Binary segmentation examples

In this vignette we explore the differences in asymptotic time complexity between different implementations of binary segmentation.

Asymptotic time/memory measurement of different R expressions

The code below uses the following arguments:

library(data.table)
atime.list <- atime::atime(
  N=2^seq(2, 20),
  setup={
    max.segs <- as.integer(N/2)
    max.changes <- max.segs-1L
    set.seed(1)
    data.vec <- 1:N
  },
  "changepoint::cpt.mean"={
    cpt.fit <- changepoint::cpt.mean(data.vec, method="BinSeg", Q=max.changes)
    sort(c(N,cpt.fit@cpts.full[max.changes,]))
  },
  "binsegRcpp::binseg_normal"={
    binseg.fit <- binsegRcpp::binseg_normal(data.vec, max.segs)
    sort(binseg.fit$splits$end)
  },
  "fpop::multiBinSeg"={
    mbs.fit <- fpop::multiBinSeg(data.vec, max.changes)
    sort(c(mbs.fit$t.est, N))
  },
  "wbs::sbs"={
    wbs.fit <- wbs::sbs(data.vec)
    split.dt <- data.table(wbs.fit$res)[order(-min.th, scale)]
    sort(split.dt[, c(N, cpt)][1:max.segs])
  },
  binsegRcpp.list={
    binseg.fit <- binsegRcpp::binseg(
      "mean_norm", data.vec, max.segs, container.str="list")
    sort(binseg.fit$splits$end)
  },
  ##seconds.limit=0.1,
  times=5)
plot(atime.list)

plot of chunk unnamed-chunk-1

The default plot method creates a log-log plot of median time vs data size, for each of the specified R expressions. You can use references_best to get a tall/long data table that can be plotted to show both empirical time and memory complexity:

best.list <- atime::references_best(atime.list)
if(require(ggplot2)){
  hline.df <- with(atime.list, data.frame(seconds.limit, unit="seconds"))
  gg.both <- ggplot()+
    theme_bw()+
    facet_grid(unit ~ ., scales="free")+
    geom_hline(aes(
      yintercept=seconds.limit),
      color="grey",
      data=hline.df)+
    geom_line(aes(
      N, empirical, color=expr.name),
      data=best.list$meas)+
    geom_ribbon(aes(
      N, ymin=min, ymax=max, fill=expr.name),
      data=best.list$meas[unit=="seconds"],
      alpha=0.5)+
    scale_x_log10()+
    scale_y_log10("median line, min/max band")
  if(require(directlabels)){
    gg.both+
      directlabels::geom_dl(aes(
        N, empirical, color=expr.name, label=expr.name),
        method="right.polygons",
        data=best.list$meas)+
      theme(legend.position="none")+
      coord_cartesian(xlim=c(1,2e7))
  }else{
    gg.both
  }
}
#> Warning: Transformation introduced infinite values in continuous y-axis
#> Transformation introduced infinite values in continuous y-axis

plot of chunk unnamed-chunk-2

The plots above show some speed differences between binary segmentation algorithms, but they could be even easier to see for larger data sizes (exercise for the reader: try modifying the N and seconds.limit arguments). You can also see that memory usage is much larger for changepoint than for the other packages.

Closest asymptotic references

You can use code like below to compute asymptotic references which are best fit for each expression. We do the best fit by adjusting each reference to the largest N, and then ranking each reference by distance to the measurement of the second to largest N. The code below uses each.sign.rank==1 to compute the closest reference above and below,

