Package 'biogeom'

December 22, 2022

Type Package Title Biological Geometries Version 1.3.5 Date 2022-12-21 Author Peijian Shi [aut, cre], Johan Gielis [aut], Brady K. Quinn [aut] Maintainer Peijian Shi <pjshi@njfu.edu.cn> **Imports** spatstat.geom (>= 2.4-0) **Description** Is used to simulate and fit biological geometries. 'biogeom' incorporates several novel universal parametric equations that can generate the profiles of bird eggs, flowers, linear and lanceolate leaves, seeds, starfish, and treerings (Gielis (2003) <doi:10.3732/ajb.90.3.333>; Shi et al. (2020) <doi:10.3390/sym12040645>), three growthrate curves representing the ontogenetic growth trajectories of animals and plants against time, and the axially symmetrical and integral forms of all these functions (Shi et al. (2017) <doi:10.1016/j.ecolmodel.2017.01.012>; Shi et al. (2021) <doi:10.3390/sym13081524>). The optimization method proposed by Nelder and Mead (1965) <doi:10.1093/comjnl/7.4.308> was used to estimate model parameters. 'biogeom' includes several real data sets of the boundary coordinates of natural shapes, including avian eggs, fruit, lanceolate and ovate leaves, tree rings, seeds, and sea stars, and can be potentially applied to other natural shapes. 'biogeom' can quantify the conspecific or interspecific similarity of natural outlines, and provides information with important ecological and evolutionary implications for the growth and form of living organisms. Please see Shi et al. (2022) <doi:10.1111/nyas.14862> for details. **Depends** R (>= 4.2.0)

```
License GPL (\geq 2)
```

NeedsCompilation no

Repository CRAN

Date/Publication 2022-12-22 13:10:08 UTC

R topics documented:

adjdata	. 3
areaGE	. 5
areaovate	. 7
bambooleaves	. 9
bilat	. 10
biogeom	. 15
curveEPE	. 18
curveETE	. 20
curveGE	. 22
curveNRGE	. 25
curveovate	. 26
DEPE	. 28
DETE	30
DNRGE	31
DSGE	33
Page	34
FPF	36
FTF	. 38
frede	. 30
fitere	
free	. 45
	. 40
ftevete	. 51
fitiamoid	. 55
finalim	. JO
CE	. 01
dE	. 05
	. 00
кр	. 07
	. 00
IIII1E	. 12
	. 70
	. /9
MILKΓE	. 01
	. 83
NKUE	. 84
PE	. 86
snoots	. 89
sigmoid	. 90
starfish	. 92
SurfaceAreaEPE	. 93
SurfaceAreaETE	. 94
SurfaceAreaNRGE	. 95
SurfaceAreaSGE	. 97
ΤΕ	. 98
TGE	. 100
TSE	. 102

adjdata

veins	 	104
VolumeEPE	 	105
VolumeETE	 	107
VolumeNRGE	 	108
VolumeSGE	 	110
whitespruce	 	111
		114

Index

adjdata

Boundary Data Adjustment of A Polygon

Description

adjdata adjusts the data points in counterclockwise order based on the shortest distance method.

Usage

adjdata(x, y, ub.np = 2000, times = 1.2, len.pro = 1/20, index.sp = 1)

Arguments

x	the x coordinates of points on a polygon's boundary.
У	the y coordinates of points on a polygon's boundary.
ub.np	the upper bound of the number of points eventually retained on the polygon's boundary.
times	the number of times un.np is initially retained as the number of points.
len.pro	the proportion of the distance between any two points to the maximum dis- tance between the points on the polygon's boundary, which is used to determine whether the second point needs to be deleted.
index.sp	the index of the starting point of a group of indices that regularly divide the number of points on the polygon's boundary into ub.np parts.

Details

When ub.np > length(x), length(x) points on the polygon's boundary are retained. The quantile function in package **stats** is used to carry out the regular division of data points. From the starting point, the second point is the one that has the shortest distance from the former. When the distance between the two points is larger than len.pro multiplied by the maximum distance between points on the polygon's boundary, the second point is deleted from the coordinates. Then, the third point that has the shortest distance from the first point is defined as the second point. If the distance between the first point and the second point is no more than len.pro multiplied by the maximum distance, the first and second points are recorded in a new matrix for the coordinates of the polygon, and the second point is defined as the first point in the old matrix for the coordinates of the polygon. The shortest distance method is then used to look for a third point that meets the requirement.

adjdata

Value

х	the \boldsymbol{x} coordinates of points eventually retained on the polygon's boundary.
У	the \boldsymbol{y} coordinates of points eventually retained on the polygon's boundary.

Note

The initial boundary data of a polygon can be obtained by running the M-file based on Matlab (version $\geq 2009a$) developed by Shi et al. (2018) and Su et al. (2019) for a .bmp black and white image of the polygon. See references below.

Author(s)

Peijian Shi <pjshi@njfu.edu.cn>, Johan Gielis <johan.gielis@uantwerpen.be>, Brady K. Quinn <Brady.Quinn@dfo-mpo.gc.ca>.

References

Shi, P., Gielis, J., Quinn, B.K., Niklas, K.J., Ratkowsky, D.A., Schrader, J., Ruan, H., Wang, L., Niinemets, Ü. (2022) 'biogeom': An R package for simulating and fitting natural shapes. *Annals of the New York Academy of Sciences* 1516, 123–134. doi:10.1111/nyas.14862

Shi, P., Ratkowsky, D.A., Li, Y., Zhang, L., Lin, S., Gielis, J. (2018) General leaf-area geometric formula exists for plants - Evidence from the simplified Gielis equation. *Forests* 9, 714. doi:10.3390/ f9110714

Su, J., Niklas, K.J., Huang, W., Yu, X., Yang, Y., Shi, P. (2019) Lamina shape does not correlate with lamina surface area: An analysis based on the simplified Gielis equation. *Global Ecology and Conservation* 19, e00666. doi:10.1016/j.gecco.2019.e00666

Examples

```
data(eggs)
uni.C1 <- sort( unique(eggs$Code) )</pre>
ind1 <- 2
Data1 <- eggs[eggs$Code==uni.C1[ind1], ]</pre>
x0
       <- Data1$x
       <- Data1$y
y0
Res1
       <- adjdata(x0, y0, ub.np=2000, times=1.2, len.pro=1/20)
x1
       <- Res1$x
       <- Res1$y
y1
dev.new()
plot( x1, y1, asp=1, cex.lab=1.5, cex.axis=1.5,
      xlab=expression(italic("x")), ylab=expression(italic("y")),
      pch=1, col=1 )
       <- adjdata(x0, y0, ub.np=40, times=1, len.pro=1/2, index.sp=20)
Res2
       <- Res2$x
x2
y2
       <- Res2$y
Res3
      <- adjdata(x0, y0, ub.np=100, times=1, len.pro=1/2, index.sp=100)
```

areaGE

```
х3
       <- Res3$x
       <- Res3$y
у3
dev.new()
plot( x2, y2, asp=1, cex.lab=1.5, cex.axis=1.5,
      xlab=expression(italic("x")), ylab=expression(italic("y")),
      pch=1, col=4 )
points( x3, y3, col=2)
data(starfish)
uni.C2 <- sort( unique(starfish$Code) )</pre>
ind2 <- 2
Data2 <- starfish[starfish$Code==uni.C2[ind2], ]</pre>
x4
       <- Data2$x
y4
       <- Data2$y
dev.new()
plot( x4, y4, asp=1, type="l", cex.lab=1.5, cex.axis=1.5,
      xlab=expression(italic("x")), ylab=expression(italic("y")) )
Res4 <- adjdata(x4, y4, ub.np=500, times=1.2, len.pro=1/20)</pre>
   <- Res4$x
x5
y5
   <- Res4$y
dev.new()
plot( x5, y5, asp=1, type="1", cex.lab=1.5, cex.axis=1.5,
      xlab=expression(italic("x")), ylab=expression(italic("y")) )
graphics.off()
```

areaGE

Area Calculation for the Gielis Curve Within $[0, 2\pi)$

Description

areaGE is used to calculate the area of the polygon generated by the Gielis curve within $[0, 2\pi)$.

