. The censoring indica-
tor should be coded as 0 and all other events of interest as 1, 2, etc. Must be a
valid column name of data.

cause The cause of interest for which the cumulative incidence functions should be
calculated. Should be a number that appears in the event column of data.

method A character string specifying the adjustment method to use. Case sensitive. See
details.

conf_int A logical variable, indicating whether the asymptotic variances and confidence
intervals of the cumulative incidence should be calculated. Not available for all
methods. More information can be found in the documentation of each method.
For an alternative way to get confidence intervals, see the bootstrap argument.

conf_level A number specifying the confidence level of asymptotic and/or bootstrap confi-
dence intervals.

6 adjustedcif

times A numeric vector of time points at which the cumulative incidences should be
estimated or NULL. If NULL the cumulative incidence is estimated at all points in
time at which any event occurred in the pooled sample.

bootstrap A logical variable indicating whether bootstrapping should be performed or not.
In bootstrapping, a number of simple random samples with replacement of size
nrow(data) are drawn from data. For each sample the calculations are repeated
and used to estimate standard errors and confidence intervals. This can be used
to obtain confidence intervals when asymptotic variance calculations are not
available.

n_boot Number of bootstrap replications to perform. Ignored if bootstrap is FALSE.

n_cores The number of cores to use when calculating bootstrap estimates. Ignored if
bootstrap=FALSE. Is set to 1 by default, resulting in single threaded process-
ing. Internally uses the doParallel package if n_cores > 1. In that case it
also uses the doRNG package to make the results replicable. See ?doRNG and
?doParallel for more details. Using multiple cores will speed up the calcula-
tion considerably in most cases.

na.action How missing values should be handled. Can be one of: na.fail, na.omit, na.pass
or na.exclude. Also accepts strings of the function names. See ?na.action for
more details. By default it uses the na.action which is set in the global options
by the respective user.

clean_data If TRUE all columns which are not needed for the estimation are removed from
data before any further calculations are performed. This ensures that calls
to na.omit (see argument na.action) do not remove rows which are fully
observed in respect to relevant columns due to missing values in irrelevant
columns. Set to FALSE to skip this step. Usually this argument can be ignored.
When using non-standard outcome models however it should be set to FALSE.

... Further arguments passed to the respective cif_method. For example when
using method="direct" all further arguments are passed to the cif_direct
function. See details.

Details

The primary purpose of the adjustedcif function is to provide a convenient way to calculate
confounder-adjusted cumulative incidence functions using any of the methods provided in the lit-
erature. A plot method is provided to graphically display the estimated cumulative incidence
functions as well. Currently the following methods can be used:

• "direct": Direct Standardization based on a model describing the outcome mechanism (CSC,
FGR, ..).

• "direct_pseudo": Direct Standardization based on Pseudo-Values.

• "iptw": A weighted Aalen-Johansen estimator.

• "iptw_pseudo": A weighted estimator based on Pseudo-Values.

• "matching": Using Propensity Score Matching to estimate the adjusted CIFs.

• "aiptw": An Augmented Inverse Probability of Treatment Weighting estimator.

• "aiptw_pseudo": An Augmented Inverse Probability of Treatment Weighting estimator using
Pseudo-Values.

adjustedcif 7

• "tmle": Targeted Maximum Likelihood Estimation for CIFs.

• "aalen_johansen": A simple stratified Aalen-Johansen estimator without any form of adjust-
ment.

A short description of each method is contained in the documentation of the respective cif_method
function. For more detailed descriptions the cited literature in that same documentation can be used.
The documentation for method="direct" for example can be accessed using ?cif_direct.

Required & Optional Arguments

Every method requires the specification of the data, variable, ev_time, event, cause and method
arguments. All other arguments mentioned on this page are optional and work for all methods.
Depending on the method used, other arguments are required as well. Those can be found on the
top of the help page of the respective method. The help pages also list additional optional arguments.

Confidence Intervals

For most methods approximations for the asymptotic variance of point estimates of the CIF have
been proposed in the literature. Where available, those can be calculated and added to the output
object using conf_int=TRUE. It is however recommended to use bootstrapping to estimate the vari-
ance instead, which can be done by setting bootstrap=TRUE. The n_boot argument is set to 500
by default. This number was chosen because it worked well in simulations but it does not guarantee
convergence in practice. Users are recommended to inspect the bootstrapped estimates and adjust
the number of replications accordingly. To allow faster bootstrapping the user can choose to run the
function on multiple CPU cores in parallel using the n_cores argument.

Missing Data

There are two ways to deal with missing data using this function. The first is using the na.action
argument. It simply calls the respective na.action function on the data before doing any further
processing. By using na.action="na.omit" for example, only rows with complete data are kept
for the analysis.

Alternatively, this function also supports the use of multiple imputation via the mice package. In-
stead of supplying a single data.frame, the user should create a mids object using the mice function
and directly pass this to the data argument. When methods are used which rely on previously esti-
mated treatment or outcome models such as "direct" or "aiptw", the user is required to supply a
mira object instead of a single model. In other words: the models have to be fit on every imputed
dataset before supplying them to this function. See ?mice and the associated documentation for
more information on how to use multiple imputation. When using bootstrap=TRUE and multiple
imputation, the bootstrapping is performed on every imputed dataset separately. Cumulative In-
cidences are simply averaged across the imputed datasets according to Rubins Rule. Confidence
intervals are calculated by first averaging the standard errors over all imputed datasets and after-
wards using this pooled value to obtain a new confidence interval with the normal approximation.
This method has only been tested with missing values in covariates. It is not clear how good this
works with missing values in ev_time or event so users should be cautious in those cases.

Competing Risks

This function is meant to be used for data containing multiple competing risks. If the data does not
contain competing-events, it is recommended to use the adjustedsurv function instead. It does
not calculate the CIF directly, but the CIF can be calculated from the survival using CIF = 1 - S(t).
This can be done automatically in the plot.adjustedsurv function using cif=TRUE.

Graphical Displays

8 adjustedcif

A general plot of the estimated adjusted CIFs can be obtained using the associated plot method. In
addition, a plot of the difference between two estimated adjusted CIFs can be produced using the
plot_curve_diff function.

Value

Returns an adjustedcif object containing the following objects:

adjcif A data.frame of estimated cumulative incidences for cause at some points in
time for each level of variable. Depending on the arguments used also includes
standard errors and confidence intervals.

method The method used to adjust the CIFs.

categorical Whether there are more than 2 groups in variable.

call The original function call.

When the argument bootstrap is set to TRUE it additionally contains the following objects:

boot_data The adjusted CIFs estimated in each bootstrap sample.

boot_adjcif The mean CIFs of all bootstrap samples and corresponding standard errors and
percentile confidence intervals.

When multiple imputation was used, the function additionally contains a mids_analyses object,
containing the adjustedcif objects for each imputed dataset.

Some method specific objects might also be contained in the output.

Author(s)

The function itself was written by Robin Denz, but some cif_method functions include wrappers
for functions written by other people. More information can be found in the respective cif_method
documentation.

References

Relevant literature can be found in the respective cif_method documentation.

See Also

plot.adjustedcif, adjusted_rmtl, plot_curve_diff

Examples

library(adjustedCurves)
library(survival)
library(riskRegression)

set.seed(42)

simulate some example data
sim_dat <- sim_confounded_crisk(n=50, max_t=1.2)
sim_dat$group <- as.factor(sim_dat$group)

adjustedcif 9

treatment assignment model
glm_mod <- glm(group ~ x2 + x3 + x5 + x6, data=sim_dat, family="binomial")

outcome model
cox_mod <- CSC(Hist(time, event) ~ x1 + x2 + x4 + x5 + group, data=sim_dat)

using direct adjustment with asymptotic confidence intervals for cause 1
adjcif <- adjustedcif(data=sim_dat,

variable="group",
ev_time="time",
event="event",
cause=1,
method="direct",
outcome_model=cox_mod,
conf_int=TRUE,
bootstrap=FALSE)

using IPTW with asymptotic confidence intervals for cause 2
adjcif <- adjustedcif(data=sim_dat,

variable="group",
ev_time="time",
event="event",
method="iptw",
cause=2,
treatment_model=glm_mod,
conf_int=TRUE,
bootstrap=FALSE)

using AIPTW with asymptotic confidence intervals for cause 1
adjcif <- adjustedcif(data=sim_dat,

variable="group",
ev_time="time",
event="event",
cause=1,
method="aiptw",
outcome_model=cox_mod,
treatment_model=glm_mod,
conf_int=TRUE,
bootstrap=FALSE)

using direct adjustment at custom points in time
custom_times <- c(0.001, 0.1, 0.2, 0.6, 1.1)
adjcif <- adjustedcif(data=sim_dat,

variable="group",
ev_time="time",
event="event",
cause=1,
method="direct",
outcome_model=cox_mod,
conf_int=TRUE,
bootstrap=FALSE,
times=custom_times)

10 adjustedcif

using bootstrapping with direct adjustment
NOTE: In practice the number of bootstrap replications should be
greater than 10. This is only shown here for convenience.
adjcif <- adjustedcif(data=sim_dat,

variable="group",
ev_time="time",
event="event",
cause=1,
method="direct",
outcome_model=cox_mod,
conf_int=TRUE,
bootstrap=TRUE,
n_boot=10)

not run because those are too slow

using bootstrapping with direct adjustment, run in parallel
on two cores
library(foreach)
library(parallel)
library(doRNG)

adjcif <- adjustedcif(data=sim_dat,
variable="group",
ev_time="time",
event="event",
cause=1,
method="direct",
outcome_model=cox_mod,
conf_int=TRUE,
bootstrap=TRUE,
n_boot=4,
n_cores=2)

using multiple imputation
library(mice)
library(WeightIt)

simulate some data as example
sim_dat <- sim_confounded_crisk(n=50, max_t=1.2)
sim_dat$group <- as.factor(sim_dat$group)

introduce random missingness in x1 as example
NOTE: This is only done as an example, in reality you would
already have missing data, not introduce it yourself.
sim_dat$x1 <- ifelse(runif(n=50) < 0.5, sim_dat$x1, NA)

perform multiple imputation
mids <- mice::mice(data=sim_dat, method="pmm", m=2, printFlag=FALSE)

IPTW Pseudo using WeightIt on imputed data, for cause = 1
adj <- adjustedcif(data=mids,

adjustedsurv 11

variable="group",
ev_time="time",
event="event",
method="iptw_pseudo",
cause=1,
treatment_model=group ~ x1 + x2 + x5 + x6,
weight_method="ps")

plot(adj)

More specific examples can be found in the documentation of each
respective cif_method. See ?cif_ + "method" for more information.

adjustedsurv Calculate Confounder-Adjusted Survival Curves

Description

This is one of the two main functions of this R-Package. It allows the user to calculate confounder-
adjusted survival curves using a variety of different methods. Some of these methods require addi-
tional packages to be installed and, depending on the specified method, there might be additional
required arguments in the function call. More information is available on the documentation page
of the respective surv_method.

Usage

adjustedsurv(data, variable, ev_time, event, method,
conf_int=FALSE, conf_level=0.95, times=NULL,
bootstrap=FALSE, n_boot=500,
n_cores=1, na.action=options()$na.action,
clean_data=TRUE, ...)

Arguments

data A data.frame object containing the needed time-to-event data in standard for-
mat. Ideally, this data set should only contain required variables. Can also be a
mids object created with the mice package. See details for how this works.

variable A character string specifying the variable by which the survival curves should
be grouped. Must be a valid column name of data. The variable specified needs
to be a factor variable.

ev_time A character string specifying the variable indicating the time-to-event or time-
to-censoring. Must be a valid column name of data.

event A character string specifying the binary event indicator. Must be a valid column
name of data.

method A character string specifying the adjustment method to use. Case sensitive. See
details.

12 adjustedsurv

conf_int A logical variable, indicating whether the asymptotic variances and confidence
intervals of the survival probabilities should be calculated. Not available for all
methods. More information can be found in the documentation of each method.
For an alternative way to get confidence intervals, see the bootstrap argument.

conf_level A number specifying the confidence level of asymptotic and/or bootstrap confi-
dence intervals.

times A numeric vector of time points at which the survival probability should be
estimated or NULL (default). If NULL the survival probability is estimated at all
points in time at which an event occurred in the pooled sample.

bootstrap A logical variable indicating whether bootstrapping should be performed or not.
In bootstrapping, a number of simple random samples with replacement of size
nrow(data) are drawn from data. For each sample the calculations are repeated
and used to estimate standard errors and confidence intervals. This can be used
to obtain confidence intervals when asymptotic variance calculations are not
available.

n_boot Number of bootstrap replications to perform. Ignored if bootstrap is FALSE.

n_cores The number of cores to use when calculating bootstrap estimates. Ignored if
bootstrap=FALSE. Is set to 1 by default, resulting in single threaded process-
ing. Internally uses the doParallel package if n_cores > 1. In that case it
also uses the doRNG package to make the results replicable. See ?doRNG and
?doParallel for more details. Using multiple cores will speed up the calcula-
tion considerably in most cases.

na.action How missing values should be handled. Can be one of: na.fail, na.omit, na.pass
or na.exclude. Also accepts strings of the function names. See ?na.action for
more details. By default it uses the na.action which is set in the global options
by the respective user. Ignored if multiple imputation is used.

clean_data If TRUE all columns which are not needed for the estimation are removed from
data before any further calculations are performed. This ensures that calls
to na.omit (see argument na.action) do not remove rows which are fully
observed in respect to relevant columns due to missing values in irrelevant
columns. Set to FALSE to skip this step. Usually this argument can be ignored.
When using non-standard outcome models however it should be set to FALSE.

... Further arguments passed to the respective surv_method. For example when
using method="direct" all further arguments are passed to the surv_direct
function. See details.

Details

The primary purpose of the adjustedsurv function is to provide a convenient way to calculate
confounder-adjusted survival curves using any of the methods provided in the literature. A plot
method is provided to graphically display the estimated survival curves as well. Currently the
following methods can be used:

• "direct": Direct Standardization based on a previously fit model (Cox-Regression, ...).

• "direct_pseudo": Direct Standardization based on Pseudo-Values.

• "iptw_km": A weighted Kaplan-Meier estimator.

adjustedsurv 13

• "iptw_cox": A weighted estimator based on a stratified weighted Cox-Regression model.

• "iptw_pseudo": A weighted estimator based on Pseudo-Values.

• "matching": Using Propensity Score Matching to estimate the adjusted survival curves.

• "emp_lik": An Empirical Likelihood based estimator.

• "aiptw": An Augmented Inverse Probability of Treatment Weighting estimator.

• "aiptw_pseudo": An Augmented Inverse Probability of Treatment Weighting estimator using
Pseudo-Values.

• "tmle": Targeted Maximum Likelihood Estimation.

• "ostmle": One-Step Targeted Maximum Likelihood Estimation.

• "strat_amato": A method based on stratification and weighting by Amato (1988).

• "strat_nieto": A method based on stratification and weighting by Gregory (1988) and Nieto &
Coresh (1996).

• "strat_cupples": A method based on stratification and weighting by Cupples et al. (1995).

• "km": A simple stratified Kaplan-Meier estimator without any form of adjustment.

A short description of each method is contained in the documentation of the respective surv_method
function. For more detailed descriptions the cited literature in that same documentation can be used.
The documentation for method="direct" for example can be accessed using ?surv_direct.

Required & Optional Arguments

Every method requires the specification of the data, variable, ev_time, event and method argu-
ments. All other arguments mentioned on this page are optional and work for all methods. Depend-
ing on the method used, other arguments are required as well. Those can be found on the top of the
help page of the respective method. The help pages also list additional optional arguments.

Confidence Intervals

For most methods approximations for the asymptotic variance of point estimates of the survival
function have been proposed in the literature. Where available, those can be calculated and added
to the output object using conf_int=TRUE. It is however recommended to use bootstrapping to
estimate the variance instead, which can be done by setting bootstrap=TRUE. The n_boot argument
is set to 500 by default. This number was chosen because it worked well in simulations but it
does not guarantee convergence in practice. Users are recommended to inspect the bootstrapped
estimates and adjust the number of replications accordingly. To allow faster bootstrapping the user
can choose to run the function on multiple CPU cores in parallel using the n_cores argument.

Missing Data

There are two ways to deal with missing data using this function. The first is using the na.action
argument. It simply calls the respective na.action function on the data before doing any further
processing. By using na.action="na.omit" for example, only rows with complete data are kept
for the analysis.

Alternatively, this function also supports the use of multiple imputation via the mice package. In-
stead of supplying a single data.frame, the user should create a mids object using the mice function
and directly pass this to the data argument. When methods are used which rely on previously esti-
mated treatment assignment or outcome models such as "direct" or "aiptw", the user is required
to supply a mira object instead of a single model. In other words: the models have to be fit on every

14 adjustedsurv

imputed dataset before supplying them to this function. See ?mice and the associated documenta-
tion for more information on how to use multiple imputation. When using bootstrap=TRUE and
multiple imputation, the bootstrapping is performed on every imputed dataset separately. Survival
probabilities are simply averaged across the imputed datasets according to Rubins Rule. Confi-
dence intervals are calculated by first averaging the standard errors over all imputed datasets and
afterwards using this pooled value to obtain a new confidence interval with the normal approxima-
tion. This method has only been tested with missing values in covariates. It is not clear how good
this works with missing values in ev_time or event so users should be cautious in those cases.

Competing Risks

If the data contains competing-risks, this function cannot be used. It is however possible to cal-
culate confounder-adjusted cause-specific cumulative incidence functions using the adjustedcif
function.

Graphical Displays

A general plot of the estimated adjusted survival curves can be obtained using the associated plot
method. In addition, a plot of the difference between two estimated adjusted survival curves can be
produced using the plot_curve_diff function.

Value

Returns an adjustedsurv object containing the following objects:

adjsurv A data.frame of estimated adjusted survival probabilities for some points in
time for each level of variable. Depending on the arguments used also includes
standard errors and confidence intervals.

data The data.frame used in the original function call.

method The method used to adjust the survival curves.

categorical Whether there are more than 2 groups in variable.

call The original function call.

When the argument bootstrap is set to TRUE, it additionally contains the following objects:

boot_data The adjusted survival curves estimated in each bootstrap sample.

boot_adjsurv The mean adjusted survival curves of all bootstrap samples and corresponding
standard errors and percentile confidence intervals.

When multiple imputation was used, the function additionally contains a mids_analyses object,
containing the adjustedsurv objects for each imputed dataset.

Some method specific objects might also be contained in the output.

Author(s)

The function itself was written by Robin Denz, but some surv_method functions include wrappers
for functions written by other people. More information can be found in the respective surv_method
documentation.

adjustedsurv 15

References

Robin Denz, Renate Klaaßen-Mielke, and Nina Timmesfeld (2022). A Comparison of Different
Methods to Adjust Survival Curves for Confounders. arXiv:2203.10002v1

Other relevant literature can be found in the respective surv_method documentation.

See Also

plot.adjustedsurv, adjusted_rmst, adjusted_rmtl, adjusted_surv_quantile, adjusted_curve_diff,
adjusted_curve_test

Examples

library(adjustedCurves)
library(survival)

set.seed(42)

simulate some example data
sim_dat <- sim_confounded_surv(n=50, max_t=1.2)
sim_dat$group <- as.factor(sim_dat$group)

treatment assignment model
glm_mod <- glm(group ~ x2 + x3 + x5 + x6, data=sim_dat, family="binomial")

outcome model
cox_mod <- coxph(Surv(time, event) ~ x1 + x2 + x4 + x5 + group,

data=sim_dat, x=TRUE)

using direct adjustment with asymptotic confidence intervals
adjsurv <- adjustedsurv(data=sim_dat,

variable="group",
ev_time="time",
event="event",
method="direct",
outcome_model=cox_mod,
conf_int=TRUE,
bootstrap=FALSE)

using IPTW Kaplan-Meier with asymptotic confidence intervals
adjsurv <- adjustedsurv(data=sim_dat,

variable="group",
ev_time="time",
event="event",
method="iptw_km",
treatment_model=glm_mod,
conf_int=TRUE,
bootstrap=FALSE)

using AIPTW with asymptotic confidence intervals
adjsurv <- adjustedsurv(data=sim_dat,

variable="group",

16 adjustedsurv

ev_time="time",
event="event",
method="aiptw",
outcome_model=cox_mod,
treatment_model=glm_mod,
conf_int=TRUE,
bootstrap=FALSE)

using direct adjustment at custom points in time
custom_times <- c(0.001, 0.1, 0.2, 0.6, 1.1)
adjsurv <- adjustedsurv(data=sim_dat,

variable="group",
ev_time="time",
event="event",
method="direct",
outcome_model=cox_mod,
conf_int=TRUE,
bootstrap=FALSE,
times=custom_times)

using bootstrapping with direct adjustment
NOTE: n_boot should be much higher than 10 in reality, only used
here as a fast example
adjsurv <- adjustedsurv(data=sim_dat,

variable="group",
ev_time="time",
event="event",
method="direct",
outcome_model=cox_mod,
conf_int=TRUE,
bootstrap=TRUE,
n_boot=10)

not run because those are too slow

using bootstrapping with direct adjustment, run in parallel
on two cores
adjsurv <- adjustedsurv(data=sim_dat,

variable="group",
ev_time="time",
event="event",
method="direct",
outcome_model=cox_mod,
conf_int=TRUE,
bootstrap=TRUE,
n_boot=4,
n_cores=2)

using multiple imputation
library(mice)
library(WeightIt)

simulate some data as example

adjusted_curve_diff 17

sim_dat <- sim_confounded_surv(n=50, max_t=1.2)
sim_dat$group <- as.factor(sim_dat$group)

introduce random missingness in x1 as example
NOTE: This is only done as an example, in reality you would
already have missing data, not introduce it yourself.
sim_dat$x1 <- ifelse(runif(n=50) < 0.5, sim_dat$x1, NA)

perform multiple imputation
mids <- mice::mice(data=sim_dat, method="pmm", m=2, printFlag=FALSE)

IPTW KM using WeightIt on imputed data
adj <- adjustedsurv(data=mids,

variable="group",
ev_time="time",
event="event",
method="iptw_km",
treatment_model=group ~ x1 + x2 + x5 + x6,
weight_method="ps")

plot(adj)

More specific examples can be found in the documentation of each
respective surv_method. See ?surv_ + "method" for more information.

adjusted_curve_diff Calculate the difference between two Confounder-Adjusted Survival
Curves or CIFs

Description

Given a previously created adjustedsurv or adjustedcif object, calculate the difference between
two of the variable specific curves. Can either calculate the whole difference curve or the differ-
ence at specified points in time.

Usage

adjusted_curve_diff(adj, group_1=NULL, group_2=NULL,
times=NULL, conf_int=FALSE, conf_level=0.95,
use_boot=FALSE, interpolation="steps")

Arguments

adj An adjustedsurv object created using the adjustedsurv function, or a adjustedcif
object created using the adjustedcif function.

group_1 Optional argument to get a specific difference. This argument takes a single
character string specifying one of the levels of the variable used in the original
adjustedsurv or adjustedcif function call. This group will be subtracted
from. For example if group_1="A" and group_2="B" the difference A - B will

18 adjusted_curve_diff

be used. If NULL, the order of the factor levels in the original data determines
the order. If not NULL, the group_2 argument also needs to be specified.

group_2 Also a single character string specifying one of the levels of variable. This
corresponds to the right side of the difference equation. See argument group_2.

times An optional numeric vector of points in time at which the difference should be
estimated. If NULL (default) the differences are estimated for the whole curve.

conf_int Whether standard errors, confidence intervals and p-values should be calculated.
Only possible when either conf_int=TRUE or bootstap=TRUE was used in the
original function call. P-values are calculated using a one-sample t-test with the
null-hypothesis being that the difference is equal to 0.

conf_level A number specifying the confidence level of the confidence intervals.

use_boot Whether to use the standard errors estimated using bootstrapping for the con-
fidence interval and p-value calculation. Can only be used if bootstrap=TRUE
was used in the original adjustedsurv or adjustedcif function call. Ignored
if conf_int=FALSE.

interpolation Either "steps" (default) or "linear". This parameter controls how interpola-
tion is performed. If this argument is set to "steps", the curves will be treated
as step functions. If it is set to "linear", the curves wil be treated as if there
are straight lines between the point estimates instead. Points that lie between
estimated points will be interpolated accordingly. Should usually be kept at
"steps". See Details.

Details

Confidence Intervals & P-Values
The standard error of the difference is estimated using the pooled standard error of the two proba-
bility estimates, given by:

SEgroup1−group2
=
√

SE2
group1

+ SE2
group2

Confidence intervals are then calculated using this pooled standard error and the normal approxi-
mation. The P-Values are also obtained using this standard error combined with a two-sided one-
sample t-test. The null-hypothesis is that the difference is equal to 0, and the alternative hypothesis
is that the difference is not equal to 0. If p-values are calculated for multiple points in time simulta-
neously, the user should adjust those. See ?p.adjust for more information.

Overall Difference Test
This function does not perform a test of the overall difference between two functions. To calculate
the integral of the difference in a given interval the plot_curve_diff function can be used. Ad-
ditionally, to test whether that integral is equal to zero the adjusted_curve_test function can be
used.

More than Two Groups
If more than two groups are present in variable, all other comparisons except for group_1 -
group_2 are ignored. If multiple comparisons are desired, the user needs to call this function
multiple times and adjust the group_1 and group_2 arguments accordingly.

Graphical Displays

adjusted_curve_diff 19

There is no directly associated plot method for this function. However, this function is used inter-
nally when calling the plot_curve_diff function. In order to get a plot of the difference curve or
point estimates, that function can be used.

Multiple Imputation

This function works exactly the same way for adjusted survival curves or adjusted CIFs estimated
using multiple imputation as it does without any missing values. If multiple imputation was used
previously, this function simply uses the pooled estimates to calculate the differences.

Computational Details

When estimating the difference at some point in time at which no direct point estimates are avail-
able, this function needs to interpolate the curves. The interpolation method can be controlled using
the interpolation function. In most cases, the estimated curves are step functions and the default
(interpolation="steps") is therefore appropriate. However, when parametric survival models
where used in the estimation process it might be preferable to use linear interpolation instead.

Value

Returns a data.frame containing the columns time (the points in time where the difference was
estimated) and diff (the estimated difference).

If conf_int=TRUE was used in the function call, it additionally contains the columns se (the es-
timated standard error of the difference), ci_lower (lower limit of the confidence interval of the
difference), ci_upper (upper limit of the confidence interval of the difference) and p_value (the
p-value for the test of pointwise difference).

Author(s)

Robin Denz

References

John P. Klein, Brent Logan, Mette Harhoff, and Per Kragh Andersen (2007). "Analyzing Survival
Curves at a Fixed Point in Time". In: Statistics in Medicine 26, pp. 4505-4519

Michael Coory, Karen E. Lamb, and Michael Sorich (2014). "Risk-Difference Curves can be used to
Communicate Time-Dependent Effects of Adjuvant Therapies for Early Stage Cancer". In: Journal
of Clinical Epidemiology 67, pp. 966-972

See Also

plot_curve_diff, adjustedsurv, adjustedcif

Examples

library(adjustedCurves)
library(survival)
library(cmprsk)

Simple Survival Case with adjusted survival curves

simulate some data as example

20 adjusted_curve_diff

set.seed(42)
sim_dat <- sim_confounded_surv(n=30, max_t=1.2)
sim_dat$group <- as.factor(sim_dat$group)

propensity score model
ps_mod <- glm(group ~ x1 + x2 + x4 + x5, data=sim_dat, family="binomial")

use it to calculate adjusted survival curves with bootstrapping
adjsurv <- adjustedsurv(data=sim_dat,

variable="group",
ev_time="time",
event="event",
method="iptw_km",
treatment_model=ps_mod,
conf_int=TRUE,
bootstrap=TRUE,
n_boot=10) # n_boot should be much higher in reality

calculate the whole difference curve
adjdiff <- adjusted_curve_diff(adjsurv)

only some points in time
adjdiff <- adjusted_curve_diff(adjsurv, times=c(0.2, 0.4))

with confidence intervals, p-values
adjdiff <- adjusted_curve_diff(adjsurv, times=c(0.2, 0.4), conf_int=TRUE)

using bootstrapping
adjdiff <- adjusted_curve_diff(adjsurv, times=c(0.2, 0.4), conf_int=TRUE,

use_boot=TRUE)

Competing Risks Case with adjusted CIFs
library(riskRegression)
library(prodlim)

simulate some data as example
sim_dat <- sim_confounded_crisk(n=41, max_t=1.2)
sim_dat$group <- as.factor(sim_dat$group)

estimate a cause-specific cox-regression for the outcome
csc_mod <- CSC(Hist(time, event) ~ x1 + x2 + x3 + x4 + x5 + x6 + group,

data=sim_dat)

use it to calculate adjusted CIFs for cause = 1 with bootstrapping
adjcif <- adjustedcif(data=sim_dat,

variable="group",
ev_time="time",
event="event",
method="direct",
outcome_model=csc_mod,
conf_int=TRUE,
bootstrap=TRUE,
n_boot=10,

adjusted_curve_test 21

cause=1)

calculate the whole difference curve
adjdiff <- adjusted_curve_diff(adjcif)

with confidence intervals
adjdiff <- adjusted_curve_diff(adjcif, conf_int=TRUE)

only at specific points in time
adjdiff <- adjusted_curve_diff(adjcif, times=c(0.2, 0.4), conf_int=TRUE)

adjusted_curve_test Test if there is a difference between two Confounder-Adjusted Survival
Curves or CIFs

Description

This function implements a modified version of the Pepe and Flemming (1989) test for the differ-
ence between two adjusted survival curves or CIFs. In particular, the Null-Hypothesis is that the
integral of the difference of the two curves in a specified time interval is equal to zero.

