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as.data.table.orsf_summary_uni

Coerce to data.table

Description

Convert an ’orsf_summary’ object into a data.table object.

Usage

## S3 method for class 'orsf_summary_uni'
as.data.table(x, ...)

Arguments

x an object of class ’orsf_summary_uni’

... not used

Value

a data.table
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Examples

library(data.table)

object <- orsf(pbc_orsf, Surv(time, status) ~ . - id)

smry <- orsf_summarize_uni(object, n_variables = 3)

as.data.table(smry)

orsf Oblique Random Survival Forest (ORSF)

Description

Fit an oblique random survival forest

Usage

orsf(
data,
formula,
control = orsf_control_fast(),
weights = NULL,
n_tree = 500,
n_split = 5,
n_retry = 3,
mtry = NULL,
leaf_min_events = 1,
leaf_min_obs = 5,
split_min_events = 5,
split_min_obs = 10,
split_min_stat = 3.841459,
oobag_pred_type = "surv",
oobag_pred_horizon = NULL,
oobag_eval_every = n_tree,
oobag_fun = NULL,
importance = "anova",
group_factors = TRUE,
tree_seeds = NULL,
attach_data = TRUE,
no_fit = FALSE,
na_action = "fail",
verbose_progress = FALSE,
...

)
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orsf_train(object)

Arguments

data a data.frame, tibble, or data.table that contains the relevant variables.

formula (formula) The response on the left hand side should include a time variable,
followed by a status variable, and may be written inside a call to Surv (see
examples). The terms on the right are names of predictor variables.

control (orsf_control) An object returned from one of the orsf_control functions:

• orsf_control_fast (the default) uses a single iteration of Newton Raphson
scoring to identify a linear combination of predictors.

• orsf_control_cph uses Newton Raphson scoring until a convergence criteria
is met.

• orsf_control_net uses glmnet to identify linear combinations of predictors,
similar to Jaeger (2019).

• orsf_control_custom allows the user to apply their own function to create
linear combinations of predictors.

weights (numeric vector) Optional. If given, this input should have length equal to
nrow(data). Values in weights are treated like replication weights, i.e., a value
of 2 is the same thing as having 2 observations in data, each containing a copy
of the corresponding person’s data.
Use weights cautiously, as orsf will count the number of observations and
events prior to growing a node for a tree, so higher values in weights will lead
to deeper trees.

n_tree (integer) the number of trees to grow. Default is n_tree = 500.

n_split (integer) the number of cut-points assessed when splitting a node in decision
trees. Default is n_split = 5.

n_retry (integer) when a node can be split, but the current linear combination of inputs is
unable to provide a valid split, orsf will try again with a new linear combination
based on a different set of randomly selected predictors, up to n_retry times.
Default is n_retry = 3. Set n_retry = 0 to prevent any retries.

mtry (integer) Number of predictors randomly included as candidates for splitting a
node. The default is the smallest integer greater than the square root of the num-
ber of total predictors, i.e., mtry = ceiling(sqrt(number of predictors))

leaf_min_events

(integer) minimum number of events in a leaf node. Default is leaf_min_events
= 1

leaf_min_obs (integer) minimum number of observations in a leaf node. Default is leaf_min_obs
= 5

split_min_events

(integer) minimum number of events required in a node to consider splitting it.
Default is split_min_events = 5

split_min_obs (integer) minimum number of observations required in a node to consider split-
ting it. Default is split_min_obs = 10.
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split_min_stat (double) minimum test statistic required to split a node. Default is 3.841459 for
the log-rank test, which is roughly a p-value of 0.05

oobag_pred_type

(character) The type of out-of-bag predictions to compute while fitting the en-
semble. Valid options are

• ’none’ : don’t compute out-of-bag predictions
• ’risk’ : predict the probability of having an event at or before oobag_pred_horizon.
• ’surv’ : 1 - risk.
• ’chf’ : predict cumulative hazard function

Mortality (’mort’)is not implemented for out of bag predictions yet, but it will
be in a future update.

oobag_pred_horizon

(numeric) A numeric value indicating what time should be used for out-of-bag
predictions. Default is the median of the observed times, i.e., oobag_pred_horizon
= median(time).

oobag_eval_every

(integer) The out-of-bag performance of the ensemble will be checked every
oobag_eval_every trees. So, if oobag_eval_every = 10, then out-of-bag per-
formance is checked after growing the 10th tree, the 20th tree, and so on. Default
is oobag_eval_every = n_tree.

oobag_fun (function) to be used for evaluating out-of-bag prediction accuracy every oobag_eval_every
trees. When oobag_fun = NULL (the default), Harrell’s C-statistic (1982) is used
to evaluate accuracy. if you use your own oobag_fun note the following:

• oobag_fun should have two inputs: y_mat and s_vec

• y_mat is a two column matrix with first column named ’time’, second
named ’status’

• s_vec is a numeric vector containing predicted survival probabilities.
• oobag_fun should return a numeric output of length 1

For more details, see the out-of-bag vignette.

importance (character) Indicate method for variable importance:

• ’none’: no variable importance is computed.
• ’anova’: compute analysis of variance (ANOVA) importance
• ’negate’: compute negation importance
• ’permute’: compute permutation importance

For details on these methods, see orsf_vi.

group_factors (logical) Only relevant if variable importance is being estimated. if TRUE, the
importance of factor variables will be reported overall by aggregating the impor-
tance of individual levels of the factor. If FALSE, the importance of individual
factor levels will be returned.

tree_seeds (integer vector) Optional. if specified, random seeds will be set using the values
in tree_seeds[i] before growing tree i. Two forests grown with the same
number of trees and the same seeds will have the exact same out-of-bag samples,
making out-of-bag error estimates of the forests more comparable. If NULL (the
default), no seeds are set during the training process.

https://docs.ropensci.org/aorsf/articles/oobag.html#user-supplied-out-of-bag-evaluation-functions
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attach_data (logical) if TRUE, a copy of the training data will be attached to the output. This is
helpful if you plan on using functions like orsf_pd_oob or orsf_summarize_uni
to interpret the forest using its training data. Default is TRUE.

no_fit (logical) if TRUE, model fitting steps are defined and saved, but training is not
initiated. The object returned can be directly submitted to orsf_train() so
long as attach_data is TRUE.

na_action (character) what should happen when data contains missing values (i.e., NA
values). Valid options are:

• ’fail’ : an error is thrown if data contains NA values
• ’omit’ : rows in data with incomplete data will be dropped
• ’impute_meanmode’ : missing values for continuous and categorical vari-

ables in data will be imputed using the mean and mode, respectively. Note
that is this option is selected and attach_data is TRUE, the data attached to
the output will be the imputed version of data.

verbose_progress

(logical) if TRUE, progress messages are printed in the console.

... Further arguments passed to or from other methods (not currently used).

object an untrained ’aorsf’ object, created by setting no_fit = TRUE in orsf().

Details

This function is based on and similar to the ORSF function in the obliqueRSF R package. The
primary difference is that this function runs much faster. The speed increase is attributable to better
management of memory (i.e., no unnecessary copies of inputs) and using a Newton Raphson scoring
algorithm to identify linear combinations of inputs rather than performing penalized regression
using routines in glmnet.The modified Newton Raphson scoring algorithm that this function applies
is an adaptation of the C++ routine developed by Terry M. Therneau that fits Cox proportional
hazards models (see survival::coxph() and more specifically survival::coxph.fit()).

Value

an accelerated oblique RSF object (aorsf)

Details on inputs

formula:

• The response in formula can be a survival object as returned by the Surv function, but can
also just be the time and status variables. I.e., Surv(time, status) ~ . works just like time
+ status ~ .

• A . symbol on the right hand side is short-hand for using all variables in data (omitting those
on the left hand side of formula) as predictors.

• The order of variables in the left hand side matters. i.e., writing status + time ~ . will make
orsf assume your status variable is actually the time variable.

• The response variable can be a survival object stored in data. For example, y ~ . is a valid
formula if data$y inherits from the Surv class.
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• Although you can fit an oblique random survival forest with 1 predictor variable, your for-
mula should have at least 2 predictors. The reason for this recommendation is that a linear
combination of predictors is trivial if there is only one predictor.

mtry:

The mtry parameter may be temporarily reduced to ensure there are at least 2 events per predictor
variable. This occurs when using orsf_control_cph because coefficients in the Newton Raphson
scoring algorithm may become unstable when the number of covariates is greater than or equal to
the number of events. This reduction does not occur when using orsf_control_net.

oobag_fun:

If oobag_fun is specified, it will be used in to compute negation importance or permutation impor-
tance, but it will not have any role for ANOVA importance.

What is an oblique decision tree?