best.refs <- best.list$ref[each.sign.rank==1]
(time.refs <- best.refs[unit=="seconds"])
#>        unit                 expr.name   fun.latex  fun.name     N empirical
#>      <char>                    <char>      <char>    <char> <num>     <num>
#>  1: seconds     changepoint::cpt.mean N^2 \\log N N^2 log N    64 0.0006806
#>  2: seconds     changepoint::cpt.mean N^2 \\log N N^2 log N   128 0.0015243
#>  3: seconds     changepoint::cpt.mean N^2 \\log N N^2 log N   256 0.0028454
#>  4: seconds     changepoint::cpt.mean N^2 \\log N N^2 log N   512 0.0095882
#>  5: seconds     changepoint::cpt.mean N^2 \\log N N^2 log N  1024 0.0426579
#>  6: seconds     changepoint::cpt.mean         N^3       N^3   128 0.0015243
#>  7: seconds     changepoint::cpt.mean         N^3       N^3   256 0.0028454
#>  8: seconds     changepoint::cpt.mean         N^3       N^3   512 0.0095882
#>  9: seconds     changepoint::cpt.mean         N^3       N^3  1024 0.0426579
#> 10: seconds binsegRcpp::binseg_normal    \\sqrt N    sqrt N     4 0.0011581
#> 11: seconds binsegRcpp::binseg_normal    \\sqrt N    sqrt N     8 0.0012121
#> 12: seconds binsegRcpp::binseg_normal    \\sqrt N    sqrt N    16 0.0011799
#> 13: seconds binsegRcpp::binseg_normal    \\sqrt N    sqrt N    32 0.0012079
#> 14: seconds binsegRcpp::binseg_normal    \\sqrt N    sqrt N    64 0.0012091
#> 15: seconds binsegRcpp::binseg_normal    \\sqrt N    sqrt N   128 0.0014017
#> 16: seconds binsegRcpp::binseg_normal    \\sqrt N    sqrt N   256 0.0013594
#> 17: seconds binsegRcpp::binseg_normal    \\sqrt N    sqrt N   512 0.0014678
#> 18: seconds binsegRcpp::binseg_normal    \\sqrt N    sqrt N  1024 0.0015743
#> 19: seconds binsegRcpp::binseg_normal    \\sqrt N    sqrt N  2048 0.0022298
#> 20: seconds binsegRcpp::binseg_normal    \\sqrt N    sqrt N  4096 0.0042076
#> 21: seconds binsegRcpp::binseg_normal    \\sqrt N    sqrt N  8192 0.0074088
#> 22: seconds binsegRcpp::binseg_normal    \\sqrt N    sqrt N 16384 0.0117257
#> 23: seconds binsegRcpp::binseg_normal           N         N   128 0.0014017
#> 24: seconds binsegRcpp::binseg_normal           N         N   256 0.0013594
#> 25: seconds binsegRcpp::binseg_normal           N         N   512 0.0014678
#> 26: seconds binsegRcpp::binseg_normal           N         N  1024 0.0015743
#> 27: seconds binsegRcpp::binseg_normal           N         N  2048 0.0022298
#> 28: seconds binsegRcpp::binseg_normal           N         N  4096 0.0042076
#> 29: seconds binsegRcpp::binseg_normal           N         N  8192 0.0074088
#> 30: seconds binsegRcpp::binseg_normal           N         N 16384 0.0117257
#> 31: seconds         fpop::multiBinSeg           N         N   128 0.0001044
#> 32: seconds         fpop::multiBinSeg           N         N   256 0.0001461
#> 33: seconds         fpop::multiBinSeg           N         N   512 0.0002638
#> 34: seconds         fpop::multiBinSeg           N         N  1024 0.0004573
#> 35: seconds         fpop::multiBinSeg           N         N  2048 0.0008781
#> 36: seconds         fpop::multiBinSeg           N         N  4096 0.0018928
#> 37: seconds         fpop::multiBinSeg           N         N  8192 0.0035885
#> 38: seconds         fpop::multiBinSeg           N         N 16384 0.0076828
#> 39: seconds         fpop::multiBinSeg           N         N 32768 0.0158226
#> 40: seconds         fpop::multiBinSeg   N \\log N   N log N   256 0.0001461
#> 41: seconds         fpop::multiBinSeg   N \\log N   N log N   512 0.0002638
#> 42: seconds         fpop::multiBinSeg   N \\log N   N log N  1024 0.0004573
#> 43: seconds         fpop::multiBinSeg   N \\log N   N log N  2048 0.0008781
#> 44: seconds         fpop::multiBinSeg   N \\log N   N log N  4096 0.0018928
#> 45: seconds         fpop::multiBinSeg   N \\log N   N log N  8192 0.0035885
#> 46: seconds         fpop::multiBinSeg   N \\log N   N log N 16384 0.0076828
#> 47: seconds         fpop::multiBinSeg   N \\log N   N log N 32768 0.0158226
#> 48: seconds                  wbs::sbs    \\sqrt N    sqrt N     4 0.0009284
#> 49: seconds                  wbs::sbs    \\sqrt N    sqrt N     8 0.0009728
#> 50: seconds                  wbs::sbs    \\sqrt N    sqrt N    16 0.0009764
#> 51: seconds                  wbs::sbs    \\sqrt N    sqrt N    32 0.0009763
#> 52: seconds                  wbs::sbs    \\sqrt N    sqrt N    64 0.0010639
#> 53: seconds                  wbs::sbs    \\sqrt N    sqrt N   128 0.0013404
#> 54: seconds                  wbs::sbs    \\sqrt N    sqrt N   256 0.0011391
#> 55: seconds                  wbs::sbs    \\sqrt N    sqrt N   512 0.0010643
#> 56: seconds                  wbs::sbs    \\sqrt N    sqrt N  1024 0.0015308
#> 57: seconds                  wbs::sbs    \\sqrt N    sqrt N  2048 0.0020376
#> 58: seconds                  wbs::sbs    \\sqrt N    sqrt N  4096 0.0033856
#> 59: seconds                  wbs::sbs    \\sqrt N    sqrt N  8192 0.0053414
#> 60: seconds                  wbs::sbs    \\sqrt N    sqrt N 16384 0.0086899
#> 61: seconds                  wbs::sbs    \\sqrt N    sqrt N 32768 0.0153591
#> 62: seconds                  wbs::sbs           N         N   128 0.0013404
#> 63: seconds                  wbs::sbs           N         N   256 0.0011391
#> 64: seconds                  wbs::sbs           N         N   512 0.0010643
#> 65: seconds                  wbs::sbs           N         N  1024 0.0015308
#> 66: seconds                  wbs::sbs           N         N  2048 0.0020376
#> 67: seconds                  wbs::sbs           N         N  4096 0.0033856
#> 68: seconds                  wbs::sbs           N         N  8192 0.0053414
#> 69: seconds                  wbs::sbs           N         N 16384 0.0086899
#> 70: seconds                  wbs::sbs           N         N 32768 0.0153591
#> 71: seconds           binsegRcpp.list   N \\log N   N log N    64 0.0012074
#> 72: seconds           binsegRcpp.list   N \\log N   N log N   128 0.0014042
#> 73: seconds           binsegRcpp.list   N \\log N   N log N   256 0.0012618
#> 74: seconds           binsegRcpp.list   N \\log N   N log N   512 0.0016393
#> 75: seconds           binsegRcpp.list   N \\log N   N log N  1024 0.0021220
#> 76: seconds           binsegRcpp.list   N \\log N   N log N  2048 0.0038511
#> 77: seconds           binsegRcpp.list   N \\log N   N log N  4096 0.0122753
#> 78: seconds           binsegRcpp.list         N^2       N^2   512 0.0016393
#> 79: seconds           binsegRcpp.list         N^2       N^2  1024 0.0021220
#> 80: seconds           binsegRcpp.list         N^2       N^2  2048 0.0038511
#> 81: seconds           binsegRcpp.list         N^2       N^2  4096 0.0122753
#>        unit                 expr.name   fun.latex  fun.name     N empirical
#>        reference  rank   i.N i.empirical i.reference i.rank          dist  sign
#>            <num> <num> <num>       <num>       <num>  <num>         <num> <num>
#>  1: 9.997945e-05     5   512   0.0095882 0.009598027      2 -0.0004449055    -1
#>  2: 4.665708e-04     4   512   0.0095882 0.009598027      2 -0.0004449055    -1
#>  3: 2.132895e-03     3   512   0.0095882 0.009598027      2 -0.0004449055    -1
#>  4: 9.598027e-03     2   512   0.0095882 0.009598027      2 -0.0004449055    -1
#>  5: 4.265790e-02     1   512   0.0095882 0.009598027      2 -0.0004449055    -1
#>  6: 8.331621e-05     4   512   0.0095882 0.005332238      2  0.2548275996     1
#>  7: 6.665297e-04     3   512   0.0095882 0.005332238      2  0.2548275996     1
#>  8: 5.332238e-03     2   512   0.0095882 0.005332238      2  0.2548275996     1
#>  9: 4.265790e-02     1   512   0.0095882 0.005332238      2  0.2548275996     1
#> 10: 1.832141e-04    13  8192   0.0074088 0.008291322      2 -0.0488759096    -1
#> 11: 2.591038e-04    12  8192   0.0074088 0.008291322      2 -0.0488759096    -1
#> 12: 3.664281e-04    11  8192   0.0074088 0.008291322      2 -0.0488759096    -1
#> 13: 5.182076e-04    10  8192   0.0074088 0.008291322      2 -0.0488759096    -1
#> 14: 7.328563e-04     9  8192   0.0074088 0.008291322      2 -0.0488759096    -1
#> 15: 1.036415e-03     8  8192   0.0074088 0.008291322      2 -0.0488759096    -1
#> 16: 1.465713e-03     7  8192   0.0074088 0.008291322      2 -0.0488759096    -1
#> 17: 2.072830e-03     6  8192   0.0074088 0.008291322      2 -0.0488759096    -1