Usage

adjusted_curve_test(adj, to, from=0, conf_level=0.95,
interpolation="steps",
group_1=NULL, group_2=NULL)

Arguments

adj An adjustedsurv object created using the adjustedsurv function, or a adjustedcif
object created using the adjustedcif function, with bootstap=TRUE in the
original function call.

to A number specifying the right side of the time interval of interest. It has to be
a value of time that can be read from both of the estimated survival curves or
CIFs.

from A number specifying the left side of the time interval of interest. It has to be
a value of time that can be read from both of the estimated survival curves or
CIFs. It is set to 0 by default.

conf_level A number specifying the confidence level of the bootstrap confidence intervals.

interpolation Either "steps" (default) or "linear". This parameter controls how interpola-
tion is performed. If this argument is set to "steps", the curves will be treated
as step functions. If it is set to "linear", the curves wil be treated as if there
are straight lines between the point estimates instead. Points that lie between
estimated points will be interpolated accordingly. Should usually be kept at
"steps". See Details.

22 adjusted_curve_test

group_1 Optional argument to get one specific hypothesis test. This argument takes a
single character string specifying one of the levels of the variable used in the
original adjustedsurv or adjustedcif function call. This group will be sub-
tracted from. For example if group_1="A" and group_2="B" the difference A
- B will be used. If NULL, the order of the factor levels in the original data
determines the test order. If not NULL, the group_2 argument also needs to be
specified. When these arguments are used, all other potential pairwise compar-
isons are ignored.

group_2 Also a single character string specifying one of the levels of variable. This
corresponds to the right side of the difference equation. See argument group_2.

Details

The adjustedsurv and adjustedcif functions with bootstrap=TRUE draw n_boot bootstrap
samples and estimate the adjusted curves for each one. This function uses those estimates and
calculates the integral of the difference between two curves in the interval defined by to and from.
If the curves are approximately equal, this quantity should be close to zero. The direct variance cal-
culation of this is quantity is quite involved even in the non-adjusted case and has not been proposed
for adjusted survival curves or adjusted CIFs yet. We can however use the distribution of the inte-
grals over all bootstrap samples to approximate the variation. By shifting the bootstrap distribution
to be centered around 0 we approximate the distribution of the integral under the Null-Hypothesis.
The p-value can then be calculated by taking the proportion of cases where the absolute of the
integral observed in the actual curves is smaller or equal to the shifted bootstrap values.

The associated print and summary methods can be used to obtain a neat data.frame of the most
important quantities. We also recommend checking the test assumptions using the plot method.

Pairwise Comparisons
When there are more than two survival curves or CIFs this function automatically performs pairwise
comparisons between those. It is recommended to adjust the p-values obtained using this method
for multiple testing. See ?p.adjust for more information. If only one of the potential pairwise
comparisons is of interest, the group_1 and group_2 arguments can be used to obtain only this
specific one.

Multiple Imputation
When the adjustedsurv or adjustedcif object was fitted using multiply imputed datasets, the
tests are performed separately for each dataset. The estimates for the integral of the difference are
combined using Rubins Rule. The confidence intervals for this quantity are calculated by pooling
the bootstrap standard errors and recalculating the confidence interval using the normal approxima-
tion. The p-values are also pooled using a method described in Licht (2010). It is recommended to
check if the pooled p-value is in agreement with the pooled confidence interval.

Graphical Displays
To plot the curves of the differences directly, we recommend using the plot_curve_diff function.
Similar to the main plot functions, it has a lot of arguments to customize the plot. If the main goal
is to check the assumptions, we recommend using the associated plot method instead.

Computational Details
Instead of relying on numerical integration, this function uses exact calculations. This is achieved
by using either step-function interpolation (interpolation="steps", the default) or linear inter-
polation (interpolation="linear"). In the former case, the integral is simply the sum of the area

adjusted_curve_test 23

of the squares defined by the step function. In the second case, the integral is simply the sum of
the area of the rectangles. Either way, there is no need for approximations. In some situations (for
example when using parametric survival models with method="direct"), the curves are not step
functions. In this case the interpolation argument should be set to "linear".

Value

Returns a curve_test object. If there are exactly two treatments this list contains the following
object:

diff_curves A data.frame containing the difference curves used for calculating the inte-
grals.

diff_intergals A numeric vector containing the integrals of the difference for the estimated
adjusted survival curves or CIFs.

observed_diff_curve

The curve of the difference between the two non-bootstrapped adjusted survival
curves or CIFs.

observed_diff_integral

The integral of the curve in observed_diff_curve.

integral_se The bootstrap standard error of the difference integral.

p_value The p-value for the modified Pepe-Fleming Test. See details.

n_boot The number of bootstrap repetitions used.

kind Whether survival curves or cumulative incidence functions where used.

conf_int The percentile bootstrap confidence interval of the difference between the two
curves.

categorical Whether there are more than two treatments/groups.

treat_labs The labels of all treatments/groups.

method The adjustment method used in the original adjustedsurv or adjustedcif
object.

interpolation The interpolation method specified in the original adjustedsurv or adjustedcif
object.

call The original function call.

If there are more than two treatment groups the object returned is a list of these objects with one list
for each pairwise comparison.

If multiply imputed datasets where used, the object also includes a mids_analyses object, in-
cluding a curve_test object for each imputed dataset. It also includes a mids_p_values object
containing the separately estimated p-values.

Author(s)

Robin Denz

24 adjusted_curve_test

References

Margaret Sullivan Pepe and Thomas R. Fleming (1989). "Weighted Kaplan-Meier Statistics: A
Class of Distance Tests for Censored Survival Data". In: Biometrics 45.2, pp. 497-507

Margaret Sullivan Pepe and Thomas R. Fleming (1991). "Weighted Kaplan-Meier Statistics: Large
Sample and Optimality Considerations". In: Journal of the Royal Statistical Society: Series B 53.2,
pp. 341-352

Nicholas I. Fisher and Peter Hall (1990). "On Bootstrap Hypothesis Testing". In: Australian Journal
of Statistics 32.2, pp. 177-190

Florent Le Borgne, Bruno Giraudeau, Anne Héléne Querard, Magali Giral, and Yohann Foucher
(2016). "Comparisons of the Performance of Different Statistical Tests for Time-To-Event Analy-
sis with Confounding Factors: Practical Illustrations in Kidney Transplantation". In: Statistics in
Medicine 35, pp. 1103-1116

Christine Licht (2010). "New Methods for Generating Significance Levels from Multiply-Imputed
Data". PhD thesis. Otto-Friedrich-Universität Bamberg, Fakultät Sozial- und Wirtschaftswis-
senschaften

See Also

plot.curve_test, adjustedsurv, adjustedcif

Examples

library(adjustedCurves)
library(survival)
library(cmprsk)

Simple Survival Case with adjusted survival curves

simulate some data as example
set.seed(42)
sim_dat <- sim_confounded_surv(n=50, max_t=1.2)
sim_dat$group <- as.factor(sim_dat$group)

estimate a cox-regression for the outcome
cox_mod <- coxph(Surv(time, event) ~ x1 + x2 + x3 + x4 + x5 + x6 + group,

data=sim_dat, x=TRUE)

use it to calculate adjusted survival curves with bootstrapping
adjsurv <- adjustedsurv(data=sim_dat,

variable="group",
ev_time="time",
event="event",
method="direct",
outcome_model=cox_mod,
conf_int=FALSE,
bootstrap=TRUE,
n_boot=10) # n_boot should be much higher in reality

test the equality of both curves in the interval 0 to 1

adjusted_rmst 25

adjtest <- adjusted_curve_test(adjsurv, from=0, to=1)
print(adjtest)

Competing Risks Case with adjusted CIFs
library(riskRegression)
library(prodlim)

simulate some data as example
sim_dat <- sim_confounded_crisk(n=50, max_t=1.2)
sim_dat$group <- as.factor(sim_dat$group)

estimate a cause-specific cox-regression for the outcome
csc_mod <- CSC(Hist(time, event) ~ x1 + x2 + x3 + x4 + x5 + x6 + group,

data=sim_dat)

use it to calculate adjusted CIFs for cause = 1 with bootstrapping
adjcif <- adjustedcif(data=sim_dat,

variable="group",
ev_time="time",
event="event",
method="direct",
outcome_model=csc_mod,
conf_int=FALSE,
bootstrap=TRUE,
n_boot=10,
cause=1)

test the equality of both curves in the interval 0 to 1
adjtest <- adjusted_curve_test(adjcif, from=0, to=1)
print(adjtest)

adjusted_rmst Calculate Confounder-Adjusted Restricted Mean Survival Times

Description

This function can be utilized to calculate the confounder-adjusted restricted mean survival time,
given previously estimated adjusted survival curves.

Usage

adjusted_rmst(adjsurv, to, from=0, conf_int=FALSE,
conf_level=0.95, interpolation="steps",
difference=FALSE, group_1=NULL, group_2=NULL)

Arguments

adjsurv An adjustedsurv object created using the adjustedsurv function.

26 adjusted_rmst

from A number specifying the left side of the time interval of interest. See details.
Usually this should be kept at 0 (default) to calculate the standard RMST. Should
only be changed if there are good reasons for it.

to A number specifying the right side of the time interval of interest. See details.

conf_int Whether bootstrap estimates should be used to calculate the standard errors and
confidence intervals of the RMST estimates. Can only be used if bootstrap=TRUE
was used in the adjustedsurv call.

conf_level A number specifying the confidence level of the bootstrap confidence intervals.

interpolation Either "steps" (default) or "linear". This parameter controls how interpola-
tion is performed. If this argument is set to "steps", the curves will be treated
as step functions. If it is set to "linear", the curves wil be treated as if there
are straight lines between the point estimates instead. Points that lie between
estimated points will be interpolated accordingly. Should usually be kept at
"steps". See Details.

difference Whether to calculate the difference between two adjusted restricted mean sur-
vival times instead. When conf_int=TRUE is also specified, this function will
also return the standard error of the difference, the associated confidence interval
and a p-value. The p-value is the result of a one-sample t-test where the null-
hypothesis is that the difference is equal to 0. To specify which difference should
be calculated, the group_1 and group_1 arguments can be used. By default, the
difference between the first and second level in variable is computed.

group_1 Optional argument to get a specific difference. This argument takes a single
character string specifying one of the levels of the variable used in the original
adjustedsurv or adjustedcif function call. This group will be subtracted
from. For example if group_1="A" and group_2="B" the difference A - B will
be used. If NULL, the order of the factor levels in the original data determines
the order. Ignored if difference=FALSE.

group_2 Also a single character string specifying one of the levels of variable. This
corresponds to the right side of the difference equation. See argument group_2.
Ignored if difference=FALSE.

Details

The adjusted restricted mean survival times (RMST) are calculated by integrating the estimated
adjusted survival curves in a specified interval. Let Z be the grouping variable (corresponding to
the variable argument in the adjustedsurv function) with possible levels Z ∈ {0, 1, 2, ..., k}. T
is defined as the time and Ŝz(t) denotes the estimated counterfactual survival function. The RMST
is then defined as:

RMSTz(to) =

∫ to

from=0

Ŝz(t)dt

It can be interpreted as the mean survival time of individuals in group Z = z in the interval [from,
to]. Note however that simply subtracting the estimates from each other does not give a correct
estimate of the area between the survival curves if the respective curves cross at some point. The
adjusted_curve_test function can be used to calculate the actual area between the curves instead.
See ?adjusted_curve_test for more information.

adjusted_rmst 27

Confidence Intervals

If the adjsurv object was created with bootstrap=TRUE in the adjustedsurv function, bootstrap
confidence intervals and standard errors for the RMSTs can be approximated by setting conf_int to
TRUE. If bootstrap samples occur where the survival function is not estimated up to to, the bootstrap
sample is discarded and not used in further calculations. Approximate variance calculations not
relying on the bootstrap estimates are currently not implemented.

Multiple Imputation

If multiple imputation was used when creating the adjsurv object, the analysis is carried out on
all multiply imputed datasets and pooled using Rubins Rule. When bootstrapping was carried out
as well, the pooled standard error over all imputed datasets is used in combination with the normal
approximation to re-calculate the bootstrap confidence intervals.

Competing Risks

This function cannot be used with adjustedcif objects, because the survival probability cannot be
estimated in an unbiased way when competing risks are present. However, a very similar quantity,
the adjusted restricted mean time lost, can be calculated using the adjusted_rmtl function.

Graphical Displays

A plot of the RMST over time (with changing values for the to argument) can be produced using
the plot_rmst_curve function.

Computational Details

Instead of relying on numerical integration, this function uses exact calculations. This is achieved
by using either step-function interpolation (interpolation="steps", the default) or linear inter-
polation (interpolation="linear"). In the former case, the integral is simply the sum of the area
of the squares defined by the step function. In the second case, the integral is simply the sum of
the area of the rectangles. Either way, there is no need for approximations. In some situations (for
example when using parametric survival models with method="direct"), the curves are not step
functions. In this case the interpolation argument should be set to "linear".

Value

Returns a data.frame containing the columns group (groups in variable) and rmst (the estimated
restricted mean survival time).

If conf_int=TRUE was used it additionally contains the columns se (the standard error of the re-
stricted mean survival time), ci_lower (lower limit of the confidence interval), ci_upper (upper
limit of the confidence interval) and n_boot (the actual number of bootstrap estimates used).

Author(s)

Robin Denz

References

Sarah C. Conner, Lisa M. Sullivan, Emelia J. Benjamin, Michael P. LaValley, Sandro Galea, and
Ludovic Trinquart (2019). "Adjusted Restricted Mean Survival Times in Observational Studies".
In: Statistics in Medicine 38, pp. 3832-3860

28 adjusted_rmtl

Patrick Royston and Mahesh K. B. Parmar (2013). "Restricted Mean Survival Time: An Alterna-
tive to the Hazard Ratio for the Design and Analysis of Randomized Trials with a Time-To-Event
Outcome". In: BMC Medical Research Methodology 13.152

See Also

adjustedsurv, plot_rmst_curve

Examples

library(adjustedCurves)
library(survival)

set.seed(42)

simulate some data as example
sim_dat <- sim_confounded_surv(n=30, max_t=1.2)
sim_dat$group <- as.factor(sim_dat$group)

estimate a cox-regression for the outcome
cox_mod <- coxph(Surv(time, event) ~ x1 + x2 + x3 + x4 + x5 + x6 + group,

data=sim_dat, x=TRUE)

use it to calculate adjusted survival curves with bootstrapping
adjsurv <- adjustedsurv(data=sim_dat,

variable="group",
ev_time="time",
event="event",
method="direct",
outcome_model=cox_mod,
conf_int=FALSE,
bootstrap=TRUE,
n_boot=10) # n_boot should be much higher in reality

calculate adjusted restricted mean survival times from 0 to 1
adjrmst <- adjusted_rmst(adjsurv, from=0, to=0.5, conf_int=FALSE)

calculate adjusted restricted mean survival times from 0 to 1,
including standard errors and confidence intervals
adjrmst <- adjusted_rmst(adjsurv, from=0, to=0.5, conf_int=TRUE,

conf_level=0.95)

adjusted_rmtl Calculate Confounder-Adjusted Restricted Mean Time Lost

Description

This function can be utilized to calculate the confounder-adjusted restricted mean time lost (RMTL),
possibly due to a specific cause, given previously estimated adjusted survival curves / CIFs created
using the adjustedsurv or adjustedcif function.

adjusted_rmtl 29

Usage

adjusted_rmtl(adj, to, from=0, conf_int=FALSE,
conf_level=0.95, interpolation="steps",
difference=FALSE, group_1=NULL, group_2=NULL)

Arguments

adj An adjustedsurv object created using the adjustedsurv function or a adjustedcif
object created using the adjustedcif function.

from A number specifying the left side of the time interval of interest. See de-
tails. Usually this should be kept at 0 (default) to calculate the standard RMTL.
Should only be changed if there are good reasons for it.

to A number specifying the right side of the time interval of interest. See details.

conf_int Whether bootstrap estimates should be used to calculate the standard errors and
confidence intervals of the RMST estimates. Can only be used if bootstrap=TRUE
was used in the adjustedsurv or adjustedcif call.

conf_level A number specifying the confidence level of the bootstrap confidence intervals.

interpolation Either "steps" (default) or "linear". This parameter controls how interpola-
tion is performed. If this argument is set to "steps", the curves will be treated
as step functions. If it is set to "linear", the curves wil be treated as if there
are straight lines between the point estimates instead. Points that lie between
estimated points will be interpolated accordingly. Should usually be kept at
"steps". See Details.

difference Whether to calculate the difference between two adjusted RMTLs instead. When
conf_int=TRUE is also specified, this function will also return the standard error
of the difference, the associated confidence interval and a p-value. The p-value
is the result of a one-sample t-test where the null-hypothesis is that the difference
is equal to 0. To specify which difference should be calculated, the group_1 and
group_1 arguments can be used. By default, the difference between the first and
second level in variable is computed.

group_1 Optional argument to get a specific difference. This argument takes a single
character string specifying one of the levels of the variable used in the original
adjustedsurv or adjustedcif function call. This group will be subtracted
from. For example if group_1="A" and group_2="B" the difference A - B will
be used. If NULL, the order of the factor levels in the original data determines
the order. Ignored if difference=FALSE.

group_2 Also a single character string specifying one of the levels of variable. This
corresponds to the right side of the difference equation. See argument group_2.
Ignored if difference=FALSE.

Details

The cause-specific adjusted restricted mean time lost (RMTL) is calculated by integrating the es-
timated adjusted cause-specific CIF in a specified interval. Let Z be the grouping variable (cor-
responding to the variable argument in the adjustedcif function) with possible levels Z ∈

30 adjusted_rmtl

{0, 1, 2, ..., k}. T is defined as the time and F̂ d
z (t) denotes the estimated counterfactual CIF for

cause d. The RMTL is then defined as:

RMTLd
z(to) =

∫ to

from=0

F̂ d
z (t)dt

It can be interpreted as the mean time it takes an individual to succumb to the event of interest in
group Z = z in the interval [0, to]. . More information on the method itself can be found in
the references. Note however that simply subtracting the estimates from each other does not give
a correct estimate of the area between the CIFs if the respective curves cross at some point. The
adjusted_curve_test function can be used to calculate the actual area between the curves instead.
See ?adjusted_curve_test for more information.

If an adjustedsurv object is supplied in the adj argument, the CIF is calculated from the adjusted
survival curves using the simple transformation: F̂z(t) = 1 − Ŝz(t). All further calculations are
identical.

Confidence Intervals

If the adj object was created with bootstrap=TRUE in the corresponding function, bootstrap con-
fidence intervals and standard errors for the RMTLs can be approximated by setting conf_int to
TRUE. If bootstrap samples occur where the CIF is not estimated up to to, the bootstrap sample is
discarded and not used in further calculations. Approximate variance calculations not relying on
the bootstrap estimates are currently not implemented.

Multiple Imputation

If multiple imputation was used when creating the adj object, the analysis is carried out on all
multiply imputed datasets and pooled using Rubins Rule. When bootstrapping was carried out as
well, the pooled standard error over all imputed datasets is used in combination with the normal
approximation to re-calculate the bootstrap confidence intervals.

Graphical Displays

A plot of the RMTL over time (with changing values for the to argument) can be produced using
the plot_rmtl_curve function.

Computational Details

Instead of relying on numerical integration, this function uses exact calculations. This is achieved
by using either step-function interpolation (interpolation="steps", the default) or linear inter-
polation (interpolation="linear"). In the former case, the integral is simply the sum of the area
of the squares defined by the step function. In the second case, the integral is simply the sum of
the area of the rectangles. Either way, there is no need for approximations. In some situations (for
example when using parametric models with method="direct"), the curves are not step functions.
In this case the interpolation argument should be set to "linear".

Value

Returns a data.frame containing the columns group (groups in variable) and rmtl (the estimated
restricted mean time lost).

If conf_int=TRUE was used it additionally contains the columns se (the standard error of the re-
stricted mean time lost), ci_lower (lower limit of the confidence interval), ci_upper (upper limit
of the confidence interval) and n_boot (the actual number of bootstrap estimates used).

adjusted_rmtl 31

Author(s)

Robin Denz

References

Sarah C. Conner and Ludovic Trunquart (2021). "Estimation and Modeling of the Restricted Mean
Time Lost in the Presence of Competing Risks". In: Statistics in Medicine

See Also

adjustedcif, adjustedsurv, plot_rmtl_curve

Examples

library(adjustedCurves)
library(survival)

when using single-event survival data

simulate some data as example
sim_dat <- sim_confounded_surv(n=50, max_t=1.2)
sim_dat$group <- as.factor(sim_dat$group)

estimate a cox-regression for the outcome
cox_mod <- coxph(Surv(time, event) ~ x1 + x2 + x3 + x4 + x5 + x6 + group,

data=sim_dat, x=TRUE)

use it to calculate adjusted survival curves with bootstrapping
adjsurv <- adjustedsurv(data=sim_dat,

variable="group",
ev_time="time",
event="event",
method="direct",
outcome_model=cox_mod,
conf_int=FALSE,
bootstrap=TRUE,
n_boot=10) # n_boot should be much higher in reality

calculate adjusted restricted mean survival times from 0 to 1
adjrmst <- adjusted_rmst(adjsurv, from=0, to=1, conf_int=FALSE)

calculate adjusted restricted mean time lost estimates from 0 to 1,
including standard errors and confidence intervals
adjrmst <- adjusted_rmst(adjsurv, from=0, to=1, conf_int=TRUE,

conf_level=0.95)

when using data with competing-risks

library(riskRegression)
library(prodlim)

simulate some data as example

32 adjusted_surv_quantile

set.seed(42)
sim_dat <- sim_confounded_crisk(n=50)
sim_dat$group <- as.factor(sim_dat$group)

estimate a cause-specific cox-regression model for the outcome
csc_mod <- CSC(Hist(time, event) ~ x1 + x2 + x3 + x4 + x5 + x6 + group,

data=sim_dat)

calculate confounder-adjusted cause-specific CIFs for cause = 1
adjcif <- adjustedcif(data=sim_dat,

variable="group",
ev_time="time",
event="event",
method="direct",
outcome_model=csc_mod,
conf_int=FALSE,
bootstrap=TRUE,
n_boot=10,
cause=1)

calculate adjusted restricted mean time lost estimates from 0 to 1
including standard errors and confidence intervals
adjrmtl <- adjusted_rmtl(adjcif, from=0, to=1, conf_int=TRUE)

adjusted_surv_quantile

Calculate Confounder-Adjusted Survival Time Quantiles

Description

This function can be utilized to calculate confounder-adjusted survival time quantiles, including the
median survival time, given previously estimated adjusted survival curves.

Usage

adjusted_surv_quantile(adjsurv, p=0.5, conf_int=FALSE,
use_boot=FALSE, interpolation="steps")

Arguments

adjsurv An adjustedsurv object created using the adjustedsurv function.

p The quantile of interest. To calculate the median survival time, set this parameter
to 0.5 (default). Multiple values in form of a numeric vector are allowed.

conf_int Whether to calculate confidence intervals or not. Those are calculated in the
same way as the quantiles but using the confidence limit curves. This requires ei-
ther that conf_int=TRUE or bootstrap=TRUE was used in the original adjustedsurv
function call. Since this directly uses the previously estimated intervals, the
same confidence level used in the original adjustedsurv call is used here.

adjusted_surv_quantile 33

use_boot Whether to use the bootstrap confidence interval estimates of the survival curves
to estimate the confidence intervals of the survival time quantiles or not. Can
only be used when bootstrap=TRUE was used in the original adjustedsurv
function call. Ignored if conf_int=FALSE.

interpolation Either "steps" (default) or "linear". This parameter controls how interpola-
tion is performed. If this argument is set to "steps", the curves will be treated
as step functions. If it is set to "linear", the curves wil be treated as if there
are straight lines between the point estimates instead. Points that lie between
estimated points will be interpolated accordingly.

Details

The median survival time is simply the time when half the patients are expected to be alive. The
chance of surviving beyond that time is 50 percent. In general, any quantile can be calculated this
way. Those can be read directly from the respective survival curve by drawing a straight line from
the desired quantile p on the Y-Axis and reading the X-Axis value where this line intersects with
the survival curve. The adjusted survival time quantile for group z (corresponding to the variable
argument in the adjustedsurv function) is formally defined as:

Q̂z(p) = min
(
t|Ŝz(t) ≤ p

)
where Ŝz(t) is the estimated counterfactual survival function for z.

If the survival probability never drops below p, the survival time quantile cannot be calculated. This
also applies to the confidence interval estimation. This function calculates this quantity automati-
cally. When multiple imputation was used in the original function call, the survival time quantiles
are read off the final pooled survival curves directly.

Value

Returns a data.frame containing the columns p (the quantiles from the original function call),
group (groups in variable) and q_surv (the survival time quantile).

If conf_int=TRUE was used it also includes the confidence limits in the ci_lower and ci_upper
columns.

Author(s)

Robin Denz

References

Omer Ben-Aharon, Racheli Magnezi, Moshe Leshno, and Daniel A. Goldstein (2019). "Median
Survival or Mean Survival: Which Measure is the Most Appropriate for Patients, Physicians, and
Policymakers?" In: The Oncologist 24, pp. 1469-1478

Zhongxue Chen and Guoyi Zhang (2016). "Comparing Survival Curves based on Medians". In:
BMC Medical Research Methodology 16.33

34 as_ggsurvplot_df

See Also

adjustedsurv

Examples

library(adjustedCurves)
library(survival)

simulate some data as example
set.seed(42)
sim_dat <- sim_confounded_surv(n=50, max_t=1.2)
sim_dat$group <- as.factor(sim_dat$group)

estimate a cox-regression for the outcome
cox_mod <- coxph(Surv(time, event) ~ x1 + x2 + x3 + x4 + x5 + x6 + group,

data=sim_dat, x=TRUE)

use it to calculate adjusted survival curves with bootstrapping
adjsurv <- adjustedsurv(data=sim_dat,

variable="group",
ev_time="time",
event="event",
method="direct",
outcome_model=cox_mod,
conf_int=TRUE,
bootstrap=FALSE)

calculate adjusted median survival times
adjusted_surv_quantile(adjsurv)

calculate other quantiles + confidence intervals
adjusted_surv_quantile(adjsurv, conf_int=TRUE, p=c(0.2, 0.4))

as_ggsurvplot_df Extract a data.frame containing the estimated survival curves from
a adjustedsurv object

Description

A small convenience function to extract the most important quantities from an adjustedsurv ob-
ject. The resulting data.frame is structured according to the format required by the ggsurvplot_df
function of the survminer package, making it easy to use the ggsurvplot_df function.

Usage

as_ggsurvplot_df(adjsurv)

Arguments

adjsurv An object of class adjustedsurv created by the adjustedsurv function.

cif_aalen_johansen 35

Value

Returns a data.frame containing the required information, extracted from the adjustedsurv ob-
ject.

Author(s)

Robin Denz

See Also

adjustedsurv, plot.adjustedsurv

Examples

library(adjustedCurves)
library(survival)

set.seed(42)

simulate some example data
sim_dat <- sim_confounded_surv(n=50, max_t=1.2)
sim_dat$group <- as.factor(sim_dat$group)

treatment assignment model
glm_mod <- glm(group ~ x2 + x3 + x5 + x6, data=sim_dat, family="binomial")

estimate some adjusted survival curves
adjsurv <- adjustedsurv(data=sim_dat,

variable="group",
ev_time="time",
event="event",
method="iptw_km",
treatment_model=glm_mod,
conf_int=TRUE,
bootstrap=FALSE)

extract info
df <- as_ggsurvplot_df(adjsurv)

not run here to avoid dependency on survminer
if (interactive()) {
plot using survminer, requires the 'survminer' package
ggsurvplot_df(df)
}

cif_aalen_johansen Group-Specific Aalen-Johansen CIFs

36 cif_aalen_johansen

Description

This page explains the details of estimating standard Aalen-Johansen cumulative incidence func-
tions, stratified by the group variable (method="aalen_johansen" in the adjustedcif function).
All regular arguments of the adjustedcif function can be used. Further arguments specific to this
method are listed below.

NO adjustment for any confounders are made. This function is included only for reference and
should not be used when confounder adjusted CIFs are desired.

Arguments

... Further arguments passed to cuminc.

Details

• Type of Adjustment: NO adjustments are made. This is just a stratified Aalen-Johansen
estimator.

• Doubly-Robust: Estimates are not Doubly-Robust.

• Categorical groups: Any number of levels in variable are allowed. Must be a factor vari-
able.

• Approximate Variance: Calculations to approximate the variance and confidence intervals
are available.

• Allowed Time Values: Allows both continuous and integer time.

• Bounded Estimates: Estimates are guaranteed to be bounded in the 0 to 1 probability range.

• Monotone Function: Estimates are guaranteed to be monotone.

• Dependencies: This method relies on the the cmprsk package.

This function is just a convenient wrapper around the cuminc function. See ?cuminc or the cited
literature for more details.

Value

Adds the following additional objects to the output of the adjustedsurv function:

• cuminc_object: The object returned by the cuminc function.

Author(s)

The wrapper function was written by Robin Denz, the cuminc function (which this wrapper is build
around) was written by other people. See ?cuminc for more details.

References

Odd O. Aalen and Søren Johansen (1978). "An Empirical Transition Matrix for Non-Homogeneous
Markov Chains Based on Censored Observations". In: Scandinavian Journal of Statistics 5.3, pp.
141-150

cif_aiptw 37

See Also

cuminc

Examples

library(adjustedCurves)
library(cmprsk)

set.seed(42)

simulate some data as example
sim_dat <- sim_confounded_crisk(n=50, max_t=5)
sim_dat$group <- as.factor(sim_dat$group)

calculate un-adjusted aalen-johansen estimates
adjcif <- adjustedcif(data=sim_dat,

variable="group",
ev_time="time",
event="event",
cause=1,
method="aalen_johansen")

plot the curves
plot(adjcif)

cif_aiptw Augmented Inverse Probability of Treatment Weighted CIFs

Description

This page explains the details of estimating augmented inverse probability of treatment weighted
cumulative incidence functions for competing risks data (method="aiptw" in the adjustedcif
function). All regular arguments of the adjustedcif function can be used. Additionally, the
outcome_model argument and the treatment_model argument have to be specified in the adjustedcif
call. Further arguments specific to this method are listed below.

