Package 'bigDM'

October 28, 2022

Type Package

Title Scalable Bayesian Disease Mapping Models for High-Dimensional

Data

Version 0.5.0

Date 2022-10-05

Maintainer Aritz Adin <aritz.adin@unavarra.es>

Description

Implements several spatial and spatio-temporal scalable disease mapping models for high-dimensional count data using the INLA technique for approximate Bayesian inference in latent Gaussian models (Orozco-Acosta et al., 2021 <doi:10.1016/j.spasta.2021.100496>; Orozco-Acosta et al., 2022 <arXiv:2201.08323> and Vicente et al., 2022 <arXiv:2210.14849>). The creation and development of this package has been supported by Project MTM2017-82553-R (AEI/FEDER, UE) and Project PID2020-113125RB-

I00/MCIN/AEI/10.13039/501100011033. It has also been partially funded by the Public University of Navarra (project PJUPNA2001).

URL https://github.com/spatialstatisticsupna/bigDM

BugReports https://github.com/spatialstatisticsupna/bigDM/issues

Depends R (>= 4.0.0)

Additional repositories https://inla.r-inla-download.org/R/stable

Imports crayon, fastDummies, future, future.apply, MASS, Matrix, methods, parallel, RColorBrewer, Rdpack, sf, spatialreg, spdep, stats, utils, rlist

Suggests bookdown, INLA (>= 21.11.22), knitr, rmarkdown, testthat (>= 3.0.0), tmap

RdMacros Rdpack

License GPL-3

Encoding UTF-8

LazyData true

LazyDataCompression xz

RoxygenNote 7.2.1

2 bigDM-package

Config/testthat/edition 3

NeedsCompilation no

Author Aritz Adin [aut, cre] (https://orcid.org/0000-0003-3232-6147), Erick Orozco-Acosta [aut] (https://orcid.org/0000-0002-1170-667X), Maria Dolores Ugarte [aut] (https://orcid.org/0000-0002-3505-8400)

Repository CRAN

Date/Publication 2022-10-28 11:47:44 UTC

R topics documented:

Mmodel_icar Mmodel_iid Mmodel_lcar Mmodel_pcar andom_partition TCAR_INLA .				 		 					•		•			 	•	 					26 27 28
Mmodel_iid Mmodel_lcar Mmodel_pcar andom_partition				 		 					•		•			 	•	 					26 27 28
Amodel_iid Amodel_lcar Amodel_pcar						· ·			 														26 27
/Imodel_iid /Imodel_lcar																							26
/Imodel_iid																							
																							- 20
amodei icar																							
_																							
-																							
	Id_neighbour arto_SpainMUN AR_INLA ustering_partitionnect_subgraph ata_LungCancer ata_MultiCancer ivide_carto ICAR_INLA arto_SpainMUN arto_spain arto_spai	dd_neighbour arto_SpainMUN	dd_neighbour arto_SpainMUN	dd_neighbour arto_SpainMUN AR_INLA sustering_partition connect_subgraphs stata_LungCancer stata_MultiCancer ivide_carto ICAR_INLA strengeINLA	dd_neighbour arto_SpainMUN AR_INLA ustering_partition onnect_subgraphs ata_LungCancer ata_MultiCancer ivide_carto ICAR_INLA ustering_partition ata_MultiCancer ivide_carto ata_NultiCancer ivide_carto ICAR_INLA	dd_neighbour arto_SpainMUN AR_INLA ustering_partition onnect_subgraphs ata_LungCancer ata_MultiCancer ivide_carto ICAR_INLA arrgeINLA	dd_neighbour arto_SpainMUN AR_INLA ustering_partition onnect_subgraphs ata_LungCancer ata_MultiCancer ivide_carto ICAR_INLA artgeINLA	dd_neighbour arto_SpainMUN AR_INLA ustering_partition onnect_subgraphs ata_LungCancer ata_MultiCancer ivide_carto ICAR_INLA lergeINLA	dd_neighbour arto_SpainMUN AR_INLA ustering_partition onnect_subgraphs ata_LungCancer ata_MultiCancer ivide_carto ICAR_INLA lergeINLA	dd_neighbour arto_SpainMUN	dd_neighbour arto_SpainMUN AR_INLA ustering_partition onnect_subgraphs ata_LungCancer ata_MultiCancer ivide_carto ICAR_INLA uergeINLA	dd_neighbour arto_SpainMUN AR_INLA ustering_partition onnect_subgraphs ata_LungCancer ata_MultiCancer ivide_carto ICAR_INLA uergeINLA	dd_neighbour arto_SpainMUN AR_INLA	dd_neighbour arto_SpainMUN AR_INLA ustering_partition onnect_subgraphs ata_LungCancer ata_MultiCancer ivide_carto ICAR_INLA uergeINLA	dd_neighbour arto_SpainMUN AR_INLA	dd_neighbour arto_SpainMUN AR_INLA	dd_neighbour arto_SpainMUN AR_INLA sustering_partition connect_subgraphs ata_LungCancer ata_MultiCancer ivide_carto ICAR_INLA sergeINLA	dd_neighbour arto_SpainMUN AR_INLA ustering_partition onnect_subgraphs ata_LungCancer ata_MultiCancer ivide_carto ICAR_INLA uergeINLA	dd_neighbour arto_SpainMUN AR_INLA sustering_partition connect_subgraphs ata_LungCancer stata_MultiCancer ivide_carto ICAR_INLA sergeINLA	dd_neighbour arto_SpainMUN AR_INLA ustering_partition onnect_subgraphs ata_LungCancer ata_MultiCancer ivide_carto ICAR_INLA uergeINLA	dd_neighbour arto_SpainMUN AR_INLA ustering_partition onnect_subgraphs ata_LungCancer ata_MultiCancer ivide_carto ICAR_INLA lergeINLA	dd_neighbour arto_SpainMUN AR_INLA ustering_partition onnect_subgraphs ata_LungCancer ata_MultiCancer ivide_carto ICAR_INLA	igDM-package id_neighbour arto_SpainMUN AR_INLA ustering_partition onnect_subgraphs ata_LungCancer ata_MultiCancer ivide_carto ICAR_INLA lergeINLA Imodel_compute_cor

Description

This package implements several (scalable) spatial and spatio-temporal Poisson mixed models for high-dimensional areal count data in a fully Bayesian setting using the integrated nested Laplace approximation (INLA) technique.

bigDM-package 3

Details

divide_carto

Below, there is a list with a brief overview of all package functions:

add_neighbour Adds isolated areas (polygons) to its nearest neighbour

CAR_INLA Fits several spatial CAR models for high-dimensional count data

clustering_partition Obtain a spatial partition using the DBSC algorithm

connect_subgraphs Connected subgraphs

Connect_subgraphs

Connect_subgraphs

Connect_subgraphs

Connect_subgraphs

Connect_subgraphs

MCAR_INLA Fits several spatial multivariate CAR models for high-dimensional count data

Divides the spatial domain into subregions

mergeINLA Merges inla objects for partition models

 Mmodel_compute_cor
 Computes between-diseases correlation coefficients for M-models

 Mmodel_icar
 Implements the spatially non-structured multivariate latent effect

Mmodel_icar Implements the intrinsic multivariate CAR latent effect

Mmodel_lcar Implements the Leroux et al. (1999) multivariate CAR latent effect

Mmodel_pcar Implements the proper multivariate CAR latent effect

random_partition Defines a random partition of the spatial domain based on a regular grid STCAR_INLA Fits several spatio-temporal CAR models for high-dimensional count data

Author(s)

Maintainer: Aritz Adin <aritz.adin@unavarra.es>

This work has been supported by Project MTM2017-82553-R (AEI/FEDER, UE) and Project PID2020-113125RB-I00/MCIN/AEI/10.13039/501100011033. It has also been partially funded by the Public University of Navarra (project PJUPNA2001) and by la Caixa Foundation (ID 1000010434), Caja Navarra Foundation and UNED Pamplona, under agreement LCF/PR/PR15/51100007 (project REF P/13/20).

References

Orozco-Acosta E, Adin A, Ugarte MD (2021). "Scalable Bayesian modeling for smoothing disease mapping risks in large spatial data sets using INLA." *Spatial Statistics*, **41**, 100496. doi:10.1016/j.spasta.2021.100496.