Usage

```
areaGE(expr, P, m = 1, simpver = NULL,
    nval = 1, subdivisions = 100L,
    rel.tol = .Machine$double.eps^0.25,
    abs.tol = rel.tol, stop.on.error = TRUE,
    keep.xy = FALSE, aux = NULL)
```

Arguments

expr	the original (or twin) Gielis equation or one of its simplified versions.
Ρ	the parameters of the original (or twin) Gielis equation or one of its simplified versions.
m	the given m value that determines the number of angles of the Gielis curve within $[0, 2\pi)$.
simpver	an optional argument to use the simplified version of the original (or twin) Gielis equation.
nval	the specified value for n_1 or n_2 or n_3 in the simplified versions.
subdivisions	please see the arguments for the integrate function in package stats.
rel.tol	please see the arguments for the integrate function in package stats.
abs.tol	please see the arguments for the integrate function in package stats.
stop.on.error	please see the arguments for the integrate function in package stats.
keep.xy	please see the arguments for the integrate function in package stats.
aux	please see the arguments for the integrate function in package stats.

Details

The arguments of P, m, simpver, and nval should correspond to expr (i.e., GE or TGE). Please note the differences in the simplified version number and the number of parameters between GE and TGE.

Value

The area of the polygon within $[0, 2\pi)$ generated by the original (or twin) Gielis equation or one of its simplified versions.

Note

simpver in GE is different from that in TGE.

Author(s)

Peijian Shi <pjshi@njfu.edu.cn>, Johan Gielis <johan.gielis@uantwerpen.be>, Brady K. Quinn <Brady.Quinn@dfo-mpo.gc.ca>.

References

Gielis, J. (2003) A generic geometric transformation that unifies a wide range of natural and abstract shapes. *American Journal of Botany* 90, 333–338. doi:10.3732/ajb.90.3.333

Li, Y., Quinn, B.K., Gielis, J., Li, Y., Shi, P. (2022) Evidence that supertriangles exist in nature from the vertical projections of *Koelreuteria paniculata* fruit. *Symmetry* 14, 23. doi:10.3390/sym14010023

Shi, P., Gielis, J., Quinn, B.K., Niklas, K.J., Ratkowsky, D.A., Schrader, J., Ruan, H., Wang, L., Niinemets, Ü. (2022) 'biogeom': An R package for simulating and fitting natural shapes. *Annals of the New York Academy of Sciences* 1516, 123–134. doi:10.1111/nyas.14862

areaovate

Shi, P., Ratkowsky, D.A., Gielis, J. (2020) The generalized Gielis geometric equation and its application. *Symmetry* 12, 645. doi:10.3390/sym12040645

Shi, P., Xu, Q., Sandhu, H.S., Gielis, J., Ding, Y., Li, H., Dong, X. (2015) Comparison of dwarf bamboos (*Indocalamus* sp.) leaf parameters to determine relationship between spatial density of plants and total leaf area per plant. *Ecology and Evolution* 5, 4578–4589. doi:10.1002/ece3.1728

See Also

curveGE, fitGE, GE, TGE

Examples

```
Para1 <- c(1.7170, 5.2258, 7.9802)
areaGE(GE, P = Para1, m=5, simpver=1)
```

Para2 <- c(2.1066, 3.5449, 0.4619, 10.5697) areaGE(TGE, P = Para2, m=5, simpver=1)

areaovate

Area Calculation for an Ovate Polygon

Description

areaovate is used to calculate the area of an ovate polygon made from combing two symmetrical curves generated by a performance equation (e.g., MLRFE).

Usage

```
areaovate(expr, P, simpver = NULL,
    subdivisions = 100L,
    rel.tol = .Machine$double.eps^0.25,
    abs.tol = rel.tol, stop.on.error = TRUE,
    keep.xy = FALSE, aux = NULL)
```

Arguments

expr	a performance equation or one of its simplified versions.
Р	the parameters of the performance equation or one of its simplified versions.
simpver	an optional argument to use the simplified version of the performance equation
subdivisions	please see the arguments for the integrate function in package stats.
rel.tol	please see the arguments for the integrate function in package stats.
abs.tol	please see the arguments for the integrate function in package stats.
<pre>stop.on.error</pre>	please see the arguments for the integrate function in package stats.
keep.xy	please see the arguments for the integrate function in package stats.
aux	please see the arguments for the integrate function in package stats.

Details

The performance equations denote MbetaE, MBriereE, MLRFE, and their simplified versions. The arguments of P and simpver should correspond to expr (i.e., MbetaE or MBriereE or MLRFE).

Value

The area of two symmetrical curves along the x-axis generated by a performance equation or one of its simplified versions.

Note

Here, the user can define other performance equations, but new equations or their simplified versions should include the lower and upper thresholds in the x-axis corresponding to y = 0, whose indices should be the same as those in MbetaE or MBriereE or MLRFE.

Author(s)

Peijian Shi <pjshi@njfu.edu.cn>, Johan Gielis <johan.gielis@uantwerpen.be>, Brady K. Quinn <Brady.Quinn@dfo-mpo.gc.ca>.

References

Jin, J., Quinn, B.K., Shi, P. (2022) The modified Brière equation and its applications. *Plants* 11, 1769. doi:10.3390/plants11131769

Shi, P., Fan, M., Ratkowsky, D.A., Huang, J., Wu, H., Chen, L., Fang, S., Zhang, C. (2017) Comparison of two ontogenetic growth equations for animals and plants. *Ecological Modelling* 349, 1–10. doi:10.1016/j.ecolmodel.2017.01.012

Shi, P., Gielis, J., Quinn, B.K., Niklas, K.J., Ratkowsky, D.A., Schrader, J., Ruan, H., Wang, L., Niinemets, Ü. (2022) 'biogeom': An R package for simulating and fitting natural shapes. *Annals of the New York Academy of Sciences* 1516, 123–134. doi:10.1111/nyas.14862

Shi, P., Yu, K., Niklas, K.J., Schrader, J., Song, Y., Zhu, R., Li, Y., Wei, H., Ratkowsky, D.A. (2021) A general model for describing the ovate leaf shape. *Symmetry* 13, 1524. doi:10.3390/sym13081524

See Also

curveovate, fitovate, MbetaE, MBriereE, MLRFE, sigmoid

Examples

```
Par1 <- c(1.8175, 2.7795, 7.1557, 1.6030)
areaovate(MbetaE, P = Par1, simpver = 1)
Par2 <- c(0.0550, 0.3192, 7.1965, 0.5226)
areaovate(MBriereE, P = Par2, simpver = 1)
Par3 <- c(1.8168, 2.7967, 7.2623, 0.9662)
areaovate(MLRFE, P = Par3, simpver = 1)</pre>
```

bambooleaves

Description

The data consist of the boundary data of six leaves of *P. incarnata* sampled at Nanjing Forestry University campus in early December 2016.

