
Package ‘bigmds’
October 12, 2022

Title Multidimensional Scaling for Big Data

Version 2.0.1

Description MDS is a statistic tool for reduction of dimensionality, using as input a distance
matrix of dimensions n × n. When n is large, classical algorithms suffer from
computational problems and MDS configuration can not be obtained.
With this package, we address these problems by means of three algorithms:

- Divide-and-conquer MDS proposed by Delicado P. and C. Pachón-García (2021)
<arXiv:2007.11919>.
- Interpolation MDS, also proposed by Delicado P. and C. Pachón-García (2021)
<arXiv:2007.11919>, which uses Gower's interpolation formula as described in
Gower, J. C. and D. J. Hand (1995).
- Fast MDS, which is an implementation of the algorithm proposed by
Yang, T., J. Liu, L. McMillan, and W. Wang (2006).

The main idea of these algorithms is based on partitioning the data set into small
pieces, where classical methods can work. In order to align all the solutions,
Procrustes formula is used as described in Borg, I. and P. Groenen (2005).

License MIT + file LICENSE

Encoding UTF-8

RoxygenNote 7.1.1

Imports stats, parallel

Suggests testthat

URL https://github.com/pachoning/bigmds

BugReports https://github.com/pachoning/bigmds/issues

NeedsCompilation no

Author Cristian Pachón García [aut, cre]
(<https://orcid.org/0000-0001-9518-4874>),

Pedro Delicado [aut] (<https://orcid.org/0000-0003-3933-4852>)

Maintainer Cristian Pachón García <cc.pachon@gmail.com>

Repository CRAN

Date/Publication 2021-10-05 10:00:02 UTC

1

https://arxiv.org/abs/2007.11919
https://arxiv.org/abs/2007.11919
https://github.com/pachoning/bigmds
https://github.com/pachoning/bigmds/issues
https://orcid.org/0000-0001-9518-4874
https://orcid.org/0000-0003-3933-4852

2 divide_conquer_mds

R topics documented:
divide_conquer_mds . 2
fast_mds . 3
interpolation_mds . 5

Index 8

divide_conquer_mds Divide-and-conquer MDS

Description

Roughly speaking, a large data set, x, of size n is divided into parts, then classical MDS is performed
over every part and, finally, the partial configurations are combined so that all the points lie on the
same coordinate system with the aim to obtain a global MDS configuration.

Usage

divide_conquer_mds(x, l, c_points, r, n_cores = 1, dist_fn = stats::dist, ...)

Arguments

x A matrix with n points (rows) and k variables (columns).

l The size for which classical MDS can be computed efficiently (using cmdscale
function). It means that if l̄ is the limit size for which classical MDS is applica-
ble, then l≤ l̄.

c_points Number of points used to align the MDS solutions obtained by the division of x
into p data subsets. Recommended value: 2·r.

r Number of principal coordinates to be extracted.

n_cores Number of cores wanted to use to run the algorithm.

dist_fn Distance function used to compute the distance between the rows.

... Further arguments passed to dist_fn function.

Details

The divide-and-conquer MDS starts dividing the n points into p partitions: the first partition con-
tains l points and the others contain l-c_points points. Therefore, p = 1+(n−l)/(l-c_points).
The partitions are created at random.

Once the partitions are created, c_points different random points are taken from the first partition
and concatenated to the other partitions After that, classical MDS is applied to each partition, with
target low dimensional configuration r.

Since all the partitions share c_points points with the first one, Procrustes can be applied in order
to align all the configurations. Finally, all the configurations are concatenated in order to obtain a
global MDS configuration.

fast_mds 3

Value

Returns a list containing the following elements:

points A matrix that consists of n points (rows) and r variables (columns) corresponding to the
principal coordinates. Since a dimensionality reduction is performed, r<< k

eigen The first r largest eigenvalues: λ̄i, i ∈ {1, . . . , r}, where λ̄i = 1/p
∑p

j=1 λ
j
i/nj , being λji

the i− th eigenvalue from partition j and nj the size of the partition j.

GOF A numeric vector of length 2.
The first element corresponds to 1/n

∑p
j=1 njG

j
1, where Gj

1 =
∑r

i=1 λ
j
i/

∑n−1
i=1 |λ

j
i |.

The second element corresponds to 1/n
∑p

j=1 njG
j
2 whereGj

2 =
∑r

i=1 λ
j
i/

∑n−1
i=1 max(λji , 0).