Orozco-Acosta E, Adin A, Ugarte MD (2022). "Big problems in spatio-temporal disease mapping: methods and software." https://arxiv.org/abs/2201.08323.

Vicente G, Adin A, Goicoa T, Ugarte MD (2022). "High-dimensional order-free multivariate spatial disease mapping." https://arxiv.org/abs/2210.14849.

See Also

See the following vignettes for further details and examples using this package:

- 1. bigDM: fitting spatial models
- 2. bigDM: parallel and distributed modelling
- 3. bigDM: fitting spatio-temporal models
- 4. bigDM: fitting multivariate spatial models

4 add_neighbour

Examples

```
## See the examples for CAR_INLA, MCAR_INLA and STCAR_INLA functions
```

add_neighbour

Add isolated areas (polygons) to its nearest neighbour

Description

The function returns a neighbour list of class nb and its associated spatial adjacency matrix computed by adding isolated areas to its nearest neighbour (in terms of Euclidean distance between centroids) using the knearneigh function of 'spdep' package.

Usage

```
add_neighbour(carto, nb = NULL, plot = FALSE)
```

Arguments

carto object of class SpatialPolygonsDataFrame or sf.

nb optional argument with the neighbour list of class nb. If NULL (default), this

object is computed from the carto argument.

plot logical value (default FALSE), if TRUE then the computed neighbourhood graph

is plotted.

Value

This function returns a list with the following two elements:

- nb: the modified neighbours's list
- W: associated spatial adjacency matrix of class CsparseMatrix

Examples

```
library(spdep)

## Load the Spanish colorectal cancer mortality data ##
data(Carto_SpainMUN)

## Compute the neighbour list from spatial polygons ##
nb_SpainMUN <- poly2nb(Carto_SpainMUN)
summary(nb_SpainMUN) # 1 region with no links

## Add isolated area to its nearest neighbour ####
carto.mod <- add_neighbour(carto=Carto_SpainMUN, nb=nb_SpainMUN)
summary(carto.mod$nb) # 0 region with no links</pre>
```

Carto_SpainMUN 5

Carto_SpainMUN

Spanish colorectal cancer mortality data

Description

sf object containing the polygons of the municipalities of continental Spain and simulated colorectal cancer mortality data.

Usage

Carto_SpainMUN

Format

Formal class sf; the data contains a data.frame with 7907 rows and 11 variables.

- ID: character vector of geographic identifiers
- · name: character vector of municipality names
- · lat: numeric vector of longitude values
- long: numeric vector of latitude values
- · area: municipality polygon areas in square meters
- perimeter: municipality polygon perimeters in degree units
- · obs: observed number of cases
- exp: expected number of cases
- SMR: standardized mortality ratios
- · region: character vector of autonomous regions
- geometry: sfc_MULTIPOLYGON

CAR_INLA

Fit a (scalable) spatial Poisson mixed model to areal count data, where several CAR prior distributions can be specified for the spatial random effect.

Description

Fit a spatial Poisson mixed model to areal count data. The linear predictor is modelled as

$$\log r_i = \alpha + \mathbf{x_i}' \beta + \xi_i, \quad \text{for} \quad i = 1, \dots, n;$$

where α is a global intercept, $\mathbf{x_i}' = (x_{i1}, \dots, x_{ip})$ is a p-vector of standardized covariates in the i-th area, $\beta = (\beta_1, \dots, \beta_p)$ is the p-vector of fixed effects coefficients, and ξ_i is a spatially structured random effect. Several conditional autoregressive (CAR) prior distributions can be specified for the spatial random effect, such as the intrinsic CAR prior (Besag et al. 1991), the convolution

or BYM prior (Besag et al. 1991), the CAR prior proposed by Leroux et al. (1999), and the reparameterization of the BYM model given by Dean et al. (2001) named BYM2 (Riebler et al. 2016).

If covariates are included in the model, two different approaches can be used to address the potential confounding issues between the fixed effects and the spatial random effects of the model: restricted regression and the use of orthogonality constraints. At the moment, only continuous covariates can be included in the model as potential risk factors, which are automatically standardized before fitting the model. See Adin et al. (2021) for further details.

Three main modeling approaches can be considered:

- the usual model with a global spatial random effect whose dependence structure is based on the whole neighbourhood graph of the areal units (model="global" argument)
- a Disjoint model based on a partition of the whole spatial domain where independent spatial CAR models are simultaneously fitted in each partition (model="partition" and k=0 arguments)
- a modelling approach where *k*-order neighbours are added to each partition to avoid border effects in the Disjoint model (model="partition" and k>0 arguments).

For both the Disjoint and k-order neighbour models, parallel or distributed computation strategies can be performed to speed up computations by using the 'future' package (Bengtsson 2021).

Inference is conducted in a fully Bayesian setting using the integrated nested Laplace approximation (INLA; Rue et al. (2009)) technique through the R-INLA package (https://www.r-inla.org/). For the scalable model proposals (Orozco-Acosta et al. 2021), approximate values of the Deviance Information Criterion (DIC) and Watanabe-Akaike Information Criterion (WAIC) can also be computed.

Usage

```
CAR_INLA(
  carto = NULL,
  ID.area = NULL.
  ID.group = NULL,
 0 = NULL,
 E = NULL
 X = NULL
  confounding = NULL,
 W = NULL,
  prior = "Leroux",
 model = "partition",
  k = 0,
  strategy = "simplified.laplace",
  PCpriors = FALSE,
  seed = NULL,
  n.sample = 1000,
  compute.intercept = FALSE,
  compute.DIC = TRUE,
  save.models = FALSE,
```

```
plan = "sequential",
  workers = NULL,
  merge.strategy = "original"
)
```

Arguments

carto	object of class SpatialPolygonsDataFrame or sf. This object must contain at least the target variables of interest specified in the arguments ID. area, O and E.
ID.area	character; name of the variable that contains the IDs of spatial areal units.
ID.group	character; name of the variable that contains the IDs of the spatial partition (grouping variable). Only required if model="partition".
0	character; name of the variable that contains the observed number of disease cases for each areal units.
Е	character; name of the variable that contains either the expected number of disease cases or the population at risk for each areal unit.
X	a character vector containing the names of the covariates within the carto object to be included in the model as fixed effects, or a matrix object playing the role of the fixed effects design matrix. For the latter case, the row names must match with the IDs of the spatial units defined by the ID. area variable. If X=NULL (default), only a global intercept is included in the model as fixed effect.
confounding	one of either NULL, "restricted" (restricted regression) or "constraints" (orthogonal constraints), which specifies the estimation method used to alleviate spatial confounding between fixed and random effects. If only an intercept is considered in the model (X=NULL), the default value confounding=NULL will be set. At the moment, it only works for the <i>Global model</i> (specified through the model="global" argument).
W	optional argument with the binary adjacency matrix of the spatial areal units. If NULL (default), this object is computed from the carto argument (two areas are considered as neighbours if they share a common border).
prior	one of either "Leroux" (default), "intrinsic", "BYM" or "BYM2", which specifies the prior distribution considered for the spatial random effect.
model	one of either "global" or "partition" (default), which specifies the <i>Global model</i> or one of the scalable model proposal's (<i>Disjoint model</i> and <i>k-order neighbourhood model</i> , respectively).
k	numeric value with the neighbourhood order used for the partition model. Usually k=2 or 3 is enough to get good results. If k=0 (default) the <i>Disjoint model</i> is considered. Only required if model="partition".
strategy	one of either "gaussian", "simplified.laplace" (default), "laplace" or "adaptive", which specifies the approximation strategy considered in the inla function.
PCpriors	logical value (default FALSE); if TRUE then penalised complexity (PC) priors are used for the precision parameter of the spatial random effect. It only works if arguments prior="intrinsic" or prior="BYM2" are specified.

seed numeric (default NULL); control the RNG of the inla.qsample function. See help(inla.qsample) for further information. n.sample numeric; number of samples to generate from the posterior marginal distribution of the risks. Default to 1000. compute.intercept logical value (default FALSE); if TRUE then the overall log-risk α is computed. It only works if k=0 argument (Disjoint model) is specified. CAUTION: This method might be very time consuming. logical value; if TRUE (default) then approximate values of the Deviance Inforcompute.DIC mation Criterion (DIC) and Watanabe-Akaike Information Criterion (WAIC) are computed. logical value (default FALSE); if TRUE then a list with all the inla submodels is save.models saved in '/temp/' folder, which can be used as input argument for the mergeINLA function. plan one of either "sequential" or "cluster", which specifies the computation strategy used for model fitting using the 'future' package. If plan="sequential" (default) the models are fitted sequentially and in the current R session (local machine). If plan="cluster" the models are fitted in parallel on external R sessions (local machine) or distributed in remote computing nodes. character or vector (default NULL) containing the identifications of the local or workers remote workers where the models are going to be processed. Only required if plan="cluster". one of either "mixture" or "original" (default), which specifies the merging merge.strategy

Details

For a full model specification and further details see the vignettes accompanying this package.

strategy to compute posterior marginal estimates of relative risks. See mergeINLA

Value

This function returns an object of class inla. See the mergeINLA function for details.

for further details.