Usage

data(bambooleaves)

Details

In the data set, there are three columns of variables: Code, x, and y. Code saves the codes of individual leaves; x saves the x coordinates of the leaf boundary in the Cartesian coordinate system (cm); and y saves the y coordinates of the leaf boundary in the Cartesian coordinate system (cm).

References

Lin, S., Shao, L., Hui, C., Song, Y., Reddy, G.V.P., Gielis, J., Li, F., Ding, Y., Wei, Q., Shi, P. (2018) Why does not the leaf weight-area allometry of bamboos follow the 3/2-power law? *Frontiers in Plant Science* 9, 583. doi:10.3389/fpls.2018.00583

Shi, P., Ratkowsky, D.A., Li, Y., Zhang, L., Lin, S., Gielis, J. (2018) General leaf-area geometric formula exists for plants - Evidence from the simplified Gielis equation. *Forests* 9, 714. doi:10.3390/ f9110714

Examples

```
data(bambooleaves)
```

```
uni.C <- sort( unique(bambooleaves$Code) )</pre>
ind
     <- 1
Data <- bambooleaves[bambooleaves$Code==uni.C[ind], ]</pre>
x0
      <- Data$x
y0
      <- Data$y
dev.new()
plot( x0, y0, asp=1, type="1", cex.lab=1.5, cex.axis=1.5,
      xlab=expression(italic("x")), ylab=expression(italic("y")) )
length(x0)
Res1 <- adjdata(x0, y0, ub.np=600, len.pro=1/20)</pre>
dev.new()
plot( Res1$x, Res1$y, asp=1, cex.lab=1.5, cex.axis=1.5, type="l",
      xlab=expression(italic("x")), ylab=expression(italic("y")) )
graphics.off()
```

bilat

Description

bilat is used to measure the extent of bilateral (a)symmetry and other measures for a polygon (e.g., a leaf).

Usage

```
bilat(x, y, strip.num = 200, peri.np = NULL, n.loop = 60,
    auto.search = TRUE, animation.fig = TRUE, time.interval = 0.001,
    unit = "cm", main = NULL, diff.fig = TRUE, angle = NULL,
    ratiox = 0.02, ratioy = 0.08, fd.opt = TRUE, frac.fig = TRUE,
    denomi.range = seq(8, 30, by = 1))
```

Arguments

x	the x coordinates of a polygon's boundary.
У	the y coordinates of a polygon's boundary.
strip.num	the number of equidistant strips intersecting with the polygon that are horizon- tally placed. See Shi et al. (2018, 2020) for details.
peri.np	the number of data points on the boundary retained for calculating the perimeter of the polygon.
n.loop	the number of data points to randomly sample for calculating the mean perimeter of the polygon.
auto.search	an optional argument to automatically search the maximum distance between two points on the polygon's boundary.
animation.fig	the option of showing the data points on the polygon's boundary in an animation.
time.interval	the time interval at which to suspend execution, in seconds.
unit	the units of the x -axis and the y -axis when showing the polygon.
main	the main title of the figure.
diff.fig	an optional argument to draw the differences in areas between the intersections of the strips with the upper part of the polygon and the intersections of the strips with the lower part of the polygon. The polygon is divided into the upper and lower parts by the x -axis. See Shi et al. (2018, 2020) for details.
angle	the angle between the major axis (i.e., the leaf length axis) and the x -axis, which can be defined by the user.
fd.opt	An optional argument to use the box-counting method to calculate the fractal dimension of the polygon's boundary on a log-log scale.
ratiox	the x coordinate of the location parameter for positioning the legend in the plot of the linear fitting.

ratioy	the y coordinate of the location parameter for positioning the legend in the plot of the linear fitting.
frac.fig	an optional argument to draw the results of the linear fitting using the box- counting method to calculate the fractal dimension of the polygon's boundary on a log-log scale.
denomi.range	the number of equidistant segments of the maximum range between the range of the x coordinates and that of the y coordinates.

Details

The data of x and y should be the coordinates adjusted using the adjdata function. If peri.np = NULL, the number of length(x) is used to calculate the perimeter of the polygon; if peri.np is a positive integer, the number of data points retained on the polygon's boundary is equal to peri.np and random sampling for retaining peri.np data points is carried out n.loop times for calculating the mean perimeter of the polygon. That is to say, the final output for the perimeter is the mean of the n.loop perimeters (i.e., replicates). If the user wants to get a consistent result for the mean perimeter, the set.seed function can be used. In addition, if length(x) < peri.np, peri.np then becomes length(x) rather than the specified value in Arguments. If the polygon apparently has a major axis (e.g., the leaf length axis for an ovate leaf), auto.search is appropriate. If the major axis of the polygon is not the straight line through two points on the polygon's boundary having the maximum distance, the user can define the major axis using the locator function in graphic by clicking two points on or near the polygon's boundary. The location of the first click should be northeast of the location of the second click. This means that the angle between the straight line through the locations of the two clicks and the x-axis should range from 0 to $\pi/2$. The locations of the clicks can be on the boundary or be approximate to the boundary. The function will automatically find the nearest data point on the boundary to the location of each click. When angle = NULL, the observed polygon will be shown at its initial angle in the scanned image; when angle is a numerical value (e.g., $\pi/4$) defined by the user, it indicates that the major axis is rotated $\pi/4$ counterclockwise from the x-axis.

Value

x	the x coordinates retained on the polygon's boundary.
У	the y coordinates retained on the polygon's boundary.
phi	the angle between the length axis (i.e., the major axis) of the polygon and the x -axis.
n1	the number of data points on the upper boundary of the polygon.
n2	the number of data points on the lower boundary of the polygon.
n	the number of data points on the whole polygon's boundary.
total.poly	an object of class "ppp" representing a point pattern dataset in the two-dimensional plane, representing the polygon's boundary.
upper.poly	an object of class "ppp" representing a point pattern dataset in the two-dimensional plane, representing the upper boundary of the polygon along the <i>x</i> -axis.
lower.poly	an object of class "ppp" representing a point pattern dataset in the two-dimensional plane, representing the lower boundary of the polygon along the x -axis.
D	the differences in areas between the upper and lower boundaries of the polygon.