#> 18: 2.931425e-03     5  8192   0.0074088 0.008291322      2 -0.0488759096    -1
#> 19: 4.145661e-03     4  8192   0.0074088 0.008291322      2 -0.0488759096    -1
#> 20: 5.862850e-03     3  8192   0.0074088 0.008291322      2 -0.0488759096    -1
#> 21: 8.291322e-03     2  8192   0.0074088 0.008291322      2 -0.0488759096    -1
#> 22: 1.172570e-02     1  8192   0.0074088 0.008291322      2 -0.0488759096    -1
#> 23: 9.160703e-05     8  8192   0.0074088 0.005862850      2  0.1016390882     1
#> 24: 1.832141e-04     7  8192   0.0074088 0.005862850      2  0.1016390882     1
#> 25: 3.664281e-04     6  8192   0.0074088 0.005862850      2  0.1016390882     1
#> 26: 7.328563e-04     5  8192   0.0074088 0.005862850      2  0.1016390882     1
#> 27: 1.465713e-03     4  8192   0.0074088 0.005862850      2  0.1016390882     1
#> 28: 2.931425e-03     3  8192   0.0074088 0.005862850      2  0.1016390882     1
#> 29: 5.862850e-03     2  8192   0.0074088 0.005862850      2  0.1016390882     1
#> 30: 1.172570e-02     1  8192   0.0074088 0.005862850      2  0.1016390882     1
#> 31: 6.180703e-05     9 16384   0.0076828 0.007911300      2 -0.0127283258    -1
#> 32: 1.236141e-04     8 16384   0.0076828 0.007911300      2 -0.0127283258    -1
#> 33: 2.472281e-04     7 16384   0.0076828 0.007911300      2 -0.0127283258    -1
#> 34: 4.944563e-04     6 16384   0.0076828 0.007911300      2 -0.0127283258    -1
#> 35: 9.889125e-04     5 16384   0.0076828 0.007911300      2 -0.0127283258    -1
#> 36: 1.977825e-03     4 16384   0.0076828 0.007911300      2 -0.0127283258    -1
#> 37: 3.955650e-03     3 16384   0.0076828 0.007911300      2 -0.0127283258    -1
#> 38: 7.911300e-03     2 16384   0.0076828 0.007911300      2 -0.0127283258    -1
#> 39: 1.582260e-02     1 16384   0.0076828 0.007911300      2 -0.0127283258    -1
#> 40: 6.592750e-05     8 16384   0.0076828 0.007383880      2  0.0172348976     1
#> 41: 1.483369e-04     7 16384   0.0076828 0.007383880      2  0.0172348976     1
#> 42: 3.296375e-04     6 16384   0.0076828 0.007383880      2  0.0172348976     1
#> 43: 7.252025e-04     5 16384   0.0076828 0.007383880      2  0.0172348976     1
#> 44: 1.582260e-03     4 16384   0.0076828 0.007383880      2  0.0172348976     1
#> 45: 3.428230e-03     3 16384   0.0076828 0.007383880      2  0.0172348976     1
#> 46: 7.383880e-03     2 16384   0.0076828 0.007383880      2  0.0172348976     1
#> 47: 1.582260e-02     1 16384   0.0076828 0.007383880      2  0.0172348976     1
#> 48: 1.696957e-04    14 16384   0.0086899 0.010860524      2 -0.0968359914    -1
#> 49: 2.399859e-04    13 16384   0.0086899 0.010860524      2 -0.0968359914    -1
#> 50: 3.393914e-04    12 16384   0.0086899 0.010860524      2 -0.0968359914    -1
#> 51: 4.799719e-04    11 16384   0.0086899 0.010860524      2 -0.0968359914    -1
#> 52: 6.787827e-04    10 16384   0.0086899 0.010860524      2 -0.0968359914    -1
#> 53: 9.599438e-04     9 16384   0.0086899 0.010860524      2 -0.0968359914    -1
#> 54: 1.357565e-03     8 16384   0.0086899 0.010860524      2 -0.0968359914    -1
#> 55: 1.919888e-03     7 16384   0.0086899 0.010860524      2 -0.0968359914    -1
#> 56: 2.715131e-03     6 16384   0.0086899 0.010860524      2 -0.0968359914    -1
#> 57: 3.839775e-03     5 16384   0.0086899 0.010860524      2 -0.0968359914    -1
#> 58: 5.430262e-03     4 16384   0.0086899 0.010860524      2 -0.0968359914    -1
#> 59: 7.679550e-03     3 16384   0.0086899 0.010860524      2 -0.0968359914    -1
#> 60: 1.086052e-02     2 16384   0.0086899 0.010860524      2 -0.0968359914    -1
#> 61: 1.535910e-02     1 16384   0.0086899 0.010860524      2 -0.0968359914    -1
#> 62: 5.999648e-05     9 16384   0.0086899 0.007679550      2  0.0536790064     1
#> 63: 1.199930e-04     8 16384   0.0086899 0.007679550      2  0.0536790064     1
#> 64: 2.399859e-04     7 16384   0.0086899 0.007679550      2  0.0536790064     1
#> 65: 4.799719e-04     6 16384   0.0086899 0.007679550      2  0.0536790064     1
#> 66: 9.599438e-04     5 16384   0.0086899 0.007679550      2  0.0536790064     1
#> 67: 1.919888e-03     4 16384   0.0086899 0.007679550      2  0.0536790064     1
#> 68: 3.839775e-03     3 16384   0.0086899 0.007679550      2  0.0536790064     1
#> 69: 7.679550e-03     2 16384   0.0086899 0.007679550      2  0.0536790064     1
#> 70: 1.535910e-02     1 16384   0.0086899 0.007679550      2  0.0536790064     1
#> 71: 9.590078e-05     7  2048   0.0038511 0.005626179      2 -0.1646287623    -1
#> 72: 2.237685e-04     6  2048   0.0038511 0.005626179      2 -0.1646287623    -1
#> 73: 5.114708e-04     5  2048   0.0038511 0.005626179      2 -0.1646287623    -1
#> 74: 1.150809e-03     4  2048   0.0038511 0.005626179      2 -0.1646287623    -1
#> 75: 2.557354e-03     3  2048   0.0038511 0.005626179      2 -0.1646287623    -1
#> 76: 5.626179e-03     2  2048   0.0038511 0.005626179      2 -0.1646287623    -1
#> 77: 1.227530e-02     1  2048   0.0038511 0.005626179      2 -0.1646287623    -1
#> 78: 1.918016e-04     4  2048   0.0038511 0.003068825      2  0.0986126725     1
#> 79: 7.672063e-04     3  2048   0.0038511 0.003068825      2  0.0986126725     1
#> 80: 3.068825e-03     2  2048   0.0038511 0.003068825      2  0.0986126725     1
#> 81: 1.227530e-02     1  2048   0.0038511 0.003068825      2  0.0986126725     1
#>        reference  rank   i.N i.empirical i.reference i.rank          dist  sign
#>     overall.rank each.sign.rank
#>            <num>          <num>
#>  1:            1              1
#>  2:            1              1
#>  3:            1              1
#>  4:            1              1
#>  5:            1              1
#>  6:            3              1
#>  7:            3              1
#>  8:            3              1
#>  9:            3              1
#> 10:            1              1
#> 11:            1              1
#> 12:            1              1
#> 13:            1              1
#> 14:            1              1
#> 15:            1              1
#> 16:            1              1
#> 17:            1              1
#> 18:            1              1
#> 19:            1              1
#> 20:            1              1
#> 21:            1              1
#> 22:            1              1
#> 23:            2              1
#> 24:            2              1
#> 25:            2              1
#> 26:            2              1
#> 27:            2              1
#> 28:            2              1
#> 29:            2              1
#> 30:            2              1
#> 31:            1              1
#> 32:            1              1
#> 33:            1              1
#> 34:            1              1
#> 35:            1              1
#> 36:            1              1
#> 37:            1              1
#> 38:            1              1
#> 39:            1              1
#> 40:            2              1
#> 41:            2              1
#> 42:            2              1
#> 43:            2              1
#> 44:            2              1
#> 45:            2              1
#> 46:            2              1
#> 47:            2              1
#> 48:            3              1
#> 49:            3              1
#> 50:            3              1
#> 51:            3              1
#> 52:            3              1
#> 53:            3              1
#> 54:            3              1
#> 55:            3              1
#> 56:            3              1
#> 57:            3              1
#> 58:            3              1
#> 59:            3              1
#> 60:            3              1
#> 61:            3              1
#> 62:            1              1
#> 63:            1              1
#> 64:            1              1
#> 65:            1              1
#> 66:            1              1
#> 67:            1              1
#> 68:            1              1
#> 69:            1              1
#> 70:            1              1
#> 71:            3              1
#> 72:            3              1
#> 73:            3              1
#> 74:            3              1
#> 75:            3              1
#> 76:            3              1
#> 77:            3              1
#> 78:            1              1
#> 79:            1              1
#> 80:            1              1
#> 81:            1              1
#>     overall.rank each.sign.rank