References

Adin A, Goicoa T, Hodges JS, Schnell P, Ugarte MD (2021). "Alleviating confounding in spatio-temporal areal models with an application on crimes against women in India." *Statistical Modelling*, 1471082X211015452. doi:10.1177/1471082X211015452.

Bengtsson H (2021). "A unifying framework for parallel and distributed processing in R using futures." *The R Journal*, **13**(2), 273–291. doi:10.32614/RJ2021048.

Besag J, York J, Mollié A (1991). "Bayesian image restoration, with two applications in spatial statistics." *Annals of the Institute of Statistical Mathematics*, **43**(1), 1–20. doi:10.1007/bf00116466.

Dean CB, Ugarte MD, Militino AF (2001). "Detecting interaction between random region and fixed age effects in disease mapping." *Biometrics*, **57**(1), 197–202. doi:10.1111/j.0006341x.2001.00197.x.

Leroux BG, Lei X, Breslow N (1999). "Estimation of disease rates in small areas: A new mixed model for spatial dependence." In Halloran ME, Berry D (eds.), Statistical Models in Epidemiology, the Environment, and Clinical Trials, 179–191. Springer-Verlag: New York.

Riebler A, Sørbye SH, Simpson D, Rue H (2016). "An intuitive Bayesian spatial model for disease mapping that accounts for scaling." Statistical methods in medical research, 25(4), 1145-1165. doi:10.1177/0962280216660421.

Rue H, Martino S, Chopin N (2009). "Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations." Journal of the Royal Statistical Society: Series B (Statistical Methodology), 71(2), 319–392. doi:10.1111/j.14679868.2008.00700.x.

Orozco-Acosta E, Adin A, Ugarte MD (2021). "Scalable Bayesian modeling for smoothing disease mapping risks in large spatial data sets using INLA." Spatial Statistics, 41, 100496. doi:10.1016/ j.spasta.2021.100496.

Examples

}

```
## Not run:
if(require("INLA", quietly=TRUE)){
  ## Load the Spain colorectal cancer mortality data ##
 data(Carto_SpainMUN)
 ## Global model with a Leroux CAR prior distribution ##
 Global <- CAR_INLA(carto=Carto_SpainMUN, ID.area="ID", 0="obs", E="exp",
                     prior="Leroux", model="global", strategy="gaussian")
 summary(Global)
 ## Disjoint model with a Leroux CAR prior distribution ##
 ## using 4 local clusters to fit the models in parallel ##
 Disjoint <- CAR_INLA(carto=Carto_SpainMUN, ID.area="ID", ID.group="region", 0="obs", E="exp",
                       prior="Leroux", model="partition", k=0, strategy="gaussian",
                       plan="cluster", workers=rep("localhost",4))
 summary(Disjoint)
 ## 1st-order neighbourhood model with a Leroux CAR prior distribution ##
 ## using 4 local clusters to fit the models in parallel
 order1 <- CAR_INLA(carto=Carto_SpainMUN, ID.area="ID", ID.group="region", O="obs", E="exp",
                     prior="Leroux", model="partition", k=1, strategy="gaussian",
                     plan="cluster", workers=rep("localhost",4))
 summary(order1)
 ## 2nd-order neighbourhood model with a Leroux CAR prior distribution ##
 ## using 4 local clusters to fit the models in parallel
 order2 <- CAR_INLA(carto=Carto_SpainMUN, ID.area="ID", ID.group="region", O="obs", E="exp",
                     prior="Leroux", model="partition", k=2, strategy="gaussian",
                     plan="cluster", workers=rep("localhost",4))
 summary(order2)
## End(Not run)
```

10 clustering_partition

clustering_partition

Obtain a partition of the spatial domain using the density-based spatial clustering (DBSC) algorithm described in Santafé et al. (2021)

Description

The function takes an object of class SpatialPolygonsDataFrame or sf and defines a spatial partition using the DBSC algorithm described in Santafé et al. (2021).

Usage

```
clustering_partition(
  carto,
  ID.area = NULL,
  var = NULL,
  n.cluster = 10,
  min.size = NULL,
  W = NULL,
  l = 1,
  Wk = NULL,
  distance = "euclidean",
  verbose = TRUE
)
```

Arguments

carto	object of class SpatialPolygonsDataFrame or sf.
ID.area	character; name of the variable that contains the IDs of spatial areal units.
var	character; name of the variable that contains the data of interest to compute spatial clusters, usually the vector of log-SMR.
n.cluster	numeric; value to fix the number of cluster centers in the DBSC algorithm. Default to 10 .
min.size	numeric (default NULL); value to fix the minimum size of areas in each spatial partition.
W	optional argument with the binary adjacency matrix of the spatial areal units. If NULL (default), this object is computed from the carto argument (two areas are considered as neighbours if they share a common border).
1	numeric value with the neighbourhood order used to assign areas to each cluster. If $k=1$ (default), only areas that share a common border are considered.
Wk	previously computed binary adjacency matrix of l-order neighbours. If this argument is included (default NULL), the parameter $\bf 1$ is ignored.
distance	the distance measure to be used (default "euclidean"). See the method argument of ${\sf dist}$ function for other options.
verbose	logical value (default TRUE); indicates if the function runs in verbose mode.

clustering_partition 11

Details

The DBSC algorithm implemented in this function is a new spatial clustering algorithm based on the density clustering algorithm introduced by Rodriguez and Laio (2014) and the posterior modification presented by Wang and Song (2016). This algorithm is able to obtain a single clustering partition of the data by automatically detecting clustering centers and assigning each area to its nearest cluster centroid. The algorithm has its basis in the assumption that cluster centers are points with high local density and relatively large distance to other points with higher local densities. See Santafé et al. (2021) for more details.

Value

sf object with the original data and a grouping variable named 'ID.group'.

References

Rodriguez A, Laio A (2014). "Clustering by fast search and find of density peaks." *Science*, **344**(6191), 1492–1496. doi:10.1126/science.1242072.

Santafé G, Adin A, Lee D, Ugarte MD (2021). "Dealing with risk discontinuities to estimate cancer mortality risks when the number of small areas is large." *Statistical Methods in Medical Research*, **30**(1), 6–21. doi:10.1177/0962280220946502.

Wang G, Song Q (2016). "Automatic clustering via outward statistical testing on density metrics." *IEEE Transactions on Knowledge and Data Engineering*, **28**(8), 1971–1985. doi:10.1109/TKDE.2016.2535209.

Examples

```
## Not run:
library(foreign)
library(maptools)
library(rgdal)
library(tmap)
## Load the Spain colorectal cancer mortality data ##
data(Carto_SpainMUN)
## Define a spatial partition using the DBSC algorithm ##
Carto_SpainMUN$logSMR <- log(Carto_SpainMUN$obs/Carto_SpainMUN$exp+0.0001)
carto.new <- clustering_partition(carto=Carto_SpainMUN, ID.area="ID", var="logSMR",</pre>
                                   n.cluster=20, l=2, min.size=100, verbose=TRUE)
table(carto.new$ID.group)
## Plot of the grouping variable 'ID.group' ##
carto.partition <- unionSpatialPolygons(as(carto.new, "Spatial"), carto.new$ID.group)</pre>
tm_shape(carto.new) +
        tm_polygons(col="ID.group") +
        tm_shape(carto.partition) +
        tm_borders(col="black", lwd=2) +
        tm_layout(legend.outside=TRUE)
```

12 connect_subgraphs

```
## End(Not run)
```

Description

The function returns a neighbour list of class nb and its associated spatial adjacency matrix computed by merging disjoint connected subgraphs through its nearest polygon centroids.