par.upper.area	the area of the upper boundary of the polygon along the x-axis.
par.lower.area	the area of the lower boundary of the polygon along the x-axis.
SI	the standardized index for bilateral (a)symmetry for the polygon.
AR	the ratio of the areas of the upper to the lower parts of the polygon.
scan.length	the length of the polygon. The default is the maximum distance between two points on the polygon's boundary.
scan.width	the maximum width of the polygon.
scan.area	the area of the polygon.
scan.perimeter	the perimeter of the polygon based on all data points or a mean of n.loop repli- cates of perimeters using the peri.np data points retained on the polygon's boundary.
x.width	distance from the base to a point on the major axis associated with the maximum width of the polygon.
width.1e	the width associated with 1/8 of scan.length (starting from the base of the polygon).
width.2e	the width associated with 2/8 of scan.length (starting from the base of the polygon).
width.4e	the width associated with 4/8 of scan.length (starting from the base of the polygon).
width.6e	the width associated with 6/8 of scan.length (starting from the base of the polygon).
width.7e	the width associated with 7/8 of scan.length (starting from the base of the polygon).
bi.test	the testing results for D using the Wilcoxon signed rank test with continuity correction. See the wilcox.test function in stats .
а	the estimate of the intercept obtained using the box-counting method to calculate the fractal dimension of the polygon's boundary.
sd.a	the standard deviation of the estimated intercept.
lci.a	the lower bound of the 95% confidence interval of the estimated intercept.
uci.a	the upper bound of the 95% confidence interval of the estimated intercept.
b	the estimate of the slope obtained using the box-counting method to calculate the fractal dimension of the polygon's boundary.
sd.b	the standard deviation of the estimated slope.
lci.a	the lower bound of the 95% confidence interval of the estimated slope.
uci.a	the upper bound of the 95% confidence interval of the estimated slope.
r.sq	the coefficient of determination obtained when using the box-counting method to calculate the fractal dimension of the polygon's boundary.
delta	the vector of box sizes used in the box-counting method to calculate the fractal dimension of the polygon's boundary.
Ν	the number of boxes that include at least one pixel of the polygon's boundary.

bilat

Note

13

The polygon is expected to have an apparent major axis (e.g., the straight line through two points on the polygon's boundary having the maximum distance or one that can be clearly defined to pass by two landmarks on the polygon's boundary [i.e., the leaf length axis, the egg length axis, etc.]). The polygon is placed with its major axis overlapping the x-axis; the base of the polygon is located at the origin; the apex of the polygon is located to the right of the base. phi is equal to angle when angle is not null. In theory, n1 + n2 = n, but in most cases n1 + n2 is slightly smaller than n. The reason is that very few boundary points fall outside the lower and upper boundaries of the polygon when using the intersect.owin function in spatstat.geom. However, this does not considerably affect the results. The log-transformed SI and the log-transformed AR are demontrated to have a more symmetrical frequency distribution than their original forms. This is important when performing an analysis of variance between (or among) groups to compared their extents of bilateral (a)symmetry. See Shi et al. (2020) for details. The box-counting approach uses a group of boxes (squares for simplicity) with different sizes (δ) to divide the leaf vein image into different parts. Let N represent the number of boxes that include at least one pixel of the polygon's boundary. The maximum of the range of the x coordinates and the range of the y coordinates for the pixels of the polygon's boundary is defined as z. Let δ represent the vector of z/denomi.range. We then used the following equation to calculate the fractal dimension of the polygon's boundary:

 $\ln N = a + b \ln \left(\delta^{-1} \right),$

where b is the theoretical value of the fractal dimension. We can use its estimate as the numerical value of the fractal dimension for the polygon's boundary.

Author(s)

Peijian Shi <pjshi@njfu.edu.cn>, Johan Gielis <johan.gielis@uantwerpen.be>, Brady K. Quinn <Brady.Quinn@dfo-mpo.gc.ca>.

References

Shi, P., Gielis, J., Quinn, B.K., Niklas, K.J., Ratkowsky, D.A., Schrader, J., Ruan, H., Wang, L., Niinemets, Ü. (2022) 'biogeom': An R package for simulating and fitting natural shapes. *Annals of the New York Academy of Sciences* 1516, 123–134. doi:10.1111/nyas.14862

Shi, P., Niinemets, Ü., Hui, C., Niklas, K.J., Yu, X., Hölscher, D. (2020) Leaf bilateral symmetry and the scaling of the perimeter vs. the surface area in 15 vine species. *Forests* 11, 246. doi:10.3390/f11020246

Shi, P., Zheng, X., Ratkowsky, D.A., Li, Y., Wang, P., Cheng, L. (2018) A simple method for measuring the bilateral symmetry of leaves. *Symmetry* 10, 118. doi:10.3390/sym10040118

See Also

adjdata, fracdim

Examples

data(bambooleaves)

uni.C <- sort(unique(bambooleaves\$Code))</pre>

```
ind
    <- 3
Data <- bambooleaves[bambooleaves$Code==uni.C[ind], ]</pre>
x0
      <- Data$x
y0
      <- Data$y
dev.new()
plot( x0, y0, asp=1, type="l", cex.lab=1.5, cex.axis=1.5,
      xlab=expression(italic("x")), ylab=expression(italic("y")) )
Res1 <- adjdata(x0, y0, ub.np=2000, len.pro=1/20)</pre>
x1 <- Res1$x
y1 <- Res1$y
  Res2 <- bilat( x=x1, y=y1, time.interval=0.00045,</pre>
                 peri.np=NULL, auto.search=TRUE,
                 fd.opt=TRUE )
  Res2$scan.perimeter
  set.seed(123)
  Res3 <- bilat( x=x1, y=y1, time.interval=0.00045,</pre>
                 peri.np=500, n.loop=30,
                 auto.search=TRUE, fd.opt=FALSE )
  Res3$scan.perimeter
  set.seed(123)
  Res4 <- bilat( x=x1, y=y1, time.interval=0.00045,</pre>
                 peri.np=500, n.loop=30,
                 auto.search=TRUE, fd.opt=FALSE, angle=pi/4 )
  Res4$scan.perimeter
  set.seed(123)
  Res5 <- bilat( x=x1, y=y1, time.interval=0.00045,</pre>
                 peri.np=500, n.loop=30,
                 auto.search=TRUE, fd.opt=FALSE, angle=0 )
  Res5$scan.perimeter
  if(interactive()){
    # The angle between the leaf length axis (namely the straight
    # line through the leaf apex and base) and the horizontal axis
    \# should be between 0 and pi/2 for a scanned leaf's profile.
    # Here, the user needs to first click the leaf apex,
    # and then click the leaf base.
    set.seed(123)
    Res6 <- bilat( x=x1, y=y1, time.interval=0.00045,</pre>
                 peri.np=500, n.loop=30,
                 auto.search=FALSE, fd.opt=FALSE, angle=NULL )
    Res6$scan.perimeter
  }
  set.seed(NULL)
```

14

biogeom

graphics.off()

biogeom

Biological Geometries

Description

Is used to simulate and fit biological geometries. 'biogeom' incorporates several novel universal parametric equations that can generate the profiles of bird eggs, flowers, linear and lanceolate leaves, seeds, starfish, and tree-rings (Gielis, 2003; Shi et al., 2020), three growth-rate curves representing the ontogenetic growth trajectories of animals and plants against time, and the axially symmetrical and integral forms of all these functions (Shi et al., 2017, 2021). The optimization method proposed by Nelder and Mead (1965) was used to estimate model parameters. 'biogeom' includes several real data sets of the boundary coordinates of natural shapes, including avian eggs, fruit, lanceolate and ovate leaves, tree rings, seeds, and sea stars, and can be potentially applied to other natural shapes. 'biogeom' can quantify the conspecific or interspecific similarity of natural outlines, and provides information with important ecological and evolutionary implications for the growth and form of living organisms. Please see Shi et al. (2022) for details.