Arguments

outcome_model [required] Must be a CauseSpecificCox model object created using the CSC
function, modeling the time-to-event mechanism. See details and examples.

treatment_model

[required] Must be a glm model object with variable as response variable. See
details and examples.

censoring_model

Must be a coxph model object, modeling the censoring mechanism or NULL. If
NULL (default) independent censoring is assumed. See details and examples.

verbose Whether to print estimation information of the ate function in the riskRegres-
sion package. Defaults to FALSE.

... Further arguments passed to ate.

38 cif_aiptw

Details

• Type of Adjustment: Requires both a treatment assignment model (glm) and a outcome
model (CSC). Also allows, but does not rely on, an additional model describing the censoring
mechanism (a coxph object).

• Doubly-Robust: Estimates are Doubly-Robust.

• Categorical groups: Currently only two groups in variable are allowed. Must still be a
factor variable.

• Approximate Variance: Calculations to approximate the variance and confidence intervals
are available.

• Allowed Time Values: Allows both continuous and integer time.

• Bounded Estimates: Estimates are not guaranteed to be bounded in the 0 to 1 probability
range.

• Monotone Function: Estimates are not guaranteed to be monotone.

• Dependencies: This method relies on the riskRegression package.

Instead of only modeling the outcome mechanism or the treatment assignment mechanism, both
kind of models are required to use this method. If either of those models are correctly specified,
unbiased estimates will be obtained. Can also be used to adjust for dependent censoring using a
Cox-Regression model. An obvious advantage of this method is it’s doubly robust property. This
however comes at the price of some efficiency. It is also possible that some estimates fall outside
the 0 and 1 probability bounds, particularly if the time is near 0 or the maximal observed event
time. There is also no guarantee that the estimated CIFs will be monotonically increasing. For
more information on the methods the user is referred to the literature listed in the references.

This function is basically just a wrapper around the ate function from the riskRegression pack-
age. Additional arguments may be passed to that function using the ... syntax. It is however
recommended to use ate directly in these cases.

Value

Adds the following additional objects to the output of the adjustedcif function:

• ate_object: The object returned by the ate function.

Author(s)

The wrapper function was written by Robin Denz, the ate function (which this wrapper is build
around) was written by other people. See ?ate for more details.

References

James M. Robins and Andrea Rotnitzky (1992). "Recovery of Information and Adjustment for
Dependent Censoring Using Surrogate Markers". In: AIDS Epidemiology: Methodological Issues.
Ed. by Nicholas P. Jewell, Klaus Dietz, and Vernon T. Farewell. New York: Springer Science +
Business Media, pp. 297-331

Alan E. Hubbard, Mark J. van der Laan, and James M. Robins (2000). "Nonparametric Locally
Efficient Estimation of the Treatment Specific Survival Distribution with Right Censored Data and
Covariates in Observational Studies". In: Statistical Models in Epidemiology, the Environment, and

cif_aiptw_pseudo 39

Clinical Trials. Ed. by M. Elizabeth Halloran and Donald Berry. New York: Springer Science +
Business Media, pp. 135-177

Brice Maxime Hugues Ozenne, Thomas Harder Scheike, and Laila Staerk (2020). "On the Esti-
mation of Average Treatment Effects with Right-Censored Time to Event Outcome and Competing
Risks". In: Biometrical Journal 62, pp. 751-763

See Also

ate, CSC, coxph, glm

Examples

library(adjustedCurves)
library(survival)
library(riskRegression)

set.seed(42)

simulate some data as example
sim_dat <- sim_confounded_crisk(n=50, max_t=1.2)
sim_dat$group <- as.factor(sim_dat$group)

estimate a cause-specific cox-regression for the outcome
cox_mod <- CSC(Hist(time, event) ~ x1 + x2 + x3 + x4 + x5 + x6 + group,

data=sim_dat)

estimate a treatment assignment model
glm_mod <- glm(group ~ x1 + x3 + x5 + x6, data=sim_dat, family="binomial")

use it to calculate adjusted survival curves
adjcif <- adjustedcif(data=sim_dat,

variable="group",
ev_time="time",
event="event",
cause=1,
method="aiptw",
outcome_model=cox_mod,
treatment_model=glm_mod,
conf_int=FALSE)

plot the curves
plot(adjcif)

cif_aiptw_pseudo Augmented Inverse Probability of Treatment Weighted CIFs using
Pseudo-Values

40 cif_aiptw_pseudo

Description

This page explains the details of estimating augmented inverse probability of treatment weighted
CIFs using pseudo-values in a competing risks setting (method="aiptw_pseudo" in the adjustedcif
function). All regular arguments of the adjustedcif function can be used. Additionally, the
outcome_vars argument and the treatment_model argument have to be specified in the adjustedcif
call. Further arguments specific to this method are listed below.

Arguments

outcome_vars [required] A character vector of column names specifying variables to be used
when modeling the outcome mechanism using geese. See details and examples.

treatment_model

[required] Must be a glm or multinom model object with variable as response
variable. See details and examples.

type_time A character string specifying how the time should be modeled. Possible values
are "factor" (modeling each point in time as a separate variable, the default),
"bs" (modeling time using B-Splines) or "ns" (modeling time using natural
splines).

spline_df The number of degrees of freedom used for the natural-spline or B-spline func-
tion. Defaults to 5. Ignored if type_time="factor".

Details

• Type of Adjustment: Requires a treatment assignment model (glm or multinom) and a char-
acter vector of variable names used to model the outcome mechanism (internally uses geese).
In contrast to the "aiptw" method this function does not allow for dependent censoring.

• Doubly-Robust: Estimates are Doubly-Robust.

• Categorical groups: Any number of levels in variable are allowed. Must be a factor vari-
able.

• Approximate Variance: Calculations to approximate the variance and confidence intervals
are available.

• Allowed Time Values: Allows both continuous and integer time.

• Bounded Estimates: Estimates are not guaranteed to be bounded in the 0 to 1 probability
range.

• Monotone Function: Estimates are not guaranteed to be monotone.

• Dependencies: This method relies on the geepack and prodlim packages.

Instead of only modeling the outcome mechanism or the treatment assignment mechanism, both
kind of models are required to use this method. If either of those models are correctly specified, un-
biased estimates will be obtained. In contrast to the "aiptw" method, the "aiptw_pseudo" method
uses a generalized estimation equation (geese) approach to model the outcome mechanism. The
model is fit in the same way as described in the "direct_pseudo" method. Those Direct Standard-
ization based estimates are then transformed using the previously estimated propensity score. This
results in the doubly-robust property of the method. More information on this particular method
can be found in the original article by Wang (2018). The original article only deals with survival
probabilities without competing risks, but the only difference to the CIF estimation with competing

cif_aiptw_pseudo 41

risks is the calculation of the pseudo-values. More information on Pseudo-Values is available in
Andersen et al. (2017) and Andersen and Perme (2010).

When estimating the geese model the ev_time variable is used as a factor by default. This results
in one coefficient being estimated for each unique point in time, which can be very slow com-
putationally if there are a lot of unique points in time and/or the dataset has many rows. In these
cases it is recommended to use type_time="bs" or type_time="ns", which results in the ev_time
being modeled using B-Splines or Natural Splines. Simulation studies indicate that there is little
difference in the estimates when an appropriately large number of spline_df is used.

Value

Adds the following additional objects to the output of the adjustedcif function:

• pseudo_values: The matrix of estimated pseudo-values.

• geese_model: The geese model used to make the predictions.

Author(s)

Jixian Wang supplied the R source code used in the original article, which was used by Robin
Denz to create a generalized version of this method with additional functionality and improved
performance.

References

Jixian Wang (2018). "A Simple, Doubly Robust, Efficient Estimator for Survival Functions Using
Pseudo Observations". In: Pharmaceutical Statistics 17.38-48

James M. Robins and Andrea Rotnitzky (1992). "Recovery of Information and Adjustment for
Dependent Censoring Using Surrogate Markers". In: AIDS Epidemiology: Methodological Issues.
Ed. by Nicholas P. Jewell, Klaus Dietz, and Vernon T. Farewell. New York: Springer Science +
Business Media, pp. 297-331

Per Kragh Andersen, Elisavet Syriopoulou, and Erik T. Parner (2017). "Causal Inference in Survival
Analysis using Pseudo-Observations". In: Statistics in Medicine 36, pp. 2669-2681

Per Kragh Andersen and Maja Pohar Perme (2010). "Pseudo-Observations in Survival Analysis".
In: Statistical Methods in Medical Research 19, pp. 71-99

Aris Perperoglou, Willi Sauerbrei, Michal Abrahamowicz, and Matthias Schmid (2019). "A Review
of Spline Function Procedures in R". in: BMC Medical Research Methodology 19.46, pp. 1-16

See Also

geese, jackknife, ns, bs

Examples

library(adjustedCurves)

set.seed(42)

simulate some data as example

42 cif_direct

sim_dat <- sim_confounded_crisk(n=30, max_t=5)
sim_dat$group <- as.factor(sim_dat$group)

estimate a treatment assignment model
glm_mod <- glm(group ~ x1 + x3 + x5 + x6, data=sim_dat, family="binomial")

use it + pseudo values + geese model to calculate adjusted CIFs
adjcif <- adjustedcif(data=sim_dat,

variable="group",
ev_time="time",
event="event",
cause=1,
method="aiptw_pseudo",
outcome_vars=c("x1", "x2", "x3", "x4", "x5", "x6"),
treatment_model=glm_mod,
conf_int=FALSE)

plot the curves
plot(adjcif)

cif_direct Direct Adjusted Cumulative Incidence Functions

Description

This page explains the details of estimating confounder-adjusted CIFs using a previously fit model
to describe the outcome mechanism in a competing risks setting (method="direct" in the adjustedcif
function). All regular arguments of the adjustedcif function can be used. Additionally, the
outcome_model argument has to be specified in the adjustedcif call. Further arguments specific
to this method are listed below.

Arguments

outcome_model [required] Must be a previously fit model object including variable as inde-
pendent variable. Apart from the classic CauseSpecificCox model this func-
tion also supports a variety of other models, such as the Fine & Gray model
(FGR). See models_cif_direct for a list of supported model objects and some
more details.

verbose Whether to print estimation information of the ate function in the riskRe-
gression package. Defaults to FALSE. Ignored if a outcome_model is not a
CauseSpecificCox model.

predict_fun A function which should be used to calculate the predicted cause-specific cumu-
lative incidences given covariates and some points in time. This argument only
needs to be specified if the kind of model supplied in the outcome_model is not
directly supported. See models_cif_direct for more information. Defaults to
NULL.

... Further arguments passed to ate when a CauseSpecificCox model is supplied
in the outcome_model argument. Otherwise arguments are passed to the respec-
tive predict function. See models_cif_direct for more details.

cif_direct 43

Details

• Type of Adjustment: Requires a model describing the outcome mechanism. Both Cause-
Specific-Cox models (CSC) and Fine & Gray models (FGR) are supported, as well as other
models. See models_cif_direct for a full list.

• Doubly-Robust: Estimates are not Doubly-Robust.

• Categorical groups: Any number of levels in variable are allowed. Must be a factor vari-
able.

• Approximate Variance: Asymptotic variance calculations are only available if the outcome_model
is a CauseSpecificCox model. The ate function is used for the calculation in that case.
Bootstrap confidence intervals can however be calculated with all supported models. See
?adjustedcif for more information on bootstrapping.

• Allowed Time Values: Allows both continuous and integer time.

• Bounded Estimates: Estimates are guaranteed to be bounded in the 0 to 1 probability range.

• Monotone Function: Estimates are guaranteed to be monotone.

• Dependencies: This method relies on the riskRegression package. Depending on outcome_model
other packages might be needed. See models_cif_direct for more details.

This method works by executing the following steps: (1) First a model is fitted which describes the
outcome mechanism (time-to-event). Next (2) multiple copies of the original dataset are created,
one for each possible level of the variable of interest. (3) The variable is then set to one level
for all observations in each dataset. (4) The model is used to predict the CIF at some points in time
T for each observation in all dataset copies. (5) Those estimated probabilities are averaged for each
dataset at each point in time, resulting in adjusted CIFs for all levels of the group variable at the
specified points in time.

In the literature this method is sometimes called "Direct Standardization", "Corrected Group-Prognosis",
"G-Computation" or "G-Formula". If the model in step (1) is "correct"" this method will produce
unbiased estimates of the counterfactual cumulative incidences. A model can be called a "correct"
model in this context if it can be used to produce unbiased estimates of the true (but unknown)
individual CIFs given covariates. When used properly this is one of the most efficient methods.
Theoretically any type of model could be used. The most popular ones are CSC models and FGR
models, but a variety of others models is also supported. More information can be found in the
literature listed in the references.

Value

Adds the following additional objects to the output of the adjustedcif function:

• ate_object: The object returned by the ate function.

Author(s)

The function itself was written by Robin Denz. When using CauseSpecificCox models however,
this function is just a wrapper around the ate function, which was written by other people. See
?ate for more information.

44 cif_direct

References

Xu Zhang and Mei-Jie Zhang (2011). "SAS Macros for Estimation of Direct Adjusted Cumulative
Incidence Curves Under Proportional Subdistribution Hazards Models". In: Computer Methods
and Programs in Biomedicine 101.1, pp. 87-93

Brice Maxime Hugues Ozenne, Thomas Harder Scheike, and Laila Staerk (2020). "On the Esti-
mation of Average Treatment Effects with Right-Censored Time to Event Outcome and Competing
Risks". In: Biometrical Journal 62, pp. 751-763

See Also

models_cif_direct, ate, CSC, FGR, CSC_MI, FGR_MI

Examples

library(adjustedCurves)
library(survival)
library(riskRegression)
library(prodlim)

set.seed(42)

simulate some data as example
sim_dat <- sim_confounded_crisk(n=50, max_t=1.2)
sim_dat$group <- as.factor(sim_dat$group)

estimate a cause-specific cox-regression for the outcome
cox_mod <- CSC(Hist(time, event) ~ x1 + x2 + x3 + x4 + x5 + x6 + group,

data=sim_dat)

use it to calculate adjusted CIFs
adjcif <- adjustedcif(data=sim_dat,

variable="group",
ev_time="time",
event="event",
cause=1,
method="direct",
outcome_model=cox_mod,
conf_int=FALSE)

plot the curves
plot(adjcif)

estimate a Fine & Gray model for the outcome instead
fgr_mod <- FGR(Hist(time, event) ~ x1 + x2 + x3 + x4 + x5 + x6 + group,

data=sim_dat, cause=1)

use it to calculate adjusted CIFs
adjcif <- adjustedcif(data=sim_dat,

variable="group",
ev_time="time",
event="event",

cif_direct_pseudo 45

cause=1,
method="direct",
outcome_model=fgr_mod,
conf_int=FALSE)

plot the curves
plot(adjcif)

not run because it would be too slow

using multiple imputation
library(mice)

introduce random missingness in x1 as example
NOTE: This is only done as an example, in reality you would
already have missing data, not introduce it yourself.
sim_dat$x1 <- ifelse(runif(n=50) < 0.5, sim_dat$x1, NA)

perform multiple imputation
mids <- mice::mice(data=sim_dat, method="pmm", m=5, printFlag=FALSE)

fit model for each imputed dataset, using the CSC_MI helper function
mira <- CSC_MI(mids, Hist(time, event) ~ x1 + x2 + x3 + x4 + x5 + x6 + group)

calculate adjusted CIFs on imputed data
adj <- adjustedcif(data=mids,

variable="group",
ev_time="time",
event="event",
method="direct",
cause=1,
outcome_model=mira)

plot(adj)

cif_direct_pseudo Direct Adjusted CIFs using Pseudo-Values

Description

This page explains the details of estimating direct adjusted cumulative incidence functions us-
ing pseudo-values in a competing risks setting (method="direct_pseudo" in the adjustedcif
function). All regular arguments of the adjustedcif function can be used. Additionally, the
outcome_vars argument has to be specified in the adjustedcif call. Further arguments specific to
this method are listed below.

Arguments

outcome_vars [required] A character vector of column names specifying variables to be used
when modeling the outcome mechanism. See details and examples.

46 cif_direct_pseudo

type_time A character string specifying how the time should be modeled. Possible values
are "factor" (modeling each point in time as a separate variable, the default),
"bs" (modeling time using B-Splines) or "ns" (modeling time using natural
splines).

spline_df The number of degrees of freedom used for the natural-spline or B-spline func-
tion. Defaults to 5. Ignored if type_time="factor".

Details

• Type of Adjustment: Requires a character vector of variable names used to model the out-
come mechanism (internally uses geese).

• Doubly-Robust: Estimates are not Doubly-Robust.
• Categorical groups: Any number of levels in variable are allowed. Must be a factor vari-

able.
• Approximate Variance: Calculations to approximate the variance and confidence intervals

are not available. Bootstrapping can still be used to estimate the confidence intervals (see
?adjustedcif).

• Allowed Time Values: Allows both continuous and integer time.
• Bounded Estimates: Estimates are not guaranteed to be bounded in the 0 to 1 probability

range.
• Monotone Function: Estimates are not guaranteed to be monotone.
• Dependencies: This method relies on the geepack and prodlim packages.

This method works by executing the following steps: (1) First Pseudo-Values for the cause-specific
cumulative incidence function are estimated for each observation in the dataset and some points in
time T. Afterwards (2) a new dataset is created in which every individual observation has multiple
rows, one for each point in time of interest. (3) This dataset is used to fit a generalized estimating
equations (geese) model, using the Pseudo-Values as independent variable. Next (4) multiple copies
of the new dataset are created, one for each possible level of the variable of interest. (5) The
variable is then set to one level for all observations in each dataset. (5) The geese model is used
to predict the CIF at some points in time T for each observation in all dataset copies. (6) Those
estimated probabilities are averaged for each dataset at each point in time, resulting in adjusted
CIFs for all levels of the group variable at the specified points in time.

It is essentially the same procedure as described in "direct". The only difference is that instead of
relying on a CSC model, this method uses Pseudo-Values and a geese model.

When estimating the geese model the ev_time variable is used as a factor by default. This results
in one coefficient being estimated for each unique point in time, which can be very slow com-
putationally if there are a lot of unique points in time and/or the dataset has many rows. In these
cases it is recommended to use type_time="bs" or type_time="ns", which results in the ev_time
being modeled using B-Splines or Natural Splines. Simulation studies indicate that there is little
difference in the estimates when an appropriately large number of spline_df is used.

Value

Adds the following additional objects to the output of the adjustedcif function:

• pseudo_values: The matrix of estimated pseudo-values.
• geese_model: The geese model used to make the predictions.

cif_direct_pseudo 47

Author(s)

Robin Denz

References

Per Kragh Andersen, Elisavet Syriopoulou, and Erik T. Parner (2017). "Causal Inference in Survival
Analysis using Pseudo-Observations". In: Statistics in Medicine 36, pp. 2669-2681

Per Kragh Andersen and Maja Pohar Perme (2010). "Pseudo-Observations in Survival Analysis".
In: Statistical Methods in Medical Research 19, pp. 71-99

Aris Perperoglou, Willi Sauerbrei, Michal Abrahamowicz, and Matthias Schmid (2019). "A Review
of Spline Function Procedures in R". in: BMC Medical Research Methodology 19.46, pp. 1-16

See Also

geese, jackknife, ns, bs, CSC

Examples

library(adjustedCurves)

set.seed(42)

simulate some data as example
sim_dat <- sim_confounded_crisk(n=30, max_t=1.3)
sim_dat$group <- as.factor(sim_dat$group)

calculate adjusted CIFs, with time as factor
adjcif <- adjustedcif(data=sim_dat,

variable="group",
ev_time="time",
event="event",
cause=1,
method="direct_pseudo",
outcome_vars=c("x1", "x2", "x3", "x4", "x5", "x6"),
type_time="factor")

plot(adjcif)

with time modelled as B-Spline using 5 degrees of freedom
adjcif <- adjustedcif(data=sim_dat,

variable="group",
ev_time="time",
event="event",
cause=1,
method="direct_pseudo",
outcome_vars=c("x1", "x2", "x3", "x4", "x5", "x6"),
type_time="bs",
spline_df=5)

plot the curves
plot(adjcif)

48 cif_iptw

cif_iptw Inverse Probability of Treatment Weighted CIFs

Description

This page explains the details of estimating inverse probability of treatment weighted cumulative
incidence functions in a competing risks setting (method="iptw" in the adjustedcif function). All
regular arguments of the adjustedcif function can be used. Additionally, the treatment_model
argument has to be specified in the adjustedcif call. Further arguments specific to this method
are listed below.

Arguments

treatment_model

[required] Must be a glm or multinom model object with variable as response
variable.

censoring_model

Either NULL (default) to make no adjustments for dependent censoring, or a
coxph object. See ?ate for more details.

verbose Whether to print estimation information of the ate function in the riskRegres-
sion package. Defaults to FALSE.

... Further arguments passed to ate.

Details

• Type of Adjustment: Requires a model describing the treatment assignment mechanism.
This must be either a glm or a multinom object.

• Doubly-Robust: Estimates are not Doubly-Robust.
• Categorical groups: Any number of levels in variable are allowed. Must be a factor vari-

able.
• Approximate Variance: Calculations to approximate the variance and confidence intervals

are available.
• Allowed Time Values: Allows both continuous and integer time.
• Bounded Estimates: Estimates are guaranteed to be bounded in the 0 to 1 probability range.
• Monotone Function: Estimates are guaranteed to be monotone.
• Dependencies: This method relies on the riskRegression package

This method works by modeling the treatment assignment mechanism. Adjusted CIFs are calculated
by first estimating appropriate case-weights for each observation in data. Those weights are used
in a weighted version of the Aalen-Johansen estimator. If the weights are correctly estimated the
resulting estimates will be unbiased. A more detailed description can be found in Neumann et al.
(2016) and Choi et al. (2019). By utilizing another set of weights, this function can also correct the
estimates for covariate-dependent censoring (Ozenne et al. 2020). Asymptotic variance calculations
are based on the efficient influence curve.

Internally, this function simply calls the ate function with appropriate arguments. The three-dot
syntax can be used to pass further arguments to that function. It is however recommended to use
the ate function directly when specific settings are required.

cif_iptw 49

Value

Adds the following additional objects to the output of the adjustedcif function:

• ate_object: The object returned by the ate function.

Author(s)

The wrapper function was written by Robin Denz, the ate function itself was written by other
people. See ?ate for more information.

References

Anke Neumann and Cécile Billionnet (2016). "Covariate Adjustment of Cumulative Incidence
Functions for Competing Risks Data Using Inverse Probability of Treatment Weighting". In: Com-
puter Methods and Programs in Biomedicine 129, pp. 63-70

Sangbum Choi, Chaewon Kim, Hua Zhong, Eun-Seok Ryu, and Sung Won Han (2019). "Adjusted-
Crude-Incidence Analysis of Multiple Treatments and Unbalanced Samples on Competing Risks".
In: Statistics and Its Inference 12, pp. 423-437

Brice Maxime Hugues Ozenne, Thomas Harder Scheike, and Laila Stærk (2020). "On the Estima-
tion of Average Treatment Effects with Right-Censored Time to Event Outcome and Competing
Risks". In: Biometrical Journal 62, pp. 751-763

See Also

ate, glm, multinom

Examples

library(adjustedCurves)

set.seed(42)

simulate some data as example
sim_dat <- sim_confounded_crisk(n=50, max_t=5)
sim_dat$group <- as.factor(sim_dat$group)

estimate a treatment assignment model
glm_mod <- glm(group ~ x1 + x3 + x5 + x6, data=sim_dat, family="binomial")

use it to calculate adjusted CIFs
adjcif <- adjustedcif(data=sim_dat,

variable="group",
ev_time="time",
event="event",
cause=1,
method="iptw",
treatment_model=glm_mod)

plot(adjcif)

50 cif_iptw_pseudo

cif_iptw_pseudo Inverse Probability of Treatment Weighted CIFs using Pseudo-Values

Description

This page explains the details of estimating inverse probability of treatment weighted cumulative
incidence functions using Pseudo-Values in a competing risks setting (method="iptw_pseudo"
in the adjustedcif function). All regular arguments of the adjustedcif function can be used.
Additionally, the treatment_model argument has to be specified in the adjustedcif call. Further
arguments specific to this method are listed below.

Arguments

treatment_model

[required] Must be either a model object with variable as response variable,
a vector of weights or a formula which can be passed to WeightIt.

weight_method Method used in WeightIt function call. Ignored if treatment_model is not a
formula object. Defaults to "ps".

stabilize Whether to stabilize the weights or not. Is set to FALSE by default. Stabilizing
weights ensures that the sum of all weights is equal to the original sample size.
It has no effect on point estimates, only on the asymptotic variance calculations
and confidence intervals.

trim Can be either FALSE (default) or a numeric value at which to trim the weights. If
FALSE, weights are used as calculated or supplied. If a numeric value is supplied,
all weights that are bigger than trim are set to trim before the analysis is carried
out. Useful when some weights are extremely large.

se_method One of "miller", "galloway", "cochrane" and "Hmisc". Specifies which
kind of standard error to calculate. Defaults to "cochrane". See details.

... Further arguments passed to weightit.

Details

• Type of Adjustment: Requires a model describing the treatment assignment mechanism.
This must be either a glm or multinom object. Alternatively, weights can be supplied directly
or estimated using WeightIt

• Doubly-Robust: Estimates are not Doubly-Robust.

• Categorical groups: Any number of levels in variable are allowed. Must be a factor vari-
able.

• Approximate Variance: Calculations to approximate the variance and confidence intervals
are available.

• Allowed Time Values: Allows both continuous and integer time.

• Bounded Estimates: Estimates are not guaranteed to be bounded in the 0 to 1 probability
range.

• Monotone Function: Estimates are not guaranteed to be monotone.

cif_iptw_pseudo 51

• Dependencies: This method relies on the prodlim package. The WeightIt package is also
required if treatment_model is a formula object.

This method works by modeling the treatment assignment mechanism. Adjusted CIFs are calcu-
lated by first estimating appropriate case-weights for each observation in data. This can be done
using inverse probability of treatment weights using the propensity score (usually estimated using
a logistic regression model) or by some other method (see weightit). Pseudo-Values of the cause-
specific CIF are then calculated for every observation in data at some points in time T . Since
Pseudo-Values bypass the problem of censoring, a simple weighted average of the Pseudo-Values
can be taken for every T . See Andersen et al. (2017) for more details on this method and Andersen
and Perme (2010) for more information on Pseudo-Values in general.

The standard error of this estimator can be approximated by calculation a weighted version of the
standard error estimator. Interestingly, no exact method exists in the weighted case. Four approxi-
mations are implemented which can be chosen using the se_method argument. The equations for
"miller", "galloway" and "cochrane" are described and compared in Gatz and Smith (1995).
"Hmisc" is the standard equation with a weight term added, as specified in the Hmisc package, and
should only be used with stabilized weights (stabilize=TRUE). It is generally recommended to use
bootstrap estimates instead.

Value

Adds the following additional objects to the output of the adjustedcif function:

• pseudo_values: The matrix of estimated pseudo-values.

• weights: The final weights used in the analysis.

Author(s)

Robin Denz

References

Per Kragh Andersen, Elisavet Syriopoulou, and Erik T. Parner (2017). "Causal Inference in Survival
Analysis using Pseudo-Observations". In: Statistics in Medicine 36, pp. 2669-2681

Per Kragh Andersen and Maja Pohar Perme (2010). "Pseudo-Observations in Survival Analysis".
In: Statistical Methods in Medical Research 19, pp. 71-99

Donald F. Gatz and Luther Smith (1995). "The Standard Error of a Weighted Mean Concentration
- I: Bootstrapping Vs Other Methods". In: Atmospheric Environment 29.11, pp. 1185-1193

William G. Cochran (1977). Sampling Techniques. Vol. 3. New York: Wiley

J. N. Galloway, G. E. Likens, and M. E. Hawley (1984). "Acid Precipitation: Natural Versus
Anthropogenic Components". In: Science 226, pp. 829-831

J. M. Miller (1977). A Statistical Evaluation of the U.S. Precipitation Chemistry Network. Precip-
itation Scavenging (edited by Semonin R. G. and Beadle R. W.) pp. 639-659. Available as CONF
74100 from National Technical Information Service, U.S. Dept. of Commerce, Springfiel, VA.

See Also

weightit, prodlim

52 cif_iptw_pseudo

Examples

library(adjustedCurves)

set.seed(42)

simulate some data as example
sim_dat <- sim_confounded_crisk(n=50, max_t=5)
sim_dat$group <- as.factor(sim_dat$group)

estimate a treatment assignment model
glm_mod <- glm(group ~ x1 + x3 + x5 + x6, data=sim_dat, family="binomial")

use it to calculate adjusted CIFs
adjcif <- adjustedcif(data=sim_dat,

variable="group",
ev_time="time",
event="event",
cause=1,
method="iptw_pseudo",
treatment_model=glm_mod)

plot(adjcif)

Alternatively, use custom weights
In this example we use weights calculated using the propensity score,
which is equal to using the glm model directly in the function
ps_score <- glm_mod$fitted.values
weights <- ifelse(sim_dat$group==1, 1/ps_score, 1/(1-ps_score))

adjcif <- adjustedcif(data=sim_dat,
variable="group",
ev_time="time",
event="event",
cause=1,
method="iptw_pseudo",
treatment_model=weights)

plot(adjcif)

And a third alternative: use the WeightIt package
here an example with equal results to the ones above:
adjcif <- adjustedcif(data=sim_dat,

variable="group",
ev_time="time",
event="event",
cause=1,
method="iptw_pseudo",
treatment_model=group ~ x1 + x3 + x5 + x6,
weight_method="ps")

plot(adjcif)

not run to avoid dependency on optweight
if (interactive()) {
here an example using Optimization-Based Weighting:

cif_matching 53

adjcif <- adjustedcif(data=sim_dat,
variable="group",
ev_time="time",
event="event",
cause=1,
method="iptw_pseudo",
treatment_model=group ~ x1 + x3 + x5 + x6,
weight_method="optweight")

plot(adjcif)
}

cif_matching Using Propensity-Score Matching to Calculate Adjusted CIFs

Description

This page explains the details of estimating adjusted cumulative incidence functions using propensity-
score matching in a competing risks setting (method="matching" in the adjustedcif function).
All regular arguments of the adjustedcif function can be used. Additionally, the treatment_model
argument has to be specified in the adjustedcif call. Further arguments specific to this method
are listed below.