Usage

```
connect_subgraphs(carto, ID.area = NULL, nb = NULL, plot = FALSE)
```

Arguments

carto object of class SpatialPolygonsDataFrame or sf.

ID. area character vector of geographic identifiers.

nb optional argument with the neighbours list of class nb. If NULL (default), this

object is computed from the carto argument.

plot logical value (default FALSE), if TRUE then the computed neighbourhood graph

is ploted.

Details

This function first calls the add_neighbour function to search for isolated areas.

Value

This function returns a list with the following two elements:

- nb: the modified neighbours list
- W: associated spatial adjacency matrix of class CsparseMatrix

Examples

```
library(spdep)

## Load the Spain colorectal cancer mortality data ##
data(Carto_SpainMUN)

## Select the polygons (municipalities) of the 'Comunidad Valenciana' region ##
carto <- Carto_SpainMUN[Carto_SpainMUN$region=="Comunidad Valenciana",]

carto.nb <- poly2nb(carto)
n.comp.nb(carto.nb)$nc # 2 disjoint connected subgraphs</pre>
```

Data_LungCancer 13

Data_LungCancer

Spanish lung cancer mortality data

Description

data.frame object containing simulated lung cancer mortality data in the 7907 municipalities of continental Spain during the period 1991-2015.

Usage

Data_LungCancer

Format

Formal class data. frame with 197.675 rows and 5 columnns.

- ID: character vector of geographic identifiers
- year: numeric vector of year's identifiers
- obs: observed number of cases
- exp: expected number of cases
- SMR: standardized mortality ratios

14 divide_carto

Data_MultiCancer	Spanish cancer mortality data for the joint analysis of multiple diseases
------------------	---

Description

data.frame object containing simulated cancer mortality data for three diseases in the 7907 municipalities of continental Spain.

Usage

Data_MultiCancer

Format

Formal class data. frame with 237.271 rows and 5 columns.

- ID: character vector of geographic identifiers
- disease: numeric vector of disease identifiers
- obs: observed number of cases
- exp: expected number of cases
- SMR: standardized mortality ratios

divide_carto Divide the spatial domain into subregions

Description

The function takes an object of class SpatialPolygonsDataFrame or sf and divides it into subregions according to some grouping variable.

Usage

```
divide_carto(carto, ID.group = NULL, k = 0, plot = FALSE)
```

Arguments

carto	object of class SpatialPolygonsDataFrame or sf.
ID.group	character vector of grouping identifiers.
k	numeric value with the neighbourhood order to add polygons at the border of the spatial subdomains. If $k=0$ (default) a disjoint partition is defined.
plot	logical value (default FALSE), if TRUE then the spatial polygons within each subdomain are ploted.

Value

List of sf objects with the spatial polygons of each subdomain.

Examples

```
## Not run:
library(tmap)
## Load the Spain colorectal cancer mortality data ##
data(Carto_SpainMUN)
## Plot of the grouping variable 'region' ##
tm_shape(Carto_SpainMUN) +
  tm_polygons(col="region") +
  tm_layout(legend.outside=TRUE)
## Disjoint partition ##
carto.k0 <- divide_carto(carto=Carto_SpainMUN, ID.group="region", k=0)
## Partition + 1st order neighbours ##
carto.k1 <- divide_carto(carto=Carto_SpainMUN, ID.group="region", k=1)</pre>
## Partition + 2nd order neighbours ##
carto.k2 <- divide_carto(carto=Carto_SpainMUN, ID.group="region", k=2)</pre>
## Plot the spatial polygons for the autonomous region of Castilla y Leon ##
plot(carto.k2$`Castilla y Leon`$geometry, col="dodgerblue4", main="Castilla y Leon")
plot(carto.k1$`Castilla y Leon`$geometry, col="dodgerblue", add=TRUE)
plot(carto.k0$`Castilla y Leon`$geometry, col="lightgrey", add=TRUE)
## End(Not run)
```

MCAR_INLA

Fit a (scalable) spatial multivariate Poisson mixed model to areal count data where dependence between spatial patterns of the diseases is addressed through the use of M-models (Botella-Rocamora et al. 2015).

Description

Fit a spatial multivariate Poisson mixed model to areal count data. The linear predictor is modelled as

$$\log r_{ij} = \alpha_j + \theta_{ij}$$
, for $i = 1, \dots, n$; $j = 1, \dots, J$

where α_j is a disease-specific intercept and θ_{ij} is the spatial main effect of area i for the j-th disease. Following Botella-Rocamora et al. (2015), we rearrange the spatial effects into the matrix $\mathbf{\Theta} = \{\theta_{ij} : i = 1, \dots, I; j = 1, \dots, J\}$ whose columns are spatial random effects and its joint distribution specifies how dependence within-diseases and between-diseases is defined. Several

conditional autoregressive (CAR) prior distributions can be specified to deal with spatial dependence within-diseases, such as the intrinsic CAR prior (Besag et al. 1991), the CAR prior proposed by Leroux et al. (1999), and the proper CAR prior distribution.

As in the CAR_INLA function, three main modelling approaches can be considered:

- the usual model with a global spatial random effect whose dependence structure is based on the whole neighbourhood graph of the areal units (model="global" argument)
- a Disjoint model based on a partition of the whole spatial domain where independent spatial CAR models are simultaneously fitted in each partition (model="partition" and k=0 arguments)
- a modelling approach where *k*-order neighbours are added to each partition to avoid border effects in the Disjoint model (model="partition" and k>0 arguments).

For both the Disjoint and k-order neighbour models, parallel or distributed computation strategies can be performed to speed up computations by using the 'future' package (Bengtsson 2021).

Inference is conducted in a fully Bayesian setting using the integrated nested Laplace approximation (INLA; Rue et al. (2009)) technique through the R-INLA package (https://www.r-inla.org/). For the scalable model proposals (Orozco-Acosta et al. 2021), approximate values of the Deviance Information Criterion (DIC) and Watanabe-Akaike Information Criterion (WAIC) can also be computed.

Usage

```
MCAR_INLA(
  carto = NULL,
  data = NULL,
  ID.area = NULL,
  ID.disease = NULL,
  ID.group = NULL,
  0 = NULL
  E = NULL.
  W = NULL
  prior = "intrinsic",
  model = "partition",
  k = 0,
  strategy = "simplified.laplace",
  seed = NULL,
  n.sample = 1000,
  compute.intercept = FALSE,
  compute.DIC = TRUE,
  save.models = FALSE,
  plan = "sequential",
  workers = NULL,
  merge.strategy = "original"
)
```

Arguments

object of class SpatialPolygonsDataFrame or sf. This object must contain at carto least the variable with the identifiers of the spatial areal units specified in the argument ID. area. data object of class data. frame that must contain the target variables of interest specified in the arguments ID. area, ID. disease, O and E. character; name of the variable that contains the IDs of spatial areal units. The ID.area values of this variable must match those given in the carto and data variable. ID.disease character; name of the variable that contains the IDs of the diseases. ID.group character; name of the variable that contains the IDs of the spatial partition (grouping variable). Only required if model="partition". 0 character; name of the variable that contains the observed number of cases for each areal unit and disease. Ε character; name of the variable that contains either the expected number of cases or the population at risk for each areal unit and disease. W optional argument with the binary adjacency matrix of the spatial areal units. If NULL (default), this object is computed from the carto argument (two areas are considered as neighbours if they share a common border). one of either "intrinsic" (default), "Leroux", "proper", or "iid" which prior specifies the prior distribution considered for the spatial random effect. one of either "global" or "partition" (default), which specifies the Global model model or one of the scalable model proposal's (Disjoint model and k-order neighbourhood model, respectively). k numeric value with the neighbourhood order used for the partition model. Usually k=2 or 3 is enough to get good results. If k=0 (default) the Disjoint model is considered. Only required if model="partition". one of either "gaussian", "simplified.laplace" (default), "laplace" or strategy "adaptive", which specifies the approximation strategy considered in the inla function. numeric (default NULL); control the RNG of the inla.gsample function. See seed help(inla.gsample) for further information. n.sample numeric; number of samples to generate from the posterior marginal distribution of the risks. Default to 1000. compute.intercept logical value (default FALSE); if TRUE then disease-specific overall log-risk α_i are computed. Only works if k=0 argument (Disjoint model) is specified. CAU-TION: This method might be very time consuming. logical value; if TRUE (default) then approximate values of the Deviance Inforcompute.DIC mation Criterion (DIC) and Watanabe-Akaike Information Criterion (WAIC) are computed. save.models logical value (default FALSE); if TRUE then a list with all the inla submodels is saved in '/temp/' folder, which can be used as input argument for the mergeINLA function.