Details

The DESCRIPTION file:

Package:	biogeom
Туре:	Package
Title:	Biological Geometries
Version:	1.3.5
Date:	2022-12-21
Authors@R:	c(person(given="Peijian", family="Shi", email="pjshi@njfu.edu.cn", role=c("aut", "cre")), person(given
Author:	Peijian Shi [aut, cre], Johan Gielis [aut], Brady K. Quinn [aut]
Maintainer:	Peijian Shi <pjshi@njfu.edu.cn></pjshi@njfu.edu.cn>
Imports:	spatstat.geom (>= $2.4-0$)
Description:	Is used to simulate and fit biological geometries. 'biogeom' incorporates several novel universal parameters
Depends:	R (>= 4.2.0)
License:	GPL (>= 2)
NeedsCompilation:	no

Index of help topics:

DEPE	Calculation of the First-Order Derivative of
	the Explicit Preston Equation
DETE	Calculation of the First-Order Derivative of
	the Explicit Troscianko Equation
DNRGE	Calculation of the First-Order Derivative of
	the Narushin-Romanov-Griffin Equation

DSGE	Calculation of the First-Order Derivative of
	the Simplified Gielis Equation
EPE	Calculation of the Ordinate For an Arbitrary
	Point on the Preston Curve in the Plane
ETE	Calculation of the Ordinate For an Arbitrary
	Point on the Troscianko Curve in the Plane
GE	Calculation of the Polar Radius of the Gielis
	Curve
MBriereE	Modified Briere Equation
MLRFE	Modified Lobry-Rosso-Flandrois (LRF) Equation
MbetaE	Modified Beta Equation
NRGE	The Narushin-Romanov-Griffin Equation (NRGE)
Neocinnamomum	Leaf Boundary Data of Seven Species of
	Neocinnamomum
PF	Calculation of the Abscissa. Ordinate and
	Distance From the Origin For an Arbitrary Point
	on the Preston Curve
SurfaceAreaFPF	Calculation of the Surface Area of An Egg Based
SurraceAreacre	on the Explicit Preston Equation
SurfaceAreaETE	Calculation of the Surface Area of An Err Paced
Sui laceal eacit	on the Explicit Traccianke Equation
SurfaceAreaNDCE	Calculation of the Surface Area of An Err Paced
SurraceAreanRGE	calculation of the Surface Area of An Egg based
	on the Narushin-Romanov-Griffin Equation
SurfaceAreaSGE	Calculation of the Surface Area of An Egg Based
	on the Simplified Gielis Equation
TE	The Troscianko Equation (TE)
TGE	Calculation of the Polar Radius of the Twin
	Gielis Curve
TSE	The Todd-Smart Equation (TSE)
VolumeEPE	Calculation of the Volume of An Egg Based on
	the Explicit Preston Equation
VolumeETE	Calculation of the Volume of An Egg Based on
	the Explicit Troscianko Equation
VolumeNRGE	Calculation of the Volume of An Egg Based on
	the Narushin-Romanov-Griffin Equation
VolumeSGE	Calculation of the Volume of An Egg Based on
	the Simplified Gielis Equation
adjdata	Boundary Data Adjustment of A Polygon
areaGE	Area Calculation for the Gielis Curve Within
	[0, 2pi)
areaovate	Area Calculation for an Ovate Polygon
bambooleaves	Leaf Boundary Data of _Phyllostachys incarnata_
	T. H. Wen (Poaceae: Bambusoideae)
bilat	Measure of the Extent of Bilateral Symmetry of
	A Polygon
biogeom	Biological Geometries
curveFPF	Drawing the Preston Curve Produced by the the
	Explicit Preston Equation

biogeom

curveETE	Drawing the Troscianko Curve Produced by the
	Explicit Troscianko Equation
curveGE	Drawing the Gielis Curve
curveNRGE	Drawing the Egg Shape Predicted by the
	Narushin-Romanov-Griffin Equation
curveovate	Drawing the Ovate Leaf-Shape Curve
eggs	Egg Boundary Data of Nine Species of Birds
fitEPE	Data-Fitting Function for the Explicit Preston
	Equation
fitETE	Data-Fitting Function for the Explicit
	Troscianko Equation
fitGE	Data-Fitting Function for the Gielis Equation
fitNRGE	Parameter Estimation for the
	Narushin-Romanov-Griffin Equation
fitovate	Data-Fitting Function for the Ovate Leaf-Shape
	Equation
fitsigmoid	Data-Fitting Function for the Sigmoid Growth
	Equation
fracdim	Calculation of Fractal Dimension of Lef Veins
	Based on the Box-Counting Method
ginkgoseed	Boundary Data of the Side Projections of
	Ginkgo biloba Seeds
kp	Boundary Data of the Vertical Projections of
	Koelreuteria paniculata Fruit
lmPE	Parameter Estimation for the Todd-Smart
	Equation
lmTE	Parameter Estimation for the Troscianko
	Equation
shoots	Height Growth Data of Bamboo Shoots
sigmoid	Sigmoid Growth Equation
starfish	Boundary Data of Eight Sea Stars
veins	Leaf Vein Data of _Michelia compressa_
whitespruce	Planar Coordinates of _Picea glauca_ Tree Rings

Note

We are deeply thankful to Cang Hui, Yang Li, Uwe Ligges, Valeriy G. Narushin, Ülo Niinemets, Karl J. Nikas, Honghua Ruan, David A. Ratkowsky, Julian Schrader, Rolf Turner, Lin Wang, and Victoria Wimmer for their valuable help during creating this package. This work was supported by the National Key Research and Development Program of China (Grant No. 2021YFD02200403) and Simon Stevin Institute for Geometry (Antwerpen, Belguim).

Author(s)

Peijian Shi [aut, cre], Johan Gielis [aut], Brady K. Quinn [aut]

Maintainer: Peijian Shi <pjshi@njfu.edu.cn>

References

Gielis, J. (2003) A generic geometric transformation that unifies a wide range of natural and abstract shapes. *American Journal of Botany* 90, 333–338. doi:10.3732/ajb.90.3.333

Nelder, J.A., Mead, R. (1965). A simplex method for function minimization. *Computer Journal* 7, 308–313. doi:10.1093/comjnl/7.4.308

Shi, P., Fan, M., Ratkowsky, D.A., Huang, J., Wu, H., Chen, L., Fang, S., Zhang, C. (2017) Comparison of two ontogenetic growth equations for animals and plants. *Ecological Modelling* 349, 1–10. doi:10.1016/j.ecolmodel.2017.01.012

Shi, P., Gielis, J., Quinn, B.K., Niklas, K.J., Ratkowsky, D.A., Schrader, J., Ruan, H., Wang, L., Niinemets, Ü. (2022) 'biogeom': An R package for simulating and fitting natural shapes. *Annals of the New York Academy of Sciences* 1516, 123–134. doi:10.1111/nyas.14862

Shi, P., Ratkowsky, D.A., Gielis, J. (2020) The generalized Gielis geometric equation and its application. *Symmetry* 12, 645. doi:10.3390/sym12040645

Shi, P., Yu, K., Niklas, K.J., Schrader, J., Song, Y., Zhu, R., Li, Y., Wei, H., Ratkowsky, D.A. (2021) A general model for describing the ovate leaf shape. *Symmetry*, 13, 1524. doi:10.3390/sym13081524

curveEPE

Drawing the Preston Curve Produced by the the Explicit Preston Equation

Description

curveEPE is used to draw the Preston curve that is produced by the explicit Preston equation.