Decision trees are developed by splitting a set of training data into two new subsets, with the goal of
having more similarity within the new subsets than between them. This splitting process is repeated
on the resulting subsets of data until a stopping criterion is met. When the new subsets of data are
formed based on a single predictor, the decision tree is said to be axis-based because the splits of
the data appear perpendicular to the axis of the predictor. When linear combinations of variables
are used instead of a single variable, the tree is oblique because the splits of the data are neither
parallel nor at a right angle to the axis

Figure : Decision trees for classification with axis-based splitting (left) and oblique splitting (right).
Cases are orange squares; controls are purple circles. Both trees partition the predictor space defined
by variables X1 and X2, but the oblique splits do a better job of separating the two classes.

What is a random forest?

Random forests are collections of de-correlated decision trees. Predictions from each tree are ag-
gregated to make an ensemble prediction for the forest. For more details, see Breiman at el, 2001.

Training, out-of-bag error, and testing

In random forests, each tree is grown with a bootstrapped version of the training set. Because
bootstrap samples are selected with replacement, each bootstrapped training set contains about two-
thirds of instances in the original training set. The ’out-of-bag’ data are instances that are not in the
bootstrapped training set. Each tree in the random forest can make predictions for its out-of-bag
data, and the out-of-bag predictions can be aggregated to make an ensemble out-of-bag prediction.
Since the out-of-bag data are not used to grow the tree, the accuracy of the ensemble out-of-bag
predictions approximate the generalization error of the random forest. Generalization error refers to
the error of a random forest’s predictions when it is applied to predict outcomes for data that were
not used to train it, i.e., testing data.

Missing data

Data passed to aorsf functions are not allowed to have missing values. A user should impute missing
values using an R package with that purpose, such as recipes or mlr3pipelines.
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Examples

First we load some relevant packages

set.seed(329730)
suppressPackageStartupMessages({
library(aorsf)
library(survival)
library(tidymodels)
library(tidyverse)
library(randomForestSRC)
library(ranger)
library(riskRegression)
library(obliqueRSF)

})

The entry-point into aorsf is the standard call to orsf():

fit <- orsf(pbc_orsf, Surv(time, status) ~ . - id)

printing fit provides quick descriptive summaries:

fit

## ---------- Oblique random survival forest
##
## Linear combinations: Accelerated
## N observations: 276
## N events: 111
## N trees: 500
## N predictors total: 17
## N predictors per node: 5
## Average leaves per tree: 24
## Min observations in leaf: 5
## Min events in leaf: 1
## OOB stat value: 0.84
## OOB stat type: Harrell's C-statistic
## Variable importance: anova
##
## -----------------------------------------

Model control:
For these examples we will make use of the orsf_control_ functions to build and compare
models based on their out-of-bag predictions. We will also standardize the out-of-bag samples
using the input argument tree_seeds

Accelerated linear combinations:
The accelerated ORSF ensemble is the default because it has a nice balance of computational
speed and prediction accuracy. It runs a single iteration of Newton Raphson scoring on the Cox
partial likelihood function to find linear combinations of predictors.
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fit_accel <- orsf(pbc_orsf,
control = orsf_control_fast(),
formula = Surv(time, status) ~ . - id,
tree_seeds = 1:500)

Linear combinations with Cox regression:
orsf_control_cph runs Cox regression in each non-terminal node of each survival tree, using
the regression coefficients to create linear combinations of predictors:
fit_cph <- orsf(pbc_orsf,

control = orsf_control_cph(),
formula = Surv(time, status) ~ . - id,
tree_seeds = 1:500)

Linear combinations with penalized cox regression:
orsf_control_net runs penalized Cox regression in each non-terminal node of each survival
tree, using the regression coefficients to create linear combinations of predictors. This can be
really helpful if you want to do feature selection within the node, but it is a lot slower than the
other options.
fit_net <- orsf(pbc_orsf,

# select 3 predictors out of 5 to be used in
# each linear combination of predictors.
control = orsf_control_net(df_target = 3),
formula = Surv(time, status) ~ . - id,
tree_seeds = 1:500)

Linear combinations with your own function:
Let’s make two customized functions to identify linear combinations of predictors.

• The first uses random coefficients
f_rando <- function(x_node, y_node, w_node){
matrix(runif(ncol(x_node)), ncol=1)
}

• The second derives coefficients from principal component analysis.
f_pca <- function(x_node, y_node, w_node) {

# estimate two principal components.
pca <- stats::prcomp(x_node, rank. = 2)
# use the second principal component to split the node
pca$rotation[, 2L, drop = FALSE]

}

We can plug these functions into orsf_control_custom(), and then pass the result into orsf():
fit_rando <- orsf(pbc_orsf,

Surv(time, status) ~ . - id,
control = orsf_control_custom(beta_fun = f_rando),
tree_seeds = 1:500)

fit_pca <- orsf(pbc_orsf,
Surv(time, status) ~ . - id,
control = orsf_control_custom(beta_fun = f_pca),
tree_seeds = 1:500)
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So which fit seems to work best in this example? Let’s find out by evaluating the out-of-bag
survival predictions.
risk_preds <- list(
accel = 1 - fit_accel$pred_oobag,
cph = 1 - fit_cph$pred_oobag,
net = 1 - fit_net$pred_oobag,
rando = 1 - fit_rando$pred_oobag,
pca = 1 - fit_pca$pred_oobag

)

sc <- Score(object = risk_preds,
formula = Surv(time, status) ~ 1,
data = pbc_orsf,
summary = 'IPA',
times = fit_accel$pred_horizon)

The AUC values, from highest to lowest:
sc$AUC$score[order(-AUC)]

## model times AUC se lower upper
## 1: net 1788 0.9107925 0.02116880 0.8693024 0.9522826
## 2: accel 1788 0.9106308 0.02178112 0.8679406 0.9533210
## 3: cph 1788 0.9072690 0.02120139 0.8657150 0.9488229
## 4: pca 1788 0.8915619 0.02335399 0.8457889 0.9373349
## 5: rando 1788 0.8900944 0.02228487 0.8464168 0.9337719

And the indices of prediction accuracy:
sc$Brier$score[order(-IPA), .(model, times, IPA)]

## model times IPA
## 1: accel 1788 0.4891448
## 2: cph 1788 0.4687734
## 3: net 1788 0.4652211
## 4: rando 1788 0.4011573
## 5: pca 1788 0.3845911
## 6: Null model 1788 0.0000000

From inspection,
• the PCA approach has the highest discrimination, showing that you can do very well with

just a two line custom function.
• the accelerated ORSF has the highest index of prediction accuracy
• the random coefficients generally don’t do that well.

tidymodels:
This example uses tidymodels functions but stops short of using an official tidymodels work-
flow. I am working on getting aorsf pulled into the censored package and I will update this with
real workflows if that happens!

Comparing ORSF with other learners:
Start with a recipe to pre-process data
imputer <- recipe(pbc_orsf, formula = time + status ~ .) %>%
step_impute_mean(all_numeric_predictors()) %>%
step_impute_mode(all_nominal_predictors())
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Next create a 10-fold cross validation object and pre-process the data:
# 10-fold cross validation; make a container for the pre-processed data
analyses <- vfold_cv(data = pbc_orsf, v = 10) %>%
mutate(recipe = map(splits, ~prep(imputer, training = training(.x))),

train = map(recipe, juice),
test = map2(splits, recipe, ~bake(.y, new_data = testing(.x))))

analyses

## # 10-fold cross-validation
## # A tibble: 10 x 5
## splits id recipe train test
## <list> <chr> <list> <list> <list>
## 1 <split [248/28]> Fold01 <recipe> <tibble [248 x 20]> <tibble [28 x 20]>
## 2 <split [248/28]> Fold02 <recipe> <tibble [248 x 20]> <tibble [28 x 20]>
## 3 <split [248/28]> Fold03 <recipe> <tibble [248 x 20]> <tibble [28 x 20]>
## 4 <split [248/28]> Fold04 <recipe> <tibble [248 x 20]> <tibble [28 x 20]>
## 5 <split [248/28]> Fold05 <recipe> <tibble [248 x 20]> <tibble [28 x 20]>
## 6 <split [248/28]> Fold06 <recipe> <tibble [248 x 20]> <tibble [28 x 20]>
## 7 <split [249/27]> Fold07 <recipe> <tibble [249 x 20]> <tibble [27 x 20]>
## 8 <split [249/27]> Fold08 <recipe> <tibble [249 x 20]> <tibble [27 x 20]>
## 9 <split [249/27]> Fold09 <recipe> <tibble [249 x 20]> <tibble [27 x 20]>
## 10 <split [249/27]> Fold10 <recipe> <tibble [249 x 20]> <tibble [27 x 20]>

Define functions for a ‘workflow’ with randomForestSRC, ranger, and aorsf.
rfsrc_wf <- function(train, test, pred_horizon){