one of either "sequential" or "cluster", which specifies the computation strategy used for model fitting using the 'future' package. If plan="sequential" (default) the models are fitted sequentially and in the current R session (local machine). If plan="cluster" the models are fitted in parallel on external R sessions (local machine) or distributed in remote compute nodes.

workers character or vector (default NULL) containing the identifications of the local or

character or vector (default NULL) containing the identifications of the local or remote workers where the models are going to be processed. Only required if

plan="cluster".

merge.strategy one of either "mixture" or "original" (default), which specifies the merging

 $strategy\ to\ compute\ posterior\ marginal\ estimates\ of\ relative\ risks.\ See\ {\tt mergeINLA}$

for further details.

Details

For a full model specification and further details see the vignettes accompanying this package.

Value

This function returns an object of class inla. See the mergeINLA function for details.

References

Bengtsson H (2021). "A unifying framework for parallel and distributed processing in R using futures." *The R Journal*, **13**(2), 273–291. doi:10.32614/RJ2021048.

Besag J, York J, Mollié A (1991). "Bayesian image restoration, with two applications in spatial statistics." *Annals of the Institute of Statistical Mathematics*, **43**(1), 1–20. doi:10.1007/bf00116466.

Botella-Rocamora P, Martinez-Beneito MA, Banerjee S (2015). "A unifying modeling framework for highly multivariate disease mapping." *Statistics in Medicine*, **34**(9), 1548–1559. doi:10.1002/sim.6423.

Leroux BG, Lei X, Breslow N (1999). "Estimation of disease rates in small areas: A new mixed model for spatial dependence." In Halloran ME, Berry D (eds.), *Statistical Models in Epidemiology, the Environment, and Clinical Trials*, 179–191. Springer-Verlag: New York.

Rue H, Martino S, Chopin N (2009). "Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations." *Journal of the Royal Statistical Society: Series B (Statistical Methodology)*, **71**(2), 319–392. doi:10.1111/j.14679868.2008.00700.x.

Vicente G, Adin A, Goicoa T, Ugarte MD (2022). "High-dimensional order-free multivariate spatial disease mapping." https://arxiv.org/abs/2210.14849.

Examples

```
## Not run:
if(require("INLA", quietly=TRUE)){

## Load the sf object that contains the spatial polygons of the municipalities of Spain ##
data(Carto_SpainMUN)
str(Carto_SpainMUN)

## Load the simulated cancer mortality data (three diseases) ##
```

```
data(Data_MultiCancer)
 str(Data_MultiCancer)
 ## Fit the Global model with an iCAR prior for the within-disease random effects ##
 Global <- MCAR_INLA(carto=Carto_SpainMUN, data=Data_MultiCancer,</pre>
                      ID.area="ID", ID.disease="disease", O="obs", E="exp",
                      prior="intrinsic", model="global", strategy="gaussian")
 summary(Global)
 ## Fit the Disjoint model with an iCAR prior for the within-disease random effects ##
 ## using 4 local clusters to fit the models in parallel
 Disjoint <- MCAR_INLA(carto=Carto_SpainMUN, data=Data_MultiCancer,</pre>
                 ID.area="ID", ID.disease="disease", O="obs", E="exp", ID.group="region",
                        prior="intrinsic", model="partition", k=0, strategy="gaussian",
                        plan="cluster", workers=rep("localhost",4))
 summary(Disjoint)
 ## 1st-order neighbourhood model with an iCAR prior for the within-disease random effects ##
 ## using 4 local clusters to fit the models in parallel
 order1 <- MCAR_INLA(carto=Carto_SpainMUN, data=Data_MultiCancer,</pre>
                 ID.area="ID", ID.disease="disease", O="obs", E="exp", ID.group="region",
                      prior="intrinsic", model="partition", k=1, strategy="gaussian",
                      plan="cluster", workers=rep("localhost",4))
 summary(order1)
}
## End(Not run)
```

mergeINLA

Merge inla objects for partition models

Description

The function takes local models fitted for each subregion of the whole spatial domain and unifies them into a single inla object. This function is valid for both disjoint and *k*-order neighbourhood models.

Usage

```
mergeINLA(
  inla.models = list(),
  k = NULL,
  ID.area = "Area",
  ID.year = NULL,
  ID.disease = NULL,
  O = "O",
  E = "E",
  seed = NULL,
```

```
n.sample = 1000,
compute.intercept = FALSE,
compute.DIC = TRUE,
merge.strategy = "original")
```

Arguments

inla.models	list of multiple objects of class inla.
k	numeric value with the neighbourhood order used for the partition model. If $k=0$ the $Disjoint\ model$ is considered.
ID.area	character; name of the variable that contains the IDs of spatial areal units. Default to "Area".
ID.year	character; name of the variable that contains the IDs of time points. Default to "NULL" (for spatial models).
ID.disease	character; name of the variable that contains the IDs of the diseases. Default to "NULL" (only required for multivariate models).
0	character; name of the variable that contains the observed number of disease cases for each areal units. Default to "0".
Е	character; name of the variable that contains either the expected number of disease cases or the population at risk for each areal unit. Default to "E".
seed	numeric; control the RNG of inla.qsample (see help(inla.qsample) for further information). Defaults to NULL.
n.sample	numeric; number of samples to generate from the posterior marginal distribution of the risks. Default to 1000.
compute.interc	ept
	logical value (default FALSE); if TRUE then the overall log-risk α (for spatial or spatio-temporal models fitted with either CAR_INLA or STCAR_INLA functions), or disease-specific overall log-risk α_j (for multivariate models fitted with MCAR_INLA function) are computed. Only works if k=0 argument (<i>Disjoint model</i>) is specified. CAUTION: This method might be very time consuming.
compute.DIC	logical value; if TRUE (default) then approximate values of the Deviance Information Criterion (DIC) and Watanabe-Akaike Information Criterion (WAIC) are computed.
merge.strategy	one of either "mixture" or "original" (default), which specifies the merging strategy to compute posterior marginal estimates of relative risks.

Details

If the disjoint model is fitted (k=0 argument), the log-risk surface is just the union of the posterior estimates of each submodel. However, a single estimate of the overall log-risk can be computed by sampling from the joint posterior distribution of the linear predictors using the inla.posterior.sample function of R-INLA. After joining the S samples from each submodel, the following global intercepts could be defined:

• for spatial models fitted with CAR_INLA function

$$\tilde{\alpha}^s = \frac{1}{n} \sum_{i=1}^{n} (\log r_{it} - \mathbf{x_i}' \beta), \quad \text{for} \quad s = 1, \dots, S$$

• for spatio-temporal models fitted with STCAR_INLA function

$$\tilde{\alpha}^s = \frac{1}{nT} \sum_{i=1}^n \sum_{t=1}^T \log r_{it}, \quad \text{for} \quad s = 1, \dots, S$$

• for multivariate spatial models fitted with MCAR_INLA function

$$\tilde{\alpha}_j^s = \frac{1}{n} \sum_{i=1}^n \log r_{ij}, \quad \text{for} \quad s = 1, \dots, S$$

and then it is possible to compute the kernel density estimate of $\tilde{\alpha}$.