Then you can plot these references with the empirical data using the ggplot code below,

ref.color <- "red"
## try() to avoid CRAN error 'from' must be a finite number, on
## Flavors: r-devel-linux-x86_64-debian-gcc, r-release-linux-x86_64,
## due to https://github.com/r-lib/scales/issues/307
(seconds.dt <- best.list$meas[unit=="seconds"])
#>        unit     N                 expr.name       min    median     itr/sec
#>      <char> <num>                    <char>     <num>     <num>       <num>
#>  1: seconds     4     changepoint::cpt.mean 0.0003476 0.0003581  2664.35756
#>  2: seconds     8     changepoint::cpt.mean 0.0004182 0.0004255  2193.84845
#>  3: seconds    16     changepoint::cpt.mean 0.0004555 0.0004716  1955.49298
#>  4: seconds    32     changepoint::cpt.mean 0.0005064 0.0005301  1747.51852
#>  5: seconds    64     changepoint::cpt.mean 0.0006489 0.0006806  1432.74686
#>  6: seconds   128     changepoint::cpt.mean 0.0012199 0.0015243   635.27558
#>  7: seconds   256     changepoint::cpt.mean 0.0027500 0.0028454   350.86734
#>  8: seconds   512     changepoint::cpt.mean 0.0094915 0.0095882   104.04874
#>  9: seconds  1024     changepoint::cpt.mean 0.0425511 0.0426579    23.35668
#> 10: seconds     4 binsegRcpp::binseg_normal 0.0011419 0.0011581   809.06149
#> 11: seconds     8 binsegRcpp::binseg_normal 0.0011690 0.0012121   783.66221
#> 12: seconds    16 binsegRcpp::binseg_normal 0.0011571 0.0011799   817.98253
#> 13: seconds    32 binsegRcpp::binseg_normal 0.0011854 0.0012079   807.40226
#> 14: seconds    64 binsegRcpp::binseg_normal 0.0011676 0.0012091   796.86355
#> 15: seconds   128 binsegRcpp::binseg_normal 0.0013572 0.0014017   709.93735
#> 16: seconds   256 binsegRcpp::binseg_normal 0.0012912 0.0013594   724.37523
#> 17: seconds   512 binsegRcpp::binseg_normal 0.0013334 0.0014678   684.48144
#> 18: seconds  1024 binsegRcpp::binseg_normal 0.0015275 0.0015743   607.91013
#> 19: seconds  2048 binsegRcpp::binseg_normal 0.0019778 0.0022298   393.85895
#> 20: seconds  4096 binsegRcpp::binseg_normal 0.0041151 0.0042076   237.44622
#> 21: seconds  8192 binsegRcpp::binseg_normal 0.0069979 0.0074088   138.08626
#> 22: seconds 16384 binsegRcpp::binseg_normal 0.0112815 0.0117257    86.83646
#> 23: seconds     4         fpop::multiBinSeg 0.0000496 0.0000554 16485.32806
#> 24: seconds     8         fpop::multiBinSeg 0.0000515 0.0000568 15948.96332
#> 25: seconds    16         fpop::multiBinSeg 0.0000571 0.0000606 15188.33536
#> 26: seconds    32         fpop::multiBinSeg 0.0000635 0.0000696 13709.89855
#> 27: seconds    64         fpop::multiBinSeg 0.0000817 0.0000860 10658.70816
#> 28: seconds   128         fpop::multiBinSeg 0.0000983 0.0001044  8643.04235
#> 29: seconds   256         fpop::multiBinSeg 0.0001412 0.0001461  6275.10040
#> 30: seconds   512         fpop::multiBinSeg 0.0002448 0.0002638  3647.23904
#> 31: seconds  1024         fpop::multiBinSeg 0.0004526 0.0004573  2148.87399
#> 32: seconds  2048         fpop::multiBinSeg 0.0008694 0.0008781  1125.26444
#> 33: seconds  4096         fpop::multiBinSeg 0.0017559 0.0018928   545.86643
#> 34: seconds  8192         fpop::multiBinSeg 0.0035621 0.0035885   272.09552
#> 35: seconds 16384         fpop::multiBinSeg 0.0075842 0.0076828   129.66469
#> 36: seconds 32768         fpop::multiBinSeg 0.0155764 0.0158226    62.75494
#> 37: seconds     4                  wbs::sbs 0.0008916 0.0009284  1056.01081
#> 38: seconds     8                  wbs::sbs 0.0009138 0.0009728  1006.80601
#> 39: seconds    16                  wbs::sbs 0.0009661 0.0009764   970.13912
#> 40: seconds    32                  wbs::sbs 0.0009413 0.0009763  1000.64041
#> 41: seconds    64                  wbs::sbs 0.0009280 0.0010639   944.09093
#> 42: seconds   128                  wbs::sbs 0.0010934 0.0013404   698.04130
#> 43: seconds   256                  wbs::sbs 0.0010755 0.0011391   854.40875
#> 44: seconds   512                  wbs::sbs 0.0010347 0.0010643   893.03256
#> 45: seconds  1024                  wbs::sbs 0.0013307 0.0015308   658.42321
#> 46: seconds  2048                  wbs::sbs 0.0018771 0.0020376   487.57179
#> 47: seconds  4096                  wbs::sbs 0.0027530 0.0033856   295.56417
#> 48: seconds  8192                  wbs::sbs 0.0050595 0.0053414   187.92489
#> 49: seconds 16384                  wbs::sbs 0.0082104 0.0086899   117.21921
#> 50: seconds 32768                  wbs::sbs 0.0133442 0.0153591    69.98978
#> 51: seconds     4           binsegRcpp.list 0.0011258 0.0011288   855.40272
#> 52: seconds     8           binsegRcpp.list 0.0012047 0.0012240   795.91219
#> 53: seconds    16           binsegRcpp.list 0.0011251 0.0011591   817.83535
#> 54: seconds    32           binsegRcpp.list 0.0011430 0.0011840   838.96840
#> 55: seconds    64           binsegRcpp.list 0.0011839 0.0012074   783.96939
#> 56: seconds   128           binsegRcpp.list 0.0013015 0.0014042   625.54735
#> 57: seconds   256           binsegRcpp.list 0.0012257 0.0012618   775.79519
#> 58: seconds   512           binsegRcpp.list 0.0014270 0.0016393   617.07064
#> 59: seconds  1024           binsegRcpp.list 0.0020595 0.0021220   464.47250
#> 60: seconds  2048           binsegRcpp.list 0.0036596 0.0038511   236.83326
#> 61: seconds  4096           binsegRcpp.list 0.0122287 0.0122753    79.91191
#>        unit     N                 expr.name       min    median     itr/sec
#>          gc/sec n_itr  n_gc                result             memory
#>           <num> <int> <num>                <list>             <list>
#>  1: 1332.178778     4     2                   0,4 <Rprofmem[2757x3]>
#>  2:    0.000000     5     0               0,2,4,8   <Rprofmem[12x3]>
#>  3:    0.000000     5     0  0, 2, 4, 6, 8,10,...   <Rprofmem[11x3]>
#>  4:    0.000000     5     0  0, 2, 4, 6, 8,10,...   <Rprofmem[16x3]>
#>  5:    0.000000     5     0  0, 2, 4, 6, 8,10,...   <Rprofmem[86x3]>
#>  6:    0.000000     5     0  0, 2, 4, 6, 8,10,...  <Rprofmem[215x3]>
#>  7:    0.000000     5     0  0, 2, 4, 6, 8,10,...  <Rprofmem[435x3]>
#>  8:    0.000000     5     0  0, 2, 4, 6, 8,10,...  <Rprofmem[845x3]>
#>  9:    5.839171     4     1  0, 2, 4, 6, 8,10,... <Rprofmem[1640x3]>
#> 10:    0.000000     5     0                   2,4 <Rprofmem[1514x3]>
#> 11:    0.000000     5     0               2,4,6,8   <Rprofmem[11x3]>
#> 12:    0.000000     5     0  2, 4, 6, 8,10,12,...   <Rprofmem[12x3]>
#> 13:    0.000000     5     0  2, 4, 6, 8,10,12,...   <Rprofmem[24x3]>
#> 14:    0.000000     5     0  2, 4, 6, 8,10,12,...   <Rprofmem[74x3]>
#> 15:  177.484337     4     1  2, 4, 6, 8,10,12,...  <Rprofmem[131x3]>
#> 16:    0.000000     5     0  2, 4, 6, 8,10,12,...  <Rprofmem[131x3]>
#> 17:    0.000000     5     0  2, 4, 6, 8,10,12,...  <Rprofmem[131x3]>
#> 18:    0.000000     5     0  2, 4, 6, 8,10,12,...  <Rprofmem[131x3]>
#> 19:    0.000000     5     0  2, 4, 6, 8,10,12,...  <Rprofmem[131x3]>
#> 20:    0.000000     5     0  2, 4, 6, 8,10,12,...  <Rprofmem[131x3]>
#> 21:   34.521566     4     1  2, 4, 6, 8,10,12,...  <Rprofmem[131x3]>
#> 22:   57.890974     3     2  2, 4, 6, 8,10,12,...  <Rprofmem[131x3]>
#> 23:    0.000000     5     0                   2,4   <Rprofmem[31x3]>
#> 24:    0.000000     5     0               2,4,6,8    <Rprofmem[0x3]>
#> 25:    0.000000     5     0  2, 4, 6, 8,10,12,...    <Rprofmem[0x3]>
#> 26:    0.000000     5     0  2, 4, 6, 8,10,12,...    <Rprofmem[2x3]>
#> 27:    0.000000     5     0  2, 4, 6, 8,10,12,...    <Rprofmem[6x3]>
#> 28:    0.000000     5     0  2, 4, 6, 8,10,12,...    <Rprofmem[9x3]>
#> 29:    0.000000     5     0  2, 4, 6, 8,10,12,...    <Rprofmem[9x3]>
#> 30:    0.000000     5     0  2, 4, 6, 8,10,12,...    <Rprofmem[9x3]>
#> 31:    0.000000     5     0  2, 4, 6, 8,10,12,...    <Rprofmem[9x3]>
#> 32:    0.000000     5     0  2, 4, 6, 8,10,12,...    <Rprofmem[9x3]>
#> 33:  136.466607     4     1  2, 4, 6, 8,10,12,...    <Rprofmem[9x3]>
#> 34:    0.000000     5     0  2, 4, 6, 8,10,12,...    <Rprofmem[9x3]>
#> 35:    0.000000     5     0  2, 4, 6, 8,10,12,...    <Rprofmem[9x3]>
#> 36:    0.000000     5     0  2, 4, 6, 8,10,12,...    <Rprofmem[9x3]>
#> 37:    0.000000     5     0                   2,4  <Rprofmem[109x3]>
#> 38:    0.000000     5     0               2,4,6,8   <Rprofmem[16x3]>
#> 39:    0.000000     5     0  2, 4, 6, 8,10,12,...   <Rprofmem[15x3]>
#> 40:    0.000000     5     0  2, 4, 6, 8,10,12,...   <Rprofmem[38x3]>
#> 41:    0.000000     5     0  2, 4, 6, 8,10,12,...   <Rprofmem[47x3]>
#> 42:    0.000000     5     0  2, 4, 6, 8,10,12,...   <Rprofmem[49x3]>
#> 43:  213.602187     4     1  2, 4, 6, 8,10,12,...   <Rprofmem[49x3]>
#> 44:    0.000000     5     0  2, 4, 6, 8,10,12,...   <Rprofmem[49x3]>
#> 45:    0.000000     5     0  2, 4, 6, 8,10,12,...   <Rprofmem[49x3]>
#> 46:    0.000000     5     0  2, 4, 6, 8,10,12,...   <Rprofmem[49x3]>
#> 47:    0.000000     5     0  2, 4, 6, 8,10,12,...   <Rprofmem[49x3]>
#> 48:   46.981222     4     1  2, 4, 6, 8,10,12,...   <Rprofmem[49x3]>