Usage

curveEPE(P, np = 5000, simpver = NULL, fig.opt = FALSE, deform.fun = NULL, Par = NULL, xlim = NULL, ylim = NULL, unit = NULL, main="")

Arguments

Р	the three location parameters and the parameters of the explicit Preston equation or one of its simplified versions.
np	the number of data points on the Preston curve.
simpver	an optional argument to use the simplfied version of the explicit Preston equation.
fig.opt	an optional argument to draw the Preston curve.
deform.fun	the deformation function used to describe the deviation from a theoretical Pre- ston curve.
Par	the parameter(s) of the deformation function.
xlim	the range of the x-axis over which to plot the Preston curve.

curveEPE

ylim	the range of the y -axis over which to plot the Preston curve.
unit	the units of the x -axis and the y -axis when showing the Preston curve.
main	the main title of the figure.

Details

The first three elements of P are location parameters. The first two are the planar coordinates of the transferred origin, and the third is the angle between the major axis of the curve and the *x*-axis. Here, the major axis is a straight line through the two ends of an egg's profile (i.e., the mid-line of the egg's profile). The other arguments in P (except these first three location parameters), and simpver should correspond to those of P in EPE. deform. fun should take the form as: deform. fun <- function(Par, z){...}, where z is a two-dimensional matrix related to the x and y values. And the return value of deform. fun should be a list with two variables x and y.

Value

х	the x coordinates of the Preston curve.
у	the y coordinates of the Preston curve.

Note

When the rotation angle is zero (i.e., the third element in P is zero), np data points are distributed counterclockwise on the Preston curve from the rightmost end of the egg's profile to itself.

Author(s)

Peijian Shi <pjshi@njfu.edu.cn>, Johan Gielis <johan.gielis@uantwerpen.be>, Brady K. Quinn <Brady.Quinn@dfo-mpo.gc.ca>.

References

Preston, F.W. (1953) The shapes of birds' eggs. The Auk 70, 160-182.

Shi, P., Chen, L., Quinn, B.K., Yu, K., Miao, Q., Guo, X., Lian, M., Gielis, J., Niklas, K.J. (2022) Can we simply calculate the volume and surface area of an egg? Evidence from six species of poultry. *Annals of the New York Academy of Sciences* Under preparation.

Shi, P., Gielis, J., Quinn, B.K., Niklas, K.J., Ratkowsky, D.A., Schrader, J., Ruan, H., Wang, L., Niinemets, Ü. (2022) 'biogeom': An R package for simulating and fitting natural shapes. *Annals of the New York Academy of Sciences* 1516, 123–134. doi:10.1111/nyas.14862

Shi, P., Wang, L., Quinn, B.K., Gielis, J. (2022) A new program to estimate the parameters of Preston's equation, a general formula for describing the egg shape of birds. *Symmetry* Under review.

Todd, P.H., Smart, I.H.M. (1984) The shape of birds' eggs. *Journal of Theoretical Biology* 106, 239–243. doi:10.1016/00225193(84)900213

See Also

EPE, fitEPE, 1mPE, PE, TSE

Examples

```
Para1 <- c(0, 0, 0, 10, 6, 0.325, -0.0415)
curveEPE(P=Para1, simpver=1, fig.opt=TRUE)
Para2 <- c(0, 0, pi, 10, 6, -0.325, -0.0415)
curveEPE(P=Para2, simpver=1, fig.opt=TRUE)
Para3 <- c(0, 0, 0, 10, 6, 0.325, -0.0415, 0.2)
curveEPE(P=Para3, simpver=NULL, fig.opt=TRUE)
Para4 <- c(0, 0, pi, 10, 6, -0.325, -0.0415, 0.2)
curveEPE(P=Para4, simpver=NULL, fig.opt=TRUE)
Para5 <- c(0, 0, pi/4, 10, 6, 0.325, -0.0415)
curveEPE(P=Para5, simpver=1,
        fig.opt=TRUE, main="A rotated egg shape")
# There is an example that introduces a deformation function in the egg-shape equation
myfun <- function(Par, z){</pre>
 x <- z[,1]
 y <- z[,2]
 k1 <- Par[1]
 k2 <- Par[2]
 y <- y - k1*(y+k2)^2
 list(x=x, y=y)
}
deform.op <- curveEPE(P=Para1, np=5000, simpver=1,</pre>
                     fig.opt=TRUE, deform.fun=myfun, Par=c(0.05, 8))
```

graphics.off()

curveETE

Drawing the Troscianko Curve Produced by the Explicit Troscianko Equation

Description

curveETE is used to draw the Troscianko curve that is produced by the explicit Troscianko equation.

Usage

Arguments

Р	the three location parameters and the parameters of the explicit Troscianko equa- tion.
np	the number of data points on the Troscianko curve.

20

curveETE

fig.opt	an optional argument to draw the Troscianko curve.
deform.fun	the deformation function used to describe the deviation from a theoretical Tros- cianko curve.
Par	the parameter(s) of the deformation function.
xlim	the range of the x -axis over which to plot the Troscianko curve.
ylim	the range of the y -axis over which to plot the Troscianko curve.
unit	the units of the x -axis and the y -axis when showing the Troscianko curve.
main	the main title of the figure.

Details

The first three elements of P are location parameters. The first two are the planar coordinates of the transferred origin, and the third is the angle between the major axis of the curve and the *x*-axis. Here, the major axis is a straight line through the two ends of an egg's profile (i.e., the midline of the egg's profile). The other arguments in P (except these first three location parameters) should correspond to those of P in ETE. deform.fun should take the form as: deform.fun <- function(Par, z){...}, where z is a two-dimensional matrix related to the *x* and *y* values. And the return value of deform.fun should be a list with two variables x and y.

Value

х	the x coordinates of the Troscianko curve.
У	the y coordinates of the Troscianko curve.

Note

When the rotation angle is zero (i.e., the third element in P is zero), np data points are distributed counterclockwise on the Troscianko curve from the rightmost end of the egg's profile to itself.

Author(s)

Peijian Shi <pjshi@njfu.edu.cn>, Johan Gielis <johan.gielis@uantwerpen.be>, Brady K. Quinn <Brady.Quinn@dfo-mpo.gc.ca>.