If the k-order neighbourhood model is fitted (k>0 argument), note that the final risk surface $\mathbf{r}=(r_1,\ldots,r_{nT})^{'}$ is no longer the union of the posterior estimates obtained from each submodel. Since multiple log-risk estimates can be obtained for some areal-time units from the different local submodel, their posterior estimates must be properly combined to obtain a single posterior distribution for each r_{it} . Two different merging strategies could be considered. If the merge strategy="mixture" argument is specified, mixture distributions of the estimated posterior probability density functions with weights proportional to the conditional predictive ordinates (CPO) are computed. If the merge strategy="original" argument is specified (default option), the posterior marginal estimate of the areal-unit corresponding to the original submodel is selected.

See Orozco-Acosta et al. (2021) and Orozco-Acosta et al. (2022) for more details.

Value

This function returns an object of class inla containing the following elements:

summary.fixed A data.frame containing the mean, standard deviation, quantiles and mode of the model's fixed effects.

marginals.fixed

A list containing the posterior marginal density of the model's fixed effects.

summary.fixed.partition

A data frame containing the mean, standard deviation, quantiles and mode of the model's fixed effects in each partition.

marginals.fixed.partition

A list containing the posterior marginal density of the model's fixed effects in each partition.

summary.random If k=0 a list with a data.frame containing the mean, standard deviation, quantiles and mode of the model's random effects.

marginals.random

If k=0 a list containing the posterior marginal densities of the model's random effects.

summary.linear.predictor

If k=0 a data.frame containing the mean, standard deviation, quantiles and mode of the log-risks (or log-rates) in the model.

marginals.linear.predictor

If k=0 a list containing the posterior marginal densities of the log-risks (or log-rates) in the model.

summary.fitted.values

A data frame containing the mean, standard deviation, quantiles, mode and cdf of the risks (or rates) in the model.

marginals.fitted.values

A list containing the posterior marginal densities of the risks (or rates) in the model.

summary.cor A data.frame containing the mean, standard deviation, quantiles and mode of the between-disease correlation coefficients. Only for the multivariate spatial models fitted using the MCAR_INLA function.

Marginals.cor A list containing the posterior marginal densities of the between-disease correlation coefficients. Only for the multivariate spatial models fitted using the MCAR_INLA function.

summary.cor.partition

A data frame containing the mean, standard deviation, quantiles and mode of the between-disease correlation coefficients in each partition. Only for the multivariate spatial models fitted using the MCAR_INLA function.

marginals.cor.partition

A list containing the posterior marginal densities of the between-disease correlation coefficients in each partition. Only for the multivariate spatial models fitted using the MCAR_INLA function.

A data.frame containing the mean, standard deviation, quantiles and mode of the within-disease variances for each disease. Only for the multivariate spatial models fitted using the MCAR_INLA function.

Marginals.var A list containing the posterior marginal densities of the within-disease variances for each disease. Only for the multivariate spatial models fitted using the MCAR_INLA function.

summary.var.partition

A data frame containing the mean, standard deviation, quantiles and mode of the within-disease variances in each partition. Only for the multivariate spatial models fitted using the MCAR_INLA function.

marginals.var.partition

A list containing the posterior marginal densities of the within-disease variances in each partition. Only for the multivariate spatial models fitted using the MCAR_INLA function.

logfile A list of the log files of each submodel.

version A list containing information about the R-INLA version.

cpu.used The sum of cpu times used by the inla function for each submodel (Pre, Running and Post), and the cpu time of the merging process Merging.

Examples

See the vignettes accompanying this package for an example of its use.

Mmodel_compute_cor

Compute correlation coefficients between diseases

Description

This function takes a inla object fitted using the MCAR_INLA function and computes the correlation coefficients between diseases. See Details for more information.

Usage

```
Mmodel_compute_cor(model, n.sample = 10000)
```

Arguments

model object of class inla fitted using the MCAR_INLA function.

n.sample numeric; number of samples to generate from the approximated joint posterior

for the hyperparameters (see help(inla.hyperpar.sample)). Default to 1000.

Value

The input inla object with two additional elements:

summary.cor A data.frame containing the mean, standard deviation, quantiles and mode of

the correlation coefficients between diseases.

marginals.cor A list containing the posterior marginal densities of the correlation coefficients

between diseases.

summary.var A data.frame containing the mean, standard deviation, quantiles and mode of

the variances for each disease.

marginals.var A list containing the posterior marginal densities of the variances for each dis-

ease.

24 Mmodel_icar

Mmodel_icar

Intrinsic multivariate CAR latent effect

Description

M-model implementation of the intrinsic multivariate CAR latent effect using the rgeneric model of INLA.

Usage

```
Mmodel_icar(
  cmd = c("graph", "Q", "mu", "initial", "log.norm.const", "log.prior", "quit"),
  theta = NULL
)
```

Arguments

cmd Internal functions used by the rgeneric model to define the latent effect.

theta Vector of hyperparameters.

Details

This function considers an intrinsic CAR prior for the spatial latent effects of the different diseases and introduces correlation between them using the M-model proposal of Botella-Rocamora et al. (2015). Putting the spatial latent effects for each disease in a matrix, the between disease dependence is introduced through the M matrix as $\Theta = \Phi M$, where the columns of Φ follow an intrinsic CAR prior distribution (within-disease correlation). A Wishart prior for the between covariance matrix M'M is considered using the Bartlett decomposition.

The following arguments are required to be defined before calling the functions:

- W: binary adjacency matrix of the spatial areal units
- J: number of diseases
- initial.values: initial values defined for the cells of the M-matrix

Value

This is used internally by the INLA::inla.rgeneric.define() function.

References

Botella-Rocamora P, Martinez-Beneito MA, Banerjee S (2015). "A unifying modeling framework for highly multivariate disease mapping." *Statistics in Medicine*, **34**(9), 1548–1559. doi:10.1002/sim.6423.

Mmodel_iid 25

Mmodel_iid

Spatially non-structured multivariate latent effect

Description

M-model implementation of the spatially non-structured multivariate latent effect using the rgeneric model of INLA.

Usage

```
Mmodel_iid(
  cmd = c("graph", "Q", "mu", "initial", "log.norm.const", "log.prior", "quit"),
  theta = NULL
)
```

Arguments

cmd Internal functions used by the rgeneric model to define the latent effect.

theta Vector of hyperparameters.

Details

This function considers a spatially non-structured prior for the spatial latent effects of the different diseases and introduces correlation between them using the M-model proposal of Botella-Rocamora et al. (2015). Putting the latent effects for each disease in a matrix, the between disease dependence is introduced through the M matrix as $\Theta = \Phi M$, where the columns of Φ follow an IID (independent and identically distributed) prior distribution (within-disease correlation). A Wishart prior for the between covariance matrix M'M is considered using the Bartlett decomposition.

The following arguments are required to be defined before calling the functions:

- W: binary adjacency matrix of the spatial areal units
- J: number of diseases
- initial.values: initial values defined for the cells of the M-matrix

Value

This is used internally by the INLA::inla.rgeneric.define() function.

References

Botella-Rocamora P, Martinez-Beneito MA, Banerjee S (2015). "A unifying modeling framework for highly multivariate disease mapping." *Statistics in Medicine*, **34**(9), 1548–1559. doi:10.1002/sim.6423.

26 Mmodel_lcar

Mmodel_lcar

Leroux et al. (1999) multivariate CAR latent effect

Description

M-model implementation of the Leroux et al. (1999) multivariate CAR latent effect with different spatial smoothing parameters using the rgeneric model of INLA.

Usage

```
Mmodel_lcar(
  cmd = c("graph", "Q", "mu", "initial", "log.norm.const", "log.prior", "quit"),
  theta = NULL
)
```

Arguments

cmd Internal functions used by the rgeneric model to define the latent effect.

theta Vector of hyperparameters.

Details

This function considers a Leroux et al. (1999) CAR prior (denoted as LCAR) for the spatial latent effects of the different diseases and introduces correlation between them using the M-model proposal of Botella-Rocamora et al. (2015). Putting the spatial latent effects for each disease in a matrix, the between disease dependence is introduced through the M matrix as $\Theta = \Phi M$, where the columns of Φ follow a LCAR prior distribution (within-disease correlation). A Wishart prior for the between covariance matrix M'M is considered using the Bartlett decomposition. Uniform prior distributions on the interval [alpha.min, alpha.max] are considered for all the spatial smoothing parameters.

