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adversarial_rf Adversarial Random Forests
Description

Implements an adversarial random forest to learn independence-inducing splits.

Usage

adversarial_rf(
X,
num_trees = 10L,
min_node_size = 2L,
delta = 0,
max_iters = 10L,
verbose = TRUE,
parallel = TRUE,

Arguments
X Input data. Integer variables are recoded as ordered factors with a warning. See
Details.
num_trees Number of trees to grow in each forest. The default works well for most gen-
erative modeling tasks, but should be increased for likelihood estimation. See
Details.

min_node_size Minimal number of real data samples in leaf nodes.

delta Tolerance parameter. Algorithm converges when OOB accuracy is < 0.5 +
delta.

max_iters Maximum iterations for the adversarial loop.

verbose Print discriminator accuracy after each round?

parallel Compute in parallel? Must register backend beforehand, e.g. via doParallel.

Extra parameters to be passed to ranger.
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Details

The adversarial random forest (ARF) algorithm partitions data into fully factorized leaves where
features are jointly independent. ARFs are trained iteratively, with alternating rounds of generation
and discrimination. In the first instance, synthetic data is generated via independent bootstraps
of each feature, and a RF classifier is trained to distinguish between real and synthetic samples. In
subsequent rounds, synthetic data is generated separately in each leaf, using splits from the previous
forest. This creates increasingly realistic data that satisfies local independence by construction. The
algorithm converges when a RF cannot reliably distinguish between the two classes, i.e. when OOB
accuracy falls below 0.5 + delta.

ARFs are useful for several unsupservised learning tasks, such as density estimation (see forde)
and data synthesis (see forge). For the former, we recommend increasing the number of trees for
improved performance (typically on the order of 100-1000 depending on sample size).

Integer variables are treated as ordered factors by default. If the ARF is passed to forde, the
estimated distribution for these variables will only have support on observed factor levels (i.e., the
output will be a pmf, not a pdf). To override this behavior and assign nonzero density to intermediate
values, explicitly recode the features as numeric.

Note: convergence is not guaranteed in finite samples. The max_iter argument sets an upper
bound on the number of training rounds. Similar results may be attained by increasing delta. Even
a single round can often give good performance, but data with strong or complex dependencies may
require more iterations.

Value

A random forest object of class ranger.

References
Watson, D., Blesch, K., Kapar, J., & Wright, M. (2022). Adversarial random forests for density
estimation and generative modeling. arXiv preprint, 2205.09435.

See Also

forde, forge

Examples

arf <- adversarial_rf(iris)

forde Forests for Density Estimation

Description

Uses a pre-trained ARF model to estimate leaf and distribution parameters.
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Usage
forde(
arf,
X7
oob = FALSE,
family = "truncnorm”,

epsilon = 0.1,
parallel = TRUE

)
Arguments
arf Pre-trained adversarial_rf. Alternatively, any object of class ranger.
X Training data for estimating parameters.
oob Only use out-of-bag samples for parameter estimation? If TRUE, x must be the
same dataset used to train arf.
family Distribution to use for density estimation of continuous features. Current op-
tions include truncated normal (the default family = "truncnorm”) and uniform
(family = "unif"). See Details.
epsilon Slack parameter on empirical bounds when family = "unif". This avoids zero-
density points when test data fall outside the support of training data. The gap
between lower and upper bounds is expanded by a factor of epsilon. Only used
when a variable is never selected for splitting.
parallel Compute in parallel? Must register backend beforehand, e.g. via doParallel.
Details

forde extracts leaf parameters from a pretrained forest and learns distribution parameters for data
within each leaf. The former includes coverage (proportion of data falling into the leaf) and split
criteria. The latter includes proportions for categorical features and mean/variance for continuous
features. These values are stored in a data.table, which can be used as input to various other
functions.

Currently, forde only provides support for a limited number of distributional families: truncated
normal or uniform for continuous data, and multinomial for discrete data. Future releases will
accommodate a larger set of options.

Though forde was designed to take an adversarial random forest as input, the function’s first ar-
gument can in principle be any object of class ranger. This allows users to test performance with
alternative pipelines (e.g., with supervised forest input). There is also no requirement that x be
the data used to fit arf, unless oob = TRUE. In fact, using another dataset here may protect against
overfitting. This connects with Wager & Athey’s (2018) notion of "honest trees".

Value

A list with 4 elements: (1) parameters for continuous data; (2) parameters for discrete data; (3)
leaf indices and coverage; and (4) metadata on variables. This list is used for estimating likelihoods
with 1ik and generating data with forge.



forge 5

References

Watson, D., Blesch, K., Kapar, J., & Wright, M. (2022). Adversarial random forests for density
estimation and generative modeling. arXiv preprint, 2205.09435.

Wager, S. & Athey, S. (2018). Estimation and inference of heterogeneous treatment effects using
random forests. J. Am. Stat. Assoc., 113(523): 1228-1242.
See Also

adversarial_rf, forge, lik

Examples

arf <- adversarial_rf(iris)
psi <- forde(arf, iris)
head(psi)

forge Forests for Generative Modeling

Description

Uses pre-trained FORDE model to simulate synthetic data.

Usage

forge(params, n_synth, parallel = TRUE)

Arguments

params Parameters learned via forde.

n_synth Number of synthetic samples to generate.

parallel Compute in parallel? Must register backend beforehand, e.g. via doParallel.
Details

forge simulates a synthetic dataset of n_synth samples. First, leaves are sampled in proportion
to their coverage. Then, each feature is sampled independently within each leaf according to the
probability mass or density function learned by forde. This will create realistic data so long as the
adversarial RF used in the previous step satisfies the local independence criterion. See Watson et
al. (2022).

Value

A dataset of n_synth synthetic samples.
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References
Watson, D., Blesch, K., Kapar, J., & Wright, M. (2022). Adversarial random forests for density
estimation and generative modeling. arXiv preprint, 2205.09435.

See Also

adversarial_rf, forde

Examples

arf <- adversarial_rf(iris)
psi <- forde(arf, iris)
x_synth <- forge(psi, n_synth = 100)

lik Likelihood Estimation

Description

Compute the density of input data.

Usage

lik(arf, params, x, oob = FALSE, log = TRUE, batch = NULL, parallel = TRUE)

Arguments
arf Pre-trained adversarial_rf. Alternatively, any object of class ranger.
params Parameters learned via forde.
X Input data. Densities will be computed for each sample.
oob Only use out-of-bag leaves for likelihood estimation? If TRUE, x must be the
same dataset used to train arf.
log Return likelihoods on log scale? Recommended to prevent underflow.
batch Batch size. The default is to compute densities for all of x in one round, which
is always the fastest option if memory allows. However, with large samples or
many trees, it can be more memory efficient to split the data into batches. This
has no impact on results.
parallel Compute in parallel? Must register backend beforehand, e.g. via doParallel.
Details

This function computes the density of input data according to a FORDE model using a pre-trained
ARF. Each sample’s likelihood is a weighted average of its likelihood in all leaves whose split cri-
teria it satisfies. Intra-leaf densities are fully factorized, since ARFs satisfy the local independence
criterion by construction. See Watson et al. (2022).
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Value

A vector of likelihoods, optionally on the log scale.

References

Watson, D., Blesch, K., Kapar, J., & Wright, M. (2022). Adversarial random forests for density
estimation and generative modeling. arXiv preprint, 2205.09435.

See Also

adversarial_rf, forge

Examples

# Estimate average log-likelihood
arf <- adversarial_rf(iris)

psi <- forde(arf, iris)

11 <- lik(arf, psi, iris, log = TRUE)
mean(1l)
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