# rfsrc does not like tibbles, so cast input data into data.frames
train <- as.data.frame(train)
test <- as.data.frame(test)

rfsrc(formula = Surv(time, status) ~ ., data = train) %>%
predictRisk(newdata = test, times = pred_horizon) %>%
as.numeric()

}

ranger_wf <- function(train, test, pred_horizon){

ranger(Surv(time, status) ~ ., data = train) %>%
predictRisk(newdata = test, times = pred_horizon) %>%
as.numeric()

}

aorsf_wf <- function(train, test, pred_horizon){

train %>%
orsf(Surv(time, status) ~ .,) %>%
predict(new_data = test, pred_horizon = pred_horizon) %>%
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as.numeric()

}

Run the ‘workflows’ on each fold:

# 5 year risk prediction
ph <- 365.25 * 5

results <- analyses %>%
transmute(test,

pred_aorsf = map2(train, test, aorsf_wf, pred_horizon = ph),
pred_rfsrc = map2(train, test, rfsrc_wf, pred_horizon = ph),
pred_ranger = map2(train, test, ranger_wf, pred_horizon = ph))

Next unnest each column to get back a tibble with all of the testing data and predictions.

results <- results %>%
unnest(everything())

glimpse(results)

## Rows: 276
## Columns: 23
## $ id <int> 2, 16, 27, 66, 79, 97, 107, 116, 136, 137, 158, 189, 193, ~
## $ trt <fct> d_penicill_main, placebo, placebo, d_penicill_main, d_peni~
## $ age <dbl> 56.44627, 40.44353, 54.43943, 46.45311, 46.51608, 71.89322~
## $ sex <fct> f, f, f, m, f, m, f, f, f, f, f, f, f, f, f, f, f, f, f, f~
## $ ascites <fct> 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0~
## $ hepato <fct> 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1~
## $ spiders <fct> 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1~
## $ edema <fct> 0, 0, 0.5, 0, 0, 0.5, 0, 0.5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0~
## $ bili <dbl> 1.1, 0.7, 21.6, 1.4, 0.8, 2.0, 0.6, 3.0, 0.8, 1.1, 3.4, 1.~
## $ chol <int> 302, 204, 175, 427, 315, 420, 212, 458, 263, 399, 450, 360~
## $ albumin <dbl> 4.14, 3.66, 3.31, 3.70, 4.24, 3.26, 4.03, 3.63, 3.35, 3.60~
## $ copper <int> 54, 28, 221, 105, 13, 62, 10, 74, 27, 79, 32, 52, 267, 76,~
## $ alk.phos <dbl> 7394.8, 685.0, 3697.4, 1909.0, 1637.0, 3196.0, 648.0, 1588~
## $ ast <dbl> 113.52, 72.85, 101.91, 182.90, 170.50, 77.50, 71.30, 106.9~
## $ trig <int> 88, 58, 168, 171, 70, 91, 77, 382, 69, 152, 118, 164, 157,~
## $ platelet <int> 221, 198, 80, 123, 426, 344, 316, 438, 206, 344, 313, 256,~
## $ protime <dbl> 10.6, 10.8, 12.0, 11.0, 10.9, 11.4, 17.1, 9.9, 9.8, 10.1, ~
## $ stage <ord> 3, 3, 4, 3, 3, 3, 1, 3, 2, 2, 2, 3, 4, 4, 2, 2, 3, 3, 4, 4~
## $ time <int> 4500, 3672, 77, 4191, 3707, 611, 3388, 3336, 3098, 2990, 2~
## $ status <dbl> 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0~
## $ pred_aorsf <dbl> 0.21650571, 0.01569191, 0.93095617, 0.36737089, 0.12868206~
## $ pred_rfsrc <dbl> 0.15202784, 0.01104486, 0.81913559, 0.20173550, 0.13806608~
## $ pred_ranger <dbl> 0.11418963, 0.02130315, 0.77073269, 0.22130305, 0.18419972~

And finish by aggregating the predictions and computing performance in the testing data. Note
that I am computing one statistic for all predictions instead of computing one statistic for each
fold. This approach is fine when you have smaller testing sets and/or small event counts.

Score(
object = list(aorsf = results$pred_aorsf,
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rfsrc = results$pred_rfsrc,
ranger = results$pred_ranger),

formula = Surv(time, status) ~ 1,
data = results,
summary = 'IPA',
times = ph

)

##
## Metric AUC:
##
## Results by model:
##
## model times AUC lower upper
## 1: aorsf 1826 90.1 85.7 94.6
## 2: rfsrc 1826 89.4 85.0 93.7
## 3: ranger 1826 90.1 85.9 94.3
##
## Results of model comparisons:
##
## times model reference delta.AUC lower upper p
## 1: 1826 rfsrc aorsf -0.7 -2.3 0.8 0.4
## 2: 1826 ranger aorsf -0.0 -1.7 1.6 1.0
## 3: 1826 ranger rfsrc 0.7 -0.4 1.8 0.2

##
## NOTE: Values are multiplied by 100 and given in %.

## NOTE: The higher AUC the better.

##
## Metric Brier:
##
## Results by model:
##
## model times Brier lower upper IPA
## 1: Null model 1826.25 20.5 18.1 22.9 0.0
## 2: aorsf 1826.25 11.1 8.8 13.4 45.8
## 3: rfsrc 1826.25 12.0 9.8 14.1 41.6
## 4: ranger 1826.25 11.8 9.7 13.9 42.5
##
## Results of model comparisons:
##
## times model reference delta.Brier lower upper p
## 1: 1826.25 aorsf Null model -9.4 -12.1 -6.6 2.423961e-11
## 2: 1826.25 rfsrc Null model -8.5 -10.8 -6.2 2.104905e-13
## 3: 1826.25 ranger Null model -8.7 -11.0 -6.4 1.802417e-13
## 4: 1826.25 rfsrc aorsf 0.9 -0.0 1.7 5.277607e-02
## 5: 1826.25 ranger aorsf 0.7 -0.1 1.5 1.008730e-01
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## 6: 1826.25 ranger rfsrc -0.2 -0.7 0.3 4.550782e-01

##
## NOTE: Values are multiplied by 100 and given in %.

## NOTE: The lower Brier the better, the higher IPA the better.

From inspection,
• aorsf obtained slightly higher discrimination (AUC)
• aorsf obtained higher index of prediction accuracy (IPA)
• Way to go, aorsf

mlr3 pipelines:
Warning: this code may or may not run depending on your current version of mlr3proba. First
we load some additional mlr3 libraries.

suppressPackageStartupMessages({
library(mlr3verse)
library(mlr3proba)
library(mlr3extralearners)
library(mlr3viz)
library(mlr3benchmark)
})

Next we’ll define some tasks for our learners to engage with.

# Mayo Clinic Primary Biliary Cholangitis Data
task_pbc <-
TaskSurv$new(
id = 'pbc',
backend = select(pbc_orsf, -id) %>%
mutate(stage = as.numeric(stage)),

time = "time",
event = "status"
)

# Veteran's Administration Lung Cancer Trial
data(veteran, package = "randomForestSRC")

task_veteran <-
TaskSurv$new(
id = 'veteran',
backend = veteran,
time = "time",
event = "status"
)

# NKI 70 gene signature
data_nki <- OpenML::getOMLDataSet(data.id = 1228)
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task_nki <-
TaskSurv$new(
id = 'nki',
backend = data_nki$data,
time = "time",
event = "event"
)

# Gene Expression-Based Survival Prediction in Lung Adenocarcinoma
data_lung <- OpenML::getOMLDataSet(data.id = 1245)

task_lung <-
TaskSurv$new(
id = 'nki',
backend = data_lung$data %>%
mutate(OS_event = as.numeric(OS_event) -1),

time = "OS_years",
event = "OS_event"
)

# Chemotherapy for Stage B/C colon cancer
# (there are two rows per person, one for death
# and the other for recurrence, hence the two tasks)

task_colon_death <-
TaskSurv$new(
id = 'colon_death',
backend = survival::colon %>%
filter(etype == 2) %>%
drop_na() %>%
# drop id, redundant variables
select(-id, -study, -node4, -etype),
mutate(OS_event = as.numeric(OS_event) -1),

time = "time",
event = "status"
)

task_colon_recur <-
TaskSurv$new(
id = 'colon_death',
backend = survival::colon %>%
filter(etype == 1) %>%
drop_na() %>%
# drop id, redundant variables
select(-id, -study, -node4, -etype),
mutate(OS_event = as.numeric(OS_event) -1),

time = "time",
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event = "status"
)

# putting them all together
tasks <- list(task_pbc,

task_veteran,
task_nki,
task_lung,
task_colon_death,
task_colon_recur,
# add a few more pre-made ones
tsk("actg"),
tsk('gbcs'),
tsk('grace'),
tsk("unemployment"),
tsk("whas"))

Now we can make a benchmark designed to compare our three favorite learners:

# Learners with default parameters
learners <- lrns(c("surv.ranger", "surv.rfsrc", "surv.aorsf"))

# Brier (Graf) score, c-index and training time as measures
measures <- msrs(c("surv.graf", "surv.cindex", "time_train"))

# Benchmark with 5-fold CV
design <- benchmark_grid(

tasks = tasks,
learners = learners,
resamplings = rsmps("cv", folds = 5)

)

benchmark_result <- benchmark(design)

bm_scores <- benchmark_result$score(measures, predict_sets = "test")

Let’s look at the overall results:

bm_scores %>%
select(task_id, learner_id, surv.graf, surv.cindex, time_train) %>%
group_by(learner_id) %>%
filter(!is.infinite(surv.graf)) %>%
summarize(
across(
.cols = c(surv.graf, surv.cindex, time_train),
.fns = mean,
na.rm = TRUE
)

)

## # A tibble: 3 x 4



orsf_control_cph 17

## learner_id surv.graf surv.cindex time_train
## <chr> <dbl> <dbl> <dbl>
## 1 surv.aorsf 0.151 0.729 0.345
## 2 surv.ranger 0.167 0.706 2.54
## 3 surv.rfsrc 0.156 0.715 0.783

From inspection,

• aorsf appears to have a higher expected value for ‘surv.cindex’ (higher is better)
• aorsf appears to have a lower expected value for ‘surv.graf’ (lower is better)
• aorsf has the lowest training time.

the lower training time for aorsf is likely due to the fact that there are many unique event times
in the benchmark tasks. ranger and rfsrc create grids of time points based on each unique event
time in each leaf of each decision tree, whereas aorsf also uses a grid but restricts it to the unique
event times among observations in the current leaf.
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orsf_control_cph Cox regression ORSF control

Description

Use the coefficients from a proportional hazards model to create linear combinations of predictor
variables while fitting an orsf model.

Usage

orsf_control_cph(method = "efron", eps = 1e-09, iter_max = 20, ...)
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Arguments

method (character) a character string specifying the method for tie handling. If there are
no ties, all the methods are equivalent. Valid options are ’breslow’ and ’efron’.
The Efron approximation is the default because it is more accurate when dealing
with tied event times and has similar computational efficiency compared to the
Breslow method.

eps (double) When using Newton Raphson scoring to identify linear combinations
of inputs, iteration continues in the algorithm until the relative change in the log
partial likelihood is less than eps, or the absolute change is less than sqrt(eps).
Must be positive. A default value of 1e-09 is used for consistency with sur-
vival::coxph.control.

iter_max (integer) iteration continues until convergence (see eps above) or the number of
attempted iterations is equal to iter_max.

... Further arguments passed to or from other methods (not currently used).

Details

code from the survival package was modified to make this routine.

For more details on the Cox proportional hazards model, see coxph and/or Therneau and Grambsch
(2000).

Value

an object of class 'orsf_control', which should be used as an input for the control argument of
orsf.

References

Therneau T.M., Grambsch P.M. (2000) The Cox Model. In: Modeling Survival Data: Extending
the Cox Model. Statistics for Biology and Health. Springer, New York, NY. DOI: 10.1007/978-1-
4757-3294-8_3

See Also

linear combination control functions orsf_control_custom(), orsf_control_fast(), orsf_control_net()

Examples

orsf(data = pbc_orsf,
formula = Surv(time, status) ~ . - id,
control = orsf_control_cph())

https://github.com/therneau/survival/blob/master/src/coxfit6.c
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orsf_control_custom Custom ORSF control

Description

Custom ORSF control

Usage

orsf_control_custom(beta_fun, ...)

Arguments

beta_fun (function) a function to define coefficients used in linear combinations of pre-
dictor variables. beta_fun must accept three inputs named x_node, y_node and
w_node, and should expect the following types and dimensions:

• x_node (matrix; n rows, p columns)
• y_node (matrix; n rows, 2 columns)
• w_node (matrix; n rows, 1 column)

In addition, beta_fun must return a matrix with p rows and 1 column. If any of
these conditions are not met, orsf_control_custom() will let you know.

... Further arguments passed to or from other methods (not currently used).

Value

an object of class 'orsf_control', which should be used as an input for the control argument of
orsf.

Examples

Two customized functions to identify linear combinations of predictors are shown here.

• The first uses random coefficients

• The second derives coefficients from principal component analysis.

Random coefficients:
f_rando() is our function to get the random coefficients:

f_rando <- function(x_node, y_node, w_node){
matrix(runif(ncol(x_node)), ncol=1)
}

We can plug f_rando into orsf_control_custom(), and then pass the result into orsf():
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library(aorsf)

fit_rando <- orsf(pbc_orsf,
Surv(time, status) ~ . - id,
control = orsf_control_custom(beta_fun = f_rando),
n_tree = 500)

fit_rando

## ---------- Oblique random survival forest
##
## Linear combinations: Custom user function
## N observations: 276
## N events: 111
## N trees: 500
## N predictors total: 17
## N predictors per node: 5
## Average leaves per tree: 23
## Min observations in leaf: 5
## Min events in leaf: 1
## OOB stat value: 0.82
## OOB stat type: Harrell's C-statistic
## Variable importance: anova
##
## -----------------------------------------

Principal components:
Follow the same steps as above, starting with the custom function:

f_pca <- function(x_node, y_node, w_node) {

# estimate two principal components.
pca <- stats::prcomp(x_node, rank. = 2)
# use the second principal component to split the node
pca$rotation[, 2L, drop = FALSE]

}

Then plug the function into orsf_control_custom() and pass the result into orsf():

fit_pca <- orsf(pbc_orsf,
Surv(time, status) ~ . - id,
control = orsf_control_custom(beta_fun = f_pca),
n_tree = 500)

Evaluate:
How well do our two customized ORSFs do? Let’s compute their indices of prediction accuracy
based on out-of-bag predictions:

library(riskRegression)
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## riskRegression version 2022.09.23

library(survival)

risk_preds <- list(rando = 1 - fit_rando$pred_oobag,
pca = 1 - fit_pca$pred_oobag)

sc <- Score(object = risk_preds,
formula = Surv(time, status) ~ 1,
data = pbc_orsf,
summary = 'IPA',
times = fit_pca$pred_horizon)

The PCA ORSF does quite well! (higher IPA is better)

sc$Brier

##
## Results by model:
##
## model times Brier lower upper IPA
## 1: Null model 1788 20.479 18.090 22.868 0.000
## 2: rando 1788 12.381 10.175 14.588 39.541
## 3: pca 1788 12.496 10.476 14.515 38.983
##
## Results of model comparisons:
##
## times model reference delta.Brier lower upper p
## 1: 1788 rando Null model -8.098 -10.392 -5.804 4.558033e-12
## 2: 1788 pca Null model -7.983 -9.888 -6.078 2.142713e-16
## 3: 1788 pca rando 0.114 -0.703 0.932 7.838255e-01

##
## NOTE: Values are multiplied by 100 and given in %.

## NOTE: The lower Brier the better, the higher IPA the better.

See Also

linear combination control functions orsf_control_cph(), orsf_control_fast(), orsf_control_net()

orsf_control_fast Accelerated ORSF control

Description

Accelerated ORSF control
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Usage

orsf_control_fast(method = "efron", do_scale = TRUE, ...)

Arguments

method (character) a character string specifying the method for tie handling. If there are
no ties, all the methods are equivalent. Valid options are ’breslow’ and ’efron’.
The Efron approximation is the default because it is more accurate when dealing
with tied event times and has similar computational efficiency compared to the
Breslow method.

do_scale (logical) if TRUE, values of predictors will be scaled prior to each instance of
Newton Raphson scoring, using summary values from the data in the current
node of the decision tree.

... Further arguments passed to or from other methods (not currently used).

Details

code from the survival package was modified to make this routine.

Adjust do_scale at your own risk. Setting do_scale = FALSE will reduce computation time but
will also make the orsf model dependent on the scale of your data, which is why the default value
is TRUE. It would be a good idea to center and scale your predictors prior to running orsf() if you
plan on setting do_scale = FALSE.

Value

an object of class 'orsf_control', which should be used as an input for the control argument of
orsf.

See Also

linear combination control functions orsf_control_cph(), orsf_control_custom(), orsf_control_net()

Examples

orsf(data = pbc_orsf,
formula = Surv(time, status) ~ . - id,
control = orsf_control_fast())

https://github.com/therneau/survival/blob/master/src/coxfit6.c
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orsf_control_net Penalized Cox regression ORSF control

Description

Penalized Cox regression ORSF control

Usage

orsf_control_net(alpha = 1/2, df_target = NULL, ...)

Arguments

alpha (double) The elastic net mixing parameter. A value of 1 gives the lasso penalty,
and a value of 0 gives the ridge penalty. If multiple values of alpha are given,
then a penalized model is fit using each alpha value prior to splitting a node.

df_target (integer) Preferred number of variables used in a linear combination.
... Further arguments passed to or from other methods (not currently used).