The following arguments are required to be defined before calling the functions:

- W: binary adjacency matrix of the spatial areal units
- J: number of diseases
- initial.values: initial values defined for the cells of the M-matrix
- alpha.min: lower limit defined for the uniform prior distribution of the spatial smoothing parameters
- alpha.max: upper limit defined for the uniform prior distribution of the spatial smoothing parameters

Value

This is used internally by the INLA::inla.rgeneric.define() function.

Mmodel_pcar 27

Note

The M-model implementation of this model using R-INLA requires the use of $J \times (J+3)/2$ hyperparameters. So, the results must be carefully checked.

References

Botella-Rocamora P, Martinez-Beneito MA, Banerjee S (2015). "A unifying modeling framework for highly multivariate disease mapping." *Statistics in Medicine*, **34**(9), 1548–1559. doi:10.1002/sim.6423.

Leroux BG, Lei X, Breslow N (1999). "Estimation of disease rates in small areas: A new mixed model for spatial dependence." In Halloran ME, Berry D (eds.), *Statistical Models in Epidemiology, the Environment, and Clinical Trials*, 179–191. Springer-Verlag: New York.

Mmodel_pcar

Proper multivariate CAR latent effect

Description

M-model implementation of the proper multivariate CAR latent effect with different spatial autocorrelation parameters using the rgeneric model of INLA.

Usage

```
Mmodel_pcar(
  cmd = c("graph", "Q", "mu", "initial", "log.norm.const", "log.prior", "quit"),
  theta = NULL
)
```

Arguments

cmd Internal functions used by the rgeneric model to define the latent effect.

theta Vector of hyperparameters.

Details

This function considers a proper CAR prior (denoted as pCAR) for the spatial latent effects of the different diseases and introduces correlation between them using the M-model proposal of Botella-Rocamora et al. (2015). Putting the spatial latent effects for each disease in a matrix, the between disease dependence is introduced through the M matrix as $\Theta = \Phi M$, where the columns of Φ follow a pCAR prior distribution (within-disease correlation). A Wishart prior for the between covariance matrix M'M is considered using the Bartlett decomposition. Uniform prior distributions on the interval [alpha.min, alpha.max] are considered for all the spatial autocorrelation parameters.

The following arguments are required to be defined before calling the functions:

• W: binary adjacency matrix of the spatial areal units

28 random_partition

- J: number of diseases
- initial.values: initial values defined for the cells of the M-matrix
- alpha.min: lower limit defined for the uniform prior distribution of the spatial smoothing parameters
- alpha.max: upper limit defined for the uniform prior distribution of the spatial smoothing parameters

Value

This is used internally by the INLA::inla.rgeneric.define() function.

Note

The M-model implementation of this model using R-INLA requires the use of $J \times (J+3)/2$ hyperparameters. So, the results must be carefully checked.

References

Botella-Rocamora P, Martinez-Beneito MA, Banerjee S (2015). "A unifying modeling framework for highly multivariate disease mapping." *Statistics in Medicine*, **34**(9), 1548–1559. doi:10.1002/sim.6423.

random_partition

Define a random partition of the spatial domain based on a regular grid

Description

The function takes an object of class SpatialPolygonsDataFrame or sf and defines a random partition of the spatial polygons based on a regular grid over the whole domain using the st_make_grid function of the sf package.

Usage

```
random_partition(
  carto,
  rows = 3,
  columns = 3,
  min.size = 50,
  max.size = 1000,
  prop.zero = NULL,
  0 = NULL
)
```

random_partition 29

Arguments

carto	object of class SpatialPolygonsDataFrame or sf.
rows	integer; number of rows to define the regular grid. Default to 3.
columns	integer; number of columns to define the regular grid. Default to 3.
min.size	numeric; value to fix the minimum number of areas in each spatial partition (if NULL, this step is skipped). Default to 50.
max.size	numeric; value to fix the maximum number of areas in each spatial partition (if NULL, this step is skipped). Default to 600.
prop.zero	numeric; value between 0 and 1 that indicates the maximum proportion of areas with no cases for each spatial partition.
0	character; name of the variable that contains the observed number of disease cases for each areal units. Only required if prop. zero argument is set.

Details

After defining a random partition of the spatial polygons based on a regular grid, the subregions with number of areas smaller than the value given by the min.size are merged to its nearest neighbour. Then, the subregions with number of areas greater than the value given by the max.size argument are divided. Finally, if prop.zero argument is set, the subregions with proportion of areas with zero cases below that threshold are merged to its smallest neighbour.

Value

sf object with the original data and a grouping variable named 'ID.group'

Examples

```
## Not run:
library(tmap)
## Load the Spain colorectal cancer mortality data ##
data(Carto_SpainMUN)
## Random partition based on a 3x3 regular grid (with no size restrictions) ##
carto.r1 <- random_partition(carto=Carto_SpainMUN, rows=3, columns=3,</pre>
                             min.size=NULL, max.size=NULL)
table(carto.r1$ID.group)
part1 <- aggregate(carto.r1[,"geometry"], by=list(ID.group=carto.r1$ID.group), head)</pre>
tm_shape(carto.r1) +
  tm_polygons(col="ID.group") +
  tm_shape(part1) + tm_borders(col="black", lwd=2) +
  tm_layout(main.title="3x3 regular grid (with no size restrictions)",
            main.title.position="center", main.title.size=1,
            legend.outside=TRUE)
## Random partition based on a 6x4 regular grid (with size restrictions) ##
```

```
carto.r2 <- random_partition(carto=Carto_SpainMUN, rows=6, columns=4,</pre>
                              min.size=50, max.size=600)
table(carto.r2$ID.group)
part2 <- aggregate(carto.r2[,"geometry"], by=list(ID.group=carto.r2$ID.group), head)</pre>
tm_shape(carto.r2) +
 tm_polygons(col="ID.group") +
 tm_shape(part2) + tm_borders(col="black", lwd=2) +
 tm_layout(main.title="6x4 regular grid (min.size=50, max.size=600)",
            main.title.position="center", main.title.size=1,
            legend.outside=TRUE)
## Random partition based on a 6x4 regular grid (with size and proportion of zero restrictions) ##
carto.r3 <- random_partition(carto=Carto_SpainMUN, rows=6, columns=4,</pre>
                              min.size=50, max.size=600, prop.zero=0.5, O="obs")
table(carto.r3$ID.group)
part3 <- aggregate(carto.r3[,"geometry"], by=list(ID.group=carto.r3$ID.group), head)</pre>
tm\_shape(carto.r3) +
 tm_polygons(col="ID.group") +
 tm_shape(part3) + tm_borders(col="black", lwd=2) +
 tm_layout(main.title="6x4 regular grid (min.size=50, max.size=600, prop.zero=0.5)",
            main.title.position="center", main.title.size=1,
            legend.outside=TRUE)
## End(Not run)
```

STCAR_INLA

Fit a (scalable) spatio-temporal Poisson mixed model to areal count data.

Description

Fit a spatio-temporal Poisson mixed model to areal count data, where several CAR prior distributions for the spatial random effects, first and second order random walk priors for the temporal random effects, and different types of spatio-temporal interactions described in Knorr-Held (2000) can be specified. The linear predictor is modelled as

$$\log r_{it} = \alpha + \xi_i + \gamma_t + \delta_{it}$$
, for $i = 1, \dots, n$; $t = 1, \dots, T$

where α is a global intercept, ξ_i is a spatially structured random effect, γ_t is a temporally structured random effect, and δ_{it} is the space-time interaction effect. If the interaction term is dropped, an additive model is obtained. To ensure model identifiability, sum-to-zero constraints are imposed over the random effects of the model. Details on the derivation of these constraints can be found in Goicoa et al. (2018).

As in the CAR_INLA function, three main modelling approaches can be considered:

• the usual model with a global spatial random effect whose dependence structure is based on the whole neighbourhood graph of the areal units (model="global" argument)

- a Disjoint model based on a partition of the whole spatial domain where independent spatial CAR models are simultaneously fitted in each partition (model="partition" and k=0 arguments)
- a modelling approach where *k*-order neighbours are added to each partition to avoid border effects in the Disjoint model (model="partition" and k>0 arguments).