Arguments

treatment_model

[required] Must be either a model object with variable as response variable
or a vector of previously estimated propensity scores.

gtol Tolerance at which estimated treatment assignment probabilities are truncated.
Every propensity score bigger than 1 - gtol is set to 1 - gtol and every propen-
sity score smaller than gtol is set to gtol. Useful when there are extreme
propensity scores close to 0 or 1. Defaults to 0.001,

... Further arguments passed to the Match function of the Matching Package.

Details

• Type of Adjustment: Requires a model describing the treatment assignment mechanism.
This must be either a glm object or a vector of propensity scores.

• Doubly-Robust: Estimates are not Doubly-Robust.

• Categorical groups: Only two groups in variable are allowed. Must be a factor variable
with exactly two levels.

• Approximate Variance: Calculations to approximate the variance and confidence intervals
are currently not available. Bootstrapping can still be used to estimate the confidence intervals
(see ?adjustedcif).

• Allowed Time Values: Allows both continuous and integer time.

• Bounded Estimates: Estimates are guaranteed to be bounded in the 0 to 1 probability range.

• Monotone Function: Estimates are guaranteed to be monotone.

54 cif_matching

• Dependencies: This method relies on both the Matching and the cmprsk packages.

Using the estimated propensity score, the individual observations in the dataset are matched to
each other creating a new dataset in which the covariate distributions are balanced in respect to
the two groups defined by variable. A simple Aalen-Johansen estimator is then used to calculate
the confounder-adjusted CIFs. This corresponds to the method described in Austin & Fine (2019).
Details on the algorithm used for matching can be found in the documentation of the Matching
package.

Simulation results showed that this specific implementation of this method is the least efficient
method contained in this R-Package. While it does produce unbiased estimates, the variation in
these estimates is very high. We strongly suggest using one of the other methods implemented here.

Value

Adds the following additional objects to the output of the adjustedcif function:

• match_object: The object creates using the Match function.

• cuminc_object: The cuminc object fit on the matched data.

Author(s)

Robin Denz

References

Peter C. Austin and Jason P. Fine (2019). "Propensity-Score Matching with Competing Risks in
Survival Analysis". In: Statistics in Medicine 38, pp. 751-777

See Also

Match, cuminc

Examples

library(adjustedCurves)
library(survival)
library(Matching)

set.seed(42)

simulate some data as example
sim_dat <- sim_confounded_crisk(n=50, max_t=5)
sim_dat$group <- as.factor(sim_dat$group)

estimate treatment assignment model
glm_mod <- glm(group ~ x1 + x2 + x4 + x6, data=sim_dat, family="binomial")

calculate adjusted CIFs
adjcif <- adjustedcif(data=sim_dat,

variable="group",
ev_time="time",

cif_tmle 55

event="event",
cause=1,
method="matching",
treatment_model=glm_mod)

plot(adjcif)

Alternatively, supply the propensity score directly
Here we use the logistic regression to calculate it, so we get
exactly the same result. The propensity score can be calculated in
any other way in practice, allowing flexibility
ps_score <- glm_mod$fitted.values

adjcif <- adjustedcif(data=sim_dat,
variable="group",
ev_time="time",
event="event",
cause=1,
method="matching",
treatment_model=ps_score)

plot the curves
plot(adjcif)

cif_tmle Targeted Maximum Likelihood Estimation for CIFs

Description

This page explains the details of estimating adjusted cumulative incidence functions using the
targeted maximum likelihood methodology in a competing risks setting (method="tmle" in the
adjustedcif function). All regular arguments of the adjustedcif function can be used. Addi-
tionally, you have to specify either SL.ftime or glm.ftime, SL.ctime or glm.ctime and SL.trt
or glm.trt in the adjustedcif call. Further arguments specific to this method are listed below.

Arguments

adjust_vars A character vector of column names specifying variables to be used when mod-
eling the outcome, treatment and censoring mechanism. Can be set to NULL
(default), in which case all covariates are used. See details and examples.

SL.ftime A character vector or list specification to be passed to the SL.library option in
the call to SuperLearner for the outcome regression. See?SuperLearner for
more information on how to specify valid SuperLearner libraries. It is expected
that the wrappers used in the library will play nicely with the input variables,
which will be called "trt", names(adjust_vars), and "t".

SL.ctime A character vector or list specification to be passed to the SL.library argument
in the call to SuperLearner for the estimate of the conditional hazard for cen-
soring. It is expected that the wrappers used in the library will play nicely with
the input variables, which will be called "trt" and names(adjust_vars).

56 cif_tmle

SL.trt A character vector or list specification to be passed to the SL.library argument
in the call to SuperLearner for the estimate of the conditional probability of
treatment. It is expected that the wrappers used in the library will play nicely
with the input variables, which will be names(adjust_vars).

glm.ftime A character specification of the right-hand side of the equation passed to the
formula option of a call to glm for the outcome regression. Ignored if SL.ftime
is not equal to NULL. Use "trt" to specify the treatment in this formula (see exam-
ples). The formula can additionally include any variables found in names(adjust_vars).

glm.ctime A character specification of the right-hand side of the equation passed to the
formula option of a call to glm for the estimate of the conditional hazard for
censoring. Ignored if SL.ctime is not equal to NULL. Use "trt" to specify the
treatment in this formula (see examples). The formula can additionally include
any variables found in names(adjust_vars).

glm.trt A character specification of the right-hand side of the equation passed to the
formula option of a call to glm for the estimate of the conditional probability of
treatment. Ignored if SL.trt is not equal to NULL. The formula can include any
variables found in names(adjust_vars).

... Additional arguments passed to survtmle.

Details

• Type of Adjustment: Adjustments are made based on the treatment assignment mechanism,
the outcome mechanism and the censoring mechanism. No models can be supplied. The
adjustments are made based on SuperLearner libraries or using the glm arguments.

• Doubly-Robust: Estimates are Doubly-Robust.
• Categorical groups: Currently only two groups in variable are allowed. Must be a factor

variable with exactly two levels.
• Approximate Variance: Calculations to approximate the variance and confidence intervals

are available.
• Allowed Time Values: Allows only integer time.
• Bounded Estimates: Estimates are guaranteed to be bounded in the 0 to 1 probability range.
• Monotone Function: Estimates are not guaranteed to be monotone.
• Dependencies: This method relies on the survtmle and SuperLearner packages.

TMLE is a two-step procedure. First, initial estimates for the treatment-assignment and the outcome-
mechanisms are made using loss-based learning. This is implemented here using the SuperLearner
methodology. In the next step, the estimates obtained by using the outcome-mechanism model are
fluctuated based on information from the treatment-assignment model. If the outcome model is
already consistent, this fluctuation is very small and the estimates stay consistent. If the outcome
model is biased, the fluctuation removes the bias whenever the treatment assignment model is con-
sistent. This process is iterative and continues until a threshold is hit (either the maximum number
of iterations is reached or the bias is smaller than the specified tolerance, see ?survtmle).

As has been shown in multiple studies by Mark J. van der Laan and colleagues, this method has
some desirable mathematical properties and generally performs well in appropriate scenarios. The
biggest problem is however, that it is only defined for discrete (integer-valued) survival times. Sim-
ply discretizing continuous survival times only works to a certain extent and is generally discour-
aged.

cif_tmle 57

When the sample size is large or many time points are of interest, this method will also be *very*
slow. While possible to run, bootstrapping would take an enormous amount of time and is therefore
discouraged.

Value

Adds the following additional objects to the output of the adjustedcif function:

• survtmle_object: The object created using the survtmle function.

• survtmle.timepoints_object: The object created using the survtmle.timepoints func-
tion.

Author(s)

The wrapper function was written by Robin Denz, the survtmle package (which this wrapper is
based on) was written by David Benkeser and Nima Hejazi. See ?survtmle for more details.

References

Megan S. Schuler and Sherri Rose (2017). "Targeted Maximum Likelihood Estimation for Causal
Inference in Observational Studies". In: American Journal of Epidemiology 186.1, pp. 65-73

David Benkeser, Marco Carone, and Peter B. Gilbert (2018). "Improved Estimation of the Cumu-
lative Incidence of Rare Outcomes". In: Statistics in Medicine 37.2, pp. 280-293

See Also

survtmle, SuperLearner, glm

Examples

not run because any meaningful example is too slow

library(adjustedCurves)
library(survtmle)

set.seed(42)

simulate some data as example
sim_dat <- sim_confounded_crisk(n=30, max_t=5)
sim_dat$group <- as.factor(sim_dat$group)

only works with integer time, only unbiased with small amounts of them
sim_dat$time <- round(sim_dat$time*15) + 1

calculate adjusted CIFs, using SuperLearner but only
using the SL.glm library. In practice you would want to use more than
that. See ?survtmle
adjcif <- adjustedcif(data=sim_dat,

variable="group",
ev_time="time",
event="event",

58 CSC_MI

cause=1,
method="tmle",
adjust_vars=c("x1", "x2", "x3", "x4", "x5", "x6"),
SL.ftime=c("SL.glm"),
SL.ctim=c("SL.glm"),
SL.trt=c("SL.glm"))

plot the curves
plot(adjcif, iso_reg=TRUE)

CSC_MI Cause-Specific Cox Regression with Multiple Imputation

Description

This function can be utilized to perform Cause-Specific Cox Regression on multiply imputed datasets.

Usage

CSC_MI(mids, formula, ...)

Arguments

mids A mids object created using the mice function. This replaces the data argument
in the original function call.

formula A formula object passed to the CSC function in the riskRegression package.

... Other arguments which should be passed to the CSC function in the riskRegres-
sion package.

Details

A small convenience function to perform CSC regression on multiply imputed data. It is simply a
wrapper around the CSC function from the riskRegression package, because the usual use of with
is not supported directly. It returns a mira object, which can be passed to the outcome_model
argument inside of the adjustedcif function when needed. No pool method or other functionality
is available.

Value

A mira object containing the CSC regression for every imputed dataset.

Author(s)

Robin Denz

See Also

adjustedsurv, CSC, mice

FGR_MI 59

Examples

not run because it would be too slow

library(adjustedCurves)
library(survival)
library(riskRegression)
library(mice)

simulate some data as example
sim_dat <- sim_confounded_crisk(n=50, max_t=1.2)
sim_dat$group <- as.factor(sim_dat$group)

introduce random missingness in x1 as example
sim_dat$x1 <- ifelse(runif(n=50) < 0.5, sim_dat$x1, NA)

perform multiple imputation
mids <- mice::mice(data=sim_dat, method="pmm", m=5)

use the function
csc_mods <- CSC_MI(mids=mids,

formula=Hist(time, event) ~ x1 + x2 + x3 + x4 + x5 + x6 + group
)

FGR_MI Fine & Gray Model with Multiple Imputation

Description

This function can be utilized to calculate Fine & Gray models for multiply imputed datasets.

Usage

FGR_MI(mids, formula, cause=1, ...)

Arguments

mids A mids object created using the mice function. This replaces the data argument
in the original function call.

formula A formula object passed to the FGR function in the riskRegression package.

cause The failure type of interest. Defaults to 1.

... Other arguments which should be passed to the FGR function in the riskRegres-
sion package.

60 FGR_MI

Details

A small convenience function to calculate Fine & Gray models for multiply imputed data. It is sim-
ply a wrapper around the FGR function from the riskRegression package, because the usual use of
with is not supported directly. It returns a mira object, which can be passed to the outcome_model
argument inside of the adjustedcif function when needed. No pool method or other functionality
is available.

Value

A mira object containing the FGR regression for every imputed dataset.

Author(s)

Robin Denz

See Also

adjustedsurv

Examples

not run because it would be too slow

library(adjustedCurves)
library(survival)
library(riskRegression)
library(mice)
library(prodlim)

simulate some data as example
sim_dat <- sim_confounded_crisk(n=50, max_t=1.2)
sim_dat$group <- as.factor(sim_dat$group)

introduce random missingness in x1 as example
sim_dat$x1 <- ifelse(runif(n=50) < 0.5, sim_dat$x1, NA)

perform multiple imputation
mids <- mice::mice(data=sim_dat, method="pmm", m=5, printFlag=FALSE)

use the function
fgr_mods <- FGR_MI(mids=mids,

formula=Hist(time, event) ~ x1 + x2 + x3 + x4 + x5 + x6 + group,
cause=1)

models_cif_direct 61

models_cif_direct List of supported models in cif_direct

Description

Supported models for the outcome_model argument when using method="direct" in the adjustedcif
function.

Details

The following models are directly supported in the outcome_model in the cif_direct function.
The first letter in parentheses after the object name is a group indicator. Below the list there are
more information for each group.

• CSC [A, Required Packages: riskRegression]
• FGR [B, Required Packages: riskRegression]
• riskRegression [B, Required Packages: riskRegression]
• prodlim [B, Required Packages: prodlim, riskRegression]
• rfsrc [B, Required Packages: randomForestSRC, riskRegression]
• ARR [B, Required Packages: riskRegression]
• fit_hal [B, Required Packages: hal9001, riskRegression]
• fastCrr [C, Required Packages: fastcmprsk]
• comp.risk [C, Required Packages: timereg]
• Any model with a fitting S3 prediction method or a valid predict_fun can be used as well.

See below.

Group A: The direct adjusted cumulative incidences are estimated directly using the ate function.
Additional arguments supplied using the ... syntax are passed to the ate function.
Group B: The predictRisk function is used to obtain predicted cumulative incidences, which
are then used in the G-Computation step. Additional arguments supplied using the ... syntax are
passed to the predictRisk function.
Group C: Custom code is used to do the estimation. Additional arguments supplied using the ...
syntax are currently not supported.

It is sometimes possible to use models even if they are not listed here. There are two ways to make
this work. The first one is to use the models S3 predict method. This works if the predict func-
tion contains the arguments object, newdata, times and cause and returns a matrix of predicted
cause-specific cumulative incidences. The matrix should be of size nrow(data) * length(times),
where each row corresponds to a row in the original dataset and each column to one point in time.
The matrix should contain the cause-specific cumulative incidences predicted by the model given
covariates. If no such predict method exists the only option left is to write your own function
which produces the output described above and supply this function to the predict_fun argument.

If you think that some important models are missing from this list, please file an issue on the official
github page with a specific feature request (URL can be found in the DESCRIPTION file) or contact
the package maintainer directly using the given e-mail address.

62 models_surv_direct

Note

When using outcome models which are not directly supported (either through the default predict
method or a custom predict_fun) it might be necessary to set the clean_data argument of the
adjustedcif function to FALSE.

models_surv_direct List of supported models in surv_direct

Description

Supported models for the outcome_model argument when using method="direct" in the adjustedsurv
function.

Details

The following models are directly supported in the outcome_model in the surv_direct function.
The first letter in parentheses after the object name is a group indicator. Below the list there are
more information for each group.

• coxph [A, Required Packages: survival, riskRegression]

• cph [A, Required Packages: rms, survival, riskRegression]

• aalen [B, Required Packages: timereg, pec]

• cox.aalen [B, Required Packages: timereg, pec]

• selectCox [B, Required Packages: riskRegression, pec]

• pecCforest [B, Required Packages: pec]

• pecRpart [B, Required Packages: pec, Bootstrapping not allowed.]

• riskRegression [C, Required Packages: riskRegression]

• prodlim [C, Required Packages: prodlim, riskRegression]

• psm [C, Required Packages: rms, riskRegression]

• flexsurvreg [C, Required Packages: flexsurv, riskRegression]

• flexsurvspline [C, Required Packages: flexsurv, riskRegression]

• ranger [C, Required Packages: ranger, riskRegression]

• rfsrc [C, Required Packages: randomForestSRC, riskRegression]

• ARR [C, Required Packages: riskRegression]

• penalizedS3 [C, Required Packages: penalized, riskRegression]

• gbm [C, Required Packages: gbm, riskRegression]

• fit_hal [C, Required Packages: hal9001, riskRegression]

• fitSmoothHazard [C, Required Packages: casebase, riskRegression]

• glm [D, Required Packages: stats, pec]

• ols [D, Required Packages: rms, pec]

plot.adjustedcif 63

• randomForest [D, Required Packages: randomForest, pec]

• mexhaz [E, Required Packages: mexhaz]

• Any model with a fitting S3 prediction method or a valid predict_fun can be used as well.
See below.

Group A: The direct adjusted survival probabilities are estimated directly using the ate function.
Additional arguments supplied using the ... syntax are passed to the ate function.
Group B: Predicted survival probabilities are obtained using the predictSurvProb function. The
G-Computation is carried out using those. Additional arguments supplied using the ... syntax are
passed to the predictSurvProb function.
Group C: The predictRisk function is used to obtain predicted cumulative incidences, which are
then transformed to survival probabilities. Additional arguments supplied using the ... syntax are
passed to the predictRisk function.
Group D: These models are only allowed if there is no censoring. Predicted survival probabilities
are obtained using the predictProb function from the pec package. Additional arguments supplied
using the ... syntax are passed to the predictProb function.
Group E: Custom code is used to obtain predicted survival probabilities. Additional arguments are
not used.

It is sometimes possible to use models even if they are not listed here. There are two ways to
make this work. The first one is to use the models S3 predict method. This works if the predict
function contains the arguments object, newdata and times and returns a matrix of predicted
survival probabilities. The matrix should be of size nrow(data) * length(times), where each row
corresponds to a row in the original dataset and each column to one point in time. The matrix should
contain the survival probabilities predicted by the model given covariates. If no such predict
method exists the only option left is to write your own function which produces the output described
above and supply this function to the predict_fun argument.

If you think that some important models are missing from this list, please file an issue on the official
github page with a specific feature request (URL can be found in the DESCRIPTION file) or contact
the package maintainer directly using the given e-mail address.

Note

When using outcome models which are not directly supported (either through the default predict
method or a custom predict_fun) it might be necessary to set the clean_data argument of the
adjustedsurv function to FALSE.

plot.adjustedcif Plot Confounder-Adjusted Cumulative Incidence Functions

Description

A function to graphically display confounder-adjusted cumulative incidence functions which where
previously estimated using the adjustedcif function. The user can customize the plot using a
variety of options. Internally it uses the ggplot2 package, so additional not implemented features
can be added using the standard ggplot2 syntax. This function also includes the option to use
isotonic regression on the CIFs, which is of benefit if the estimated curves are not monotone.

64 plot.adjustedcif

Usage

S3 method for class 'adjustedcif'
plot(x, conf_int=FALSE, max_t=Inf,

iso_reg=FALSE, force_bounds=FALSE,
use_boot=FALSE, color=TRUE,
linetype=FALSE, facet=FALSE,
line_size=1, line_alpha=1, xlab="Time",
ylab="Adjusted Cumulative Incidence",
title=NULL, subtitle=NULL, legend.title="Group",
legend.position="right",
gg_theme=ggplot2::theme_classic(),
ylim=NULL, custom_colors=NULL,
custom_linetypes=NULL,
single_color=NULL, single_linetype=NULL,
conf_int_alpha=0.4, steps=TRUE,
censoring_ind="none",
censoring_ind_size=0.5,
censoring_ind_alpha=1,
censoring_ind_shape=17,
censoring_ind_width=NULL,
...)

Arguments

x An adjustedcif object created using the adjustedcif function.

conf_int A logical variable indicating whether the confidence intervals should be drawn.

max_t A number indicating the latest event time which is to be plotted.

iso_reg A logical variable indicating whether the estimates should be monotonized using
isotonic regression. See details.

force_bounds A logical variable indicating whether the 0 and 1 bounds of the CIFs should be
forced in the plot. See details.

use_boot A logical variable denoting whether the bootstrapped estimates should be used
for the curves and their confidence intervals. Can only be used if they were
calculated. See adjustedcif.

color A logical variable indicating whether the curves should be colored differently.
The custom_colors argument can be used to directly specify which colors to
use. Alternatively the single_color argument can be used if everything should
have the same color.

linetype A logical variable indicating whether the curves should have different linetypes.
The custom_linetypes argument can be used to directly specify which line-
types to use. Alternatively the single_linetype argument can be used if all
curves should have the same linetype.

facet A logical variable indicating whether the curves should be in different facets.

line_size A number controlling the thickness of the curves.

line_alpha A number controlling the transparency level of the curves.

plot.adjustedcif 65

xlab A character string to be used as the X-Axis label of the plot.
ylab A character string to be used as the Y-Axis label of the plot.
title A character string to be used as the title of the plot. Set to NULL (default) if no

title should be used.
subtitle A character string to be used as the subtitle of the plot. Set to NULL (default) if

no subtitle should be used.
legend.title A character string to be used as the title of the legend. Set to NULL if no legend

should be included.
legend.position

A character string specifying the position of the legend. Ignored if legend_title=NULL.
gg_theme A ggplot2 theme object which will be used for the plot.
ylim A numeric vector of length two, specifying the limits of the Y-Axis. Set to NULL

to use the ggplot2 default values.
custom_colors A (named) vector to specify the colors of each CIF and possibly its confidence

region. Set to NULL to use the ggplot2 default values. Ignored if color=FALSE.
custom_linetypes

A (named) vector to specify the linetype of each CIF. Set to NULL to use the
ggplot2 default values. Ignored if linetype=FALSE.

single_color A single color to use for every curve, irrespective of group status. If color is
specified as well this argument will override it, but also generate a warning. Set
to NULL (default) to ignore this argument.

single_linetype

A single linetype to use for every curve, irrespective of group status. If linetype
is specified as well this argument will override it, but also generate a warning.
Set to NULL (default) to ignore this argument.

conf_int_alpha A number indicating the level of transparency that should be used when drawing
the confidence regions.

steps A logical variable indicating whether the CIFs should be plotted as a step func-
tion or using straight lines. Straight lines should not be used with a simple
Aalen-Joahnsen estimator. It is recommended to only use straight lines when a
sufficiently fine grid of time points was used in the estimation step.

censoring_ind What kind of indicator to plot for censored observations on the CIFs. Must
be one of "none" (plotting no indicators at all, the default), "lines" (plotting
small vertical lines) and "points" (plotting points). Those will be affected by
linetype and color as well. Observations who failed due to a competing event
are not considered as censored here.

censoring_ind_size

A numeric value specifying the size of the censoring indicators. Ignored if
censoring_ind="none".

censoring_ind_alpha

A numeric value specifying the alpha level of the censoring indicators. Ignored
if censoring_ind="none".

censoring_ind_shape

A numeric value specifying the shape of the censoring indicators when us-
ing censoring_ind="points". Ignored otherwise. For available shapes see
?geom_point.

66 plot.adjustedcif

censoring_ind_width

A numeric value specifying the width of the censoring indicators. Ignored un-
less censoring_ind="lines". By default (censoring_ind_width=NULL) the
width of the censoring indicators is equal to 5 percent of the plot height.

... Currently not used.

Details

When using certain methods there is no guarantee that the resulting estimated CIFs are monotoni-
cally increasing. This is unfortunate since we know that it has to be the case. Isotonic regression
can be used to fix this problem by ensuring that the CIFs are actually monotonically increasing ev-
erywhere, while also being as close to the observations as possible. Westling et al. (2020) showed
mathematically that this usually does not add any systematic bias to the estimates. More informa-
tion on the method can be found in Robertson et al. (1988). This adjustment can be done using this
function by setting iso_reg to TRUE.

Similarly, some methods can produce estimates that lie outside the theoretical 0 and 1 bounds of
probability. By setting force_bounds to TRUE these estimates are manually set to either 0 or 1
(whichever is closer).

Value

Returns a ggplot2 object.

Author(s)

Robin Denz

References

Ted Westling, Mark J. van der Laan, and Marco Carone (2020). "Correcting an Estimator of a
Multivariate Monotone Function with Isotonic Regression". In: Electronic Journal of Statistics 14,
pp. 3032-3069

Tim Robertson, F. T. Wright, and R. L. Dykstra (1988). Order Restricted Statistical Inference.
Hoboken: John Wiley & Sons

See Also

adjustedcif, ggplot, geom_stepribbon, isoreg

Examples

library(adjustedCurves)
library(riskRegression)
library(prodlim)
library(survival)
library(ggplot2)

set.seed(42)

simulate some data as example

plot.adjustedsurv 67

sim_dat <- sim_confounded_crisk(n=50)
sim_dat$group <- as.factor(sim_dat$group)

calculate a Cause-Specific-Cox model
cox_mod <- CSC(Hist(time, event) ~ x1 + x3 + x5 + group,

data=sim_dat)

use it to calculate adjusted CIFs with bootstrapping (for cause = 1)
adjcif <- adjustedcif(data=sim_dat,

variable="group",
ev_time="time",
event="event",
method="direct",
outcome_model=cox_mod,
conf_int=TRUE,
bootstrap=TRUE,
n_boot=15, # should be much bigger in reality
cause=1)

plot the curves with default values
plot(adjcif)

plot after applying isotonic regression
plot(adjcif, iso_reg=TRUE)

plot with confidence intervals estimated using asymptotic variances
plot(adjcif, conf_int=TRUE)

plot with confidence intervals estimated using bootstrapping
plot(adjcif, conf_int=TRUE, use_boot=TRUE)

plot with different linetypes only
plot(adjcif, linetype=TRUE, color=FALSE, facet=FALSE)

plot with different facets only
plot(adjcif, linetype=FALSE, color=FALSE, facet=TRUE)

plot with different linetypes and different colors
plot(adjcif, linetype=TRUE, color=TRUE, facet=FALSE)

plot with some custom characteristics
plot(adjcif, legend.position="bottom", linetype=TRUE,

custom_colors=c("green", "blue"), legend.title="Custom",
title="Custom Plot", conf_int=TRUE, linesize=0.5)

adding further ggplot2 elements
plot(adjcif) + theme_bw()

plot.adjustedsurv Plot Confounder-Adjusted Survival Curves

68 plot.adjustedsurv

Description

A function to graphically display confounder-adjusted survival curves which where previously esti-
mated using the adjustedsurv function. The user can customize the plot using a variety of options.
Internally it uses the ggplot2 package, so additional not implemented features can be added using
the standard ggplot2 syntax. This function also includes the option to use isotonic regression on
the survival curves, which is of benefit if the estimated curves are not monotone.

Usage

S3 method for class 'adjustedsurv'
plot(x, conf_int=FALSE, max_t=Inf,

iso_reg=FALSE, force_bounds=FALSE,
use_boot=FALSE, cif=FALSE, color=TRUE,
linetype=FALSE, facet=FALSE,
line_size=1, line_alpha=1, xlab="Time",
ylab="Adjusted Survival Probability",
title=NULL, subtitle=NULL, legend.title="Group",
legend.position="right",
gg_theme=ggplot2::theme_classic(),
ylim=NULL, custom_colors=NULL,
custom_linetypes=NULL,
single_color=NULL, single_linetype=NULL,
conf_int_alpha=0.4, steps=TRUE,
median_surv_lines=FALSE,
median_surv_size=0.5,
median_surv_linetype="dashed",
median_surv_color="black",
median_surv_alpha=1,
median_surv_quantile=0.5,
censoring_ind="none",
censoring_ind_size=0.5,
censoring_ind_alpha=1,
censoring_ind_shape=17,
censoring_ind_width=NULL,
...)

Arguments

x An adjustedsurv object created using the adjustedsurv function.
conf_int A logical variable indicating whether the confidence intervals should be drawn.
max_t A number indicating the latest survival time which is to be plotted.
iso_reg A logical variable indicating whether the estimates should be monotonized using

isotonic regression. See details.
force_bounds A logical variable indicating whether the 0 and 1 bounds of the survival proba-

bilities should be forced in the plot. See details.
use_boot A logical variable denoting whether the bootstrapped estimates should be used

for the curves and their confidence intervals. Can only be used if they were
calculated. See adjustedsurv.

plot.adjustedsurv 69

cif If TRUE the cumulative incidence functions are drawn instead of the survival
curves. Those are calculated by taking 1 - the adjusted survival probability. If
FALSE (default) the usual survival curves are shown.

color A logical variable indicating whether the curves should be colored differently.
The custom_colors argument can be used to directly specify which colors to
use. Alternatively the single_color argument can be used if everything should
have the same color.

linetype A logical variable indicating whether the curves should have different linetypes.
The custom_linetypes argument can be used to directly specify which line-
types to use. Alternatively the single_linetype argument can be used if all
curves should have the same linetype.

facet A logical variable indicating whether the curves should be in different facets.

line_size A number controlling the thickness of the survival curves.

line_alpha A number controlling the transparency level of the survival curves.

xlab A character string to be used as the X-Axis label of the plot.

ylab A character string to be used as the Y-Axis label of the plot.

title A character string to be used as the title of the plot. Set to NULL if no title should
be used.

subtitle A character string to be used as the subtitle of the plot. Set to NULL if no subtitle
should be used.

legend.title A character string to be used as the title of the legend. Set to NULL if no legend
should be included.

legend.position

A character string specifying the position of the legend. Ignored if legend_title=NULL.

gg_theme A ggplot2 theme object which will be used for the plot.

ylim A numeric vector of length two, specifying the limits of the Y-Axis. Set to NULL
to use the ggplot2 default values.

custom_colors A (named) vector to specify the colors of each adjusted survival curve and possi-
bly its confidence region. Set to NULL to use the ggplot2 default values. Ignored
if color=FALSE.

custom_linetypes

A (named) vector to specify the linetype of each adjusted survival curve. Set
to NULL to use the ggplot2 default values. Ignored if color=FALSE. Ignored if
linetype=FALSE.

single_color A single color to use for every survival curve, irrespective of group status. If
color is specified as well this argument will override it, but also generate a
warning. Set to NULL (default) to ignore this argument.

single_linetype

A single linetype to use for every survival curve, irrespective of group status. If
linetype is specified as well this argument will override it, but also generate a
warning. Set to NULL (default) to ignore this argument.

conf_int_alpha A number indicating the level of transparency that should be used when drawing
the confidence regions.