References

Biggins, J.D., Montgomeries, R.M., Thompson, J.E., Birkhead, T.R. (2022) Preston's universal formula for avian egg shape. *Ornithology* In press. doi:10.1093/ornithology/ukac028

Biggins, J.D., Thompson, J.E., Birkhead, T.R. (2018) Accurately quantifying the shape of birds' eggs. *Ecology and Evolution* 8, 9728–9738. doi:10.1002/ece3.4412

Shi, P., Gielis, J., Quinn, B.K., Niklas, K.J., Ratkowsky, D.A., Schrader, J., Ruan, H., Wang, L., Niinemets, Ü. (2022) 'biogeom': An R package for simulating and fitting natural shapes. *Annals of the New York Academy of Sciences* 1516, 123–134. doi:10.1111/nyas.14862

Shi, P., Wang, L., Quinn, B.K., Gielis, J. (2022) A new program to estimate the parameters of Preston's equation, a general formula for describing the egg shape of birds. *Symmetry* Under review.

See Also

ETE, fitETE

Examples

Para1 <- c(0, 0, 0, 2.25, -0.377, -0.29, -0.16) curveETE(P=Para1, fig.opt=TRUE)

```
# There is an example that introduces a deformation function in the egg-shape equation
myfun <- function(Par, z){
    x <- z[,1]
    y <- z[,2]
    k1 <- Par[1]
    k2 <- Par[2]
    y <- y - k1*(y+k2)^2
    list(x=x, y=y)
}
deform.op <- curveETE(P=Para1, np=5000, fig.opt=TRUE, deform.fun=myfun, Par=c(0.05, 8))
graphics.off()</pre>
```

curveGE

Drawing the Gielis Curve

Description

curveGE is used to draw the Gielis curve.

Usage

```
curveGE(expr, P, phi = seq(0, 2*pi, len = 2000),
    m = 1, simpver = NULL, nval = 1,
    fig.opt = FALSE, deform.fun = NULL, Par = NULL,
    xlim = NULL, ylim = NULL, unit = NULL, main="")
```

Arguments

expr	the original (or twin) Gielis equation or one of its simplified versions.
Ρ	the three location parameters and the parameters of the original (or twin) Gielis equation or one of its simplified versions.
phi	the given polar angles at which we want to draw the Gielis curve.
m	the given m value that determines the number of angles of the Gielis curve within $[0,2\pi).$
simpver	an optional argument to use the simplified version of the original (or twin) Gielis equation.
nval	the specified value for n_1 or n_2 or n_3 in the simplified versions.

22

curveGE

fig.opt	an optional argument to draw the Gielis curve.
deform.fun	the deformation function used to describe the deviation from a theoretical Gielis curve.
Par	the parameter(s) of the deformation function.
xlim	the range of the x -axis over which to plot the Gielis curve.
ylim	the range of the y-axis over which to plot the Gielis curve.
unit	the units of the x -axis and the y -axis when showing the Gielis curve.
main	the main title of the figure.

Details

The first three elements of P are location parameters. The first two are the planar coordinates of the transferred polar point, and the third is the angle between the major axis of the curve and the *x*-axis. The other arguments in P (except these first three location parameters), m, simpver, and nval should correspond to expr (i.e., GE or TGE). Please note the differences in the simplified version number and the number of parameters between GE and TGE. deform. fun should take the form as: deform.fun <- function(Par, z){...}, where z is a two-dimensional matrix related to the *x* and *y* values. And the return value of deform.fun should be a list with two variables x and y.

Value

x	the \boldsymbol{x} coordinates of the Gielis curve corresponding to the given polar angles phi.
У	the \boldsymbol{y} coordinates of the Gielis curve corresponding to the given polar angles phi.
r	the polar radii of the Gielis curve corresponding to the given polar angles phi.

Note

simpver in GE is different from that in TGE.

Author(s)

Peijian Shi <pjshi@njfu.edu.cn>, Johan Gielis <johan.gielis@uantwerpen.be>, Brady K. Quinn <Brady.Quinn@dfo-mpo.gc.ca>.

References

Gielis, J. (2003) A generic geometric transformation that unifies a wide range of natural and abstract shapes. *American Journal of Botany* 90, 333-338. doi:10.3732/ajb.90.3.333

Li, Y., Quinn, B.K., Gielis, J., Li, Y., Shi, P. (2022) Evidence that supertriangles exist in nature from the vertical projections of *Koelreuteria paniculata* fruit. *Symmetry* 14, 23. doi:10.3390/sym14010023

Shi, P., Gielis, J., Niklas, K.J. (2022) Comparison of a universal (but complex) model for avian egg shape with a simpler model. *Annals of the New York Academy of Sciences* 1514, 34–42. doi:10.1111/nyas.14799

Shi, P., Gielis, J., Quinn, B.K., Niklas, K.J., Ratkowsky, D.A., Schrader, J., Ruan, H., Wang, L., Niinemets, Ü. (2022) 'biogeom': An R package for simulating and fitting natural shapes. *Annals of the New York Academy of Sciences* 1516, 123–134. doi:10.1111/nyas.14862

Shi, P., Ratkowsky, D.A., Gielis, J. (2020) The generalized Gielis geometric equation and its application. *Symmetry* 12, 645. doi:10.3390/sym12040645

Shi, P., Xu, Q., Sandhu, H.S., Gielis, J., Ding, Y., Li, H., Dong, X. (2015) Comparison of dwarf bamboos (*Indocalamus* sp.) leaf parameters to determine relationship between spatial density of plants and total leaf area per plant. *Ecology and Evolution* 5, 4578-4589. doi:10.1002/ece3.1728

See Also

areaGE, fitGE, GE, TGE

Examples

```
GE.par <- c(2, 1, 4, 6, 3)
phi.vec <- seq(0, 2*pi, len=2000)
r.theor <- GE(P=GE.par, phi=phi.vec, m=5)</pre>
dev.new()
plot( phi.vec, r.theor, cex.lab=1.5, cex.axis=1.5,
      xlab=expression(italic(phi)), ylab=expression(italic("r")),
      type="l", col=4 )
curve.par <- c(1, 1, pi/4, GE.par)</pre>
GE.res
         <- curveGE(GE, P=curve.par, fig.opt=TRUE, deform.fun=NULL, Par=NULL, m=5)
# GE.res$r
         <- curveGE( GE, P=c(0, 0, 0, 2, 4, 20), m=1, simpver=1, fig.opt=TRUE )
GE.res
# GE.res$r
GE.res
         <- curveGE( GE, P=c(1, 1, pi/4, 2, 1, 3), m=5, simpver=1, fig.opt=TRUE )
# GE.res$r
GE.res
         <- curveGE( GE, P=c(1, 1, pi/4, 2, 1, 3), m=2, simpver=1, fig.opt=TRUE )
# GE.res$r
GE.res
         <- curveGE( GE, P=c(1, 1, pi/4, 2, 0.05), m=1, simpver=2, fig.opt=TRUE )
# GE.res$r
GE.res
         <- curveGE( GE, P=c(1, 1, pi/4, 2), m=4, simpver=3, nval=2, fig.opt=TRUE )
# GE.res$r
GE.res
         <- curveGE( GE, P=c(1, 1, pi/4, 2, 0.6), m=4, simpver=8, nval=2, fig.opt=TRUE )
# GE.res$r
graphics.off()
```

curveNRGE

Description

curveNRGE is used to draw the egg shape predicted by the Narushin-Romanov-Griffin equation.

