Package 'assortnet'

October 12, 2022

Type Package
Title Calculate the Assortativity Coefficient of Weighted and Binary Networks
Version 0.12
Date 2016-01-18
Author Damien Farine <dfarine@orn.mpg.de></dfarine@orn.mpg.de>
Maintainer Damien Farine <dfarine@orn.mpg.de></dfarine@orn.mpg.de>
Description Functions to calculate the assortment of vertices in social networks. This can be measured on both weighted and binary networks, with discrete or continuous vertex values.
License GPL-2
NeedsCompilation no

Repository CRAN

Date/Publication 2016-01-18 22:56:18

R topics documented:

Index

assortnet-package Calculate the assortativity coefficient of weighted and binary networks ~ assortnet ~~

Description

Functions to calculate the assortment of vertices in social networks. This can be measured on both weighted and binary networks, with discrete or continuous vertex values.

Details

Package:	assortnet
Type:	Package
Version:	0.12
Date:	2016-01-17
License:	GPL2

Author(s)

Maintainer: Damien Farine <dfarine@orn.mpg.de>

References

Newman (2003) Mixing patterns in networks. Physical Review E (67) Farine, D.R. (2014) Measuring phenotypic assortment in animal social networks: weighted associations are more robust than binary edges. Animal Behaviour 89: 141-153.

assortment.continuous Assortment on continuous vertex values

Description

Calculates the assortativity coefficient for weighted and unweighted graphs with numerical vertex values

Usage

```
assortment.continuous(graph, vertex_values, weighted = TRUE, SE = FALSE, M = 1)
```

Arguments

graph	A Adjacency matrix, as an N x N matrix. Can be weighted or binary.
vertex_values	Values on which to calculate assortment, vector of N numbers
weighted	Flag: TRUE to use weighted edges, FALSE to turn edges into binary (even if weights are given)
SE	Calculate standard error using the Jackknife method.
М	Binning value for Jackknife, where M edges are removed rather than single edges. This helps speed up the estimate for large networks with many edges.

Value

This function returns a named list, with two elements: \$r the assortativity coefficient \$SE the standard error

Author(s)

Damien Farine dfarine@orn.mpg.de

References

Newman (2003) Mixing patterns in networks. Physical Review E (67) Farine, D.R. (2014) Measuring phenotypic assortment in animal social networks: weighted associations are more robust than binary edges. Animal Behaviour 89: 141-153.

Examples

```
# DIRECTED NETWORK EXAMPLE
# Create a random directed network
N <- 20
dyads <- expand.grid(ID1=1:20,ID2=1:20)</pre>
dyads <- dyads[which(dyads$ID1 != dyads$ID2),]</pre>
weights <- rbeta(nrow(dyads),1,15)</pre>
network <- matrix(0, nrow=N, ncol=N)</pre>
network[cbind(dyads$ID1,dyads$ID2)] <- weights</pre>
# Create random continues trait values
traits <- rnorm(N)</pre>
# Test for assortment as binary network
assortment.continuous(network,traits,weighted=FALSE)
# Test for assortment as weighted network
assortment.continuous(network,traits,weighted=TRUE)
# UNDIRECTED NETWORK EXAMPLE
# Create a random undirected network
N <- 20
dyads <- expand.grid(ID1=1:20,ID2=1:20)</pre>
dyads <- dyads[which(dyads$ID1 < dyads$ID2),]</pre>
weights <- rbeta(nrow(dyads),1,15)</pre>
network <- matrix(0, nrow=N, ncol=N)</pre>
network[cbind(dyads$ID1,dyads$ID2)] <- weights</pre>
network[cbind(dyads$ID2,dyads$ID1)] <- weights</pre>
# Create random continues trait values
traits <- rnorm(N)</pre>
# Test for assortment as binary network
assortment.continuous(network,traits,weighted=FALSE)
# Test for assortment as weighted network
assortment.continuous(network,traits,weighted=TRUE)
```

assortment.discrete Assortment on discrete vertex values

Description

Calculates the assortativity coefficient for weighted and unweighted graphs with nominal/categorical vertex values

Usage

assortment.discrete(graph, types, weighted = TRUE, SE = FALSE, M = 1)

Arguments

graph	Adjacency matrix, as an N x N matrix. Can be weighted or binary.
types	Values on which to calculate assortment, vector of N labels
weighted	Flag: TRUE to use weighted edges, FALSE to turn edges into binary (even if weights are given)
SE	Calculate standard error using the Jackknife method.
М	Binning value for Jackknife, where M edges are removed rather than single edges. This helps speed up the estimate for large networks with many edges.

Value

This function returns a named list, with three elements:

\$r the assortativity coefficient \$SE the standard error \$mixing_matrix the mixing matrix with the distribution of edges or edge weights by category

Author(s)

Damien Farine dfarine@orn.mpg.de

References

Newman (2003) Mixing patterns in networks. Physical Review E (67) Farine, D.R. (2014) Measuring phenotypic assortment in animal social networks: weighted associations are more robust than binary edges. Animal Behaviour 89: 141-153.

Examples

```
# DIRECTED NETWORK EXAMPLE
# Create a random directed network
N <- 20
dyads <- expand.grid(ID1=1:20,ID2=1:20)
dyads <- dyads[which(dyads$ID1 != dyads$ID2),]
weights <- rbeta(nrow(dyads),1,15)
network <- matrix(0, nrow=N, ncol=N)</pre>
```

assortment.discrete

```
network[cbind(dyads$ID1,dyads$ID2)] <- weights</pre>
# Create random discrete trait values
traits <- rpois(N,2)</pre>
# Test for assortment as binary network
assortment.discrete(network,traits,weighted=FALSE)
# Test for assortment as weighted network
assortment.discrete(network,traits,weighted=TRUE)
# UNDIRECTED NETWORK EXAMPLE
# Create a random undirected network
N <- 20
dyads <- expand.grid(ID1=1:20,ID2=1:20)</pre>
dyads <- dyads[which(dyads$ID1 < dyads$ID2),]</pre>
weights <- rbeta(nrow(dyads),1,15)</pre>
network <- matrix(0, nrow=N, ncol=N)</pre>
network[cbind(dyads$ID1,dyads$ID2)] <- weights</pre>
network[cbind(dyads$ID2,dyads$ID1)] <- weights</pre>
```

```
# Create random discrete trait values
traits <- rpois(N,2)</pre>
```

```
# Test for assortment as binary network
assortment.discrete(network,traits,weighted=FALSE)
```

```
# Test for assortment as weighted network
assortment.discrete(network,traits,weighted=TRUE)
```

Index

* **package** assortnet-package, 1

assortment.continuous, 2
assortment.discrete, 4
assortnet(assortnet-package), 1
assortnet-package, 1