70 plot.adjustedsurv

steps A logical variable indicating whether the survival curves should be plotted as
a step function or using straight lines. Straight lines should not be used with
a simple Kaplan-Meier estimator. It is recommended to only use straight lines
when a sufficiently fine grid of time points was used in the estimation step.

median_surv_lines

Whether to draw indicator lines for the median survival times, which makes
it easier to read those off the curves. Survival curves with undefined median
survival times receive no lines.

median_surv_size

The size of the median survival indicator lines. Ignored if median_surv_lines=FALSE.
median_surv_linetype

The linetype of the median survival indicator lines. Ignored if median_surv_lines=FALSE.
median_surv_color

The color of the median survival indicator lines. Ignored if median_surv_lines=FALSE.
median_surv_alpha

The transparency level of the median survival indicator lines. Ignored if median_surv_lines=FALSE.
median_surv_quantile

The survival quantile which should be drawn. To draw the median survival time,
set this parameter to 0.5 (default).

censoring_ind What kind of indicator to plot for censored observations on the survival curves.
Must be one of "none" (plotting no indicators at all, the default), "lines" (plot-
ting small vertical lines) and "points" (plotting points). Those will be affected
by linetype and color as well.

censoring_ind_size

A numeric value specifying the size of the censoring indicators. Ignored if
censoring_ind="none".

censoring_ind_alpha

A numeric value specifying the alpha level of the censoring indicators. Ignored
if censoring_ind="none".

censoring_ind_shape

A numeric value specifying the shape of the censoring indicators when us-
ing censoring_ind="points". Ignored otherwise. For available shapes see
?geom_point.

censoring_ind_width

A numeric value specifying the width of the censoring indicators. Ignored un-
less censoring_ind="lines". By default (censoring_ind_width=NULL) the
width of the censoring indicators is equal to 5 percent of the plot height.

... Currently not used.

Details

When using certain methods there is no guarantee that the resulting estimated survival curves are
monotonically decreasing. This is unfortunate since we know that it has to be the case. Isotonic
regression can be used to fix this problem by ensuring that the survival curves are actually monoton-
ically decreasing everywhere, while also being as close to the observations as possible. Westling et
al. (2020) showed mathematically that this does not add any systematic bias to the estimates. More

plot.adjustedsurv 71

information on the method can be found in Robertson et al. (1988). This adjustment can be done
using this function by setting iso_reg to TRUE.

Similarly, some methods can produce estimates that lie outside the theoretical 0 and 1 bounds of
probability. By setting force_bounds to TRUE these estimates are manually set to either 0 or 1
(whichever is closer).

There is currently no option to add risk tables to the plot, because there is no way to meaningfully
adjust those for confounders.

If you prefer using the ggsurvplot syntax, you can also use the as_ggsurvplot_df function
to extract a data.frame from the adjustedsurv object, which can be used directly to call the
ggsurvplot_df function from the survminer package.

Value

Returns a ggplot2 object.

Author(s)

Robin Denz

References

Ted Westling, Mark J. van der Laan, and Marco Carone (2020). "Correcting an Estimator of a
Multivariate Monotone Function with Isotonic Regression". In: Electronic Journal of Statistics 14,
pp. 3032-3069

Tim Robertson, F. T. Wright, and R. L. Dykstra (1988). Order Restricted Statistical Inference.
Hoboken: John Wiley & Sons

See Also

adjustedsurv, ggplot, geom_stepribbon, isoreg

Examples

library(adjustedCurves)
library(survival)
library(ggplot2)

set.seed(42)

simulate some data as example
sim_dat <- sim_confounded_surv(n=50, max_t=1.2)
sim_dat$group <- as.factor(sim_dat$group)

estimate a cox-regression for the outcome
cox_mod <- coxph(Surv(time, event) ~ x1 + x2 + x3 + x4 + x5 + x6 + group,

data=sim_dat, x=TRUE)

use it to calculate adjusted survival curves with bootstrapping
adjsurv <- adjustedsurv(data=sim_dat,

72 plot.curve_test

variable="group",
ev_time="time",
event="event",
method="direct",
outcome_model=cox_mod,
conf_int=TRUE,
bootstrap=TRUE,
n_boot=15) # should be much bigger in reality

plot the curves with default values
plot(adjsurv)

plot after applying isotonic regression
plot(adjsurv, iso_reg=TRUE)

plot with confidence intervals estimated using asymptotic variances
plot(adjsurv, conf_int=TRUE)

plot with confidence intervals estimated using bootstrapping
plot(adjsurv, conf_int=TRUE, use_boot=TRUE)

plot with different linetypes only
plot(adjsurv, linetype=TRUE, color=FALSE, facet=FALSE)

plot with different facets only
plot(adjsurv, linetype=FALSE, color=FALSE, facet=TRUE)

plot with different linetypes and different colors
plot(adjsurv, linetype=TRUE, color=TRUE, facet=FALSE)

plot with median survival indicator lines
plot(adjsurv, median_surv_lines=TRUE)

plot with small lines indicating where observations were censored
plot(adjsurv, censoring_ind="lines")

plot with points indicating where observations were censored
plot(adjsurv, censoring_ind="points", censoring_ind_size=4)

plot with some custom characteristics
plot(adjsurv, legend.position="bottom", linetype=TRUE,

custom_colors=c("green", "blue"), legend.title="Custom",
title="Custom Plot", conf_int=TRUE, linesize=0.5,
median_surv_lines=TRUE, censoring_ind="lines")

adding further ggplot2 elements
plot(adjsurv) + theme_bw()

plot.curve_test Plot Method for curve_test Objects

plot.curve_test 73

Description

Produces either a spaghetti-plot of the bootstrapped difference curves (type="curves") or a kernel-
density plot of the shifted bootstrap distribution of the difference curve integrals (type="integral").

Usage

S3 method for class 'curve_test'
plot(x, type="curves", xlab=NULL,

ylab=NULL, title=NULL, ...)

Arguments

x An object of class curve_test created by the adjusted_curve_test function.

type Either "curves" or "integral", specifying what should be plotted.

xlab The label of the X-Axis. Set to NULL to use default label.

ylab The label of the Y-Axis. Set to NULL to use default label.

title The title of the plot. Set to NULL to use no title.

... Currently not used.

Details

When using type="curves" the black curve shows the observed curve of the difference. When
using type="integral" the red line shows the observed integral of the curve of the difference.

Both graphics can be used to check if the assumptions of the test hold. The bootstrap-shifted distri-
bution of the integral of the difference should approximately be normally distributed. If the kernel-
density estimate shown with type="integral" is clearly not normally distributed, the estimated
p-value might be wrong. Similarly, if the curves of the differences do not vary randomly around the
black line when using type="curves", the estimated p-value might be wrong. You could also try
to rerun the adjustedsurv or adjustedcif function with a bigger number in n_boot.

Value

Returns a ggplot2 object.

Author(s)

Robin Denz

See Also

adjusted_curve_test, adjustedsurv, adjusted_rmst

Examples

See ?adjusted_curve_test

74 plot_curve_diff

plot_curve_diff Plot the Difference of Two Adjusted Survival Curves or CIFs

Description

A function to graphically display the difference between two confounder-adjusted survival curves
which where previously estimated using the adjustedsurv function or between two confounder-
adjusted CIFs which where previously estimated using the adjustedcif function. The user can
customize the plot using a variety of options. Internally it uses the ggplot2 package, so additional
not implemented features can be added using the standard ggplot2 syntax.

Usage

plot_curve_diff(x, group_1=NULL, group_2=NULL,
conf_int=FALSE, conf_level=0.95, type="steps",
times=NULL, max_t=Inf, use_boot=FALSE,
size=0.7, color="black", linetype="solid",
alpha=1, conf_int_alpha=0.4,
points_ci_size=NULL, points_ci_width=NULL,
xlab="Time", ylab=NULL, title=NULL,
subtitle=NULL, gg_theme=ggplot2::theme_classic(),
line_at_0=TRUE, line_at_0_size=0.7,
line_at_0_color="grey", line_at_0_linetype="dashed",
line_at_0_alpha=1,
loess_smoother=FALSE, loess_span=0.75,
loess_color=color, loess_size=size,
loess_linetype="dashed", loess_alpha=alpha,
test=NULL, integral_from=0, integral_to=NULL,
p_value=FALSE, integral=FALSE,
interval=FALSE, text_pos_x="left",
text_pos_y="bottom", text_size=3.5,
text_family="serif", text_fontface="italic",
text_color="black", text_alpha=1,
text_digits=3, text_format_p=TRUE,
fill_area=FALSE, area_color="blue", area_alpha=0.4,
fill_only_interval=TRUE,
...)

Arguments

x An adjustedsurv object created using the adjustedsurv function or an adjustedcif
object created using the adjustedcif function.

group_1 A single character string specifying one of the levels of the variable used in
the original adjustedsurv or adjustedcif function call. This group will be
subtracted from. For example if group_1="A" and group_2="B" the plotted
curve will correspond to the survival probability (or CIF) of A minus the survival

plot_curve_diff 75

probability (or CIF) of B over time. If NULL, this will default to the first level of
variable.

group_2 Also a single character string specifying one of the levels of variable. This
corresponds to the right side of the difference equation. See argument group_2.
If NULL, this will default to the second level of variable.

conf_int A logical variable indicating whether the confidence intervals should be drawn.
This only works when conf_int=TRUE or bootstrap=TRUE was used in the
original adjustedsurv or adjustedcif function call.

conf_level The confidence level that should be used when calculating the confidence inter-
vals. Ignored if conf_int=FALSE.

type Must be one of "steps" (drawing the difference as a step function), "lines"
(drawing the difference using linear interpolation), "points" (drawing points
only) or "none" (drawing nothing, useful when only the smoothed difference is
of interest). It defaults to "steps".

times An optional numeric vector of points in time at which the difference should be
estimated. If NULL (default) the differences are estimated for the whole curve.
This only affects the plot and has no effect on the integral or p_value if those
are also specified.

max_t A number indicating the latest time to which the curve should be extended to.

use_boot Whether to use the bootstrapped estimates to calculate the confidence inter-
vals or not. Can only be used if bootstrap=TRUE was used in the original
adjustedsurv or adjustedcif function call. Ignored if conf_int=FALSE.

size A number controlling the thickness of the difference curve.

color A string specifying the color of the difference curve.

linetype A string specifying the linetype of the difference curve.

alpha A number controlling the transparency level of the difference curves.

conf_int_alpha A number indicating the level of transparency that should be used when drawing
the confidence regions.

points_ci_size Only used when type="points". Controls the size of the error bars.
points_ci_width

Only used when type="points". Controls the width of the error bars.

xlab A character string to be used as the X-Axis label of the plot. Defaults to "Time".

ylab A character string to be used as the Y-Axis label of the plot. By default (NULL)
uses the equation used to calculate the differences, based on the names supplied
in group_1 and group_2.

title A character string to be used as the title of the plot. Set to NULL if no title should
be used.

subtitle A character string to be used as the subtitle of the plot. Set to NULL if no subtitle
should be used.

gg_theme A ggplot2 theme object which will be used for the plot.

line_at_0 Whether to draw a horizontal line at y = 0 or not.

line_at_0_size The size of the line drawn at y = 0. Ignored if line_at_0=FALSE.

76 plot_curve_diff

line_at_0_color

The color of the line drawn at y = 0. Ignored if line_at_0=FALSE.
line_at_0_linetype

The linetype of the line drawn at y = 0. Ignored if line_at_0=FALSE.
line_at_0_alpha

The transparency level of the line drawn at y = 0. Ignored if line_at_0=FALSE.

loess_smoother Whether to draw a LOESS smoother through the difference curves.

loess_span The span of the LOESS smoother. Ignored if loess_smoother=FALSE. See
stat_smooth in the ggplot2 package, method="loess" for more details.

loess_color The color of the LOESS smoother line. Ignored if loess_smoother=FALSE.

loess_size The size of the LOESS smoother line. Ignored if loess_smoother=FALSE.

loess_linetype The linetype of the LOESS smoother line. Ignored if loess_smoother=FALSE.

loess_alpha The transparency level of the LOESS smoother line. Ignored if loess_smoother=FALSE.

test An optional curve_test object created using the adjusted_curve_test func-
tion. If supplied it can be used to add a p-value and the integral statistic to the
plot. Alternatively, the needed arguments below can be specified to obtain the
values needed for the test. See below. Set to NULL (default) to ignore this.

integral_from A number specifying the left limit of the integral. When p_value=TRUE and
test=NULL, this argument will be passed to the from argument in the adjusted_curve_test
function to perform the test.

integral_to A number specifying the right limit of the integral. When p_value=TRUE and
test=NULL, this argument will be passed to the to argument in the adjusted_curve_test
function to perform the test.

p_value Whether to add a p-value to the plot or not. This requires either that the user sup-
plies a previously created curve_test object to the test argument, or that the
required arguments to call this function are supplied (at least integral_to). Ei-
ther way it only works if bootstrap=TRUE was used in the original adjustedsurv
or adjustedcif function call.

integral Whether to add the integral of the difference in the interval [from, to] to the
plot or not. This requires either that the user supplies a previously created
curve_test object to the test argument, or that the required arguments to call
this function are supplied (at least integral_to).

interval Whether to add the interval in which the integral was calculated to the plot as
well.

text_pos_x X position of the text. Can be either "left" (default), "middle", "right" or a
number specifying the exact position.

text_pos_y Y position of the text. Can be either "bottom" (default), "middle", "top" or a
number specifying the exact position.

text_digits The number of digits to which the p-value and the integral of the difference
should be rounded to.

text_size The size of the text.

text_family The family of the text. Defaults to "serif".

text_fontface The fontface of the text. Defaults to "italic".

plot_curve_diff 77

text_color The color of the text. Defaults to "black".

text_alpha The transparency level of the text.

text_format_p Whether to format p-values smaller than 0.01 to < 0.01.

fill_area Whether to add color to the area between 0 and the difference.

area_color The color used to fill in the area between 0 and the difference when using
fill_area=TRUE. Ignored otherwise.

area_alpha The transparency level used to fill in the area between 0 and the difference when
using fill_area=TRUE. Ignored otherwise.

fill_only_interval

Whether only the area corresponding to the interval defined by integral_from
and integral_to should be filled. Only used when fill_area=TRUE.

... Currently not used.

Details

This function allows the easy creation of difference curves. The syntax is exactly the same for both
adjusted survival curves and adjusted CIFs. By default it calculates the difference up to the last
point where estimates for both the group_1 curve and the group_2 curve are available.

It currently does not support plotting multiple difference curves at once, which could be useful
when there are more than two treatment groups in variable. If the user is interested in this, we
recommend calling this function multiple times with the desired comparisons and concatenating the
individual plots into one plot afterwards using a suitable function such as par or ggarrange.

More information on how the differences and their confidence intervals are calculated can be found
in the documentation of the adjusted_curve_diff function. More information on how the overall
p-value and the integral are calculated can be found in the adjusted_curve_test function.

Value

Returns a ggplot2 object.

Author(s)

Robin Denz

References

Michael Coory, Karen E. Lamb, and Michael Sorich (2014). "Risk-Difference Curves can be used to
Communicate Time-Dependent Effects of Adjuvant Therapies for Early Stage Cancer". In: Journal
of Clinical Epidemiology 67, pp. 966-972

Lihui Zhao, Lu Tian, Hajime Uno, Scott D. Solomon, Marc A. Pfeffer, Jerald S. Schindler, and
L. J. Wei (2012). "Utilizing the Integrated Difference of Two Survival Functions to Quantify the
Treatment Contrast for Designing, Monitoring and Analyzing a Comparative Clinical Study". In:
Clinical Trials 9.5, pp. 570-577

See Also

adjusted_curve_diff, adjusted_curve_test, adjustedsurv, adjustedcif, ggplot, geom_stepribbon

78 plot_curve_diff

Examples

library(adjustedCurves)
library(survival)
library(ggplot2)

set.seed(42)

simulate some data as example
sim_dat <- sim_confounded_surv(n=50, max_t=1.2)
sim_dat$group <- as.factor(sim_dat$group)

estimate a cox-regression for the outcome
cox_mod <- coxph(Surv(time, event) ~ x1 + x2 + x3 + x4 + x5 + x6 + group,

data=sim_dat, x=TRUE)

use it to calculate adjusted survival curves with bootstrapping
adjsurv <- adjustedsurv(data=sim_dat,

variable="group",
ev_time="time",
event="event",
method="direct",
outcome_model=cox_mod,
conf_int=TRUE,
bootstrap=TRUE,
n_boot=15) # should be much bigger in reality

plot the difference with default values
plot_curve_diff(adjsurv)

plot with reversed differences
plot_curve_diff(adjsurv, group_1="1", group_2="0")

plot with confidence intervals
plot_curve_diff(adjsurv, conf_int=TRUE)

plot using lines instead
plot_curve_diff(adjsurv, conf_int=TRUE, type="lines")

plot using points instead
plot_curve_diff(adjsurv, conf_int=TRUE, type="points")

plot using an additional loess smoother
plot_curve_diff(adjsurv, loess_smoother=TRUE)

plot without the line at 0
plot_curve_diff(adjsurv, line_at_0=FALSE)

plot with some custom parameters
plot_curve_diff(adjsurv, conf_int=TRUE, color="blue", linetype="dotted",

alpha=0.8, line_at_0_size=1.1, line_at_0_color="red",
loess_smoother=TRUE, loess_span=0.55)

plot_rmst_curve 79

adding a p-value for a difference test in the interval [0, 0.75]
plot_curve_diff(adjsurv, conf_int=TRUE, p_value=TRUE, integral_from=0,

integral_to=0.75, integral=TRUE)

adding a p-value for a difference test in the interval [0, 0.75],
and also showing that integral visually in the plot
plot_curve_diff(adjsurv, conf_int=FALSE, p_value=TRUE, integral_from=0,

integral_to=0.75, integral=TRUE, fill_area=TRUE,
interval=TRUE)

plot_rmst_curve Plot Adjusted Restricted Mean Survival Time Curves

Description

A function to graphically display the Restricted Mean Survival Time (RMST) over time, using
confounder-adjusted survival curves which where previously estimated using the adjustedsurv
function. As the other plot functions in this package, it internally uses the ggplot2 package and
allows a variety of options.

Usage

plot_rmst_curve(adjsurv, times=NULL, conf_int=FALSE,
interpolation="steps", max_t=Inf,
color=TRUE, linetype=FALSE, facet=FALSE,
size=1, alpha=1, xlab="Time", ylab="RMST",
title=NULL, subtitle=NULL, legend.title="Group",
legend.position="right",
gg_theme=ggplot2::theme_classic(),
custom_colors=NULL, custom_linetypes=NULL,
conf_int_alpha=0.4, ...)

Arguments

adjsurv An adjustedsurv object created using the adjustedsurv function.

times A vector of points in time, passed to the to argument of the adjusted_rmst
function or NULL (default). If NULL, the adjusted RMST is estimated at all points
at which an event occurred. Otherwise it is estimated at times.

conf_int A logical variable indicating whether the bootstrap confidence intervals should
be drawn.

interpolation Corresponds to the argument of the same name in the adjusted_rmst function.

max_t A number indicating the latest survival time which is to be plotted.

color A logical variable indicating whether the curves should be colored differently.
The custom_colors argument can be used to directly specify which colors to
use. Set to FALSE to keep the plot black and white.

80 plot_rmst_curve

linetype A logical variable indicating whether the curves should have different linetypes.
The custom_linetypes argument can be used to directly specify which line-
types to use. Set to FALSE to keep all lines solid.

facet A logical variable indicating whether the curves should be in different facets.

size A number controlling the thickness of the RMST curves.

alpha A number controlling the transparency level of the RMST curves.

xlab A character string to be used as the X-Axis label of the plot.

ylab A character string to be used as the Y-Axis label of the plot.

title A character string to be used as the title of the plot. Set to NULL if no title should
be used.

subtitle A character string to be used as the subtitle of the plot. Set to NULL if no subtitle
should be used.

legend.title A character string to be used as the title of the legend. Set to NULL if no legend
should be included.

legend.position

A character string specifying the position of the legend. Ignored if legend_title=NULL.

gg_theme A ggplot2 theme object which will be used for the plot.

custom_colors A (named) vector to specify the colors of each adjusted RMST curve and possi-
bly its confidence region. Set to NULL to use the ggplot2 default values. Ignored
if color=FALSE.

custom_linetypes

A (named) vector to specify the linetype of each adjusted RMST curve. Set to
NULL to use the ggplot2 default values. Ignored if color=FALSE. Ignored if
linetype=FALSE.

conf_int_alpha A number indicating the level of transparency that should be used when drawing
the confidence regions.

... Currently not used.

Details

This function simply calls the adjusted_rmst for a range of to values, getting adjusted RMST
estimates over the whole range of the survival curves. Those estimates are then plotted as a curve
with the adjusted RMST replacing the survival probability on the Y-Axis. For a brief description on
the RMST and how it is calculated in this package, see the documentation of the adjusted_rmst
function. Literature describing the RMST Curve Plots in more detail is given in the references
section.

The RMST curve can only be created for adjusted survival curves. A similar graphic for the adjusted
CIFs can be created by utilizing the adjusted Restricted Mean Time Lost (RMTL). The calculation
of that statistic is implemented in the adjusted_rmtl function and the associated curve can be
created using the plot_rmtl_curve function.

If confidence intervals are specified and there are many points in time in times, this function
might get very slow. It will be even slower if multiple imputation was also used when creating
the adjustedsurv object.

plot_rmst_curve 81

Value

Returns a ggplot2 object.

Author(s)

Robin Denz

References

Lihui Zhao, Brian Claggett, Lu Tian, Hajime Uno, Marc A. Pfeffer, Scott D. Solomon, Lorenzo
Trippa, and L. J. Wei (2016). "On the Restricted Mean Survival Time Curve in Survival Analysis".
In: Biometrics 72.1, pp. 215-221

Jason J. Z. Liao, Frank Liu, and Wen-Chi Wu (2020). "Dynamic RMST Curves for Survival Anal-
ysis in Clinical Trials". In: BMC Medical Research Methodology 20.218

See Also

adjustedsurv, adjusted_rmst, ggplot

Examples

library(adjustedCurves)
library(survival)
library(ggplot2)

set.seed(42)

simulate some data as example
sim_dat <- sim_confounded_surv(n=50, max_t=1.2)
sim_dat$group <- as.factor(sim_dat$group)

estimate a cox-regression for the outcome
cox_mod <- coxph(Surv(time, event) ~ x1 + x2 + x3 + x4 + x5 + x6 + group,

data=sim_dat, x=TRUE)

use it to calculate adjusted survival curves with bootstrapping
adjsurv <- adjustedsurv(data=sim_dat,

variable="group",
ev_time="time",
event="event",
method="direct",
outcome_model=cox_mod,
conf_int=TRUE,
bootstrap=TRUE,
n_boot=15) # should be much bigger in reality

plot the curves with default values
plot_rmst_curve(adjsurv)

plot with confidence intervals

82 plot_rmtl_curve

plot_rmst_curve(adjsurv, conf_int=TRUE)

plot with some custom options
plot_rmst_curve(adjsurv, max_t=0.5, linetype=TRUE,

custom_colors=c("green", "blue"))

plot_rmtl_curve Plot Adjusted Restricted Mean Time Lost Curves

Description

A function to graphically display the Restricted Mean Time Lost (RMTL) over time, using confounder-
adjusted survival curves which were previously estimated using the adjustedsurv function, or
cause-specific confounder-adjusted CIFs which were previously estimated using the adjustedcif
function. As the other plot functions in this package, it internally uses the ggplot2 package and
allows a variety of options.

Usage

plot_rmtl_curve(adj, times=NULL, conf_int=FALSE,
interpolation="steps", max_t=Inf,
color=TRUE, linetype=FALSE, facet=FALSE,
size=1, alpha=1, xlab="Time", ylab="RMTL",
title=NULL, subtitle=NULL, legend.title="Group",
legend.position="right",
gg_theme=ggplot2::theme_classic(),
custom_colors=NULL, custom_linetypes=NULL,
conf_int_alpha=0.4, ...)

Arguments

adj An adjustedsurv object created using the adjustedsurv function, or an adjustedcif
object created using the adjustedcif function.

times A vector of points in time, passed to the to argument of the adjusted_rmtl
function or NULL (default). If NULL, the adjusted RMTL is estimated at all points
at which an event occurred. Otherwise it is estimated at times.

conf_int A logical variable indicating whether the bootstrap confidence intervals should
be drawn.

interpolation Corresponds to the argument of the same name in the adjusted_rmtl function.

max_t A number indicating the latest survival time which is to be plotted.

color A logical variable indicating whether the curves should be colored differently.
The custom_colors argument can be used to directly specify which colors to
use. Set to FALSE to keep the plot black and white.

linetype A logical variable indicating whether the curves should have different linetypes.
The custom_linetypes argument can be used to directly specify which line-
types to use. Set to FALSE to keep all lines solid.

plot_rmtl_curve 83

facet A logical variable indicating whether the curves should be in different facets.

size A number controlling the thickness of the RMTL curves.

alpha A number controlling the transparency level of the RMTL curves.

xlab A character string to be used as the X-Axis label of the plot.

ylab A character string to be used as the Y-Axis label of the plot.

title A character string to be used as the title of the plot. Set to NULL if no title should
be used.

subtitle A character string to be used as the subtitle of the plot. Set to NULL if no subtitle
should be used.

legend.title A character string to be used as the title of the legend. Set to NULL if no legend
should be included.

legend.position

A character string specifying the position of the legend. Ignored if legend_title=NULL.

gg_theme A ggplot2 theme object which will be used for the plot.

custom_colors A (named) vector to specify the colors of each adjusted RMTL curve and possi-
bly its confidence region. Set to NULL to use the ggplot2 default values. Ignored
if color=FALSE.

custom_linetypes

A (named) vector to specify the linetype of each adjusted RMTL curve. Set to
NULL to use the ggplot2 default values. Ignored if color=FALSE. Ignored if
linetype=FALSE.

conf_int_alpha A number indicating the level of transparency that should be used when drawing
the confidence regions.

... Currently not used.

Details

This function simply calls the adjusted_rmtl for a range of to values, getting adjusted RMTL
estimates over the whole range of the survival curves or CIFs. Those estimates are then plotted
as a curve with the adjusted RMTL replacing the survival probability or the failure probability on
the Y-Axis. For a brief description on the RMTL and how it is calculated in this package, see the
documentation of the adjusted_rmtl function. Literature describing the RMTL Curve Plots in
more detail is given in the references section.

If confidence intervals are specified and there are many points in time in times, this function
might get very slow. It will be even slower if multiple imputation was also used when creating
the adjustedsurv or adjustedcif object.

Value

Returns a ggplot2 object.

Author(s)

Robin Denz

84 plot_rmtl_curve

References

Lihui Zhao, Brian Claggett, Lu Tian, Hajime Uno, Marc A. Pfeffer, Scott D. Solomon, Lorenzo
Trippa, and L. J. Wei (2016). "On the Restricted Mean Survival Time Curve in Survival Analysis".
In: Biometrics 72.1, pp. 215-221

See Also

adjustedsurv, adjustedcif, adjusted_rmtl, ggplot

Examples

library(adjustedCurves)
library(survival)
library(ggplot2)

set.seed(42)

simulate some data as example
sim_dat <- sim_confounded_surv(n=50, max_t=1.2)
sim_dat$group <- as.factor(sim_dat$group)

estimate a cox-regression for the outcome
cox_mod <- coxph(Surv(time, event) ~ x1 + x2 + x3 + x4 + x5 + x6 + group,

data=sim_dat, x=TRUE)

use it to calculate adjusted survival curves with bootstrapping
adjsurv <- adjustedsurv(data=sim_dat,

variable="group",
ev_time="time",
event="event",
method="direct",
outcome_model=cox_mod,
conf_int=TRUE,
bootstrap=TRUE,
n_boot=15) # should be much bigger in reality

plot the curves with default values
plot_rmtl_curve(adjsurv)

plot with confidence intervals
plot_rmtl_curve(adjsurv, conf_int=TRUE)

plot with some custom options
plot_rmtl_curve(adjsurv, max_t=0.5, linetype=TRUE,

custom_colors=c("green", "blue"))

print.curve_test 85

print.curve_test Print Method for curve_test Objects

Description

Prints some important parts of the output object.

Usage

S3 method for class 'curve_test'
print(x, digits=4, ...)

Arguments

x An object of class curve_test created by the adjusted_curve_test function.

digits How many digits to use when rounding the results.

... Currently not used.

Value

Silently returns the data.frame which can be seen when calling the function. ABC is an abbreviation
for "area between the curves".

Author(s)

Robin Denz

See Also

adjusted_curve_test, adjustedsurv, adjustedcif

Examples

See ?adjusted_curve_diff

sim_confounded_crisk Simulate Competing Risks Data with Confounders

Description

A function to simulate time-to-event data with multiple competing causes of failure and one or
multiple confounders. The user can specify both the relationship between the covariates and the
cause-specific survival time and the relationship between the covariates and the treatment assign-
ment probability. Random censoring based on a custom function may also be introduced. Can be
used for simulation studies or to showcase the usage of the adjusted CIF methodology presented in
this package.