Details

df_target has to be less than mtry, which is a separate argument in orsf that indicates the number
of variables chosen at random prior to finding a linear combination of those variables.

Value

an object of class 'orsf_control', which should be used as an input for the control argument of
orsf.

References

Simon N, Friedman J, Hastie T, Tibshirani R. Regularization paths for Cox’s proportional hazards
model via coordinate descent. Journal of statistical software 2011 Mar; 39(5):1. DOI: 10.18637/jss.v039.i05

See Also

linear combination control functions orsf_control_cph(), orsf_control_custom(), orsf_control_fast()

Examples

# orsf_control_net() is considerably slower than orsf_control_cph(),
# The example uses n_tree = 25 so that my examples run faster,
# but you should use at least 500 trees in applied settings.

orsf(data = pbc_orsf,
formula = Surv(time, status) ~ . - id,
n_tree = 25,
control = orsf_control_net())
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orsf_ice_oob ORSF Individual Conditional Expectations

Description

Compute individual conditional expectations for an ORSF model. Unlike partial dependence, which
shows the expected prediction as a function of one or multiple predictors, individual conditional
expectations (ICE) show the prediction for an individual observation as a function of a predictor.
You can compute individual conditional expectations three ways using a random forest:

• using in-bag predictions for the training data

• using out-of-bag predictions for the training data

• using predictions for a new set of data

See examples for more details

Usage

orsf_ice_oob(
object,
pred_spec,
pred_horizon = NULL,
pred_type = "risk",
expand_grid = TRUE,
boundary_checks = TRUE,
...

)

orsf_ice_inb(
object,
pred_spec,
pred_horizon = NULL,
pred_type = "risk",
expand_grid = TRUE,
boundary_checks = TRUE,
...

)

orsf_ice_new(
object,
pred_spec,
new_data,
pred_horizon = NULL,
pred_type = "risk",
na_action = "fail",
expand_grid = TRUE,
boundary_checks = TRUE,
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...
)

Arguments

object (orsf_fit) a trained oblique random survival forest (see orsf).

pred_spec (named list or data.frame).

• If pred_spec is a named list, Each item in the list should be a vector of
values that will be used as points in the partial dependence function. The
name of each item in the list should indicate which variable will be modified
to take the corresponding values.

• If pred_spec is a data.frame, columns will indicate variable names, val-
ues will indicate variable values, and partial dependence will be computed
using the inputs on each row.

pred_horizon (double) a value or vector indicating the time(s) that predictions will be cal-
ibrated to. E.g., if you were predicting risk of incident heart failure within
the next 10 years, then pred_horizon = 10. pred_horizon can be NULL if
pred_type is 'mort', since mortality predictions are aggregated over all event
times

pred_type (character) the type of predictions to compute. Valid options are

• ’risk’ : probability of having an event at or before pred_horizon.
• ’surv’ : 1 - risk.
• ’chf’: cumulative hazard function
• ’mort’: mortality prediction

expand_grid (logical) if TRUE, partial dependence will be computed at all possible combina-
tions of inputs in pred_spec. If FALSE, partial dependence will be computed for
each variable in pred_spec, separately.

boundary_checks

(logical) if TRUE, pred_spec will be checked to make sure the requested values
are between the 10th and 90th percentile in the object’s training data. If FALSE,
these checks are skipped.

... Further arguments passed to or from other methods (not currently used).

new_data a data.frame, tibble, or data.table to compute predictions in.

na_action (character) what should happen when new_data contains missing values (i.e.,
NA values). Valid options are:

• ’fail’ : an error is thrown if new_data contains NA values
• ’omit’ : rows in new_data with incomplete data will be dropped

Value

a data.table containing individual conditional expectations for the specified variable(s) at the speci-
fied prediction horizon(s).
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Examples

Begin by fitting an ORSF ensemble

library(aorsf)

set.seed(329)

fit <- orsf(data = pbc_orsf, formula = Surv(time, status) ~ . - id)

fit

## ---------- Oblique random survival forest
##
## Linear combinations: Accelerated
## N observations: 276
## N events: 111
## N trees: 500
## N predictors total: 17
## N predictors per node: 5
## Average leaves per tree: 25
## Min observations in leaf: 5
## Min events in leaf: 1
## OOB stat value: 0.84
## OOB stat type: Harrell's C-statistic
## Variable importance: anova
##
## -----------------------------------------

Use the ensemble to compute ICE values using out-of-bag predictions:

pred_spec <- list(bili = seq(1, 10, length.out = 25))

ice_oob <- orsf_ice_oob(fit, pred_spec, boundary_checks = FALSE)

ice_oob

## pred_horizon id_variable id_row bili pred
## 1: 1788 1 1 1 0.8935318
## 2: 1788 1 2 1 0.1025087
## 3: 1788 1 3 1 0.6959198
## 4: 1788 1 4 1 0.3465760
## 5: 1788 1 5 1 0.1105536
## ---
## 6896: 1788 25 272 10 0.4409361
## 6897: 1788 25 273 10 0.4493052
## 6898: 1788 25 274 10 0.4696659
## 6899: 1788 25 275 10 0.3892409
## 6900: 1788 25 276 10 0.4565133
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Much more detailed examples are given in the vignette

orsf_pd_oob ORSF partial dependence

Description

Compute partial dependence for an ORSF model. Partial dependence (PD) shows the expected
prediction from a model as a function of a single predictor or multiple predictors. The expectation
is marginalized over the values of all other predictors, giving something like a multivariable adjusted
estimate of the model’s prediction. You can compute partial dependence three ways using a random
forest:

• using in-bag predictions for the training data

• using out-of-bag predictions for the training data

• using predictions for a new set of data

See examples for more details

Usage

orsf_pd_oob(
object,
pred_spec,
pred_horizon = NULL,
pred_type = "risk",
expand_grid = TRUE,
prob_values = c(0.025, 0.5, 0.975),
prob_labels = c("lwr", "medn", "upr"),
boundary_checks = TRUE,
...

)

orsf_pd_inb(
object,
pred_spec,
pred_horizon = NULL,
pred_type = "risk",
expand_grid = TRUE,
prob_values = c(0.025, 0.5, 0.975),
prob_labels = c("lwr", "medn", "upr"),
boundary_checks = TRUE,
...

)

orsf_pd_new(
object,

https://docs.ropensci.org/aorsf/articles/pd.html#individual-conditional-expectations-ice
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pred_spec,
new_data,
pred_horizon = NULL,
pred_type = "risk",
na_action = "fail",
expand_grid = TRUE,
prob_values = c(0.025, 0.5, 0.975),
prob_labels = c("lwr", "medn", "upr"),
boundary_checks = TRUE,
...

)

Arguments

object (orsf_fit) a trained oblique random survival forest (see orsf).

pred_spec (named list or data.frame).

• If pred_spec is a named list, Each item in the list should be a vector of
values that will be used as points in the partial dependence function. The
name of each item in the list should indicate which variable will be modified
to take the corresponding values.

• If pred_spec is a data.frame, columns will indicate variable names, val-
ues will indicate variable values, and partial dependence will be computed
using the inputs on each row.

pred_horizon (double) a value or vector indicating the time(s) that predictions will be cal-
ibrated to. E.g., if you were predicting risk of incident heart failure within
the next 10 years, then pred_horizon = 10. pred_horizon can be NULL if
pred_type is 'mort', since mortality predictions are aggregated over all event
times

pred_type (character) the type of predictions to compute. Valid options are

• ’risk’ : probability of having an event at or before pred_horizon.
• ’surv’ : 1 - risk.
• ’chf’: cumulative hazard function
• ’mort’: mortality prediction

expand_grid (logical) if TRUE, partial dependence will be computed at all possible combina-
tions of inputs in pred_spec. If FALSE, partial dependence will be computed for
each variable in pred_spec, separately.

prob_values (numeric) a vector of values between 0 and 1, indicating what quantiles will be
used to summarize the partial dependence values at each set of inputs. prob_values
should have the same length as prob_labels. The quantiles are calculated based
on predictions from object at each set of values indicated by pred_spec.

prob_labels (character) a vector of labels with the same length as prob_values, with each
label indicating what the corresponding value in prob_values should be la-
belled as in summarized outputs. prob_labels should have the same length as
prob_values.
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boundary_checks

(logical) if TRUE, pred_spec will be checked to make sure the requested values
are between the 10th and 90th percentile in the object’s training data. If FALSE,
these checks are skipped.