References

Delicado P. and C. Pachón-García (2021). Multidimensional Scaling for Big Data. https://
arxiv.org/abs/2007.11919.

Borg, I. and P. Groenen (2005). Modern Multidimensional Scaling: Theory and Applications.
Springer.

Examples

set.seed(42)
x <- matrix(data = rnorm(4*10000), nrow = 10000) %*% diag(c(9, 4, 1, 1))
mds <- divide_conquer_mds(x = x, l = 200, c_points = 2*2, r = 2, n_cores = 1, dist_fn = stats::dist)
head(mds$points)
mds$eigen
mds$GOF
points <- mds$points
plot(x[1:10, 1],

x[1:10, 2],
xlim = range(c(x[1:10,1],points[1:10,1])),
ylim = range(c(x[1:10,2], points[1:10,2])),
pch = 19,
col = "green")

text(x[1:10, 1], x[1:10, 2], labels=1:10)
points(points[1:10, 1], points[1:10, 2], pch = 19, col = "orange")
text(points[1:10, 1], points[1:10, 2], labels=1:10)
abline(v = 0, lwd=3, lty=2)
abline(h = 0, lwd=3, lty=2)

fast_mds Fast MDS

Description

Fast MDS uses recursive programming in combination with a divide and conquer strategy in order
to obtain an MDS configuration for a given large data set x.

https://arxiv.org/abs/2007.11919
https://arxiv.org/abs/2007.11919

4 fast_mds

Usage

fast_mds(x, l, s_points, r, n_cores = 1, dist_fn = stats::dist, ...)

Arguments

x A matrix with n individuals (rows) and k variables (columns).

l The size for which classical MDS can be computed efficiently (using cmdscale
function). It means that if l̄ is the limit size for which classical MDS is applica-
ble, then l≤ l̄.

s_points Number of points used to align the MDS solutions obtained by the division of x
into p submatrices. Recommended value: 2·r.

r Number of principal coordinates to be extracted.

n_cores Number of cores wanted to use to run the algorithm.

dist_fn Distance function used to compute the distance between the rows.

... Further arguments passed to dist_fn function.

Details

Fast MDS randomly divides the whole sample data set, x, of size n into p =l/s_points data
subsets, where l ≤ l̄ being l̄ the limit size for which classical MDS is applicable. Each one of
the p data subsets has size ñ = n/p. If ñ ≤ l then classical MDS is applied to each data subset.
Otherwise, fast MDS is recursively applied. In either case, a final MDS configuration is obtained
for each data subset.

In order to align all the partial solutions, a small subset of size s_points is randomly selected
from each data subset. They are joined to form an alignment set, over which classical MDS is
performed giving rise to an alignment configuration. Every data subset shares s_points points
with the alignment set. Therefore every MDS configuration can be aligned with the alignment
configuration using a Procrustes transformation.

Value

Returns a list containing the following elements:

points A matrix that consists of n individuals (rows) and r variables (columns) corresponding to
the principal coordinates. Since we are performing a dimensionality reduction, r<< k

eigen The first r largest eigenvalues: λ̄i, i ∈ {1, . . . , r}, where λ̄i = 1/p
∑p

j=1 λ
j
i/nj , being λji

the i− th eigenvalue from partition j and nj the size of the partition j.

GOF A numeric vector of length 2.

The first element corresponds to 1/n
∑p

j=1 njG
j
1, where Gj

1 =
∑r

i=1 λ
j
i/

∑n−1
i=1 |λ

j
i |.

The second element corresponds to 1/n
∑p

j=1 njG
j
2 whereGj

2 =
∑r

i=1 λ
j
i/

∑n−1
i=1 max(λji , 0).

interpolation_mds 5

References

Delicado P. and C. Pachón-García (2021). Multidimensional Scaling for Big Data. https://
arxiv.org/abs/2007.11919.

Yang, T., J. Liu, L. McMillan, and W.Wang (2006). A fast approximation to multidimensional
scaling. In Proceedings of the ECCV Workshop on Computation Intensive Methods for Computer
Vision (CIMCV).

Borg, I. and P. Groenen (2005). Modern Multidimensional Scaling: Theory and Applications.
Springer.