#> 49:   29.304802     4     1  2, 4, 6, 8,10,12,...   <Rprofmem[49x3]>
#> 50:   46.659854     3     2  2, 4, 6, 8,10,12,...   <Rprofmem[79x3]>
#> 51:    0.000000     5     0                   2,4   <Rprofmem[11x3]>
#> 52:    0.000000     5     0               2,4,6,8   <Rprofmem[11x3]>
#> 53:    0.000000     5     0  2, 4, 6, 8,10,12,...   <Rprofmem[12x3]>
#> 54:    0.000000     5     0  2, 4, 6, 8,10,12,...   <Rprofmem[24x3]>
#> 55:    0.000000     5     0  2, 4, 6, 8,10,12,...   <Rprofmem[74x3]>
#> 56:    0.000000     5     0  2, 4, 6, 8,10,12,...  <Rprofmem[131x3]>
#> 57:    0.000000     5     0  2, 4, 6, 8,10,12,...  <Rprofmem[131x3]>
#> 58:    0.000000     5     0  2, 4, 6, 8,10,12,...  <Rprofmem[131x3]>
#> 59:    0.000000     5     0  2, 4, 6, 8,10,12,...  <Rprofmem[131x3]>
#> 60:    0.000000     5     0  2, 4, 6, 8,10,12,...  <Rprofmem[207x3]>
#> 61:    0.000000     5     0  2, 4, 6, 8,10,12,...  <Rprofmem[131x3]>
#>          gc/sec n_itr  n_gc                result             memory
#>                                          time            gc    kilobytes
#>                                        <list>        <list>        <num>
#>  1:             124ms,442µs,358µs,354µs,348µs <tbl_df[5x3]>  6415.765625
#>  2:             559µs,418µs,453µs,423µs,426µs <tbl_df[5x3]>    18.664062
#>  3:             671µs,496µs,463µs,472µs,456µs <tbl_df[5x3]>     3.523438
#>  4:             743µs,553µs,506µs,530µs,529µs <tbl_df[5x3]>    10.750000
#>  5:             814µs,688µs,649µs,658µs,681µs <tbl_df[5x3]>    51.437500
#>  6:        1.52ms,1.22ms,1.23ms,1.88ms,2.02ms <tbl_df[5x3]>   191.421875
#>  7:        2.94ms,2.85ms,2.89ms,2.75ms,2.83ms <tbl_df[5x3]>   697.210938
#>  8:         9.58ms,9.49ms,9.59ms,9.69ms,9.7ms <tbl_df[5x3]>  2619.789062
#>  9:        42.7ms,42.6ms,42.6ms,47.7ms,43.4ms <tbl_df[5x3]> 10114.601562
#> 10:        1.49ms,1.23ms,1.16ms,1.14ms,1.16ms <tbl_df[5x3]>  2666.906250
#> 11:         1.53ms,1.27ms,1.21ms,1.17ms,1.2ms <tbl_df[5x3]>    70.007812
#> 12:        1.39ms,1.22ms,1.18ms,1.17ms,1.16ms <tbl_df[5x3]>    70.187500
#> 13:         1.39ms,1.21ms,1.21ms,1.2ms,1.18ms <tbl_df[5x3]>    72.820312
#> 14:        1.48ms,1.23ms,1.21ms,1.17ms,1.18ms <tbl_df[5x3]>    88.726562
#> 15:          1.5ms,1.36ms,1.38ms,5.15ms,1.4ms <tbl_df[5x3]>   121.273438
#> 16:        1.53ms,1.36ms,1.32ms,1.41ms,1.29ms <tbl_df[5x3]>   166.773438
#> 17:        1.68ms,1.48ms,1.47ms,1.34ms,1.33ms <tbl_df[5x3]>   257.773438
#> 18:        1.92ms,1.65ms,1.57ms,1.55ms,1.53ms <tbl_df[5x3]>   439.773438
#> 19:        3.29ms,3.21ms,2.23ms,1.98ms,1.98ms <tbl_df[5x3]>   803.773438
#> 20:         4.25ms,4.2ms,4.29ms,4.12ms,4.21ms <tbl_df[5x3]>  1531.773438
#> 21:      12.12ms, 7.41ms, 7ms, 7.49ms, 7.07ms <tbl_df[5x3]>  2987.773438
#> 22:        16.6ms,11.3ms,11.7ms,15.6ms,11.5ms <tbl_df[5x3]>  5899.773438
#> 23:        85.9µs,61.7µs,55.4µs,50.7µs,49.6µs <tbl_df[5x3]>    32.531250
#> 24:          86µs,64.9µs,56.8µs,54.3µs,51.5µs <tbl_df[5x3]>     0.000000
#> 25:          84.6µs,67µs,60.6µs,59.9µs,57.1µs <tbl_df[5x3]>     0.000000
#> 26:        92.2µs,75.3µs,69.6µs,63.5µs,64.1µs <tbl_df[5x3]>     0.593750
#> 27:     106.8µs,109.2µs, 86µs, 85.4µs, 81.7µs <tbl_df[5x3]>     2.265625
#> 28:       153.8µs,119µs,103µs, 98.3µs,104.4µs <tbl_df[5x3]>     5.156250
#> 29:             206µs,159µs,146µs,144µs,141µs <tbl_df[5x3]>     9.906250
#> 30:             282µs,264µs,246µs,335µs,245µs <tbl_df[5x3]>    19.406250
#> 31:             497µs,467µs,453µs,457µs,453µs <tbl_df[5x3]>    38.406250
#> 32:             932µs,891µs,878µs,869µs,874µs <tbl_df[5x3]>    76.406250
#> 33:        1.89ms,5.34ms,1.92ms,1.76ms,1.76ms <tbl_df[5x3]>   152.406250
#> 34:        3.95ms,3.69ms,3.59ms,3.58ms,3.56ms <tbl_df[5x3]>   304.406250
#> 35:        7.96ms,7.72ms,7.68ms,7.61ms,7.58ms <tbl_df[5x3]>   608.406250
#> 36:        16.6ms,15.6ms,15.8ms,15.9ms,15.8ms <tbl_df[5x3]>  1216.406250
#> 37:    1.09ms,928.4µs,895.2µs,891.6µs,928.9µs <tbl_df[5x3]>   179.218750
#> 38:    1.14ms,964.4µs,972.8µs,974.4µs,913.8µs <tbl_df[5x3]>    82.984375
#> 39:   1.23ms,976.3µs,  1.01ms,966.1µs,976.4µs <tbl_df[5x3]>    83.734375
#> 40:   1.12ms,976.3µs,942.8µs,941.3µs,  1.01ms <tbl_df[5x3]>    92.671875
#> 41:   1.11ms,  1.02ms,928µs,  1.06ms,  1.18ms <tbl_df[5x3]>   105.593750
#> 42:        1.31ms,1.09ms,1.34ms,2.03ms,1.39ms <tbl_df[5x3]>   128.937500
#> 43:        1.33ms,1.14ms,1.07ms,4.83ms,1.13ms <tbl_df[5x3]>   174.937500
#> 44:        1.31ms,1.14ms,1.06ms,1.03ms,1.05ms <tbl_df[5x3]>   266.937500
#> 45:        1.53ms,1.46ms,1.74ms,1.53ms,1.33ms <tbl_df[5x3]>   450.937500
#> 46:        2.04ms,1.93ms,2.32ms,2.09ms,1.88ms <tbl_df[5x3]>   818.937500
#> 47:         3.91ms,2.75ms,3.39ms,3.36ms,3.5ms <tbl_df[5x3]>  1554.937500
#> 48:        5.69ms,5.06ms,9.83ms,5.34ms,5.19ms <tbl_df[5x3]>  3026.937500
#> 49:    80.25ms, 8.21ms, 8.72ms, 8.5ms, 8.69ms <tbl_df[5x3]>  5970.937500
#> 50:          15.4ms,18.6ms,14.2ms,16ms,13.3ms <tbl_df[5x3]> 11866.203125
#> 51:        1.28ms,1.18ms,1.13ms,1.13ms,1.13ms <tbl_df[5x3]>    70.007812
#> 52:        1.37ms,1.22ms,1.21ms,1.28ms,1.21ms <tbl_df[5x3]>    70.007812
#> 53:        1.44ms,1.27ms,1.16ms,1.13ms,1.12ms <tbl_df[5x3]>    70.187500
#> 54:        1.27ms,1.18ms,1.14ms,1.17ms,1.19ms <tbl_df[5x3]>    72.820312
#> 55:        1.46ms,1.21ms,1.18ms,1.19ms,1.34ms <tbl_df[5x3]>    88.726562
#> 56:           2.51ms,1.48ms,1.4ms,1.3ms,1.3ms <tbl_df[5x3]>   121.273438
#> 57:        1.43ms,1.28ms,1.25ms,1.23ms,1.26ms <tbl_df[5x3]>   166.773438
#> 58:        1.74ms,1.64ms,1.43ms,1.74ms,1.56ms <tbl_df[5x3]>   257.773438
#> 59:         2.2ms,2.09ms,2.06ms,2.29ms,2.12ms <tbl_df[5x3]>   439.773438
#> 60:        3.85ms,3.66ms,3.78ms,4.79ms,5.03ms <tbl_df[5x3]>   822.179688
#> 61:        13.5ms,12.3ms,12.3ms,12.3ms,12.2ms <tbl_df[5x3]>  1531.773438
#>                                          time            gc    kilobytes
#>           q25       q75       max       mean           sd  fun.name   fun.latex
#>         <num>     <num>     <num>      <num>        <num>    <char>      <char>
#>  1: 0.0003536 0.0004420 0.1239093 0.02508212 5.524609e-02 N^2 log N N^2 \\log N
#>  2: 0.0004231 0.0004533 0.0005590 0.00045582 5.928243e-05 N^2 log N N^2 \\log N
#>  3: 0.0004629 0.0004961 0.0006708 0.00051138 9.042061e-05 N^2 log N N^2 \\log N
#>  4: 0.0005289 0.0005526 0.0007432 0.00057224 9.695629e-05 N^2 log N N^2 \\log N
#>  5: 0.0006580 0.0006878 0.0008145 0.00069796 6.706313e-05 N^2 log N N^2 \\log N
#>  6: 0.0012273 0.0018793 0.0020198 0.00157412 3.674246e-04 N^2 log N N^2 \\log N
#>  7: 0.0028256 0.0028869 0.0029425 0.00285008 7.164905e-05 N^2 log N N^2 \\log N
#>  8: 0.0095828 0.0096889 0.0097030 0.00961088 8.678662e-05 N^2 log N N^2 \\log N
#>  9: 0.0426154 0.0434328 0.0477435 0.04380014 2.233464e-03 N^2 log N N^2 \\log N
#> 10: 0.0011551 0.0012318 0.0014931 0.00123600 1.479747e-04    sqrt N    \\sqrt N
#> 11: 0.0011968 0.0012704 0.0015320 0.00127606 1.477939e-04    sqrt N    \\sqrt N
#> 12: 0.0011695 0.0012193 0.0013868 0.00122252 9.474393e-05    sqrt N    \\sqrt N
#> 13: 0.0011971 0.0012086 0.0013937 0.00123854 8.725103e-05    sqrt N    \\sqrt N
#> 14: 0.0011821 0.0012327 0.0014831 0.00125492 1.299874e-04    sqrt N    \\sqrt N
#> 15: 0.0013798 0.0014956 0.0051532 0.00215750 1.675475e-03    sqrt N    \\sqrt N
#> 16: 0.0013158 0.0014083 0.0015278 0.00138050 9.364283e-05    sqrt N    \\sqrt N
#> 17: 0.0013429 0.0014776 0.0016831 0.00146096 1.413149e-04    sqrt N    \\sqrt N
#> 18: 0.0015540 0.0016483 0.0019208 0.00164498 1.605944e-04    sqrt N    \\sqrt N
#> 19: 0.0019816 0.0032135 0.0032922 0.00253898 6.602093e-04    sqrt N    \\sqrt N
#> 20: 0.0041967 0.0042451 0.0042929 0.00421148 6.573075e-05    sqrt N    \\sqrt N
#> 21: 0.0070670 0.0074937 0.0121146 0.00821640 2.189540e-03    sqrt N    \\sqrt N
#> 22: 0.0115405 0.0155953 0.0166483 0.01335826 2.554953e-03    sqrt N    \\sqrt N
#> 23: 0.0000507 0.0000617 0.0000859 0.00006066 1.489406e-05         N           N
#> 24: 0.0000543 0.0000649 0.0000860 0.00006270 1.395116e-05         N           N
#> 25: 0.0000599 0.0000670 0.0000846 0.00006584 1.109518e-05         N           N
#> 26: 0.0000641 0.0000753 0.0000922 0.00007294 1.177850e-05         N           N
#> 27: 0.0000854 0.0001068 0.0001092 0.00009382 1.307639e-05         N           N
#> 28: 0.0001030 0.0001190 0.0001538 0.00011570 2.266186e-05         N           N
#> 29: 0.0001439 0.0001593 0.0002063 0.00015936 2.714771e-05         N           N
#> 30: 0.0002458 0.0002818 0.0003347 0.00027418 3.707117e-05         N           N
#> 31: 0.0004530 0.0004671 0.0004968 0.00046536 1.852061e-05         N           N
#> 32: 0.0008735 0.0008906 0.0009318 0.00088868 2.538261e-05         N           N
#> 33: 0.0017624 0.0019167 0.0053400 0.00253356 1.570560e-03         N           N
#> 34: 0.0035810 0.0036918 0.0039525 0.00367518 1.630590e-04         N           N
#> 35: 0.0076087 0.0077244 0.0079609 0.00771220 1.499676e-04         N           N
#> 36: 0.0157764 0.0159197 0.0165799 0.01593500 3.816123e-04         N           N