... Further arguments passed to or from other methods (not currently used).

new_data a data.frame, tibble, or data.table to compute predictions in.

na_action (character) what should happen when new_data contains missing values (i.e.,
NA values). Valid options are:

• ’fail’ : an error is thrown if new_data contains NA values
• ’omit’ : rows in new_data with incomplete data will be dropped

Details

Partial dependence has a number of known limitations and assumptions that users should be aware
of (see Hooker, 2021). In particular, partial dependence is less intuitive when >2 predictors are
examined jointly, and it is assumed that the feature(s) for which the partial dependence is computed
are not correlated with other features (this is likely not true in many cases). Accumulated local
effect plots can be used (see here) in the case where feature independence is not a valid assumption.

Value

a data.table containing partial dependence values for the specified variable(s) at the specified pre-
diction horizon(s).

Examples

Begin by fitting an ORSF ensemble:

library(aorsf)

set.seed(329730)

index_train <- sample(nrow(pbc_orsf), 150)

pbc_orsf_train <- pbc_orsf[index_train, ]
pbc_orsf_test <- pbc_orsf[-index_train, ]

fit <- orsf(data = pbc_orsf_train,
formula = Surv(time, status) ~ . - id,
oobag_pred_horizon = 365.25 * 5)

Three ways to compute PD and ICE:
You can compute partial dependence and ICE three ways with aorsf:

• using in-bag predictions for the training data

pd_train <- orsf_pd_inb(fit, pred_spec = list(bili = 1:5))

pd_train

https://christophm.github.io/interpretable-ml-book/pdp.html#disadvantages-5
https://christophm.github.io/interpretable-ml-book/ale.html
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## pred_horizon bili mean lwr medn upr
## 1: 1826.25 1 0.2054232 0.01599366 0.0929227 0.8077278
## 2: 1826.25 2 0.2369077 0.02549869 0.1268457 0.8227315
## 3: 1826.25 3 0.2808514 0.05027265 0.1720280 0.8457834
## 4: 1826.25 4 0.3428065 0.09758988 0.2545869 0.8575243
## 5: 1826.25 5 0.3992909 0.16392752 0.3232681 0.8634269

• using out-of-bag predictions for the training data

pd_train <- orsf_pd_oob(fit, pred_spec = list(bili = 1:5))

pd_train

## pred_horizon bili mean lwr medn upr
## 1: 1826.25 1 0.2068300 0.01479443 0.08824123 0.8053317
## 2: 1826.25 2 0.2377046 0.02469718 0.12623031 0.8258154
## 3: 1826.25 3 0.2810546 0.04080813 0.18721220 0.8484846
## 4: 1826.25 4 0.3417839 0.09076851 0.24968438 0.8611884
## 5: 1826.25 5 0.3979925 0.16098228 0.32147532 0.8554402

• using predictions for a new set of data

pd_test <- orsf_pd_new(fit,
new_data = pbc_orsf_test,
pred_spec = list(bili = 1:5))

pd_test

## pred_horizon bili mean lwr medn upr
## 1: 1826.25 1 0.2510900 0.01631318 0.1872414 0.8162621
## 2: 1826.25 2 0.2807327 0.02903956 0.2269297 0.8332956
## 3: 1826.25 3 0.3247386 0.05860235 0.2841853 0.8481825
## 4: 1826.25 4 0.3850799 0.10741224 0.3405760 0.8588955
## 5: 1826.25 5 0.4394952 0.17572657 0.4050864 0.8657886

• in-bag partial dependence indicates relationships that the model has learned during training.
This is helpful if your goal is to interpret the model.

• out-of-bag partial dependence indicates relationships that the model has learned during train-
ing but using the out-of-bag data simulates application of the model to new data. if you want
to test your model’s reliability or fairness in new data but you don’t have access to a large
testing set.

• new data partial dependence shows how the model predicts outcomes for observations it has
not seen. This is helpful if you want to test your model’s reliability or fairness.

References

Giles Hooker, Lucas Mentch, Siyu Zhou. Unrestricted Permutation forces Extrapolation: Variable
Importance Requires at least One More Model, or There Is No Free Variable Importance. arXiv
e-prints 2021 Oct; arXiv-1905. URL: https://doi.org/10.48550/arXiv.1905.03151
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orsf_scale_cph Scale input data

Description

These functions are exported so that users may access internal routines that are used to scale inputs
when orsf_control_cph is used.

Usage

orsf_scale_cph(x_mat, w_vec = NULL)

orsf_unscale_cph(x_mat)

Arguments

x_mat (numeric matrix) a matrix with values to be scaled or unscaled. Note that
orsf_unscale_cph will only accept x_mat inputs that have an attribute con-
taining transform values, which are added automatically by orsf_scale_cph.

w_vec (numeric vector) an optional vector of weights. If no weights are supplied (the
default), all observations will be equally weighted. If supplied, w_vec must have
length equal to nrow(x_mat).

Details

The data are transformed by first subtracting the mean and then multiplying by the scale. An
inverse transform can be completed using orsf_unscale_cph or by dividing each column by the
corresponding scale and then adding the mean.

The values of means and scales are stored in an attribute of the output returned by orsf_scale_cph
(see examples)

Value

the scaled or unscaled x_mat.

Examples

x_mat <- as.matrix(pbc_orsf[, c('bili', 'age', 'protime')])

head(x_mat)

x_scaled <- orsf_scale_cph(x_mat)

head(x_scaled)

attributes(x_scaled) # note the transforms attribute
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x_unscaled <- orsf_unscale_cph(x_scaled)

head(x_unscaled)

# numeric difference in x_mat and x_unscaled should be practically 0
max(abs(x_mat - x_unscaled))

orsf_summarize_uni ORSF summary; univariate

Description

Summarize the univariate information from an ORSF object

Usage

orsf_summarize_uni(
object,
n_variables = NULL,
pred_horizon = NULL,
pred_type = "risk",
importance = "negate",
...

)

Arguments

object (orsf_fit) a trained oblique random survival forest (see orsf).
n_variables (integer) how many variables should be summarized? Setting this input to a

lower number will reduce computation time.
pred_horizon (double) a value or vector indicating the time(s) that predictions will be cal-

ibrated to. E.g., if you were predicting risk of incident heart failure within
the next 10 years, then pred_horizon = 10. pred_horizon can be NULL if
pred_type is 'mort', since mortality predictions are aggregated over all event
times

pred_type (character) the type of predictions to compute. Valid options are
• ’risk’ : probability of having an event at or before pred_horizon.
• ’surv’ : 1 - risk.
• ’chf’: cumulative hazard function
• ’mort’: mortality prediction

importance (character) Indicate method for variable importance:
• ’none’: no variable importance is computed.
• ’anova’: compute analysis of variance (ANOVA) importance
• ’negate’: compute negation importance
• ’permute’: compute permutation importance

For details on these methods, see orsf_vi.
... Further arguments passed to or from other methods (not currently used).
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Details

If pred_horizon is left unspecified, the median value of the time-to-event variable in object’s
training data will be used. It is recommended to always specify your own prediction horizon, as the
median time may not be an especially meaningful horizon to compute predicted risk values at.

If object already has variable importance values, you can safely bypass the computation of variable
importance in this function by setting importance = ’none’.

Value

an object of class ’orsf_summary’, which includes data on

• importance of individual predictors.

• expected values of predictions at specific values of predictors.

See Also

as.data.table.orsf_summary_uni

Examples

object <- orsf(pbc_orsf, Surv(time, status) ~ . - id)

# since anova importance was used to make object, we can
# safely say importance = 'none' and skip computation of
# variable importance while running orsf_summarize_uni

orsf_summarize_uni(object, n_variables = 3, importance = 'none')

# however, if we want to summarize object according to variables
# ranked by negation importance, we can compute negation importance
# within orsf_summarize_uni() as follows:

orsf_summarize_uni(object, n_variables = 3, importance = 'negate')

orsf_time_to_train Estimate training time

Description

Estimate training time

Usage

orsf_time_to_train(object, n_tree_subset = 50)
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Arguments

object an untrained aorsf object

n_tree_subset (integer) how many trees should be fit in order to estimate the time needed to
train object. The default value is 50, as this usually gives a good enough ap-
proximation.

Value

a difftime object.

Examples

# specify but do not train the model by setting no_fit = TRUE.
object <- orsf(pbc_orsf, Surv(time, status) ~ . - id,

n_tree = 500, no_fit = TRUE)

# grow 50 trees to approximate the time it will take to grow 500 trees
time_estimated <- orsf_time_to_train(object, n_tree_subset = 50)

print(time_estimated)

# let's see how close the approximation was
time_true_start <- Sys.time()
fit <- orsf_train(object)
time_true_stop <- Sys.time()

time_true <- time_true_stop - time_true_start

print(time_true)

# error
abs(time_true - time_estimated)

orsf_vi ORSF variable importance

Description

Estimate the importance of individual variables using oblique random survival forests.

Usage

orsf_vi(object, group_factors = TRUE, importance = NULL, oobag_fun = NULL, ...)

orsf_vi_negate(object, group_factors = TRUE, oobag_fun = NULL, ...)
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orsf_vi_permute(object, group_factors = TRUE, oobag_fun = NULL, ...)

orsf_vi_anova(object, group_factors = TRUE, ...)