Examples

set.seed(42)
x <- matrix(data = rnorm(4*10000), nrow = 10000) %*% diag(c(9, 4, 1, 1))
mds <- fast_mds(x = x, l = 200, s_points = 2*2, r = 2, n_cores = 1, dist_fn = stats::dist)
head(mds$points)
mds$eigen
mds$GOF
points <- mds$points
plot(x[1:10, 1],

x[1:10, 2],
xlim = range(c(x[1:10,1],points[1:10,1])),
ylim = range(c(x[1:10,2], points[1:10,2])),
pch = 19,
col = "green")

text(x[1:10, 1], x[1:10, 2], labels=1:10)
points(points[1:10, 1], points[1:10, 2], pch = 19, col = "orange")
text(points[1:10, 1], points[1:10, 2], labels=1:10)
abline(v = 0, lwd=3, lty=2)
abline(h = 0, lwd=3, lty=2)

interpolation_mds Interpolation MDS

Description

Given that the size of the data set is too large, this algorithm consists of taking a random sample
from it of size l ≤ l̄, being l̄ the limit size for which classical MDS is applicable, to perform
classical MDS to it, and to extend the obtained results to the rest of the data set by using Gower’s
interpolation formula, which allows to add a new set of points to an existing MDS configuration.

Usage

interpolation_mds(x, l, r, n_cores = 1, dist_fn = stats::dist, ...)

https://arxiv.org/abs/2007.11919
https://arxiv.org/abs/2007.11919

6 interpolation_mds

Arguments

x A matrix with n individuals (rows) and k variables (columns).

l The size for which classical MDS can be computed efficiently (using cmdscale
function). It means that if l̄ is the limit size for which classical MDS is applica-
ble, then l≤ l̄.

r Number of principal coordinates to be extracted.

n_cores Number of cores wanted to use to run the algorithm.

dist_fn Distance function used to compute the distance between the rows.

... Further arguments passed to dist_fn function.

Details

Gower’s interpolation formula is the central piece of this algorithm since it allows to add a new set
of points to an existing MDS configuration so that the new one has the same coordinate system.

Given the matrix x with n points (rows) and and k variables (columns), a first data subsets (based
on a random sample) of size l is taken and it is used to compute a MDS configuration.

The remaining part of x is divided into p = (n−l)/l data subsets (randomly). For every data
subset, it is obtained a MDS configuration by means of Gower’s interpolation formula and the first
MDS configuration obtained previously. Every MDS configuration is appended to the existing one
so that, at the end of the process, a global MDS configuration for x is obtained.

Value

Returns a list containing the following elements:

points A matrix that consists of n individuals (rows) and r variables (columns) corresponding to
the principal coordinates. Since we are performing a dimensionality reduction, r<< k

eigen The first r largest eigenvalues: λi, i ∈ {1, . . . , r}, where each λi is obtained from applying
classical MDS to the first data subset.

GOF A numeric vector of length 2.

The first element corresponds to
∑r

i=1 λi/
∑n−1

i=1 |λi|.
The second element corresponds to

∑r
i=1 λi/

∑n−1
i=1 max(λi, 0).

References

Delicado P. and C. Pachón-García (2021). Multidimensional Scaling for Big Data. https://
arxiv.org/abs/2007.11919.

Gower, J. C. and D. J. Hand (1995). Biplots, Volume 54. CRC Press.

Borg, I. and P. Groenen (2005). Modern Multidimensional Scaling: Theory and Applications.
Springer.

https://arxiv.org/abs/2007.11919
https://arxiv.org/abs/2007.11919

interpolation_mds 7

Examples

set.seed(42)
x <- matrix(data = rnorm(4*10000), nrow = 10000) %*% diag(c(9, 4, 1, 1))
mds <- interpolation_mds(x = x, l = 200, r = 2, n_cores = 1, dist_fn = stats::dist)
head(mds$points)
mds$eigen
mds$GOF
points <- mds$points
plot(x[1:10, 1],

x[1:10, 2],
xlim = range(c(x[1:10,1],points[1:10,1])),
ylim = range(c(x[1:10,2], points[1:10,2])),
pch = 19,
col = "green")

text(x[1:10, 1], x[1:10, 2], labels=1:10)
points(points[1:10, 1], points[1:10, 2], pch = 19, col = "orange")
text(points[1:10, 1], points[1:10, 2], labels=1:10)
abline(v = 0, lwd=3, lty=2)
abline(h = 0, lwd=3, lty=2)

Index

divide_conquer_mds, 2

fast_mds, 3

interpolation_mds, 5

8

	divide_conquer_mds
	fast_mds
	interpolation_mds
	Index