86 sim_confounded_crisk

Usage

sim_confounded_crisk(n=500, lcovars=NULL, outcome_betas=NULL,
group_beta=c(1, 0), gamma=c(1.8, 1.8),
lambda=c(2, 2), treatment_betas=NULL,
intercept=-0.5, gtol=0.001,
cens_fun=function(n){stats::rweibull(n, 1, 2)},
cens_args=list(), max_t=1.7)

Arguments

n An integer specifying the sample size of the simulated data set.

lcovars A named list to specify covariates. Each list element should be a vector contain-
ing information on the desired covariate distribution. See details.

outcome_betas A list of numeric vectors of beta coefficients for the cause-specific time-to-event
outcome. The list has to be of the same length as the lcovars list and every
entry of it has to be a numeric vector with one entry for each cause of failure.
See details.

group_beta A numeric vector containing specifying the beta coefficients of the grouping
variable on the cause-specific survival time. Should contain one entry for every
cause of failure.

gamma A numeric parameter for the simulation of the survival time using a weibull
distribution. See details.

lambda A numeric parameter for the simulation of the survival time using a weibull
distribution. See details.

treatment_betas

A named numeric vector of beta coefficients for the treatment assignment model.

intercept The intercept of the treatment assignment model.

gtol Tolerance at which estimated treatment assignment probabilities are truncated.

cens_fun A function to generate censoring times. The function needs to take at least one
argument called n. Additional arguments are allowed and can be supplied using
the cens_args argument.

cens_args A list of named arguments passed to cens_fun.

max_t A number denoting the maximum follow-up time. Every event time bigger than
this threshold are censored. In contrast to the single event survival simulation,
this value actually has to be supplied as it is used in the numerical inversion step.
Theoretically Inf can be used, but this might not work in practice.

Details

The simulation of the confounded competing risks data has five main steps: (1) Generation of
covariates, (2) Assigning the treatment variable, (3) Generating a cause-specific survival time (4)
Generating the corresponding cause of failure and (5) Introducing censoring.

First, covariates are generated by taking independent n random samples from the distributions de-
fined in lcovars.

sim_confounded_crisk 87

In the second step the generated covariates are used to estimate the probability of receiving treat-
ment (the propensity score) for each simulated person in the dataset. This is done using a logistic
regression model, using the values in treatment_betas as coefficients and interecept as the in-
tercept. By changing the intercept, the user can vary the proportion of cases that end up in each
treatment group on average. The estimated probabilities are then used to generate the treatment
variable ("group"), making the treatment assignment dependent on the covariates.

Next, survival times are generated based on the method described in Beyersman et al. (2009) using
the causal coefficients defined in outcome_betas and group_beta. After a survival time has been
generated a corresponding cause of failure is drawn from a multinomial distribution with probabili-
ties defined by the all cause hazard and the cause-specific hazards. More details can be found in the
cited literature. Both the independently generated covariates and the covariate-dependent treatment
variable are used in this step. This introduces confounding.

Independent right-censoring is introduced by taking n independent random draws from some distri-
bution defined by cens_fun and censoring every individual whose censoring time is smaller than
its simulated survival time. The whole process is based on work from Chatton et al. (2020).

Currently only supports binary treatments and does not allow dependent censoring.

Value

Returns a data.frame object containing the simulated covariates, the event indicator ("event"), the
survival/censoring time ("time") and the group variable ("group").

Author(s)

The code for step (3) and (4) described in the details was taken from the survsim R-Package, written
by David Morina Soler (with slight modifications). The rest of the function was written by Robin
Denz.

References

Jan Beyersmann, Arélien Latouche, Anika Buchholz, and Martin Schumacher (2009). "Simulating
Competing Risks Data in Survival Analysis". In: Statistics in Medicine 28, pp. 956-971

D. Morina and A. Navarro (2017). "Competing Risks Simulation with the survsim R Package". In:
Communications in Statistics: Simulation and Computation 46.7, pp. 5712-5722

Arthur Chatton, Florent Le Borgne, Clémence Leyrat, and Yohann Foucher (2020). G-Computation
and Inverse Probability Weighting for Time-To-Event Outcomes: A Comparative Study. arXiv:2006.16859v1

Examples

library(adjustedCurves)

set.seed(42)

simulate data with default values
sim_dat <- sim_confounded_crisk(n=10)

set group betas to 0
sim_dat <- sim_confounded_crisk(n=10, group_beta=c(0, 0))

88 sim_confounded_surv

set some custom values
outcome_betas <- list(c(0.03, 0.4),

c(1.1, 0.8),
c(0, 0),
c(-0.2, -0.4),
c(log(1.3), log(1.3)/3),
c(0, 0))

treatment_betas <- c(x1=0, x2=log(3), x3=log(1.2),
x4=0, x5=log(1.1), x6=log(1.4))

lcovars <- list(x1=c("rbinom", 1, 0.3),
x2=c("rbinom", 1, 0.7),
x3=c("rbinom", 1, 0.5),
x4=c("rnorm", 0, 1),
x5=c("rnorm", 0, 1.1),
x6=c("rnorm", 0, 0.9))

sim_dat <- sim_confounded_crisk(n=10,
treatment_betas=treatment_betas,
outcome_betas=outcome_betas,
lcovars=lcovars)

sim_confounded_surv Simulate Survival Data with Confounders

Description

A function to simulate time-to-event data with one or multiple confounders. The user can specify
both the relationship between the covariates and the survival time and the relationship between the
covariates and the treatment assignment probability. Random censoring based on a custom function
may also be introduced. Can be used for simulation studies or to showcase the usage of the adjusted
survival curve methodology presented in this package.

Usage

sim_confounded_surv(n=500, lcovars=NULL, outcome_betas=NULL,
group_beta=-1, surv_dist="weibull",
gamma=1.8, lambda=2, treatment_betas=NULL,
intercept=-0.5, gtol=0.001,
cens_fun=function(n){stats::rweibull(n, 1, 2)},
cens_args=list(), max_t=Inf)

Arguments

n An integer specifying the sample size of the simulated data set.

lcovars A named list to specify covariates. Each list element should be a vector contain-
ing information on the desired covariate distribution. See details.

sim_confounded_surv 89

outcome_betas A named numeric vector of beta coefficients for the time-to-event outcome.
group_beta A number specifying the beta coefficient of the grouping variable on the survival

time.
surv_dist A character string denoting the distribution used in the simulation of the survival

time. See details.
gamma A numeric parameter for the simulation of the survival time. See details.
lambda A numeric parameter for the simulation of the survival time. See details.
treatment_betas

A named numeric vector of beta coefficients for the treatment assignment model.
intercept The intercept of the treatment assignment model.
gtol Tolerance at which estimated treatment assignment probabilities are truncated.
cens_fun A function to generate censoring times or NULL. If NULL, no censoring is intro-

duced.
cens_args Arguments passed to cens_fun. Ignored if cens_fun=NULL.
max_t A number denoting the maximum follow-up time. Every event time bigger than

this threshold are censored.

Details

The simulation of the confounded survival data has four main steps: (1) Generation of covariates,
(2) Assigning the treatment variable, (3) Generating survival times and (4) introducing censoring.

First, covariates are generated by taking independent n random samples from the distributions de-
fined in lcovars.

In the second step the generated covariates are used to estimate the probability of receiving treat-
ment (the propensity score) for each simulated person in the dataset. This is done using a logistic
regression model, using the values in treatment_betas as coefficients and interecept as the in-
tercept. By changing the intercept, the user can vary the proportion of cases that end up in each
treatment group on average. The estimated probabilities are then used to generate the treatment
variable ("group"), making the treatment assignment dependent on the covariates.

Next, survival times are generated based on the method described in Bender et al. (2005) using the
causal coefficients defined in outcome_betas and group_beta. Both the independently generated
covariates and the covariate-dependent treatment variable are used in this step. This introduces
confounding.

Independent right-censoring is introduced by taking n independent random draws from some distri-
bution defined by cens_fun and censoring every individual whose censoring time is smaller than
its simulated survival time. The whole process is based on work from Chatton et al. (2020).

Currently only supports binary treatments and does not allow dependent censoring.

Value

Returns a data.frame object containing the simulated covariates, the event indicator ("event"), the
survival/censoring time ("time") and the group variable ("group").

Author(s)

Robin Denz

90 surv_aiptw

References

Ralf Bender, Thomas Augustin, and Maria Blettner (2005). "Generating Survival Times to Simulate
Cox Proportional Hazards Models". In: Statistics in Medicine 24.11, pp. 1713-1723

Arthur Chatton, Florent Le Borgne, Clémence Leyrat, and Yohann Foucher (2020). G-Computation
and Inverse Probability Weighting for Time-To-Event Outcomes: A Comparative Study. arXiv:2006.16859v1

Examples

library(adjustedCurves)

set.seed(42)

simulate data with default values
sim_dat <- sim_confounded_surv(n=10)

simulate data with some new values
lcovars <- list(x1=c("rnorm", 1, 2),

x2=c("rnorm", 3, 4),
x3=c("runif", 1, 2))

treatment_betas <- c(x1=0.2, x2=0.6, x3=-0.9)
outcome_betas <- c(x1=1.1, x2=0, x3=-0.3)

sim_dat <- sim_confounded_surv(n=10, lcovars=lcovars,
treatment_betas=treatment_betas,
outcome_betas=outcome_betas)

surv_aiptw Augmented Inverse Probability of Treatment Weighted Survival Curves

Description

This page explains the details of estimating augmented inverse probability of treatment weighted
survival curves for single event time-to-event data (method="aiptw" in the adjustedsurv func-
tion). All regular arguments of the adjustedsurv function can be used. Additionally, the outcome_model
argument and the treatment_model argument have to be specified in the adjustedsurv call. Fur-
ther arguments specific to this method are listed below.

Arguments

outcome_model [required] Must be a coxph model object, modeling the time-to-event mecha-
nism. See details and examples.

treatment_model

[required] Must be a glm model object with variable as response variable. See
details and examples.

censoring_model

Must be a coxph model object, modeling the censoring mechanism or NULL. If
NULL (default) independent censoring is assumed. See details and examples.

surv_aiptw 91

verbose Whether to print estimation information of the ate function in the riskRegres-
sion package. Defaults to FALSE.

... Further arguments passed to ate.

Details

• Type of Adjustment: Requires both a treatment assignment model (glm) and a outcome
model (coxph). Also allows, but does not rely on, an additional model describing the censoring
mechanism (also a coxph object).

• Doubly-Robust: Estimates are Doubly-Robust.

• Categorical groups: Currently only two groups in variable are allowed. Must still be a
factor variable.

• Approximate Variance: Calculations to approximate the variance and confidence intervals
are available.

• Allowed Time Values: Allows both continuous and integer time.

• Bounded Estimates: Estimates are not guaranteed to be bounded in the 0 to 1 probability
range.

• Monotone Function: Estimates are not guaranteed to be monotone.

• Dependencies: This method relies on the riskRegression package.

Instead of only modeling the outcome mechanism or the treatment assignment mechanism, both
kind of models are required to use this method. If either of those models are correctly specified,
unbiased estimates will be obtained. Can also be used to adjust for dependent censoring using
another Cox-Regression model. An obvious advantage of this method is it’s doubly robust property.
This however comes at the price of some efficiency. It is also possible that some estimates fall
outside the 0 and 1 probability bounds, particularly if the time is near 0 or the maximal observed
event time. There is also no guarantee that the estimated survival curves will be monotonically
decreasing. For more information on the methods the user is referred to the literature listed in the
references.

This function is basically just a wrapper around the ate function from the riskRegression pack-
age. Additional arguments may be passed to that function using the ... syntax. It is however
recommended to use ate directly in these cases.

Value

Adds the following additional objects to the output of the adjustedsurv function:

• ate_object: The object returned by the ate function.

Author(s)

The wrapper function was written by Robin Denz, the ate function (which this wrapper is build
around) was written by other people. See ?ate for more details.

92 surv_aiptw

References

James M. Robins and Andrea Rotnitzky (1992). "Recovery of Information and Adjustment for
Dependent Censoring Using Surrogate Markers". In: AIDS Epidemiology: Methodological Issues.
Ed. by Nicholas P. Jewell, Klaus Dietz, and Vernon T. Farewell. New York: Springer Science +
Business Media, pp. 297-331

Alan E. Hubbard, Mark J. van der Laan, and James M. Robins (2000). "Nonparametric Locally
Efficient Estimation of the Treatment Specific Survival Distribution with Right Censored Data and
Covariates in Observational Studies". In: Statistical Models in Epidemiology, the Environment, and
Clinical Trials. Ed. by M. Elizabeth Halloran and Donald Berry. New York: Springer Science +
Business Media, pp. 135-177

Min Zhang and Douglas E. Schaubel (2012). "Contrasting Treatment-Specific Survival Using
Double-Robust Estimators". In: Statistics in Medicine 31.30, pp. 4255-4268

Xiaofei Bai, Anastasios A. Tsiatis, and Sean M. O’Brien (2013). "Doubly-Robust Estimators of
Treatment-Specific Survival Distributions in Observational Studies with Stratified Sampling". In:
Biometrics 69, pp. 830–839

Brice Maxime Hugues Ozenne, Thomas Harder Scheike, and Laila Staerk (2020). "On the Esti-
mation of Average Treatment Effects with Right-Censored Time to Event Outcome and Competing
Risks". In: Biometrical Journal 62, pp. 751–763

See Also

ate, coxph, glm

Examples

library(adjustedCurves)
library(riskRegression)
library(survival)

set.seed(42)

simulate some data as example
sim_dat <- sim_confounded_surv(n=50, max_t=1.2)
sim_dat$group <- as.factor(sim_dat$group)

estimate a cox-regression for the outcome
cox_mod <- coxph(Surv(time, event) ~ x1 + x2 + x3 + x4 + x5 + x6 + group,

data=sim_dat, x=TRUE)

estimate a treatment assignment model
glm_mod <- glm(group ~ x1 + x3 + x5 + x6, data=sim_dat, family="binomial")

use it to calculate adjusted survival curves
adjsurv <- adjustedsurv(data=sim_dat,

variable="group",
ev_time="time",
event="event",
method="aiptw",
outcome_model=cox_mod,

surv_aiptw_pseudo 93

treatment_model=glm_mod,
conf_int=FALSE)

plot the curves
plot(adjsurv)

surv_aiptw_pseudo Augmented Inverse Probability of Treatment Weighted Survival Curves
using Pseudo-Values

Description

This page explains the details of estimating augmented inverse probability of treatment weighted
survival curves using Pseudo-Values for single event time-to-event data (method="aiptw_pseudo"
in the adjustedsurv function). All regular arguments of the adjustedsurv function can be used.
Additionally, the outcome_vars argument and the treatment_model argument have to be specified
in the adjustedsurv call. Further arguments specific to this method are listed below.

Arguments

outcome_vars [required] A character vector of column names specifying variables to be used
when modeling the outcome mechanism using geese. See details and examples.

treatment_model

[required] Must be a glm or multinom model object with variable as response
variable. Alternatively you can supply a numeric vector of propensity scores
directly. See details and examples.

type_time A character string specifying how the time should be modeled. Possible values
are "factor" (modeling each point in time as a separate variable, the default),
"bs" (modeling time using B-Splines) or "ns" (modeling time using natural
splines).

spline_df The number of degrees of freedom used for the natural-spline or B-spline func-
tion. Ignored if type_time="factor". Defaults to 5.

censoring_vars An optional character vector specifying variables in data. Those are used in the
calculation of inverse probability of censoring weighted pseudo observations.
See ?pseudo_aareg for more information. Set to NULL (default) to use standard
pseudo-values without corrections for dependent censoring instead.

ipcw_method The specific method used in the calculation of inverse probability of censoring
weighted pseudo observations. Can be either "binder" (default) or "hajek".
See ?pseudo_aareg for more information. Ignored if censoring_vars=NULL.

Details

• Type of Adjustment: Requires a treatment assignment model (glm or multinom) and a char-
acter vector of variable names used to model the outcome mechanism (internally uses geese).
Covariate-Dependent censoring can be corrected for using inverse probability of censoring
weighted pseudo-values (Binder et al. 2014)

94 surv_aiptw_pseudo

• Doubly-Robust: Estimates are Doubly-Robust.

• Categorical groups: Any number of levels in variable are allowed. Must be a factor vari-
able.

• Approximate Variance: Calculations to approximate the variance and confidence intervals
are available.

• Allowed Time Values: Allows both continuous and integer time.

• Bounded Estimates: Estimates are not guaranteed to be bounded in the 0 to 1 probability
range.

• Monotone Function: Estimates are not guaranteed to be monotone.

• Dependencies: This method relies on the geepack and prodlim packages. Additionally re-
quires the eventglm package if censoring_vars is specified.

Instead of only modeling the outcome mechanism or the treatment assignment mechanism, both
kind of models are required to use this method. If either of those models are correctly specified, un-
biased estimates will be obtained. In contrast to the "aiptw" method, the "aiptw_pseudo" method
uses a generalized estimation equation (geese) approach to model the outcome mechanism. The
model is fit in the same way as described in the "direct_pseudo" method. Those Direct Standard-
ization based estimates are then transformed using the previously estimated propensity score. This
results in the doubly-robust property of the method. More information on this particular method can
be found in the original article by Wang (2018), more information on Pseudo-Values is available in
Andersen et al. (2017) and Andersen and Perme (2010).

When estimating the geese model the ev_time variable is used as a factor by default. This results
in one coefficient being estimated for each unique point in time, which can be very slow com-
putationally if there are a lot of unique points in time and/or the dataset has many rows. In these
cases it is recommended to use type_time="bs" or type_time="ns", which results in the ev_time
being modeled using B-Splines or Natural Splines. Simulation studies indicate that there is little
difference in the estimates when an appropriately large number of spline_df is used.

Additionally, covariate-dependent censoring can be accounted for by using inverse probability of
censoring weighted pseudo-values (Binder et al. 2014) instead of regular pseudo-values (specified
using the censoring_vars and ipcw_method arguments).

Value

Adds the following additional objects to the output of the adjustedsurv function:

• pseudo_values: The matrix of estimated pseudo-values.

• geese_model: The geese model used to make the predictions.

Author(s)

Jixian Wang supplied the R source code used in the original article, which was used by Robin
Denz to create a generalized version of this method with additional functionality and improved
performance.

surv_aiptw_pseudo 95

References

Jixian Wang (2018). "A Simple, Doubly Robust, Efficient Estimator for Survival Functions Using
Pseudo Observations". In: Pharmaceutical Statistics 17.38-48

James M. Robins and Andrea Rotnitzky (1992). "Recovery of Information and Adjustment for
Dependent Censoring Using Surrogate Markers". In: AIDS Epidemiology: Methodological Issues.
Ed. by Nicholas P. Jewell, Klaus Dietz, and Vernon T. Farewell. New York: Springer Science +
Business Media, pp. 297-331

Per Kragh Andersen, Elisavet Syriopoulou, and Erik T. Parner (2017). "Causal Inference in Survival
Analysis using Pseudo-Observations". In: Statistics in Medicine 36, pp. 2669-2681

Per Kragh Andersen and Maja Pohar Perme (2010). "Pseudo-Observations in Survival Analysis".
In: Statistical Methods in Medical Research 19, pp. 71-99

Aris Perperoglou, Willi Sauerbrei, Michal Abrahamowicz, and Matthias Schmid (2019). "A Review
of Spline Function Procedures in R". in: BMC Medical Research Methodology 19.46, pp. 1-16

Nadine Binder, Thomas A. Gerds, and Per Kragh Andersen (2014). "Pseudo- Observations for
Competing Risks with Covariate Dependent Censoring". In: Lifetime Data Analysis 20, pp. 303-
315

See Also

geese, jackknife, ns, bs

Examples

library(adjustedCurves)

set.seed(42)

simulate some data as example
sim_dat <- sim_confounded_surv(n=50, max_t=1.2)
sim_dat$group <- as.factor(sim_dat$group)

estimate a treatment assignment model
glm_mod <- glm(group ~ x1 + x3 + x5 + x6, data=sim_dat, family="binomial")

use it + pseudo values + geese model to calculate adjusted survival curves
adjsurv <- adjustedsurv(data=sim_dat,

variable="group",
ev_time="time",
event="event",
method="aiptw_pseudo",
outcome_vars=c("x1", "x2", "x3", "x4", "x5", "x6"),
treatment_model=glm_mod,
conf_int=TRUE)

plot the curves
plot(adjsurv, conf_int=TRUE)

96 surv_direct

surv_direct Direct Adjusted Survival Curves

Description

This page explains the details of estimating confounder-adjusted survival curves using a previ-
ously fit Cox-Regression model for single event time-to-event data using Direct Standardization
(method="direct" in the adjustedsurv function). All regular arguments of the adjustedsurv
function can be used. Additionally, the outcome_model argument has to be specified in the adjustedsurv
call. Further arguments specific to this method are listed below.

Arguments

outcome_model [required] Must be a previously fit model object including variable as inde-
pendent variable. Apart from the classic coxph model this function also supports
a variety of other models. See models_surv_direct for a list of supported
model objects and some more details.

verbose Whether to print estimation information of the ate function in the riskRegres-
sion package. Ignored if outcome_model is not a coxph object. Defaults to
FALSE.

predict_fun A function which should be used to calculate the predicted survival probabili-
ties given covariates and some points in time. This argument only needs to be
specified if the kind of model supplied in the outcome_model is not directly
supported. See models_surv_direct for more information. Defaults to NULL.

... Further arguments passed to ate if outcome_model is a coxph object. Otherwise
the additional arguments are passed to the respective predict method. See
models_surv_direct for more information.

Details

• Type of Adjustment: Requires a model describing the outcome mechanism. See models_surv_direct
for a list of supported model objects and some more details.

• Doubly-Robust: Estimates are not Doubly-Robust.

• Categorical groups: Any number of levels in variable are allowed. Must be a factor vari-
able.

• Approximate Variance: Calculations to approximate the variance and confidence intervals
are available only if outcome_model is a coxph object. The ate function is used for the
calculation in that case. Bootstrap confidence intervals can however be calculated with all
supported models. See ?adjustedsurv for more information on bootstrapping.

• Allowed Time Values: Allows both continuous and integer time.

• Bounded Estimates: Estimates are guaranteed to be bounded in the 0 to 1 probability range.

• Monotone Function: Estimates are guaranteed to be monotone.

surv_direct 97

• Dependencies: This method relies on the riskRegression package. Depending on outcome_model
other packages might be needed. See models_surv_direct for more details.

This method works by executing the following steps: (1) First a model is fitted which describes the
outcome mechanism (time-to-event). Next (2) multiple copies of the original dataset are created,
one for each possible level of the variable of interest. (3) The variable is then set to one level
for all observations in each dataset. (4) The model is used to predict the survival probabilities at
some points in time T for each observation in all dataset copies. (5) Those estimated probabilities
are averaged for each dataset at each point in time, resulting in adjusted survival probabilities for
all levels of the group variable at the specified points in time.

In the literature this method is sometimes called "Direct Standardization", "Corrected Group-Prognosis",
"G-Computation" or "G-Formula". If the model in step (1) is "correct"" this method will produce
unbiased estimates of the counterfactual survival curves. A model can be called a "correct" model in
this context if it can be used to produce unbiased estimates of the true (but unknown) individual sur-
vival probabilities given covariates. When used properly this is one of the most efficient methods.
More information can be found in the literature listed in the references. The most popular model for
describing the outcome mechanism in a time-to-event context is the Cox-regression model (coxph).
This function however also supports a variety of other models.

Value

Adds the following additional objects to the output of the adjustedsurv function:

• ate_object: The object returned by the ate function.

Author(s)

The function itself was written by Robin Denz. When using coxph models however, this function
is just a wrapper around the ate function, which was written by other people. See ?ate for more
information.

References

I-Ming Chang, Rebecca Gelman, and Marcello Pagano (1982). "Corrected Group Prognostic Curves
and Summary Statistics". In: Journal of Chronic Diseases 35, pp. 669-674

Robert W. Makuch (1982). "Adjusted Survival Curve Estimation Using Covariates". In: Journal of
Chronic Diseases 35.6, pp. 437-443

Xu Zhang, Fausto R. Loberiza, John P. Klein, and Mei-Jie Zhang (2007). "A SAS Macro for
Estimation of Direct Adjusted Survival Curves Based on a Stratified Cox Regression Model". In:
Computer Methods and Programs in Biomedicine 88, pp. 95-101

See Also

models_surv_direct, ate, coxph

Examples

library(adjustedCurves)
library(survival)
library(riskRegression)

98 surv_direct

set.seed(42)

simulate some data as example
sim_dat <- sim_confounded_surv(n=50, max_t=1.2)
sim_dat$group <- as.factor(sim_dat$group)

estimate a cox-regression for the outcome
cox_mod <- coxph(Surv(time, event) ~ x1 + x2 + x3 + x4 + x5 + x6 + group,

data=sim_dat, x=TRUE)

use it to calculate adjusted survival curves
adjsurv <- adjustedsurv(data=sim_dat,

variable="group",
ev_time="time",
event="event",
method="direct",
outcome_model=cox_mod,
conf_int=FALSE)

plot the curves
plot(adjsurv)

not run to avoid dependency on flexsurv and mice too slow
if (interactive()) {
using a flexsurv() model, this requires the 'fleysurv' package
mod_flexsurvreg <- flexsurvreg(Surv(time, event) ~ group + x1 + x2 + x5 + x6,

data=sim_dat, dist="gengamma")

using it to calculate the adjusted survival curves
adjsurv <- adjustedsurv(data=sim_dat,

variable="group",
ev_time="time",
event="event",
method="direct",
outcome_model=mod_flexsurvreg,
conf_int=FALSE)

plot using steps=FALSE to draw them as smooth functions, since
they were estimated using a parametric model
plot(adjsurv, steps=FALSE)

using multiple imputation
library(mice)

introduce random missingness in x1 as example
NOTE: This is only done as an example, in reality you would
already have missing data, not introduce it yourself.
sim_dat$x1 <- ifelse(runif(n=50) < 0.5, sim_dat$x1, NA)

perform multiple imputation
mids <- mice::mice(data=sim_dat, method="pmm", m=5, printFlag=FALSE)

surv_direct_pseudo 99

fit model for each imputed dataset
mira <- with(mids, coxph(Surv(time, event) ~ x1 + x2 + x3 + x4 + x5 + x6 + group,

x=TRUE))

calculate adjusted survival curves on imputed data
adj <- adjustedsurv(data=mids,

variable="group",
ev_time="time",
event="event",
method="direct",
outcome_model=mira)

plot(adj)
}

surv_direct_pseudo Direct Adjusted Survival Curves using Pseudo-Values

Description

This page explains the details of estimating direct adjusted survival curves using pseudo-values for
single event time-to-event data (method="direct_pseudo" in the adjustedsurv function). All
regular arguments of the adjustedsurv function can be used. Additionally, the outcome_vars
argument has to be specified in the adjustedsurv call. Further arguments specific to this method
are listed below.

Arguments

outcome_vars [required] A character vector of column names specifying variables to be used
when modeling the outcome mechanism. See details and examples.

type_time A character string specifying how the time should be modeled. Possible values
are "factor" (modeling each point in time as a separate variable, the default),
"bs" (modeling time using B-Splines) or "ns" (modeling time using natural
splines).

spline_df The number of degrees of freedom used for the natural-spline or B-spline func-
tion. Ignored if type_time="factor". Defaults to 5.

censoring_vars An optional character vector specifying variables in data. Those are used in the
calculation of inverse probability of censoring weighted pseudo observations.
See ?pseudo_aareg for more information. Set to NULL (default) to use standard
pseudo-values without corrections for dependent censoring instead.

ipcw_method The specific method used in the calculation of inverse probability of censoring
weighted pseudo observations. Can be either "binder" (default) or "hajek".
See ?pseudo_aareg for more information. Ignored if censoring_vars=NULL.

100 surv_direct_pseudo

Details

• Type of Adjustment: Requires a character vector of variable names used to model the out-
come mechanism (internally uses geese).

• Doubly-Robust: Estimates are not Doubly-Robust.

• Categorical groups: Any number of levels in variable are allowed. Must be a factor vari-
able.

• Approximate Variance: Calculations to approximate the variance and confidence intervals
are not available. Bootstrapping can still be used to estimate the confidence intervals (see
?adjustedsurv).

• Allowed Time Values: Allows both continuous and integer time.

• Bounded Estimates: Estimates are not guaranteed to be bounded in the 0 to 1 probability
range.

• Monotone Function: Estimates are not guaranteed to be monotone.

• Dependencies: This method relies on the geepack and prodlim packages. Additionally re-
quires the eventglm package if censoring_vars is specified.

This method works by executing the following steps: (1) First Pseudo-Values for the survival prob-
abilities are estimated for each observation in the dataset and some points in time T. Afterwards (2)
a new dataset is created in which every individual observation has multiple rows, one for each point
in time of interest. (3) This dataset is used to fit a generalized estimating equations (geese) model,
using the Pseudo-Values as independent variable. Next (4) multiple copies of the new dataset are
created, one for each possible level of the variable of interest. (5) The variable is then set to
one level for all observations in each dataset. (5) The geese model is used to predict the survival
probabilities at some points in time T for each observation in all dataset copies. (6) Those esti-
mated probabilities are averaged for each dataset at each point in time, resulting in adjusted survival
probabilities for all levels of the group variable at the specified points in time.

It is essentially the same procedure as described in "direct". The only difference is that instead of
relying on a coxph model, this method uses Pseudo-Values and a geese model. This can be useful
if the data does not conform to some assumptions needed to use the Cox-Regression model (for
example the proportional hazards assumption).

When estimating the geese model the ev_time variable is used as a factor by default. This results
in one coefficient being estimated for each unique point in time, which can be very slow com-
putationally if there are a lot of unique points in time and/or the dataset has many rows. In these
cases it is recommended to use type_time="bs" or type_time="ns", which results in the ev_time
being modeled using B-Splines or Natural Splines. Simulation studies indicate that there is little
difference in the estimates when an appropriately large number of spline_df is used.

Additionally, covariate-dependent censoring can be accounted for by using inverse probability of
censoring weighted pseudo-values (Binder et al. 2014) instead of regular pseudo-values (specified
using the censoring_vars and ipcw_method arguments).

Value

Adds the following additional objects to the output of the adjustedsurv function:

• pseudo_values: The matrix of estimated pseudo-values.