Arguments

object (orsf_fit) a trained oblique random survival forest (see orsf).

group_factors (logical) if TRUE, the importance of factor variables will be reported overall by
aggregating the importance of individual levels of the factor. If FALSE, the im-
portance of individual factor levels will be returned.

importance (character) Indicate method for variable importance:

• ’anova’: compute analysis of variance (ANOVA) importance
• ’negate’: compute negation importance
• ’permute’: compute permutation importance

oobag_fun (function) to be used for evaluating out-of-bag prediction accuracy after negating
coefficients (if importance = ’negate’) or permuting the values of a predictor (if
importance = ’permute’)

• When oobag_fun = NULL (the default), Harrell’s C-statistic (1982) is used
to evaluate accuracy.

• if you use your own oobag_fun note the following:
– oobag_fun should have two inputs: y_mat and s_vec

– y_mat is a two column matrix with first column named ’time’, second
named ’status’

– s_vec is a numeric vector containing predicted survival probabilities.
– oobag_fun should return a numeric output of length 1
– the same oobag_fun should have been used when you created object

so that the initial value of out-of-bag prediction accuracy is consistent
with the values that will be computed while variable importance is es-
timated.

For more details, see the out-of-bag vignette.

... Further arguments passed to or from other methods (not currently used).

Details

When an orsf_fit object is fitted with importance = ’anova’, ’negate’, or ’permute’, the output
will have a vector of importance values based on the requested type of importance. However, you
may still want to call orsf_vi() on this output if you want to group factor levels into one overall
importance value.

orsf_vi() is a general purpose function to extract or compute variable importance estimates from
an 'orsf_fit' object (see orsf). orsf_vi_negate(), orsf_vi_permute(), and orsf_vi_anova()
are wrappers for orsf_vi(). The way these functions work depends on whether the object they
are given already has variable importance estimates in it or not (see examples).

https://docs.ropensci.org/aorsf/articles/oobag.html
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Value

orsf_vi functions return a named numeric vector.

• Names of the vector are the predictor variables used by object

• Values of the vector are the estimated importance of the given predictor.

The returned vector is sorted from highest to lowest value, with higher values indicating higher
importance.

Variable importance methods

negation importance: Each variable is assessed separately by multiplying the variable’s coeffi-
cients by -1 and then determining how much the model’s performance changes. The worse the
model’s performance after negating coefficients for a given variable, the more important the vari-
able. This technique is promising b/c it does not require permutation and it emphasizes variables
with larger coefficients in linear combinations, but it is also relatively new and hasn’t been studied
as much as permutation importance. See Jaeger, 2022 for more details on this technique.

permutation importance: Each variable is assessed separately by randomly permuting the vari-
able’s values and then determining how much the model’s performance changes. The worse the
model’s performance after permuting the values of a given variable, the more important the vari-
able. This technique is flexible, intuitive, and frequently used. It also has several known limitations

analysis of variance (ANOVA) importance: A p-value is computed for each coefficient in each
linear combination of variables in each decision tree. Importance for an individual predictor variable
is the proportion of times a p-value for its coefficient is < 0.01. This technique is very efficient
computationally, but may not be as effective as permutation or negation in terms of selecting signal
over noise variables. See Menze, 2011 for more details on this technique.

Examples

ANOVA importance:
The default variable importance technique, ANOVA, is calculated while you fit an ORSF ensem-
ble.

fit <- orsf(pbc_orsf, Surv(time, status) ~ . - id)

fit

## ---------- Oblique random survival forest
##
## Linear combinations: Accelerated
## N observations: 276
## N events: 111
## N trees: 500
## N predictors total: 17
## N predictors per node: 5
## Average leaves per tree: 25
## Min observations in leaf: 5
## Min events in leaf: 1
## OOB stat value: 0.84

https://arxiv.org/abs/2208.01129
https://christophm.github.io/interpretable-ml-book/feature-importance.html#disadvantages-9
https://link.springer.com/chapter/10.1007/978-3-642-23783-6_29
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## OOB stat type: Harrell's C-statistic
## Variable importance: anova
##
## -----------------------------------------

ANOVA is the default because it is fast, but it may not be as decisive as the permutation and
negation techniques for variable selection.

Raw VI values:
the ‘raw’ variable importance values can be accessed from the fit object

attr(fit, 'importance_values')

## edema_1 ascites_1 bili copper age albumin
## 0.41468531 0.34547820 0.27357335 0.19702602 0.17831563 0.17231851
## edema_0.5 protime chol stage sex_f spiders_1
## 0.16100917 0.15265823 0.14529486 0.13818084 0.13186813 0.12881052
## ast hepato_1 alk.phos trig platelet trt_placebo
## 0.12509496 0.11370348 0.10024752 0.09878683 0.08006941 0.06398488

these are ‘raw’ because values for factors have not been aggregated into a single value. Currently
there is one value for k-1 levels of a k level factor. For example, you can see edema_1 and
edema_0.5 in the importance values above because edema is a factor variable with levels of 0,
0.5, and 1.

Collapse VI across factor levels:
To get aggregated values across all levels of each factor,

• access the importance element from the orsf fit:

fit$importance

## ascites bili edema copper age albumin protime
## 0.34547820 0.27357335 0.26368761 0.19702602 0.17831563 0.17231851 0.15265823
## chol stage sex spiders ast hepato alk.phos
## 0.14529486 0.13818084 0.13186813 0.12881052 0.12509496 0.11370348 0.10024752
## trig platelet trt
## 0.09878683 0.08006941 0.06398488

• use orsf_vi() with group_factors set to TRUE (the default)

orsf_vi(fit)

## ascites bili edema copper age albumin protime
## 0.34547820 0.27357335 0.26368761 0.19702602 0.17831563 0.17231851 0.15265823
## chol stage sex spiders ast hepato alk.phos
## 0.14529486 0.13818084 0.13186813 0.12881052 0.12509496 0.11370348 0.10024752
## trig platelet trt
## 0.09878683 0.08006941 0.06398488

Note that you can make the default returned importance values ungrouped by setting group_factors
to FALSE in the orsf_vi functions or the orsf function.

Add VI to an ORSF:
You can fit an ORSF without VI, then add VI later
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fit_no_vi <- orsf(pbc_orsf,
Surv(time, status) ~ . - id,
importance = 'none')

# Note: you can't call orsf_vi_anova() on fit_no_vi because anova
# VI can only be computed while the forest is being grown.

orsf_vi_negate(fit_no_vi)

## bili copper age protime albumin
## 0.0717336945 0.0288601792 0.0253698687 0.0110960617 0.0100020838
## chol ascites spiders ast stage
## 0.0075015628 0.0060950198 0.0045321942 0.0044280058 0.0025526151
## edema sex hepato platelet alk.phos
## 0.0024856369 0.0015628256 0.0004688477 0.0003646593 -0.0007293186
## trig trt
## -0.0020316733 -0.0061471140

orsf_vi_permute(fit_no_vi)

## age bili copper albumin chol
## 1.109606e-02 1.083559e-02 7.032715e-03 5.157324e-03 4.636383e-03
## protime ascites spiders ast platelet
## 4.011252e-03 3.854970e-03 2.396333e-03 1.146072e-03 5.209419e-04
## alk.phos edema sex hepato trig
## 2.083767e-04 1.959734e-04 5.209419e-05 -4.688477e-04 -1.719108e-03
## trt
## -3.698687e-03

ORSF and VI all at once:
fit an ORSF and compute vi at the same time

fit_permute_vi <- orsf(pbc_orsf,
Surv(time, status) ~ . - id,
importance = 'permute')

# get the vi instantly (i.e., it doesn't need to be computed again)
orsf_vi_permute(fit_permute_vi)

## bili age copper stage ascites
## 0.0114086268 0.0094811419 0.0055219837 0.0043238175 0.0032298395
## albumin hepato protime ast edema
## 0.0031256512 0.0030214628 0.0029172744 0.0021358616 0.0019051588
## spiders chol alk.phos platelet trt
## 0.0017712023 0.0013023547 0.0008335070 -0.0009376954 -0.0016149198
## sex trig
## -0.0020837675 -0.0022921442

You can still get negation VI from this fit, but it needs to be computed

orsf_vi_negate(fit_permute_vi)
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## bili copper age protime albumin
## 0.0773598666 0.0272452594 0.0258387164 0.0115649094 0.0084392582
## sex chol ast ascites stage
## 0.0081787872 0.0074494686 0.0060429256 0.0058866431 0.0043238175
## hepato edema spiders platelet trig
## 0.0040112523 0.0027684339 0.0026047093 0.0005730360 0.0002083767
## trt alk.phos
## -0.0003125651 -0.0016149198
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orsf_vs Variable selection

Description

Variable selection

Usage

orsf_vs(object, n_predictor_min = 3, verbose_progress = FALSE)

Arguments

object (orsf_fit) a trained oblique random survival forest (see orsf).
n_predictor_min

(integer) the minimum number of predictors allowed
verbose_progress

(logical) not implemented yet. Should progress be printed to the console?