For both the Disjoint and k-order neighbour models, parallel or distributed computation strategies can be performed to speed up computations by using the 'future' package (Bengtsson 2021).

Inference is conducted in a fully Bayesian setting using the integrated nested Laplace approximation (INLA; Rue et al. (2009)) technique through the R-INLA package (https://www.r-inla.org/). For the scalable model proposals (Orozco-Acosta et al. 2022), approximate values of the Deviance Information Criterion (DIC) and Watanabe-Akaike Information Criterion (WAIC) can also be computed.

Usage

```
STCAR_INLA(
  carto = NULL,
  data = NULL,
  ID.area = NULL,
  ID.year = NULL,
  ID.group = NULL,
 0 = NULL
 E = NULL
 W = NULL
  spatial = "Leroux",
  temporal = "rw1",
  interaction = "TypeIV",
 model = "partition",
  k = 0,
  strategy = "simplified.laplace",
  PCpriors = FALSE,
  seed = NULL,
  n.sample = 1000,
  compute.intercept = FALSE,
  compute.DIC = TRUE,
  save.models = FALSE,
 plan = "sequential",
 workers = NULL,
 merge.strategy = "original"
)
```

Arguments

carto

object of class SpatialPolygonsDataFrame or sf. This object must contain at least the variable with the identifiers of the spatial areal units specified in the argument ID. area.

data	object of class data.frame that must contain the target variables of interest specified in the arguments ID.area, ID.year, O and E.
ID.area	character; name of the variable that contains the IDs of spatial areal units. The values of this variable must match those given in the carto and data variable.
ID.year	character; name of the variable that contains the IDs of time points.
ID.group	character; name of the variable that contains the IDs of the spatial partition (grouping variable). Only required if model="partition".
0	character; name of the variable that contains the observed number of disease cases for each areal and time point.
E	character; name of the variable that contains either the expected number of disease cases or the population at risk for each areal unit and time point.
W	optional argument with the binary adjacency matrix of the spatial areal units. If NULL (default), this object is computed from the carto argument (two areas are considered as neighbours if they share a common border).
spatial	one of either "Leroux" (default), "intrinsic", "BYM" or "BYM2", which specifies the prior distribution considered for the spatial random effect.
temporal	one of either "rw1" (default) or "rw2", which specifies the prior distribution considered for the temporal random effect.
interaction	one of either "none", "TypeI", "TypeII", "TypeIII" or "TypeIV" (default), which specifies the prior distribution for the space-time interaction random effect.
model	one of either "global" or "partition" (default), which specifies the <i>Global model</i> or one of the scalable model proposal's (<i>Disjoint model</i> and <i>k-order neighbourhood model</i> , respectively).
k	numeric value with the neighbourhood order used for the partition model. Usually k=2 or 3 is enough to get good results. If k=0 (default) the <i>Disjoint model</i> is considered. Only required if model="partition".
strategy	one of either "gaussian", "simplified.laplace" (default), "laplace" or "adaptive", which specifies the approximation strategy considered in the inla function.
PCpriors	logical value (default FALSE); if TRUE then penalised complexity (PC) priors are used for the precision parameter of the spatial random effect. It only works if arguments spatial="intrinsic" or spatial="BYM2" are specified.
seed	numeric (default NULL); control the RNG of the inla.qsample function. See help(inla.qsample) for further information.
n.sample	numeric; number of samples to generate from the posterior marginal distribution of the risks. Default to 1000.
compute.interce	
	logical value (default FALSE); if TRUE then the overall log-risk α is computed. It only works if k=0 argument (<i>Disjoint model</i>) is specified. CAUTION: This method might be very time consuming.
compute.DIC	logical value; if TRUE (default) then approximate values of the Deviance Information Criterion (DIC) and Watanabe-Akaike Information Criterion (WAIC) are computed.

save.models logical value (default FALSE); if TRUE then a list with all the inla submodels is

saved in '/temp/' folder, which can be used as input argument for the mergeINLA

function.

plan one of either "sequential" or "cluster", which specifies the computation

strategy used for model fitting using the 'future' package. If plan="sequential" (default) the models are fitted sequentially and in the current R session (local machine). If plan="cluster" the models are fitted in parallel on external R

sessions (local machine) or distributed in remote computing nodes.

workers character or vector (default NULL) containing the identifications of the local or

remote workers where the models are going to be processed. Only required if

plan="cluster".

merge.strategy one of either "mixture" or "original" (default), which specifies the merging

strategy to compute posterior marginal estimates of relative risks. See mergeINLA

for further details.

Details

For a full model specification and further details see the vignettes accompanying this package.

Value

This function returns an object of class inla. See the mergeINLA function for details.

References

Goicoa T, Adin A, Ugarte MD, Hodges JS (2018). "In spatio-temporal disease mapping models, identifiability constraints affect PQL and INLA results." *Stochastic Environmental Research and Risk Assessment*, **32**(3), 749–770. doi:10.1007/s0047701714050.

Knorr-Held L (2000). "Bayesian modelling of inseparable space-time variation in disease risk." *Statistics in Medicine*, **19**(17-18), 2555–2567.

Orozco-Acosta E, Adin A, Ugarte MD (2021). "Scalable Bayesian modeling for smoothing disease mapping risks in large spatial data sets using INLA." *Spatial Statistics*, **41**, 100496. doi:10.1016/j.spasta.2021.100496.

Orozco-Acosta E, Adin A, Ugarte MD (2022). "Big problems in spatio-temporal disease mapping: methods and software." https://arxiv.org/abs/2201.08323.

Examples

```
## Not run:
if(require("INLA", quietly=TRUE)){

## Load the sf object that contains the spatial polygons of the municipalities of Spain ##
data(Carto_SpainMUN)
str(Carto_SpainMUN)

## Create province IDs ##
Carto_SpainMUN$ID.prov <- substr(Carto_SpainMUN$ID,1,2)</pre>
```

```
## Load simulated data of lung cancer mortality data during the period 1991-2015 ##
 data("Data_LungCancer")
 str(Data_LungCancer)
 ## Disjoint model with a BYM2 spatial random effect, RW1 temporal random effect and
 ## Type I interaction random effect using 4 local clusters to fit the models in parallel ##
 Disjoint <- STCAR_INLA(carto=Carto_SpainMUN, data=Data_LungCancer,</pre>
                      ID.area="ID", ID.year="year", O="obs", E="exp", ID.group="ID.prov",
                          spatial="BYM2", temporal="rw1", interaction="TypeI",
                         model="partition", k=0, strategy="gaussian",
                         plan="cluster", workers=rep("localhost",4))
 summary(Disjoint)
 ## 1st-order nb. model with a BYM2 spatial random effect, RW1 temporal random effect and ##
 ## Type I interaction random effect using 4 local clusters to fit the models in parallel ##
 order1 <- STCAR_INLA(carto=Carto_SpainMUN, data=Data_LungCancer,</pre>
                     ID.area="ID", ID.year="year", O="obs", E="exp", ID.group="ID.prov",
                       spatial="BYM2", temporal="rw1", interaction="TypeI",
                       model="partition", k=1, strategy="gaussian",
                       plan="cluster", workers=rep("localhost",4))
 summary(order1)
}
## End(Not run)
```

Index

```
* data
    Carto_SpainMUN, 5
    Data_LungCancer, 13
    Data_MultiCancer, 14
add_neighbour, 3, 4, 12
bigDM(bigDM-package), 2
bigDM-package, 2
CAR_INLA, 3, 5, 16, 20, 21, 30
Carto_SpainMUN, 5
clustering_partition, 3, 10
connect_subgraphs, 3, 12
Data_LungCancer, 13
Data_MultiCancer, 14
dist, 10
divide_carto, 3, 14
MCAR_INLA, 3, 15, 20–23
mergeINLA, 3, 8, 17, 18, 19, 33
Mmodel_compute_cor, 3, 23
Mmodel_icar, 3, 24
Mmodel_iid, 25
Mmodel_lcar, 3, 26
Mmodel_pcar, 3, 27
random_partition, 3, 28
STCAR_INLA, 3, 20, 21, 30
```