• geese_model: The geese model used to make the predictions.

surv_direct_pseudo 101

Author(s)

Robin Denz

References

Per Kragh Andersen, Elisavet Syriopoulou, and Erik T. Parner (2017). "Causal Inference in Survival
Analysis using Pseudo-Observations". In: Statistics in Medicine 36, pp. 2669-2681

Per Kragh Andersen and Maja Pohar Perme (2010). "Pseudo-Observations in Survival Analysis".
In: Statistical Methods in Medical Research 19, pp. 71-99

Aris Perperoglou, Willi Sauerbrei, Michal Abrahamowicz, and Matthias Schmid (2019). "A Review
of Spline Function Procedures in R". in: BMC Medical Research Methodology 19.46, pp. 1-16

Nadine Binder, Thomas A. Gerds, and Per Kragh Andersen (2014). "Pseudo-Observations for
Competing Risks with Covariate Dependent Censoring". In: Lifetime Data Analysis 20, pp. 303-
315

See Also

geese, jackknife, ns, bs

Examples

library(adjustedCurves)
library(geepack)

set.seed(42)

simulate some data as example
sim_dat <- sim_confounded_surv(n=50, max_t=1.2)
sim_dat$group <- as.factor(sim_dat$group)

calculate adjusted survival curves, with time as factor
adjsurv <- adjustedsurv(data=sim_dat,

variable="group",
ev_time="time",
event="event",
method="direct_pseudo",
outcome_vars=c("x1", "x2", "x3", "x4", "x5", "x6"),
type_time="factor")

with time modelled as B-Spline using 5 degrees of freedom
adjsurv <- adjustedsurv(data=sim_dat,

variable="group",
ev_time="time",
event="event",
method="direct_pseudo",
outcome_vars=c("x1", "x2", "x3", "x4", "x5", "x6"),
type_time="bs",
spline_df=5)

plot the curves

102 surv_emp_lik

plot(adjsurv)

surv_emp_lik Empirical Likelihood Estimation Survival Curves

Description

This page explains the details of estimating adjusted survival curves using the empirical likeli-
hood estimation methodology introduced by Wang et al. (2019) for single event time-to-event data
(method="emp_lik" in the adjustedsurv function). All regular arguments of the adjustedsurv
function can be used. Additionally, the treatment_vars argument has to be specified in the
adjustedsurv call. Further arguments specific to this method are listed below.

Arguments

treatment_vars [required] A character vector of column names specifying variables to be used
as covariates in the empirical likelihood estimation. See details and examples.

moment A character string specifying which moment to adjust for. Can be either "first"
(default) or "second".

standardize A logical variable indicating whether the treatment_vars variables should be
standardized. Defaults to FALSE. See details.

gtol A number specifying the tolerance for the weights. Is basically only used to
avoid division by 0 errors in cases where the weights are estimated to be 0.
Defaults to 0.00001.

max_iter Maximum number of iterations allowed in the newton-raphson algorithm. Set
to 100 by default which is more than enough in most cases.

newton_tol Tolerance used in the newton-raphson algorithm. Set to 1.0e-06 by default which
is more than enough in most cases.

Details

• Type of Adjustment: Requires a character vector of variable names used to balance the
distribution of covariates (treatment assignment mechanism)

• Doubly-Robust: Estimates are not Doubly-Robust (see details).

• Categorical groups: Only binary treatments are allowed. The column specified by variable
must be a factor variable with exactly two levels.

• Approximate Variance: Calculations to approximate the variance and confidence intervals
are not available. Bootstrapping can still be used to estimate the confidence intervals (see
?adjustedsurv).

• Allowed Time Values: Allows both continuous and integer survival times.

• Bounded Estimates: Estimates are guaranteed to be bounded in the 0 to 1 probability range.

• Monotone Function: Estimates are guaranteed to be monotone.

surv_emp_lik 103

• Dependencies: This method relies on the MASS package. While code from the adjKMtest
package is used internally (see <https://github.com/kimihua1995/adjKMtest>) it is not neces-
sary to install this package. The code is directly included in this R-Package. If you use this
method, please cite the paper by Wang et al. (2019).

A non-parametric likelihood based method which does not require the researcher to assume that
the data was generated by any known family of distributions. This method works by forcing the
moments of the covariates to be equal between treatment groups, through the maximization of a
constrained likelihood function. The resulting equality of the distributions removes the bias created
by the confounders. This method was proposed by Wang et al. (2019). Since the exact form of both
mechanisms are left unspecified, it is more robust to model misspecification than IPTW or direct
adjustment.

The underlying method is theoretically doubly-robust as shown by Wang et al. (2019), but the
specific implementation of this method implemented in this package is not as demonstrated in Denz
et al. (2022). For example, if some confounder has a quadratic effect on the treatment-assignment
but it is only passed to this function as a linear predictor (e.g. without squaring it) this method will
produce asymptotically biased estimates.

Value

Adds no additional objects to the output of the adjustedsurv function.

Author(s)

All functions used for the estimation were written by:

Fangfang Bai, PhD School of Statistics, University of International Business and Economics, Bei-
jing, China.

and

Xiaofei Wang, PhD Department of Biostatistics and Bioinformatics, Duke University, Durham, NC,
USA.

Robin Denz only performed small changes to that code (documented with code-comments in the
source code) and wrote the wrapper function.

References

Xiaofei Wang, Fangfang Bai, Herbert Pang, and Stephen L. George (2019). "Bias-Adjusted Kaplan-
Meier Survival Curves for Marginal Treatment Effect in Observational Studies". In: Journal of
Biopharmaceutical Statistics 29.4, pp. 592-605

Art B. Owen (2001). Empirical Likelihood. Boca Raton: CRC Press

Robin Denz, Renate Klaaßen-Mielke, and Nina Timmesfeld (2022). A Comparison of Different
Methods to Adjust Survival Curves for Confounders. arXiv:2203.10002v1

See Also

adjustedsurv

104 surv_iptw_cox

Examples

library(adjustedCurves)

set.seed(42)

simulate some data as example
sim_dat <- sim_confounded_surv(n=50, max_t=1.2)
sim_dat$group <- as.factor(sim_dat$group)

calculate adjusted survival curves
adjsurv <- adjustedsurv(data=sim_dat,

variable="group",
ev_time="time",
event="event",
method="emp_lik",
treatment_vars=c("x1", "x2", "x3", "x4", "x5", "x6"),
moment="first")

plot the curves
plot(adjsurv)

surv_iptw_cox Inverse Probability of Treatment Weighted Survival using Cox-
Regression

Description

This page explains the details of estimating inverse probability of treatment weighted survival
curves using a weighted univariate cox-regression for single event time-to-event data (method="iptw_cox"
in the adjustedsurv function). All regular arguments of the adjustedsurv function can be used.
Additionally, the treatment_model argument has to be specified in the adjustedsurv call. Further
arguments specific to this method are listed below.

Arguments

treatment_model

[required] Must be either a model object with variable as response variable,
a vector of weights or a formula which can be passed to WeightIt.

weight_method Method used in WeightIt function call. Ignored if treatment_model is not a
formula object. Defaults to "ps".

stabilize Whether to stabilize the weights or not. Is set to FALSE by default. Stabilizing
weights ensures that the sum of all weights is equal to the original sample size.
It has no effect on point estimates, only on the asymptotic variance calculations
and confidence intervals.

trim Can be either FALSE (default) or a numeric value at which to trim the weights. If
FALSE, weights are used as calculated or supplied. If a numeric value is supplied,
all weights that are bigger than trim are set to trim before the analysis is carried
out. Useful when some weights are extremely large.

... Further arguments passed to weightit.

surv_iptw_cox 105

Details

• Type of Adjustment: Requires a model describing the treatment assignment mechanism.
This must be either a glm or multinom object.

• Doubly-Robust: Estimates are not Doubly-Robust.

• Categorical groups: Any number of levels in variable are allowed. Must be a factor vari-
able.

• Approximate Variance: Calculations to approximate the variance and confidence intervals
are not available.

• Allowed Time Values: Allows both continuous and integer time.

• Bounded Estimates: Estimates are guaranteed to be bounded in the 0 to 1 probability range.

• Monotone Function: Estimates are guaranteed to be monotone.

• Dependencies: This method relies on the survival package. Additionally, the WeightIt pack-
age is required if treatment_model is a formula object.

This method works by modeling the treatment assignment mechanism. Adjusted survival curves are
calculated by first estimating appropriate case-weights for each observation in data. This can be
done using inverse probability of treatment weights using the propensity score (usually estimated
using a logistic regression model) or by some other method (see ?weightit). Those estimates are
then used to fit a weighted Cox-Regression model, stratified by variable. Survival Curves based
on this model are estimated using the method implemented in the survfit.coxph function. More
information can be found in the literature listed under "references". The only difference to the
iptw_km method is a slightly different weighting approach.

By default this method uses a a robust sandwich-type variance estimator (robust=TRUE in the coxph
function call) to calculate the standard error used in the construction of confidence intervals. This
estimator has been shown to be biased by Austin (2016). Coupled with stabilized weights however
(stabilize=TRUE) this gives conservative estimates of the variance and confidence intervals (Xu et
al. 2010). It is still recommended to use bootstrap confidence intervals instead. This can be done
by setting bootstrap=TRUE in the adjustedsurv function call.

Value

Adds the following additional objects to the output of the adjustedsurv function:

• cox_model: The stratified and weighted coxph model.

• survfit: The survfit object created using the cox_model object.

• weights: The final weights used in the analysis.

Returns a list object containing a data.frame with the estimated adjusted survival probabili-
ties for some points in time for each level of variable, the weighted coxph model, the weighted
survfit object and the weights used in the analysis.

Author(s)

Robin Denz

106 surv_iptw_cox

References

Stephen R. Cole and Miguel A. Hernán (2004). "Adjusted Survival Curves with Inverse Probability
Weights". In: Computer Methods and Programs in Biomedicine 2003.75, pp. 45-49

Peter C. Austin (2016). "Variance Estimation when Using Inverse Probability of Treatment Weight-
ing (IPTW) with Survival Analysis". In: Statistics in Medicine 35, pp. 5642-5655

Stanley Xu, Colleen Ross and Marsha A. Raebel, Susan Shetterly, Christopher Blanchette, and
David Smith (2010). "Use of Stabilized Inverse Propensity Scores as Weights to Directly Estimate
Relative Risk and Its Confidence Intervals". In: Value in Health 13.2, pp. 273-277

See Also

weightit, coxph, survfit.coxph

Examples

library(adjustedCurves)
library(survival)

set.seed(42)

simulate some data as example
sim_dat <- sim_confounded_surv(n=50, max_t=1.2)
sim_dat$group <- as.factor(sim_dat$group)

estimate a treatment assignment model
glm_mod <- glm(group ~ x1 + x3 + x5 + x6, data=sim_dat, family="binomial")

use it to calculate adjusted survival curves
adjsurv <- adjustedsurv(data=sim_dat,

variable="group",
ev_time="time",
event="event",
method="iptw_cox",
treatment_model=glm_mod)

Alternatively, use custom weights
In this example we use weights calculated using the propensity score,
which is equal to using the glm model directly in the function
ps_score <- glm_mod$fitted.values
weights <- ifelse(sim_dat$group==1, 1/ps_score, 1/(1-ps_score))

adjsurv <- adjustedsurv(data=sim_dat,
variable="group",
ev_time="time",
event="event",
method="iptw_cox",
treatment_model=weights)

And a third alternative: use the WeightIt package
here an example with equal results to the ones above:
adjsurv <- adjustedsurv(data=sim_dat,

surv_iptw_km 107

variable="group",
ev_time="time",
event="event",
method="iptw_cox",
treatment_model=group ~ x1 + x3 + x5 + x6,
weight_method="ps")

not run to avoid dependency on optweight
if (interactive()) {
here an example using Optimization-Based Weighting:
adjsurv <- adjustedsurv(data=sim_dat,

variable="group",
ev_time="time",
event="event",
method="iptw_cox",
treatment_model=group ~ x1 + x3 + x5 + x6,
weight_method="optweight")

}

surv_iptw_km Inverse Probability of Treatment Weighted Kaplan-Meier estimates

Description

This page explains the details of estimating inverse probability of treatment weighted survival
curves using a weighted version of the Kaplan-Meier estimator for single event time-to-event data
(method="iptw_km" in the adjustedsurv function). All regular arguments of the adjustedsurv
function can be used. Additionally, the treatment_model argument has to be specified in the
adjustedsurv call. Further arguments specific to this method are listed below.

Arguments

treatment_model

[required] Must be either a model object with variable as response variable,
a vector of weights or a formula which can be passed to WeightIt.

weight_method Method used in WeightIt function call. Ignored if treatment_model is not a
formula object. Defaults to "ps".

stabilize Whether to stabilize the weights or not. Is set to FALSE by default. Stabilizing
weights ensures that the sum of all weights is equal to the original sample size.
It has no effect on point estimates, only on the asymptotic variance calculations
and confidence intervals.

trim Can be either FALSE (default) or a numeric value at which to trim the weights. If
FALSE, weights are used as calculated or supplied. If a numeric value is supplied,
all weights that are bigger than trim are set to trim before the analysis is carried
out. Useful when some weights are extremely large.

... Further arguments passed to weightit.

108 surv_iptw_km

Details

• Type of Adjustment: Requires a model describing the treatment assignment mechanism.
This must be either a glm or multinom object.

• Doubly-Robust: Estimates are not Doubly-Robust.

• Categorical groups: Any number of levels in variable are allowed. Must be a factor vari-
able.

• Approximate Variance: Calculations to approximate the variance and confidence intervals
are available.

• Allowed Time Values: Allows both continuous and integer time.

• Bounded Estimates: Estimates are guaranteed to be bounded in the 0 to 1 probability range.

• Monotone Function: Estimates are guaranteed to be monotone.

• Dependencies: This method does not depend on other packages directly. However the WeightIt
package is required if treatment_model is a formula object.

This method works by modeling the treatment assignment mechanism. Adjusted survival curves are
calculated by first estimating appropriate case-weights for each observation in data. This can be
done using inverse probability of treatment weights using the propensity score (usually estimated
using a logistic regression model) or by some other method (see ?weightit). Those weights are
used in a weighted version of the Kaplan-Meier estimator proposed by Xie and Liu (2005). If the
weights are correctly estimated the resulting estimates will be unbiased. The only difference to the
iptw_cox method is a slightly different weighting approach.

Asymptotic variances are calculated using the equations given in Xie and Liu (2005). It is also
recommended to use stabilized weights by using stabilize=TRUE (the default value). More infor-
mation can be found in the cited literature.

Value

Adds the following additional objects to the output of the adjustedsurv function:

• weights: The final weights used in the analysis.

• n_at_risk: A data.frame containing the weighted number at risk and weighted number of
events used in the calculations at each point in time for both groups.

Author(s)

Robin Denz

References

Jun Xie and Chaofeng Liu (2005). "Adjusted Kaplan-Meier Estimator and Log- Rank Test with
Inverse Probability of Treatment Weighting for Survival Data". In: Statistics in Medicine 24, pp.
3089-3110

Stanley Xu, Colleen Ross and Marsha A. Raebel, Susan Shetterly, Christopher Blanchette, and
David Smith (2010). "Use of Stabilized Inverse Propensity Scores as Weights to Directly Estimate
Relative Risk and Its Confidence Intervals". In: Value in Health 13.2, pp. 273-277

surv_iptw_km 109

See Also

weightit

Examples

library(adjustedCurves)

set.seed(42)

simulate some data as example
sim_dat <- sim_confounded_surv(n=50, max_t=1.2)
sim_dat$group <- as.factor(sim_dat$group)

estimate a treatment assignment model
glm_mod <- glm(group ~ x1 + x3 + x5 + x6, data=sim_dat, family="binomial")

use it to calculate adjusted survival curves
adjsurv <- adjustedsurv(data=sim_dat,

variable="group",
ev_time="time",
event="event",
method="iptw_km",
treatment_model=glm_mod)

Alternatively, use custom weights
In this example we use weights calculated using the propensity score,
which is equal to using the glm model directly in the function
ps_score <- glm_mod$fitted.values
weights <- ifelse(sim_dat$group==1, 1/ps_score, 1/(1-ps_score))

adjsurv <- adjustedsurv(data=sim_dat,
variable="group",
ev_time="time",
event="event",
method="iptw_km",
treatment_model=weights)

And a third alternative: use the WeightIt package
here an example with equal results to the ones above:
adjsurv <- adjustedsurv(data=sim_dat,

variable="group",
ev_time="time",
event="event",
method="iptw_km",
treatment_model=group ~ x1 + x3 + x5 + x6,
weight_method="ps")

not run to avoid dependency on optweight
if (interactive()) {
here an example using Optimization-Based Weighting:
adjsurv <- adjustedsurv(data=sim_dat,

variable="group",

110 surv_iptw_pseudo

ev_time="time",
event="event",
method="iptw_km",
treatment_model=group ~ x1 + x3 + x5 + x6,
weight_method="optweight")

}

surv_iptw_pseudo Inverse Probability of Treatment Weighted Survival Estimates using
Pseudo-Values

Description

This page explains the details of estimating inverse probability of treatment weighted survival
curves using Pseudo-Values for single event time-to-event data (method="iptw_pseudo" in the
adjustedsurv function). All regular arguments of the adjustedsurv function can be used. Ad-
ditionally, the treatment_model argument has to be specified in the adjustedsurv call. Further
arguments specific to this method are listed below.

Arguments

treatment_model

[required] Must be either a model object with variable as response variable,
a vector of weights or a formula which can be passed to WeightIt.

weight_method Method used in WeightIt function call. Ignored if treatment_model is not a
formula object. Defaults to "ps".

stabilize Whether to stabilize the weights or not. Is set to FALSE by default. Stabilizing
weights ensures that the sum of all weights is equal to the original sample size.
It has no effect on point estimates, only on the asymptotic variance calculations
and confidence intervals.

trim Can be either FALSE (default) or a numeric value at which to trim the weights. If
FALSE, weights are used as calculated or supplied. If a numeric value is supplied,
all weights that are bigger than trim are set to trim before the analysis is carried
out. Useful when some weights are extremely large.

se_method One of "miller", "galloway", "cochrane" and "Hmisc". Specifies which
kind of standard error to calculate. Defaults to "cochrane". See details.

censoring_vars An optional character vector specifying variables in data. Those are used in the
calculation of inverse probability of censoring weighted pseudo observations.
See ?pseudo_aareg for more information. Set to NULL (default) to use standard
pseudo-values without corrections for dependent censoring instead.

ipcw_method The specific method used in the calculation of inverse probability of censoring
weighted pseudo observations. Can be either "binder" (default) or "hajek".
See ?pseudo_aareg for more information. Ignored if censoring_vars=NULL.

... Further arguments passed to weightit.

surv_iptw_pseudo 111

Details

• Type of Adjustment: Requires a model describing the treatment assignment mechanism.
This must be either a glm or multinom object.

• Doubly-Robust: Estimates are not Doubly-Robust.

• Categorical groups: Any number of levels in variable are allowed. Must be a factor vari-
able.

• Approximate Variance: Calculations to approximate the variance and confidence intervals
are available.

• Allowed Time Values: Allows both continuous and integer time.

• Bounded Estimates: Estimates are not guaranteed to be bounded in the 0 to 1 probability
range.

• Monotone Function: Estimates are not guaranteed to be monotone.

• Dependencies: This method relies on the prodlim package. The WeightIt package is also
required if treatment_model is a formula object. Additionally requires the eventglm package
if censoring_vars is specified.

This method works by modeling the treatment assignment mechanism. Adjusted survival curves are
calculated by first estimating appropriate case-weights for each observation in data. This can be
done using inverse probability of treatment weights using the propensity score (usually estimated
using a logistic regression model) or by some other method (see ?weightit). Pseudo-Values are
then calculated for every observation in data at some points in time T . Since Pseudo-Values bypass
the problem of censoring, a simple weighted average of the Pseudo-Values can be taken for every
T . See Andersen et al. (2017) for more details on this method and Andersen and Perme (2010) for
more information on Pseudo-Values in general.

The standard error of this estimator can be approximated by calculation a weighted version of the
standard error estimator. Interestingly, no exact method exists in the weighted case. Four approxi-
mations are implemented which can be chosen using the se_method argument. The equations for
"miller", "galloway" and "cochrane" are described and compared in Gatz and Smith (1995).
"Hmisc" is the standard equation with a weight term added, as specified in the Hmisc package, and
should only be used with stabilized weights (stabilize=TRUE). It is generally recommended to use
bootstrap estimates instead.

Additionally, covariate-dependent censoring can be accounted for by using inverse probability of
censoring weighted pseudo-values (Binder et al. 2014) instead of regular pseudo-values (specified
using the censoring_vars and ipcw_method arguments).

Value

Adds the following additional objects to the output of the adjustedsurv function:

• pseudo_values: The matrix of estimated pseudo-values.

• weights: The final weights used in the analysis.

Author(s)

Robin Denz

112 surv_iptw_pseudo

References

Per Kragh Andersen, Elisavet Syriopoulou, and Erik T. Parner (2017). "Causal Inference in Survival
Analysis using Pseudo-Observations". In: Statistics in Medicine 36, pp. 2669-2681

Per Kragh Andersen and Maja Pohar Perme (2010). "Pseudo-Observations in Survival Analysis".
In: Statistical Methods in Medical Research 19, pp. 71-99

Donald F. Gatz and Luther Smith (1995). "The Standard Error of a Weighted Mean Concentration
- I: Bootstrapping Vs Other Methods". In: Atmospheric Environment 29.11, pp. 1185-1193

William G. Cochran (1977). Sampling Techniques. Vol. 3. New York: Wiley

J. N. Galloway, G. E. Likens, and M. E. Hawley (1984). "Acid Precipitation: Natural Versus
Anthropogenic Components". In: Science 226, pp. 829-831

J. M. Miller (1977). A Statistical Evaluation of the U.S. Precipitation Chemistry Network. Precip-
itation Scavenging (edited by Semonin R. G. and Beadle R. W.) pp. 639-659. Available as CONF
74100 from National Technical Information Service, U.S. Dept. of Commerce, Springfiel, VA

Nadine Binder, Thomas A. Gerds, and Per Kragh Andersen (2014). "Pseudo-Observations for
Competing Risks with Covariate Dependent Censoring". In: Lifetime Data Analysis 20, pp. 303-
315

See Also

weightit, prodlim

Examples

library(adjustedCurves)

set.seed(42)

simulate some data as example
sim_dat <- sim_confounded_surv(n=50, max_t=1.2)
sim_dat$group <- as.factor(sim_dat$group)

estimate a treatment assignment model
glm_mod <- glm(group ~ x1 + x3 + x5 + x6, data=sim_dat, family="binomial")

use it to calculate adjusted survival curves
adjsurv <- adjustedsurv(data=sim_dat,

variable="group",
ev_time="time",
event="event",
method="iptw_km",
treatment_model=glm_mod)

Alternatively, use custom weights
In this example we use weights calculated using the propensity score,
which is equal to using the glm model directly in the function
ps_score <- glm_mod$fitted.values
weights <- ifelse(sim_dat$group==1, 1/ps_score, 1/(1-ps_score))

adjsurv <- adjustedsurv(data=sim_dat,

surv_km 113

variable="group",
ev_time="time",
event="event",
method="iptw_km",
treatment_model=weights)

And a third alternative: use the WeightIt package
here an example with equal results to the ones above:
adjsurv <- adjustedsurv(data=sim_dat,

variable="group",
ev_time="time",
event="event",
method="iptw_km",
treatment_model=group ~ x1 + x3 + x5 + x6,
weight_method="ps")

not run to avoid dependency on optweight
if (interactive()) {
here an example using Optimization-Based Weighting:
adjsurv <- adjustedsurv(data=sim_dat,

variable="group",
ev_time="time",
event="event",
method="iptw_km",
treatment_model=group ~ x1 + x3 + x5 + x6,
weight_method="optweight")

}

surv_km Group-Specific Kaplan-Meier Survival Curves

Description

This page explains the details of estimating group-specific Kaplan-Meier curves for single event
time-to-event data (method="km" in the adjustedsurv function). All regular arguments of the
adjustedsurv function can be used. Further arguments specific to this method are listed below.

Calculates standard Kaplan-Meier survival curves, stratified by the group variable. NO adjustment
for any confounders is made. This function is included only for reference and should not be used
when confounder adjusted survival curves are desired.

Arguments

conf_type The type of confidence interval that should be calculated. Has to be a character
string, passed to the conf.type argument in the survfit function. Defaults to
"log", which is also the default in survfit.

114 surv_km

Details

• Type of Adjustment: NO adjustments are made. This is just a stratified Kaplan-Meier esti-
mator.

• Doubly-Robust: Estimates are not Doubly-Robust.

• Categorical groups: Any number of levels in variable are allowed. Must be a factor vari-
able.

• Approximate Variance: Calculations to approximate the variance and confidence intervals
are available.

• Allowed Time Values: Allows both continuous and integer time.

• Bounded Estimates: Estimates are guaranteed to be bounded in the 0 to 1 probability range.

• Monotone Function: Estimates are guaranteed to be monotone.

• Dependencies: This method relies on the the survival package.

Value

Adds the following additional objects to the output of the adjustedsurv function:

• survfit_object: The survfit object used to calculate the Kaplan-Meier curves.

Author(s)

The wrapper function was written by Robin Denz, the survfit function (which this wrapper is
build around) was written by other people. See ?survfit for more details.

References

E. L. Kaplan and Paul Meier (1958). "Nonparametric Estimation from Incomplete Observations".
In: Journal of the American Statistical Association 53.282, pp. 457-481

See Also

survfit

Examples

library(adjustedCurves)
library(survival)

set.seed(42)

simulate some data as example
sim_dat <- sim_confounded_surv(n=50, max_t=1.2)
sim_dat$group <- as.factor(sim_dat$group)

calculate un-adjusted kaplan-meier survival curves
adjsurv <- adjustedsurv(data=sim_dat,

variable="group",
ev_time="time",

surv_matching 115

event="event",
method="km")

plot the curves
plot(adjsurv)

surv_matching Using Propensity-Score Matching to Calculate Adjusted Survival
Curves

Description

This page explains the details of estimating adjusted survival curves using propensity-score match-
ing for single event time-to-event data (method="matching" in the adjustedsurv function). All
regular arguments of the adjustedsurv function can be used. Additionally, the treatment_model
argument has to be specified in the adjustedsurv call. Further arguments specific to this method
are listed below.

Arguments

treatment_model

[required] Must be either a model object with variable as response variable
or a vector of previously estimated propensity scores.

gtol Tolerance at which estimated treatment assignment probabilities are truncated.
Every propensity score bigger than 1 - gtol is set to 1 - gtol and every propen-
sity score smaller than gtol is set to gtol. Useful when there are extreme
propensity scores close to 0 or 1. Defaults to 0.001.

... Further arguments passed to the Match function of the Matching Package.

Details

• Type of Adjustment: Requires a model describing the treatment assignment mechanism.
This must be either a glm object.

• Doubly-Robust: Estimates are not Doubly-Robust.

• Categorical groups: Only two groups in variable are allowed. Must be a factor variable
with exactly two levels.

• Approximate Variance: Calculations to approximate the variance and confidence intervals
are currently not available. Bootstrap confidence intervals can however be calculated with all
supported models. See ?adjustedsurv for more information on bootstrapping.

• Allowed Time Values: Allows both continuous and integer time.

• Bounded Estimates: Estimates are guaranteed to be bounded in the 0 to 1 probability range.

• Monotone Function: Estimates are guaranteed to be monotone.

116 surv_matching

• Dependencies: This method relies on the Matching package.

Using the estimated propensity score, the individual observations in the dataset are matched to
each other creating a new dataset in which the covariate distributions are balanced in respect to the
two groups defined by variable. A simple Kaplan-Meier estimator is then used to calculate the
confounder-adjusted survival curves. This corresponds to the method described in Austin (2014).
Details on the algorithm used for matching can be found in the documentation of the Matching
package.

We choose not to implement other matching based estimators (see Winnett & Sasieni (2002), Gal-
imberti et al. (2002) and Austin (2020)) because of the wide range of matching algorithms and
parameters. Trying to automate the matching process in a function like this would, in our opin-
ion, disrupt the workflow of the user while also encouraging suboptimal practices. We however
included this simple version of a matching estimator as a reference and to raise the awareness that
using matching is a valid method to obtain adjusted survival curves.

Simulation studies have shown that this particular method as implemented here is significantly less
efficient than other methods included in this R-Package. While it does produce unbiased estimates,
the variation in these estimates is very high. We suggest using one of the other available methods.

Value

Adds the following additional objects to the output of the adjustedsurv function:

• match_object: The object creates using the Match function.

• survfit_object: The survfit object fit on the matched data.

Author(s)

Robin Denz

References

Peter C. Austin (2014). "The Use of Propensity Score Methods with Survival or Time-To-Event
Outcomes: Reporting Measures of Effect Similar to those Used in Randomized Experiments". In:
Statistics in Medicine 33, pp. 1242-1258

Angela Winnett and Peter Sasieni (2002). "Adjusted Nelson-Aalen Estimates with Retrospective
Matching". In: Journal of the American Statistical Association 97.457, pp. 245-256

Stefania Galimberti, Peter Sasieni, and Maria Grazia Valsecchi (2002). "A Weighted Kaplan-Meier
Estimator for Matched Data with Application to the Comparison of Chemotherapy and Bone-
Marrow Transplant in Leukaemia". In: Statistics in Medicine 21, pp. 3847-3864

Peter C. Austin, Neal Thomas, and Donald B. Rubin (2020). "Covariate-Adjusted Survival Anal-
yses in Propensity-Score Matched Samples: Imputing Potential Time- To-Event Outcomes". In:
Statistical Methods in Medical Research 29.3, pp. 728-751

See Also

Match, survfit

surv_ostmle 117

Examples

library(adjustedCurves)
library(Matching)

set.seed(42)

simulate some data as example
sim_dat <- sim_confounded_surv(n=50, max_t=1.2)
sim_dat$group <- as.factor(sim_dat$group)

estimate treatment assignment model
glm_mod <- glm(group ~ x1 + x2 + x4 + x6, data=sim_dat, family="binomial")

calculate adjusted survival curves
adjsurv <- adjustedsurv(data=sim_dat,

variable="group",
ev_time="time",
event="event",
method="matching",
treatment_model=glm_mod)

Alternatively, supply the propensity score directly
Here we use the logistic regression to calculate it, so we get
exactly the same result. The propensity score can be calculated in
any other way in practice, allowing flexibility
ps_score <- glm_mod$fitted.values

adjsurv <- adjustedsurv(data=sim_dat,
variable="group",
ev_time="time",
event="event",
method="matching",
treatment_model=ps_score)

plot the curves
plot(adjsurv)

surv_ostmle One-Step Targeted Maximum Likelihood Estimation Survival Curves

Description

This page explains the details of estimating adjusted survival curves using the one-step targeted
maximum likelihood methodology for single event time-to-event data (method="ostmle" in the
adjustedsurv function). All regular arguments of the adjustedsurv function can be used. Addi-
tionally, the SL.ftime, SL.ctime and SL.trt arguments have to be specified in the adjustedsurv
call. Further arguments specific to this method are listed below.