#> 37: 0.0008952 0.0009289 0.0010907 0.00094696 8.227340e-05         N           N
#> 38: 0.0009644 0.0009744 0.0011408 0.00099324 8.615270e-05         N           N
#> 39: 0.0009763 0.0010098 0.0012253 0.00103078 1.099852e-04         N           N
#> 40: 0.0009428 0.0010139 0.0011225 0.00099936 7.496104e-05         N           N
#> 41: 0.0010160 0.0011077 0.0011805 0.00105922 9.508905e-05         N           N
#> 42: 0.0013141 0.0013889 0.0020261 0.00143258 3.506250e-04         N           N
#> 43: 0.0011324 0.0013346 0.0048290 0.00190212 1.639106e-03         N           N
#> 44: 0.0010545 0.0011355 0.0013099 0.00111978 1.128836e-04         N           N
#> 45: 0.0014573 0.0015354 0.0017397 0.00151878 1.486441e-04         N           N
#> 46: 0.0019301 0.0020895 0.0023206 0.00205098 1.726297e-04         N           N
#> 47: 0.0033617 0.0035053 0.0039112 0.00338336 4.157260e-04         N           N
#> 48: 0.0051926 0.0056916 0.0098315 0.00622332 2.030784e-03         N           N
#> 49: 0.0085012 0.0087226 0.0802495 0.02287472 3.207412e-02         N           N
#> 50: 0.0141601 0.0160117 0.0186232 0.01549966 2.029709e-03         N           N
#> 51: 0.0011282 0.0011779 0.0012845 0.00116904 6.812924e-05       N^2         N^2
#> 52: 0.0012059 0.0012776 0.0013699 0.00125642 7.000819e-05       N^2         N^2
#> 53: 0.0011272 0.0012656 0.0014367 0.00122274 1.325965e-04       N^2         N^2
#> 54: 0.0011664 0.0011932 0.0012731 0.00119194 4.924173e-05       N^2         N^2
#> 55: 0.0011857 0.0013440 0.0014568 0.00127556 1.210931e-04       N^2         N^2
#> 56: 0.0013049 0.0014762 0.0025062 0.00159860 5.126010e-04       N^2         N^2
#> 57: 0.0012449 0.0012803 0.0014323 0.00128900 8.261677e-05       N^2         N^2
#> 58: 0.0015558 0.0017366 0.0017441 0.00162056 1.329830e-04       N^2         N^2
#> 59: 0.0020874 0.0022017 0.0022943 0.00215298 9.532050e-05       N^2         N^2
#> 60: 0.0037766 0.0047926 0.0050320 0.00422238 6.391255e-04       N^2         N^2
#> 61: 0.0122592 0.0122892 0.0135165 0.01251378 5.609897e-04       N^2         N^2
#>           q25       q75       max       mean           sd  fun.name   fun.latex
#>                            expr.class                               expr.latex
#>                                <char>                                   <char>
#>  1:  changepoint::cpt.mean\nN^2 log N  changepoint::cpt.mean\n$O(N^2 \\log N)$
#>  2:  changepoint::cpt.mean\nN^2 log N  changepoint::cpt.mean\n$O(N^2 \\log N)$
#>  3:  changepoint::cpt.mean\nN^2 log N  changepoint::cpt.mean\n$O(N^2 \\log N)$
#>  4:  changepoint::cpt.mean\nN^2 log N  changepoint::cpt.mean\n$O(N^2 \\log N)$
#>  5:  changepoint::cpt.mean\nN^2 log N  changepoint::cpt.mean\n$O(N^2 \\log N)$
#>  6:  changepoint::cpt.mean\nN^2 log N  changepoint::cpt.mean\n$O(N^2 \\log N)$
#>  7:  changepoint::cpt.mean\nN^2 log N  changepoint::cpt.mean\n$O(N^2 \\log N)$
#>  8:  changepoint::cpt.mean\nN^2 log N  changepoint::cpt.mean\n$O(N^2 \\log N)$
#>  9:  changepoint::cpt.mean\nN^2 log N  changepoint::cpt.mean\n$O(N^2 \\log N)$
#> 10: binsegRcpp::binseg_normal\nsqrt N binsegRcpp::binseg_normal\n$O(\\sqrt N)$
#> 11: binsegRcpp::binseg_normal\nsqrt N binsegRcpp::binseg_normal\n$O(\\sqrt N)$
#> 12: binsegRcpp::binseg_normal\nsqrt N binsegRcpp::binseg_normal\n$O(\\sqrt N)$
#> 13: binsegRcpp::binseg_normal\nsqrt N binsegRcpp::binseg_normal\n$O(\\sqrt N)$
#> 14: binsegRcpp::binseg_normal\nsqrt N binsegRcpp::binseg_normal\n$O(\\sqrt N)$
#> 15: binsegRcpp::binseg_normal\nsqrt N binsegRcpp::binseg_normal\n$O(\\sqrt N)$
#> 16: binsegRcpp::binseg_normal\nsqrt N binsegRcpp::binseg_normal\n$O(\\sqrt N)$
#> 17: binsegRcpp::binseg_normal\nsqrt N binsegRcpp::binseg_normal\n$O(\\sqrt N)$
#> 18: binsegRcpp::binseg_normal\nsqrt N binsegRcpp::binseg_normal\n$O(\\sqrt N)$
#> 19: binsegRcpp::binseg_normal\nsqrt N binsegRcpp::binseg_normal\n$O(\\sqrt N)$
#> 20: binsegRcpp::binseg_normal\nsqrt N binsegRcpp::binseg_normal\n$O(\\sqrt N)$
#> 21: binsegRcpp::binseg_normal\nsqrt N binsegRcpp::binseg_normal\n$O(\\sqrt N)$
#> 22: binsegRcpp::binseg_normal\nsqrt N binsegRcpp::binseg_normal\n$O(\\sqrt N)$
#> 23:              fpop::multiBinSeg\nN                fpop::multiBinSeg\n$O(N)$
#> 24:              fpop::multiBinSeg\nN                fpop::multiBinSeg\n$O(N)$
#> 25:              fpop::multiBinSeg\nN                fpop::multiBinSeg\n$O(N)$
#> 26:              fpop::multiBinSeg\nN                fpop::multiBinSeg\n$O(N)$
#> 27:              fpop::multiBinSeg\nN                fpop::multiBinSeg\n$O(N)$
#> 28:              fpop::multiBinSeg\nN                fpop::multiBinSeg\n$O(N)$
#> 29:              fpop::multiBinSeg\nN                fpop::multiBinSeg\n$O(N)$
#> 30:              fpop::multiBinSeg\nN                fpop::multiBinSeg\n$O(N)$
#> 31:              fpop::multiBinSeg\nN                fpop::multiBinSeg\n$O(N)$
#> 32:              fpop::multiBinSeg\nN                fpop::multiBinSeg\n$O(N)$
#> 33:              fpop::multiBinSeg\nN                fpop::multiBinSeg\n$O(N)$
#> 34:              fpop::multiBinSeg\nN                fpop::multiBinSeg\n$O(N)$
#> 35:              fpop::multiBinSeg\nN                fpop::multiBinSeg\n$O(N)$
#> 36:              fpop::multiBinSeg\nN                fpop::multiBinSeg\n$O(N)$
#> 37:                       wbs::sbs\nN                         wbs::sbs\n$O(N)$
#> 38:                       wbs::sbs\nN                         wbs::sbs\n$O(N)$
#> 39:                       wbs::sbs\nN                         wbs::sbs\n$O(N)$
#> 40:                       wbs::sbs\nN                         wbs::sbs\n$O(N)$
#> 41:                       wbs::sbs\nN                         wbs::sbs\n$O(N)$
#> 42:                       wbs::sbs\nN                         wbs::sbs\n$O(N)$
#> 43:                       wbs::sbs\nN                         wbs::sbs\n$O(N)$
#> 44:                       wbs::sbs\nN                         wbs::sbs\n$O(N)$
#> 45:                       wbs::sbs\nN                         wbs::sbs\n$O(N)$
#> 46:                       wbs::sbs\nN                         wbs::sbs\n$O(N)$
#> 47:                       wbs::sbs\nN                         wbs::sbs\n$O(N)$
#> 48:                       wbs::sbs\nN                         wbs::sbs\n$O(N)$
#> 49:                       wbs::sbs\nN                         wbs::sbs\n$O(N)$
#> 50:                       wbs::sbs\nN                         wbs::sbs\n$O(N)$
#> 51:              binsegRcpp.list\nN^2                binsegRcpp.list\n$O(N^2)$
#> 52:              binsegRcpp.list\nN^2                binsegRcpp.list\n$O(N^2)$
#> 53:              binsegRcpp.list\nN^2                binsegRcpp.list\n$O(N^2)$
#> 54:              binsegRcpp.list\nN^2                binsegRcpp.list\n$O(N^2)$
#> 55:              binsegRcpp.list\nN^2                binsegRcpp.list\n$O(N^2)$
#> 56:              binsegRcpp.list\nN^2                binsegRcpp.list\n$O(N^2)$
#> 57:              binsegRcpp.list\nN^2                binsegRcpp.list\n$O(N^2)$
#> 58:              binsegRcpp.list\nN^2                binsegRcpp.list\n$O(N^2)$
#> 59:              binsegRcpp.list\nN^2                binsegRcpp.list\n$O(N^2)$
#> 60:              binsegRcpp.list\nN^2                binsegRcpp.list\n$O(N^2)$
#> 61:              binsegRcpp.list\nN^2                binsegRcpp.list\n$O(N^2)$
#>                            expr.class                               expr.latex
#>     empirical
#>         <num>
#>  1: 0.0003581
#>  2: 0.0004255
#>  3: 0.0004716
#>  4: 0.0005301
#>  5: 0.0006806
#>  6: 0.0015243
#>  7: 0.0028454
#>  8: 0.0095882
#>  9: 0.0426579
#> 10: 0.0011581
#> 11: 0.0012121
#> 12: 0.0011799
#> 13: 0.0012079
#> 14: 0.0012091
#> 15: 0.0014017
#> 16: 0.0013594
#> 17: 0.0014678
#> 18: 0.0015743
#> 19: 0.0022298
#> 20: 0.0042076
#> 21: 0.0074088
#> 22: 0.0117257
#> 23: 0.0000554
#> 24: 0.0000568
#> 25: 0.0000606
#> 26: 0.0000696
#> 27: 0.0000860
#> 28: 0.0001044
#> 29: 0.0001461
#> 30: 0.0002638
#> 31: 0.0004573
#> 32: 0.0008781
#> 33: 0.0018928
#> 34: 0.0035885
#> 35: 0.0076828
#> 36: 0.0158226
#> 37: 0.0009284
#> 38: 0.0009728
#> 39: 0.0009764
#> 40: 0.0009763
#> 41: 0.0010639
#> 42: 0.0013404
#> 43: 0.0011391
#> 44: 0.0010643
#> 45: 0.0015308
#> 46: 0.0020376
#> 47: 0.0033856
#> 48: 0.0053414
#> 49: 0.0086899
#> 50: 0.0153591
#> 51: 0.0011288
#> 52: 0.0012240
#> 53: 0.0011591
#> 54: 0.0011840
#> 55: 0.0012074
#> 56: 0.0014042
#> 57: 0.0012618
#> 58: 0.0016393
#> 59: 0.0021220
#> 60: 0.0038511
#> 61: 0.0122753
#>     empirical
try(if(require(ggplot2)){
  gg <- ggplot()+
    geom_line(aes(
      N, reference, group=fun.name),
      color=ref.color,
      data=time.refs)+
    geom_line(aes(
      N, empirical),
      size=1,
      data=seconds.dt)+
    scale_x_log10()+
    scale_y_log10("median line, min/max band")+
    facet_wrap("expr.name")+
    theme_bw()
  if(require(directlabels)){
    gg+
      directlabels::geom_dl(aes(
        N, reference, label=fun.name),
        data=time.refs,
        color=ref.color,
        method="bottom.polygons")
  }else{
    gg
  }
})