Details

tree_seeds should be specified in object so that each successive run of orsf will be evaluated in
the same out-of-bag samples as the initial run.
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Value

a data.table with four columns:

• n_predictors: the number of predictors used

• stat_value: the out-of-bag statistic

• predictors_included: the names of the predictors included

• predictor_dropped: the predictor selected to be dropped

Examples

object <- orsf(formula = time + status ~ .,
data = pbc_orsf,
n_tree = 25,
importance = 'anova',
tree_seeds = 1:25)

orsf_vs(object)

pbc_orsf Mayo Clinic Primary Biliary Cholangitis Data

Description

These data are a light modification of the survival::pbc data. The modifications are:

Usage

pbc_orsf

Format

A data frame with 276 rows and 20 variables:

id case number

time number of days between registration and the earlier of death, transplantion, or study analysis
in July, 1986

status status at endpoint, 0 for censored or transplant, 1 for dead

trt randomized treatment group: D-penicillmain or placebo

age in years

sex m/f

ascites presence of ascites

hepato presence of hepatomegaly or enlarged liver

spiders blood vessel malformations in the skin
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edema 0 no edema, 0.5 untreated or successfully treated, 1 edema despite diuretic therapy

bili serum bilirubin (mg/dl)

chol serum cholesterol (mg/dl)

albumin serum albumin (g/dl)

copper urine copper (ug/day)

alk.phos alkaline phosphotase (U/liter)

ast aspartate aminotransferase, once called SGOT (U/ml)

trig triglycerides (mg/dl)

platelet platelet count

protime standardized blood clotting time

stage histologic stage of disease (needs biopsy)

Details

1. removed rows with missing data

2. converted status into 0 for censor or transplant, 1 for dead

3. converted stage into an ordered factor.

4. converted trt, ascites, hepato, spiders, and edema into factors.

Source

T Therneau and P Grambsch (2000), Modeling Survival Data: Extending the Cox Model, Springer-
Verlag, New York. ISBN: 0-387-98784-3.

predict.orsf_fit Compute predictions using ORSF

Description

Predicted risk, survival, hazard, or mortality from an ORSF model.

Usage

## S3 method for class 'orsf_fit'
predict(
object,
new_data,
pred_horizon = NULL,
pred_type = "risk",
na_action = "fail",
boundary_checks = TRUE,
...

)
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Arguments

object (orsf_fit) a trained oblique random survival forest (see orsf).

new_data a data.frame, tibble, or data.table to compute predictions in.

pred_horizon (double) a value or vector indicating the time(s) that predictions will be cal-
ibrated to. E.g., if you were predicting risk of incident heart failure within
the next 10 years, then pred_horizon = 10. pred_horizon can be NULL if
pred_type is 'mort', since mortality predictions are aggregated over all event
times

pred_type (character) the type of predictions to compute. Valid options are

• ’risk’ : probability of having an event at or before pred_horizon.
• ’surv’ : 1 - risk.
• ’chf’: cumulative hazard function
• ’mort’: mortality prediction

na_action (character) what should happen when new_data contains missing values (i.e.,
NA values). Valid options are:

• ’fail’ : an error is thrown if new_data contains NA values
• ’pass’ : the output will have NA in all rows where new_data has 1 or more
NA value for the predictors used by object

• ’omit’ : rows in new_data with incomplete data will be dropped
• ’impute_meanmode’ : missing values for continuous and categorical vari-

ables in new_data will be imputed using the mean and mode, respectively.
To clarify, the mean and mode used to impute missing values are from the
training data of object, not from new_data.

boundary_checks

(logical) if TRUE, pred_horizon will be checked to make sure the requested
values are less than the maximum observed time in object’s training data. If
FALSE, these checks are skipped.

... Further arguments passed to or from other methods (not currently used).

Details

new_data must have the same columns with equivalent types as the data used to train object. Also,
factors in new_data must not have levels that were not in the data used to train object.

pred_horizon values should not exceed the maximum follow-up time in object’s training data,
but if you truly want to do this, set boundary_checks = FALSE and you can use a pred_horizon
as large as you want. Note that predictions beyond the maximum follow-up time in the object’s
training data are equal to predictions at the maximum follow-up time, because aorsf does not
estimate survival beyond its maximum observed time.

If unspecified, pred_horizon may be automatically specified as the value used for oobag_pred_horizon
when object was created (see orsf).

Value

a matrix of predictions. Column j of the matrix corresponds to value j in pred_horizon. Row i
of the matrix corresponds to row i in new_data.
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Examples

Begin by fitting an ORSF ensemble:

library(aorsf)

set.seed(329730)

index_train <- sample(nrow(pbc_orsf), 150)

pbc_orsf_train <- pbc_orsf[index_train, ]
pbc_orsf_test <- pbc_orsf[-index_train, ]

fit <- orsf(data = pbc_orsf_train,
formula = Surv(time, status) ~ . - id,
oobag_pred_horizon = 365.25 * 5)

Predict risk, survival, or cumulative hazard at one or several times:

# predicted risk, the default
predict(fit,

new_data = pbc_orsf_test[1:5, ],
pred_type = 'risk',
pred_horizon = c(500, 1000, 1500))

## [,1] [,2] [,3]
## [1,] 0.48792661 0.75620281 0.90618133
## [2,] 0.04293829 0.09112952 0.18602887
## [3,] 0.12147573 0.27784498 0.41600114
## [4,] 0.01136075 0.03401092 0.08236831
## [5,] 0.01294947 0.02070625 0.05645823

# predicted survival, i.e., 1 - risk
predict(fit,

new_data = pbc_orsf_test[1:5, ],
pred_type = 'surv',
pred_horizon = c(500, 1000, 1500))

## [,1] [,2] [,3]
## [1,] 0.5120734 0.2437972 0.09381867
## [2,] 0.9570617 0.9088705 0.81397113
## [3,] 0.8785243 0.7221550 0.58399886
## [4,] 0.9886393 0.9659891 0.91763169
## [5,] 0.9870505 0.9792937 0.94354177

# predicted cumulative hazard function
# (expected number of events for person i at time j)
predict(fit,
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new_data = pbc_orsf_test[1:5, ],
pred_type = 'chf',
pred_horizon = c(500, 1000, 1500))

## [,1] [,2] [,3]
## [1,] 0.68107429 1.28607479 1.70338193
## [2,] 0.04519460 0.10911618 0.24871482
## [3,] 0.14686474 0.41252079 0.69005048
## [4,] 0.01149952 0.03951923 0.10628942
## [5,] 0.01338978 0.02214232 0.06644605

Predict mortality, defined as the number of events in the forest’s population if all observations had
characteristics like the current observation. This type of prediction does not require you to specify
a prediction horizon

predict(fit,
new_data = pbc_orsf_test[1:5, ],
pred_type = 'mort')

## [,1]
## [1,] 68.394152
## [2,] 12.299344
## [3,] 28.208251
## [4,] 6.475339
## [5,] 4.247305

print.orsf_fit Inspect your ORSF model

Description

Printing an ORSF model tells you:

• Linear combinations: How were these identified?

• N observations: Number of rows in training data

• N events: Number of events in training data

• N trees: Number of trees in the forest

• N predictors total: Total number of columns in the predictor matrix

• N predictors per node: Number of variables used in linear combinations

• Average leaves per tree: A proxy for the depth of your trees

• Min observations in leaf: See leaf_min_obs in orsf

• Min events in leaf: See leaf_min_events in orsf

• OOB stat value: Out-of-bag error after fitting all trees

• OOB stat type: How was out-of-bag error computed?

• Variable importance: How was variable importance computed?
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Usage

## S3 method for class 'orsf_fit'
print(x, ...)

Arguments

x (orsf_fit) an oblique random survival forest (ORSF; see orsf).

... Further arguments passed to or from other methods (not currently used).

Value

x, invisibly.

Examples

object <- orsf(pbc_orsf, Surv(time, status) ~ . - id, n_tree = 5)

print(object)

print.orsf_summary_uni

Print ORSF summary

Description

Print ORSF summary

Usage

## S3 method for class 'orsf_summary_uni'
print(x, n_variables = NULL, ...)

Arguments

x an object of class ’orsf_summary’

n_variables The number of variables to print

... Further arguments passed to or from other methods (not currently used).

Value

invisibly, x
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Examples

object <- orsf(pbc_orsf, Surv(time, status) ~ . - id)

smry <- orsf_summarize_uni(object, n_variables = 3)

print(smry)
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