118 surv_ostmle

Arguments

adjust_vars A character vector of column names specifying variables to be used when mod-
eling the outcome, treatment and censoring mechanism. Can be set to NULL
(default), in which case all covariates are used. See details and examples.

SL.ftime [required] A character vector or list specification to be passed to the SL.library
option in the call to SuperLearner for the outcome regression. See?SuperLearner
for more information on how to specify valid SuperLearner libraries. It is ex-
pected that the wrappers used in the library will play nicely with the input vari-
ables, which will be called "trt", names(adjust_vars), and "t".

SL.ctime [required] A character vector or list specification to be passed to the SL.library
argument in the call to SuperLearner for the estimate of the conditional hazard
for censoring. It is expected that the wrappers used in the library will play nicely
with the input variables, which will be called "trt" and names(adjust_vars).

SL.trt [required] A character vector or list specification to be passed to the SL.library
argument in the call to SuperLearner for the estimate of the conditional proba-
bility of treatment. It is expected that the wrappers used in the library will play
nicely with the input variables, which will be names(adjust_vars).

epsilon The size of the updating step. See MOSS for more details.
max_num_iteration

The maximum number of iterations used in the updating step of the One-Step
estimator.

psi_moss_method

Specifies the method used to make the pooled updating step. Can be either
"l1" (Ridge Regression), "l2" (LASSO) or "glm". For more information see
documentation of MOSS.

tmle_tolerance The tolerance used to determine whether the TMLE estimator converged or not.
See MOSS for more details.

gtol Tolerance at which estimated treatment assignment probabilities are truncated.
Every propensity score bigger than 1 - gtol is set to 1 - gtol and every propen-
sity score smaller than gtol is set to gtol. Useful when there are extreme
propensity scores close to 0 or 1.

Details

• Type of Adjustment: Adjustments are made based on the treatment assignment mechanism,
the outcome mechanism and the censoring mechanism. No models can be supplied. The
adjustments are made based on SuperLearner libraries.

• Doubly-Robust: Estimates are Doubly-Robust.

• Categorical groups: Currently only two groups in variable are allowed. Must be a factor
variable with exactly two levels.

• Approximate Variance: Calculations to approximate the variance and confidence intervals
are available.

• Allowed Time Values: Allows only integer time.

• Bounded Estimates: Estimates are guaranteed to be bounded in the 0 to 1 probability range.

surv_ostmle 119

• Monotone Function: Estimates are guaranteed to be monotone.
• Dependencies: This method relies on the survtmle, MASS, SuperLearner, R6 and tidyr

packages. The code was taken directly from the MOSS package, which is currently not avail-
able on CRAN. Tiny changes were made but it’s essentially the same. You do not have to
install it but it can be installed using the following code:
devtools::install_github("wilsoncai1992/MOSS").
If you use this method, please cite the MOSS package.

Standard TMLE is a two-step procedure. First, initial estimates for the treatment-assignment and
the outcome-mechanisms are made using loss-based learning. This is implemented here using
the SuperLearner methodology. In the next step, the estimates obtained by using the outcome-
mechanism model are fluctuated based on information from the treatment-assignment model. If the
outcome model is already consistent, this fluctuation is very small and the estimates stay consistent.
If the outcome model is biased, the fluctuation removes the bias whenever the treatment assign-
ment model is consistent. This process is iterative and continues until a threshold is hit (either the
maximum number of iterations is reached or the bias is smaller than the specified tolerance, see
?survtmle).

In contrast to the estimator implemented in the tmle method, the OSTMLE uses a LASSO or Ridge
Regression model in the targeting step to fluctuate the initial estimates. Details can be found in Cai
and van der Laan (2020).

As has been shown in multiple studies by Mark J. van der Laan and colleagues, this method has
some desirable mathematical properties and generally performs well in appropriate scenarios. The
biggest problem is however, that it is only defined for discrete (integer-valued) survival times. Sim-
ply discretizing continuous survival times only works to a certain extent and is generally discour-
aged.

When the sample size is large or many time points are of interest, this method will also be *very*
slow. While possible to run, bootstrapping would take an enormous amount of time and is therefore
discouraged.

Value

Adds the following additional objects to the output of the adjustedsurv function:

• psi_moss_hazard_0: The iterated MOSS objects for the control group.
• psi_moss_hazard_1: The iterated MOSS objects for the treatment group.

Author(s)

The wrapper function was written by Robin Denz, the MOSS package (which this wrapper is based
on) was written by Wilson Cai. See <https://github.com/wilsoncai1992/MOSS/> for more details.

References

Weixin Cai and Mark J. van der Laan (2020). "One-Step Targeted Maximum Likelihood Estimation
for Time-To-Event Outcomes". In: Biometrics 76, pp. 722–733

David Benkeser, Marco Carone, and Peter B. Gilbert (2018). "Improved Estimation of the Cumu-
lative Incidence of Rare Outcomes". In: Statistics in Medicine 37.2, pp. 280–293

Megan S. Schuler and Sherri Rose (2017). "Targeted Maximum Likelihood Estimation for Causal
Inference in Observational Studies". In: American Journal of Epidemiology 186.1, pp. 65-73

120 surv_strat_amato

See Also

survtmle, MOSS, SuperLearner

Examples

not run because any meaningful example is too slow

library(adjustedCurves)

simulate some data as example
sim_dat <- sim_confounded_surv(n=50, max_t=1.2)
sim_dat$group <- as.factor(sim_dat$group)

only works with integer time, only unbiased with small amounts of them
sim_dat$time <- round(sim_dat$time*15) + 1

calculate adjusted survival curves, using SuperLearner but only
using the SL.glm library. In practice you would want to use more than
that. See ?MOSS and ?survtmle
adjsurv <- adjustedsurv(data=sim_dat,

variable="group",
ev_time="time",
event="event",
method="ostmle",
adjust_vars=c("x1", "x2", "x3", "x4", "x5", "x6"),
SL.ftime=c("SL.glm"),
SL.ctim=c("SL.glm"),
SL.trt=c("SL.glm"))

plot the curves
plot(adjsurv)

surv_strat_amato Adjusted Survival Curves for Categorical Confounders using the
Method by Amato (1988)

Description

This page explains the details of estimating confounder-adjusted survival curves using a weighted
average of stratified Kaplan-Meier estimates using the method described in Amato (1988) (method="strat_amato"
in the adjustedsurv function). All regular arguments of the adjustedsurv function can be used.
Additionally, the adjust_vars argument has to be specified in the adjustedsurv call. Further
arguments specific to this method are listed below.

Arguments

adjust_vars [required] A single string or character vector specifying column names in data
for which the survival curves should be adjusted for. The variables specified can

surv_strat_amato 121

be integers, factors or characters. Only categorical variables can be used with
this method. See details.

reference A data.frame to be used as a reference population when weighting the sur-
vival curves or NULL (default). If NULL the survival curves are weighted in
reference to the full sample supplied using data, regardless of the variable
level. If a data.frame is supplied it needs to include all variables specified in
adjust_vars.

Details

• Type of Adjustment: The survival curves are adjusted by calculating a weighted version
of the Kaplan-Meier estimator, based on stratification on covariates. This only works for
categorical confounders. See below for more information.

• Doubly-Robust: Estimates are not Doubly-Robust.

• Categorical groups: Any number of levels in variable are allowed. Must be a factor vari-
able.

• Approximate Variance: Calculations to approximate the variance and confidence intervals
are not available. Bootstrap confidence intervals can however be calculated with all supported
models. See ?adjustedsurv for more information on bootstrapping.

• Allowed Time Values: Allows both continuous and integer time.

• Bounded Estimates: Estimates are guaranteed to be bounded in the 0 to 1 probability range.

• Monotone Function: Estimates are guaranteed to be monotone.

• Dependencies: This method has no dependencies.

This is one of the older adjustment methods described in the literature. It only works for categorical
confounders. If adjustments for continuous confounders are desired, the user needs to explicitly
categorize the continuous confounders. It is recommended to use one of the other methods imple-
mented in this package in that case. The method works exactly as described in Amato (1988). The
number of people at risk and the number of events in each stratum at each point in time is reweighted
and combined into a single estimate for each treatment. The reference data used to calculate the
weights is the pooled sample (data) by default, but external reference data can be supplied. A more
detailed description can be found in the original article.

If a character vector is supplied in the adjust_vars argument, every possible combination of the
variables specified in adjust_vars will be used as strata. This might lead to problems when there
are strata with very little data in them. In contrast to other stratification based methods however,
this method allows the estimation of adjusted survival curves up to the last point in time at which
there is at least one individual at risk in the pooled sample.

Value

Adds the following additional objects to the output of the adjustedsurv function:

• Pjs: The weights used for each stratum.

Author(s)

Robin Denz

122 surv_strat_cupples

References

David A. Amato (1988). "A Generalized Kaplan-Meier Estimator for Heterogenous Populations".
In: Communications in Statistics: Theory and Methods 17.1, pp. 263-286

See Also

adjustedsurv

Examples

library(adjustedCurves)
library(survival)

set.seed(42)

simulate some data as example
sim_dat <- sim_confounded_surv(n=50, max_t=1.2)
sim_dat$group <- as.factor(sim_dat$group)

adjust survival curves for some categorical confounders
adjsurv <- adjustedsurv(data=sim_dat,

variable="group",
ev_time="time",
event="event",
method="strat_amato",
adjust_vars=c("x1", "x3"),
conf_int=FALSE)

plot the curves
plot(adjsurv)

surv_strat_cupples Adjusted Survival Curves for Categorical Confounders using the
Method by Cupples et al. (1995)

Description

This page explains the details of estimating confounder-adjusted survival curves using a weighted
average of stratified Kaplan-Meier estimates using the method described in Cupples et al. (1995)
(method="strat_cupples" in the adjustedsurv function). All regular arguments of the adjustedsurv
function can be used. Additionally, the adjust_vars argument has to be specified in the adjustedsurv
call. Further arguments specific to this method are listed below.

Arguments

adjust_vars [required] A single string or character vector specifying column names in data
for which the survival curves should be adjusted for. The variables specified can
be integers, factors or characters. Only categorical variables can be used with
this method. See details.

surv_strat_cupples 123

reference A data.frame to be used as a reference population when weighting the sur-
vival curves or NULL (default). If NULL the survival curves are weighted in
reference to the full sample supplied using data, regardless of the variable
level. If a data.frame is supplied it needs to include all variables specified in
adjust_vars.

Details

• Type of Adjustment: The survival curves are adjusted by taking a weighted average of strat-
ified Kaplan-Meier estimates. This only works for categorical confounders. See below for
more information.

• Doubly-Robust: Estimates are not Doubly-Robust.

• Categorical groups: Any number of levels in variable are allowed. Must be a factor vari-
able.

• Approximate Variance: Calculations to approximate the variance and confidence intervals
are not available. Bootstrap confidence intervals can however be calculated with all supported
models. See ?adjustedsurv for more information on bootstrapping.

• Allowed Time Values: Allows both continuous and integer time.

• Bounded Estimates: Estimates are guaranteed to be bounded in the 0 to 1 probability range.

• Monotone Function: Estimates are guaranteed to be monotone.

• Dependencies: This method relies on the survival package.

This is one of the older adjustment methods described in the literature. It only works for categorical
confounders. If adjustments for continuous confounders are desired, the user needs to explicitly
categorize the continuous confounders. It is recommended to use one of the other methods im-
plemented in this package in that case. The method works exactly as described in Cupples et al.
(1995). First, stratified Kaplan-Meier estimates for each possible combination of all supplied vari-
ables (variable + adjust_vars) are calculated. If for example a dichotomous variable with the
levels "Treatment" and "Control" is supplied in conjunction with a single dichotomous confounder
"Sex" with the levels "male" and "female", this method would calculate four Kaplan-Meier curves
(Treatment + male, Treatment + female, Control + male, Control + female). Next a simple weighted
average of these survival curves is taken per level in variable, where the weights are the number of
occurrences of each confounder level in the reference data. The reference data is the pooled sample
by default, but external reference data can be used. A more detailed description can be found in the
original article.

If a character vector is supplied in the adjust_vars argument, the Kaplan-Meier estimates are
created for each combination of all supplied variables. If the sample size is small and/or there are
many levels in these variables, the estimates can become unstable or undefined. Because it is a
weighted average of Kaplan-Meier curves, estimates for this method are only defined for points in
time with a valid Kaplan-Meier estimate in all strata. Continuing the example from above, if the
Kaplan-Meier curve of the strata "Treatment + male" only extends to t = 100, it will be impossible
to estimate the adjusted survival curve for t > 100 using this method.

Value

Adds no additional objects to the output of the adjustedsurv function.

124 surv_strat_nieto

Author(s)

Robin Denz

References

A. Kramar and C. Com-Nougué (1990). "Estimation des courbes de survie ajustées". In: Revue d
Épidémiologie et de Santé Publique 38.2, pp. 149-152

L. Adrienne Cupples, David R. Gragnon, Ratna Ramaswamy, and Ralph D’Agostino (1995). "Age-
Adjusted Survival Curves with Application in the Framingham Study". In: Statistics in Medicine
14, pp. 1731-1744

See Also

adjustedsurv

Examples

library(adjustedCurves)
library(survival)

set.seed(42)

simulate some data as example
sim_dat <- sim_confounded_surv(n=50, max_t=1.2)
sim_dat$group <- as.factor(sim_dat$group)

adjust survival curves for some categorical confounders
adjsurv <- adjustedsurv(data=sim_dat,

variable="group",
ev_time="time",
event="event",
method="strat_cupples",
adjust_vars=c("x1", "x3"),
conf_int=FALSE)

plot the curves
plot(adjsurv)

surv_strat_nieto Adjusted Survival Curves for Categorical Confounders using the
Method by Gregory (1988) and Nieto & Coresh (1996)

Description

This page explains the details of estimating confounder-adjusted survival curves using a weighted
average of stratified Kaplan-Meier estimates using the method described in Gregory (1988) and
Nieto & Coresh (1996) (method="strat_gregory_nieto" in the adjustedsurv function). All
regular arguments of the adjustedsurv function can be used. Additionally, the adjust_vars
argument has to be specified in the adjustedsurv call. Further arguments specific to this method
are listed below.

surv_strat_nieto 125

Arguments

adjust_vars [required] A single string or character vector specifying column names in data
for which the survival curves should be adjusted for. The variables specified can
be integers, factors or characters. Only categorical variables can be used with
this method. See details.

Details

• Type of Adjustment: The survival curves are adjusted by taking a weighted average of strat-
ified Kaplan-Meier estimates. This only works for categorical confounders. See below for
more information.

• Doubly-Robust: Estimates are not Doubly-Robust.

• Categorical groups: Any number of levels in variable are allowed. Must be a factor vari-
able.

• Approximate Variance: Calculations to approximate the variance and confidence intervals
are available. The estimator for the variance can be found in the appendix of Nieto & Coresh
(1996).

• Allowed Time Values: Allows both continuous and integer time.

• Bounded Estimates: Estimates are guaranteed to be bounded in the 0 to 1 probability range.

• Monotone Function: Estimates are guaranteed to be monotone.

• Dependencies: This method has no additional dependencies.

This is one of the older adjustment methods described in the literature. It only works for categorical
confounders. If adjustments for continuous confounders are desired, the user needs to explicitly
categorize the continuous confounders. It is recommended to use one of the other methods imple-
mented in this package in that case. The method works exactly as described in Gregory (1988).
Similarly to the method described in strat_cupples, Kaplan-Meier estimates are calculated for each
strata and a weighted average is taken. The only difference is a slightly different weighting scheme.
Weights are calculated using the pooled sample (data). In contrast to other stratification based
methods, external reference data is not allowed. A more detailed description can be found in the
original article.

If a character vector is supplied in the adjust_vars argument, the Kaplan-Meier estimates are
created for each combination of all supplied variables. If the sample size is small and/or there are
many levels in these variables, the estimates can become unstable or undefined. Because it is a
weighted average of Kaplan-Meier curves, estimates for this method are only defined for points in
time with a valid Kaplan-Meier estimate in all strata. For example, if the Kaplan-Meier curve of
the strata "Treatment + male" only extends to t = 100, it will be impossible to estimate the adjusted
survival curve for t > 100 using this method.

Nieto & Coresh (1996) proposed a very similar method. The only major difference is that Nieto &
Coresh (1996) used the control group as reference population, which results in a different causal
estimand. Using the method by Nieto & Coresh (1996) with the full data as reference population as
described in Gregory (1988) produces exactly the same results. Nieto & Coresh (1996) seemed to
be unaware of the method by Gregory (1988), as they did not mention it in their article. In contrast
to Gregory (1988) they however also proposed an approximate estimator of the variance, which
is implemented here. Their formulation of this estimator also allows the use of time-dependent
covariates and left-truncated data. This is however not implemented here.

126 surv_tmle

Value

Adds no additional objects to the output of the adjustedsurv function.

Author(s)

Robin Denz

References

W. M. Gregory (1988). "Adjusting Survival Curves for Imbalances in Prognostic Factors". In:
British Journal of Cancer 58, pp. 202-204

F. Javier Nieto and Josef Coresh (1996). "Adjusting Survival Curves for Confounders: A Review
and a New Method". In: American Journal of Epidemiology 143.10, pp. 1059-1068

See Also

adjustedsurv

Examples

library(adjustedCurves)
library(survival)

set.seed(42)

simulate some data as example
sim_dat <- sim_confounded_surv(n=50, max_t=1.2)
sim_dat$group <- as.factor(sim_dat$group)

adjust survival curves for some categorical confounders
adjsurv <- adjustedsurv(data=sim_dat,

variable="group",
ev_time="time",
event="event",
method="strat_nieto",
adjust_vars=c("x1", "x3"),
conf_int=FALSE)

plot the curves
plot(adjsurv)

surv_tmle Targeted Maximum Likelihood Estimation for Adjusted Survival
Curves

surv_tmle 127

Description

This page explains the details of estimating adjusted survival curves using the targeted maximum
likelihood methodology for single event time-to-event data (method="tmle" in the adjustedsurv
function). All regular arguments of the adjustedsurv function can be used. Additionally, you have
to specify either SL.ftime or glm.ftime, SL.ctime or glm.ctime and SL.trt or glm.trt in the
adjustedsurv call. Further arguments specific to this method are listed below.

Arguments

adjust_vars A character vector of column names specifying variables to be used when mod-
eling the outcome, treatment and censoring mechanism. Can be set to NULL
(default), in which case all covariates are used. See details and examples.

SL.ftime A character vector or list specification to be passed to the SL.library option in
the call to SuperLearner for the outcome regression. See?SuperLearner for
more information on how to specify valid SuperLearner libraries. It is expected
that the wrappers used in the library will play nicely with the input variables,
which will be called "trt", names(adjust_vars), and "t".

SL.ctime A character vector or list specification to be passed to the SL.library argument
in the call to SuperLearner for the estimate of the conditional hazard for cen-
soring. It is expected that the wrappers used in the library will play nicely with
the input variables, which will be called "trt" and names(adjust_vars).

SL.trt A character vector or list specification to be passed to the SL.library argument
in the call to SuperLearner for the estimate of the conditional probability of
treatment. It is expected that the wrappers used in the library will play nicely
with the input variables, which will be names(adjust_vars).

glm.ftime A character specification of the right-hand side of the equation passed to the
formula option of a call to glm for the outcome regression. Ignored if SL.ftime
is not equal to NULL. Use "trt" to specify the treatment in this formula (see exam-
ples). The formula can additionally include any variables found in names(adjust_vars).

glm.ctime A character specification of the right-hand side of the equation passed to the
formula option of a call to glm for the estimate of the conditional hazard for
censoring. Ignored if SL.ctime is not equal to NULL. Use "trt" to specify the
treatment in this formula (see examples). The formula can additionally include
any variables found in names(adjust_vars).

glm.trt A character specification of the right-hand side of the equation passed to the
formula option of a call to glm for the estimate of the conditional probability of
treatment. Ignored if SL.trt is not equal to NULL. The formula can include any
variables found in names(adjust_vars).

... Additional arguments passed to survtmle.

Details

• Type of Adjustment: Adjustments are made based on the treatment assignment mechanism,
the outcome mechanism and the censoring mechanism. No models can be supplied. The
adjustments are made based on SuperLearner libraries or using the glm arguments.

• Doubly-Robust: Estimates are Doubly-Robust.

128 surv_tmle

• Categorical groups: Currently only two groups in variable are allowed. Must be a factor
variable with exactly two levels.

• Approximate Variance: Calculations to approximate the variance and confidence intervals
are available.

• Allowed Time Values: Allows only integer time.

• Bounded Estimates: Estimates are guaranteed to be bounded in the 0 to 1 probability range.

• Monotone Function: Estimates are not guaranteed to be monotone.

• Dependencies: This method relies on the survtmle and SuperLearner packages.

TMLE is a two-step procedure. First, initial estimates for the treatment-assignment and the outcome-
mechanisms are made using loss-based learning. This is implemented here using the SuperLearner
methodology. In the next step, the estimates obtained by using the outcome-mechanism model are
fluctuated based on information from the treatment-assignment model. If the outcome model is
already consistent, this fluctuation is very small and the estimates stay consistent. If the outcome
model is biased, the fluctuation removes the bias whenever the treatment assignment model is con-
sistent. This process is iterative and continues until a threshold is hit (either the maximum number
of iterations is reached or the bias is smaller than the specified tolerance, see ?survtmle).

As has been shown in multiple studies by Mark J. van der Laan and colleagues, this method has
some desirable mathematical properties and generally performs well in appropriate scenarios. The
biggest problem is however, that it is only defined for discrete (integer-valued) survival times. Sim-
ply discretizing continuous survival times only works to a certain extent and is generally discour-
aged.

When the sample size is large or many time points are of interest, this method will also be *very*
slow. While possible to run, bootstrapping would take an enormous amount of time and is therefore
discouraged.

Value

Adds the following additional objects to the output of the adjustedsurv function:

• survtmle_object: The object created using the survtmle function.

• survtmle.timepoints_object: The object created using the survtmle.timepoints func-
tion.

Author(s)

The wrapper function was written by Robin Denz, the survtmle package (which this wrapper is
based on) was written by David Benkeser and Nima Hejazi. See ?survtmle for more details.

References

Ori M. Stitelman and Mark J. van der Laan (2010). "Collaborative Targeted Maximum Likelihood
for Time to Event Data". In: The International Journal of Biostatistics 6.1

David Benkeser, Marco Carone, and Peter B. Gilbert (2018). "Improved Estimation of the Cumu-
lative Incidence of Rare Outcomes". In: Statistics in Medicine 37.2, pp. 280-293

Megan S. Schuler and Sherri Rose (2017). "Targeted Maximum Likelihood Estimation for Causal
Inference in Observational Studies". In: American Journal of Epidemiology 186.1, pp. 65-73

surv_tmle 129

See Also

survtmle, SuperLearner, glm

Examples

not run because any meaningful example is too slow

library(adjustedCurves)
library(survtmle)

set.seed(42)

simulate some data as example
sim_dat <- sim_confounded_surv(n=30, max_t=1.2)
sim_dat$group <- as.factor(sim_dat$group)

only works with integer time, only unbiased with small amounts of them
sim_dat$time <- round(sim_dat$time*15) + 1

calculate adjusted survival curves, using SuperLearner but only
using the SL.glm library. In practice you would want to use more than
that. See ?survtmle
adjsurv <- adjustedsurv(data=sim_dat,

variable="group",
ev_time="time",
event="event",
method="tmle",
adjust_vars=c("x1", "x2", "x3", "x4", "x5", "x6"),
SL.ftime=c("SL.glm"),
SL.ctim=c("SL.glm"),
SL.trt=c("SL.glm"))

plot the curves
plot(adjsurv)

Index

aalen, 62
aalen_johansen, 7
adjusted_curve_diff, 15, 17, 77
adjusted_curve_test, 15, 18, 21, 26, 30, 73,

77, 85
adjusted_rmst, 15, 25, 73, 79–81
adjusted_rmtl, 8, 15, 27, 28, 80, 82–84
adjusted_surv_quantile, 15, 32
adjustedcif, 3, 5, 19, 24, 28, 29, 31, 36, 37,

40, 42, 45, 48, 50, 53, 55, 58, 60, 61,
63, 64, 66, 74, 77, 82, 84, 85

adjustedCurves-package, 3
adjustedsurv, 3, 11, 19, 24, 26–29, 31,

33–35, 58, 60, 62, 68, 71, 73, 74, 77,
79, 81, 82, 84, 85, 90, 93, 96, 99,
102–104, 107, 110, 113, 115, 117,
120, 122, 124, 126, 127

aiptw, 6, 13
aiptw_pseudo, 6, 13
as_ggsurvplot_df, 34, 71
ate, 37–39, 42–44, 48, 49, 61, 63, 91, 92, 96,

97

bs, 41, 47, 95, 101

cif_aalen_johansen, 35
cif_aiptw, 37
cif_aiptw_pseudo, 39
cif_direct, 42, 61
cif_direct_pseudo, 45
cif_iptw, 48
cif_iptw_pseudo, 50
cif_matching, 53
cif_tmle, 55
comp.risk, 61
cox.aalen, 62
coxph, 38, 39, 62, 91, 92, 97, 106
cph, 62
CSC, 6, 37–39, 43, 44, 46, 47, 58, 61
CSC_MI, 44, 58

cuminc, 36, 37, 54

direct, 6, 12
direct_pseudo, 6, 12

emp_lik, 13

FGR, 6, 42–44, 59–61
FGR_MI, 44, 59

geese, 40, 41, 46, 47, 93, 95, 100, 101
geom_stepribbon, 66, 71, 77
ggplot, 66, 71, 77, 81, 84
glm, 38–40, 48–50, 53, 57, 62, 91–93, 105,

108, 111, 115, 129

iptw, 6
iptw_cox, 13, 108
iptw_km, 12, 105
iptw_pseudo, 6, 13
isoreg, 66, 71

jackknife, 41, 47, 95, 101

km, 13

Match, 54, 115, 116
matching, 6, 13
mice, 58, 59
models_cif_direct, 42–44, 61
models_surv_direct, 62, 96, 97
multinom, 40, 48–50, 93, 105, 108, 111

ns, 41, 47, 95, 101

ols, 62
ostmle, 13

pecCforest, 62
pecRpart, 62
penalizedS3, 62
plot, 6, 8, 12, 14, 22

130

INDEX 131

plot.adjustedcif, 8, 63
plot.adjustedsurv, 15, 35, 67
plot.curve_test, 24, 72
plot_curve_diff, 8, 14, 18, 19, 22, 74
plot_rmst_curve, 27, 28, 79
plot_rmtl_curve, 30, 31, 80, 82
predictRisk, 61, 63
predictSurvProb, 63
print.curve_test, 85
prodlim, 51, 61, 62, 112
psm, 62

ranger, 62
riskRegression, 61, 62

selectCox, 62
sim_confounded_crisk, 85
sim_confounded_surv, 88
strat_amato, 13
strat_cupples, 13, 125
strat_nieto, 13
SuperLearner, 56, 57, 118, 120, 127, 129
surv_aiptw, 90
surv_aiptw_pseudo, 93
surv_direct, 62, 96
surv_direct_pseudo, 99
surv_emp_lik, 102
surv_iptw_cox, 104
surv_iptw_km, 107
surv_iptw_pseudo, 110
surv_km, 113
surv_matching, 115
surv_ostmle, 117
surv_strat_amato, 120
surv_strat_cupples, 122
surv_strat_nieto, 124
surv_tmle, 126
survfit, 114, 116
survfit.coxph, 106
survtmle, 57, 120, 127–129

tmle, 7, 13, 119

weightit, 50, 51, 104, 106, 107, 109, 110, 112

	adjustedCurves-package
	adjustedcif
	adjustedsurv
	adjusted_curve_diff
	adjusted_curve_test
	adjusted_rmst
	adjusted_rmtl
	adjusted_surv_quantile
	as_ggsurvplot_df
	cif_aalen_johansen
	cif_aiptw
	cif_aiptw_pseudo
	cif_direct
	cif_direct_pseudo
	cif_iptw
	cif_iptw_pseudo
	cif_matching
	cif_tmle
	CSC_MI
	FGR_MI
	models_cif_direct
	models_surv_direct
	plot.adjustedcif
	plot.adjustedsurv
	plot.curve_test
	plot_curve_diff
	plot_rmst_curve
	plot_rmtl_curve
	print.curve_test
	sim_confounded_crisk
	sim_confounded_surv
	surv_aiptw
	surv_aiptw_pseudo
	surv_direct
	surv_direct_pseudo
	surv_emp_lik
	surv_iptw_cox
	surv_iptw_km
	surv_iptw_pseudo
	surv_km
	surv_matching
	surv_ostmle
	surv_strat_amato
	surv_strat_cupples
	surv_strat_nieto
	surv_tmle
	Index