plot of chunk unnamed-chunk-4

Custom asymptotic references

If you have one or more expected time complexity classes that you want to compare with your empirical measurements, you can use the fun.list argument:

my.refs <- list(
  "N \\log N"=function(N)log10(N) + log10(log(N)),
  "N^2"=function(N)2*log10(N),
  "N^3"=function(N)3*log10(N))
my.best <- atime::references_best(atime.list, fun.list=my.refs)

Note that in the code above, each R function should take as input the data size N and output log base 10 of the reference function.

(my.best.time.refs <- my.best$ref[unit=="seconds"])
#>        unit                 expr.name fun.latex fun.name     N empirical
#>      <char>                    <char>    <char>   <char> <num>     <num>
#>  1: seconds     changepoint::cpt.mean N \\log N  N log N     8 0.0004255
#>  2: seconds     changepoint::cpt.mean N \\log N  N log N    16 0.0004716
#>  3: seconds     changepoint::cpt.mean N \\log N  N log N    32 0.0005301
#>  4: seconds     changepoint::cpt.mean N \\log N  N log N    64 0.0006806
#>  5: seconds     changepoint::cpt.mean N \\log N  N log N   128 0.0015243
#>  6: seconds     changepoint::cpt.mean N \\log N  N log N   256 0.0028454
#>  7: seconds     changepoint::cpt.mean N \\log N  N log N   512 0.0095882
#>  8: seconds     changepoint::cpt.mean N \\log N  N log N  1024 0.0426579
#>  9: seconds     changepoint::cpt.mean       N^2      N^2    64 0.0006806
#> 10: seconds     changepoint::cpt.mean       N^2      N^2   128 0.0015243
#> 11: seconds     changepoint::cpt.mean       N^2      N^2   256 0.0028454
#> 12: seconds     changepoint::cpt.mean       N^2      N^2   512 0.0095882
#> 13: seconds     changepoint::cpt.mean       N^2      N^2  1024 0.0426579
#> 14: seconds     changepoint::cpt.mean       N^3      N^3   128 0.0015243
#> 15: seconds     changepoint::cpt.mean       N^3      N^3   256 0.0028454
#> 16: seconds     changepoint::cpt.mean       N^3      N^3   512 0.0095882
#> 17: seconds     changepoint::cpt.mean       N^3      N^3  1024 0.0426579
#> 18: seconds binsegRcpp::binseg_normal N \\log N  N log N   256 0.0013594
#> 19: seconds binsegRcpp::binseg_normal N \\log N  N log N   512 0.0014678
#> 20: seconds binsegRcpp::binseg_normal N \\log N  N log N  1024 0.0015743
#> 21: seconds binsegRcpp::binseg_normal N \\log N  N log N  2048 0.0022298
#> 22: seconds binsegRcpp::binseg_normal N \\log N  N log N  4096 0.0042076
#> 23: seconds binsegRcpp::binseg_normal N \\log N  N log N  8192 0.0074088
#> 24: seconds binsegRcpp::binseg_normal N \\log N  N log N 16384 0.0117257
#> 25: seconds binsegRcpp::binseg_normal       N^2      N^2  2048 0.0022298
#> 26: seconds binsegRcpp::binseg_normal       N^2      N^2  4096 0.0042076
#> 27: seconds binsegRcpp::binseg_normal       N^2      N^2  8192 0.0074088
#> 28: seconds binsegRcpp::binseg_normal       N^2      N^2 16384 0.0117257
#> 29: seconds binsegRcpp::binseg_normal       N^3      N^3  4096 0.0042076
#> 30: seconds binsegRcpp::binseg_normal       N^3      N^3  8192 0.0074088
#> 31: seconds binsegRcpp::binseg_normal       N^3      N^3 16384 0.0117257
#> 32: seconds         fpop::multiBinSeg N \\log N  N log N   256 0.0001461
#> 33: seconds         fpop::multiBinSeg N \\log N  N log N   512 0.0002638
#> 34: seconds         fpop::multiBinSeg N \\log N  N log N  1024 0.0004573
#> 35: seconds         fpop::multiBinSeg N \\log N  N log N  2048 0.0008781
#> 36: seconds         fpop::multiBinSeg N \\log N  N log N  4096 0.0018928
#> 37: seconds         fpop::multiBinSeg N \\log N  N log N  8192 0.0035885
#> 38: seconds         fpop::multiBinSeg N \\log N  N log N 16384 0.0076828
#> 39: seconds         fpop::multiBinSeg N \\log N  N log N 32768 0.0158226
#> 40: seconds         fpop::multiBinSeg       N^2      N^2  2048 0.0008781
#> 41: seconds         fpop::multiBinSeg       N^2      N^2  4096 0.0018928
#> 42: seconds         fpop::multiBinSeg       N^2      N^2  8192 0.0035885
#> 43: seconds         fpop::multiBinSeg       N^2      N^2 16384 0.0076828
#> 44: seconds         fpop::multiBinSeg       N^2      N^2 32768 0.0158226
#> 45: seconds         fpop::multiBinSeg       N^3      N^3  8192 0.0035885
#> 46: seconds         fpop::multiBinSeg       N^3      N^3 16384 0.0076828
#> 47: seconds         fpop::multiBinSeg       N^3      N^3 32768 0.0158226
#> 48: seconds                  wbs::sbs N \\log N  N log N   256 0.0011391
#> 49: seconds                  wbs::sbs N \\log N  N log N   512 0.0010643
#> 50: seconds                  wbs::sbs N \\log N  N log N  1024 0.0015308
#> 51: seconds                  wbs::sbs N \\log N  N log N  2048 0.0020376
#> 52: seconds                  wbs::sbs N \\log N  N log N  4096 0.0033856
#> 53: seconds                  wbs::sbs N \\log N  N log N  8192 0.0053414
#> 54: seconds                  wbs::sbs N \\log N  N log N 16384 0.0086899
#> 55: seconds                  wbs::sbs N \\log N  N log N 32768 0.0153591
#> 56: seconds                  wbs::sbs       N^2      N^2  2048 0.0020376
#> 57: seconds                  wbs::sbs       N^2      N^2  4096 0.0033856
#> 58: seconds                  wbs::sbs       N^2      N^2  8192 0.0053414
#> 59: seconds                  wbs::sbs       N^2      N^2 16384 0.0086899
#> 60: seconds                  wbs::sbs       N^2      N^2 32768 0.0153591
#> 61: seconds                  wbs::sbs       N^3      N^3  8192 0.0053414
#> 62: seconds                  wbs::sbs       N^3      N^3 16384 0.0086899
#> 63: seconds                  wbs::sbs       N^3      N^3 32768 0.0153591
#> 64: seconds           binsegRcpp.list N \\log N  N log N    64 0.0012074
#> 65: seconds           binsegRcpp.list N \\log N  N log N   128 0.0014042
#> 66: seconds           binsegRcpp.list N \\log N  N log N   256 0.0012618
#> 67: seconds           binsegRcpp.list N \\log N  N log N   512 0.0016393
#> 68: seconds           binsegRcpp.list N \\log N  N log N  1024 0.0021220
#> 69: seconds           binsegRcpp.list N \\log N  N log N  2048 0.0038511
#> 70: seconds           binsegRcpp.list N \\log N  N log N  4096 0.0122753
#> 71: seconds           binsegRcpp.list       N^2      N^2   512 0.0016393
#> 72: seconds           binsegRcpp.list       N^2      N^2  1024 0.0021220
#> 73: seconds           binsegRcpp.list       N^2      N^2  2048 0.0038511
#> 74: seconds           binsegRcpp.list       N^2      N^2  4096 0.0122753
#> 75: seconds           binsegRcpp.list       N^3      N^3  1024 0.0021220
#> 76: seconds           binsegRcpp.list       N^3      N^3  2048 0.0038511
#> 77: seconds           binsegRcpp.list       N^3      N^3  4096 0.0122753
#>        unit                 expr.name fun.latex fun.name     N empirical
#>        reference  rank   i.N i.empirical i.reference i.rank        dist  sign
#>            <num> <num> <num>       <num>       <num>  <num>       <num> <num>
#>  1: 9.997945e-05     8   512   0.0095882 0.019196055      2 -0.30147490    -1
#>  2: 2.666119e-04     7   512   0.0095882 0.019196055      2 -0.30147490    -1
#>  3: 6.665297e-04     6   512   0.0095882 0.019196055      2 -0.30147490    -1
#>  4: 1.599671e-03     5   512   0.0095882 0.019196055      2 -0.30147490    -1
#>  5: 3.732566e-03     4   512   0.0095882 0.019196055      2 -0.30147490    -1
#>  6: 8.531580e-03     3   512   0.0095882 0.019196055      2 -0.30147490    -1
#>  7: 1.919606e-02     2   512   0.0095882 0.019196055      2 -0.30147490    -1
#>  8: 4.265790e-02     1   512   0.0095882 0.019196055      2 -0.30147490    -1
#>  9: 1.666324e-04     5   512   0.0095882 0.010664475      2 -0.04620240    -1
#> 10: 6.665297e-04     4   512   0.0095882 0.010664475      2 -0.04620240    -1
#> 11: 2.666119e-03     3   512   0.0095882 0.010664475      2 -0.04620240    -1
#> 12: 1.066448e-02     2   512   0.0095882 0.010664475      2 -0.04620240    -1
#> 13: 4.265790e-02     1   512   0.0095882 0.010664475      2 -0.04620240    -1
#> 14: 8.331621e-05     4   512   0.0095882 0.005332238      2  0.25482760     1
#> 15: 6.665297e-04     3   512   0.0095882 0.005332238      2  0.25482760     1
#> 16: 5.332238e-03     2   512   0.0095882 0.005332238      2  0.25482760     1
#> 17: 4.265790e-02     1   512   0.0095882 0.005332238      2  0.25482760     1
#> 18: 1.046938e-04     7  8192   0.0074088 0.005444075      2  0.13382377     1
#> 19: 2.355609e-04     6  8192   0.0074088 0.005444075      2  0.13382377     1
#> 20: 5.234688e-04     5  8192   0.0074088 0.005444075      2  0.13382377     1
#> 21: 1.151631e-03     4  8192   0.0074088 0.005444075      2  0.13382377     1
#> 22: 2.512650e-03     3  8192   0.0074088 0.005444075      2  0.13382377     1
#> 23: 5.444075e-03     2  8192   0.0074088 0.005444075      2  0.13382377     1
#> 24: 1.172570e-02     1  8192   0.0074088 0.005444075      2  0.13382377     1
#> 25: 1.832141e-04     4  8192   0.0074088 0.002931425      2  0.40266908     1
#> 26: 7.328563e-04     3  8192   0.0074088 0.002931425      2  0.40266908     1
#> 27: 2.931425e-03     2  8192   0.0074088 0.002931425      2  0.40266908     1
#> 28: 1.172570e-02     1  8192   0.0074088 0.002931425      2  0.40266908     1
#> 29: 1.832141e-04     3  8192   0.0074088 0.001465713      2  0.70369908     1
#> 30: 1.465713e-03     2  8192   0.0074088 0.001465713      2  0.70369908     1
#> 31: 1.172570e-02     1  8192   0.0074088 0.001465713      2  0.70369908     1
#> 32: 6.592750e-05     8 16384   0.0076828 0.007383880      2  0.01723490     1
#> 33: 1.483369e-04     7 16384   0.0076828 0.007383880      2  0.01723490     1
#> 34: 3.296375e-04     6 16384   0.0076828 0.007383880      2  0.01723490     1
#> 35: 7.252025e-04     5 16384   0.0076828 0.007383880      2  0.01723490     1
#> 36: 1.582260e-03     4 16384   0.0076828 0.007383880      2  0.01723490     1
#> 37: 3.428230e-03     3 16384   0.0076828 0.007383880      2  0.01723490     1
#> 38: 7.383880e-03     2 16384   0.0076828 0.007383880      2  0.01723490     1
#> 39: 1.582260e-02     1 16384   0.0076828 0.007383880      2  0.01723490     1
#> 40: 6.180703e-05     5 16384   0.0076828 0.003955650      2  0.28830167     1
#> 41: 2.472281e-04     4 16384   0.0076828 0.003955650      2  0.28830167     1
#> 42: 9.889125e-04     3 16384   0.0076828 0.003955650      2  0.28830167     1
#> 43: 3.955650e-03     2 16384   0.0076828 0.003955650      2  0.28830167     1
#> 44: 1.582260e-02     1 16384   0.0076828 0.003955650      2  0.28830167     1
#> 45: 2.472281e-04     3 16384   0.0076828 0.001977825      2  0.58933167     1
#> 46: 1.977825e-03     2 16384   0.0076828 0.001977825      2  0.58933167     1
#> 47: 1.582260e-02     1 16384   0.0076828 0.001977825      2  0.58933167     1
#> 48: 6.399625e-05     8 16384   0.0086899 0.007167580      2  0.08364223     1
#> 49: 1.439916e-04     7 16384   0.0086899 0.007167580      2  0.08364223     1
#> 50: 3.199813e-04     6 16384   0.0086899 0.007167580      2  0.08364223     1
#> 51: 7.039588e-04     5 16384   0.0086899 0.007167580      2  0.08364223     1
#> 52: 1.535910e-03     4 16384   0.0086899 0.007167580      2  0.08364223     1
#> 53: 3.327805e-03     3 16384   0.0086899 0.007167580      2  0.08364223     1
#> 54: 7.167580e-03     2 16384   0.0086899 0.007167580      2  0.08364223     1
#> 55: 1.535910e-02     1 16384   0.0086899 0.007167580      2  0.08364223     1
#> 56: 5.999648e-05     5 16384   0.0086899 0.003839775      2  0.35470900     1
#> 57: 2.399859e-04     4 16384   0.0086899 0.003839775      2  0.35470900     1
#> 58: 9.599438e-04     3 16384   0.0086899 0.003839775      2  0.35470900     1
#> 59: 3.839775e-03     2 16384   0.0086899 0.003839775      2  0.35470900     1
#> 60: 1.535910e-02     1 16384   0.0086899 0.003839775      2  0.35470900     1
#> 61: 2.399859e-04     3 16384   0.0086899 0.001919888      2  0.65573900     1
#> 62: 1.919888e-03     2 16384   0.0086899 0.001919888      2  0.65573900     1
#> 63: 1.535910e-02     1 16384   0.0086899 0.001919888      2  0.65573900     1
#> 64: 9.590078e-05     7  2048   0.0038511 0.005626179      2 -0.16462876    -1
#> 65: 2.237685e-04     6  2048   0.0038511 0.005626179      2 -0.16462876    -1
#> 66: 5.114708e-04     5  2048   0.0038511 0.005626179      2 -0.16462876    -1
#> 67: 1.150809e-03     4  2048   0.0038511 0.005626179      2 -0.16462876    -1
#> 68: 2.557354e-03     3  2048   0.0038511 0.005626179      2 -0.16462876    -1
#> 69: 5.626179e-03     2  2048   0.0038511 0.005626179      2 -0.16462876    -1
#> 70: 1.227530e-02     1  2048   0.0038511 0.005626179      2 -0.16462876    -1
#> 71: 1.918016e-04     4  2048   0.0038511 0.003068825      2  0.09861267     1
#> 72: 7.672063e-04     3  2048   0.0038511 0.003068825      2  0.09861267     1
#> 73: 3.068825e-03     2  2048   0.0038511 0.003068825      2  0.09861267     1
#> 74: 1.227530e-02     1  2048   0.0038511 0.003068825      2  0.09861267     1
#> 75: 1.918016e-04     3  2048   0.0038511 0.001534413      2  0.39964267     1
#> 76: 1.534413e-03     2  2048   0.0038511 0.001534413      2  0.39964267     1
#> 77: 1.227530e-02     1  2048   0.0038511 0.001534413      2  0.39964267     1
#>        reference  rank   i.N i.empirical i.reference i.rank        dist  sign
#>     overall.rank each.sign.rank
#>            <num>          <num>
#>  1:            3              2
#>  2:            3              2
#>  3:            3              2
#>  4:            3              2
#>  5:            3              2
#>  6:            3              2
#>  7:            3              2
#>  8:            3              2
#>  9:            1              1
#> 10:            1              1
#> 11:            1              1
#> 12:            1              1
#> 13:            1              1
#> 14:            2              1
#> 15:            2              1
#> 16:            2              1
#> 17:            2              1
#> 18:            1              1
#> 19:            1              1
#> 20:            1              1
#> 21:            1              1
#> 22:            1              1
#> 23:            1              1
#> 24:            1              1
#> 25:            2              2
#> 26:            2              2
#> 27:            2              2
#> 28:            2              2
#> 29:            3              3
#> 30:            3              3
#> 31:            3              3
#> 32:            1              1
#> 33:            1              1
#> 34:            1              1
#> 35:            1              1
#> 36:            1              1
#> 37:            1              1
#> 38:            1              1
#> 39:            1              1
#> 40:            2              2
#> 41:            2              2
#> 42:            2              2
#> 43:            2              2
#> 44:            2              2
#> 45:            3              3
#> 46:            3              3
#> 47:            3              3
#> 48:            1              1
#> 49:            1              1
#> 50:            1              1
#> 51:            1              1
#> 52:            1              1
#> 53:            1              1
#> 54:            1              1
#> 55:            1              1
#> 56:            2              2
#> 57:            2              2
#> 58:            2              2
#> 59:            2              2
#> 60:            2              2
#> 61:            3              3
#> 62:            3              3
#> 63:            3              3
#> 64:            2              1
#> 65:            2              1
#> 66:            2              1
#> 67:            2              1
#> 68:            2              1
#> 69:            2              1
#> 70:            2              1
#> 71:            1              1
#> 72:            1              1
#> 73:            1              1
#> 74:            1              1
#> 75:            3              2
#> 76:            3              2
#> 77:            3              2
#>     overall.rank each.sign.rank
try(if(require(ggplot2)){
  gg <- ggplot()+
    geom_line(aes(
      N, reference, group=fun.name),
      color=ref.color,
      data=my.best.time.refs)+
    geom_line(aes(
      N, empirical),
      size=1,
      data=seconds.dt)+
    scale_x_log10()+
    scale_y_log10("median line, min/max band")+
    facet_wrap("expr.name")+
    theme_bw()
  if(require(directlabels)){
    gg+
      directlabels::geom_dl(aes(
        N, reference, label=fun.name),
        data=my.best.time.refs,
        color=ref.color,
        method="bottom.polygons")
  }else{
    gg
  }
})

plot of chunk unnamed-chunk-6

From the plot above you should be able to see the asymptotic time complexity class of each algorithm.

Exercises for the reader