Usage

Arguments

Р	the three location parameters and the four parameters of the Narushin-Romanov- Griffin equation (Narushin et al., 2021).
np	the number of data points on the Narushin-Romanov-Griffin curve.
fig.opt	an optional argument to draw the Narushin-Romanov-Griffin curve.
deform.fun	the deformation function used to describe the deviation from a theoretical Narushin-Romanov-Griffin curve.
Par	the parameter(s) of the deformation function.
xlim	the range of the x-axis over which to plot the Narushin-Romanov-Griffin curve.
ylim	the range of the <i>y</i> -axis over which to plot the Narushin-Romanov-Griffin curve.
unit	the units of the <i>x</i> -axis and the <i>y</i> -axis when showing the Narushin-Romanov-Griffin curve.
main	the main title of the figure.

Details

The first three elements of P are location parameters. The first two are the planar coordinates of the transferred origin, and the third is the angle between the major axis of the curve and the *x*-axis. The other arguments in P should be the same as those in NRGE. deform.fun should take the form as: deform.fun <- function(Par, z){...}, where z is a two-dimensional matrix related to the x and y values. And the return value of deform.fun should be a list with two variables x and y.

Value

x	the x coordinates of the Narushin-Romanov-Griffin curve.
y	the \boldsymbol{y} coordinates of the Narushin-Romanov-Griffin curve.

Note

When the rotation angle is zero (i.e., the third element in P is zero), np data points are distributed counterclockwise on the Narushin-Romanov-Griffin curve from the rightmost end of the egg's profile to itself.

Author(s)

Peijian Shi <pjshi@njfu.edu.cn>, Johan Gielis <johan.gielis@uantwerpen.be>, Brady K. Quinn <Brady.Quinn@dfo-mpo.gc.ca>.

References

Narushin, V.G., Romanov, M.N., Griffin, D.K. (2021) Egg and math: introducing a universal formula for egg shape. *Annals of the New York Academy of Sciences* 1505, 169–177. doi:10.1111/ nyas.14680

Shi, P., Gielis, J., Niklas, K.J. (2022) Comparison of a universal (but complex) model for avian egg shape with a simpler model. *Annals of the New York Academy of Sciences* 1514, 34–42. doi:10.1111/nyas.14799

Shi, P., Gielis, J., Quinn, B.K., Niklas, K.J., Ratkowsky, D.A., Schrader, J., Ruan, H., Wang, L., Niinemets, Ü. (2022) 'biogeom': An R package for simulating and fitting natural shapes. *Annals of the New York Academy of Sciences* 1516, 123–134. doi:10.1111/nyas.14862

Tian, F., Wang, Y., Sandhu, H.S., Gielis, J., Shi, P. (2020) Comparison of seed morphology of two ginkgo cultivars. *Journal of Forestry Research* 31, 751–758. doi:10.1007/s116760180770y

See Also

fitNRGE, NRGE

Examples

graphics.off()

curveovate

Drawing the Ovate Leaf-Shape Curve

Description

curveovate is used to draw the ovate leaf-shape curve.

Usage

curveovate

Arguments

expr	the simplified version 1 of a performance equation.
Р	the three location parameters and the parameters of the simplified version 1 of a performance equation.
х	the given x values to draw the ovate leaf-shape curve.
fig.opt	an optional argument to draw the ovate leaf-shape curve.
deform.fun	the deformation function used to describe the deviation from a theoretical ovate leaf-shape curve.
Par	the parameter(s) of the deformation function.
xlim	the range of the x -axis over which to plot the ovate leaf-shape curve.
ylim	the range of the y-axis over which to plot the ovate leaf-shape curve.
unit	the units of the x -axis and the y -axis when showing the ovate leaf-shape curve.
main	the main title of the figure.

Details

P has seven elements: three location parameters, and four model parameters, i.e., y_{opt} , x_{opt} , x_{max} , and δ . This means that expr is limited to be the simplified version 1 (where $x_{min} = 0$) in MbetaE, MBriereE, and MLRFE. The first three elements of P are location parameters, among which the first two are the planar coordinates of the transferred origin, and the third is the angle between the major axis of the curve and the *x*-axis. deform. fun should take the form as: deform.fun <-function(Par, z){...}, where z is a two-dimensional matrix related to the *x* and *y* values. And the return value of deform.fun should be a list with two variables x and y.

Value

х	the x coordinates of the ovate leaf-shape curve.
У	the y coordinates of the ovate leaf-shape curve.

Note

The number of elements in P here has additional three location parameters than that in MbetaE, MBriereE, and MLRFE.

Author(s)

Peijian Shi <pjshi@njfu.edu.cn>, Johan Gielis <johan.gielis@uantwerpen.be>, Brady K. Quinn <Brady.Quinn@dfo-mpo.gc.ca>.

References

Jin, J., Quinn, B.K., Shi, P. (2022) The modified Brière equation and its applications. *Plants* 11, 1769. doi:10.3390/plants11131769

Li, Y., Zheng, Y., Ratkowsky, D.A., Wei, H., Shi, P. (2022) Application of an ovate leaf shape model to evaluate leaf bilateral asymmetry and calculate lamina centroid location. *Frontiers in Plant Science* 12, 822907. doi:10.3389/fpls.2021.822907

Shi, P., Fan, M., Ratkowsky, D.A., Huang, J., Wu, H., Chen, L., Fang, S., Zhang, C. (2017) Comparison of two ontogenetic growth equations for animals and plants. *Ecological Modelling* 349, 1–10. doi:10.1016/j.ecolmodel.2017.01.012

Shi, P., Gielis, J., Quinn, B.K., Niklas, K.J., Ratkowsky, D.A., Schrader, J., Ruan, H., Wang, L., Niinemets, Ü. (2022) 'biogeom': An R package for simulating and fitting natural shapes. *Annals of the New York Academy of Sciences* 1516, 123–134. doi:10.1111/nyas.14862

Shi, P., Yu, K., Niklas, K.J., Schrader, J., Song, Y., Zhu, R., Li, Y., Wei, H., Ratkowsky, D.A. (2021) A general model for describing the ovate leaf shape. *Symmetry* 13, 1524. doi:10.3390/sym13081524

See Also

areaovate, fitovate, MbetaE, MBriereE, MLRFE

Examples

```
P1 <- c(1, 1, pi/4, 2, 3, 10, 4)
RE1 <- curveovate(MLRFE, P=P1, x=seq(0, 10, by=0.1), fig.opt=TRUE)
RE2 <- curveovate(MbetaE, P=P1, x=seq(0, 10, by=0.1), fig.opt=TRUE)
dev.new()
plot(RE1$x, RE1$y, cex.lab=1.5, cex.axis=1.5, type="1",
    xlab=expression(italic("x")), ylab=expression(italic("y")))
lines(RE2$x, RE2$y, col=4)</pre>
```

graphics.off()

DEPE

Calculation of the First-Order Derivative of the Explicit Preston Equation

Description

DEPE is used to calculate the first-order derivative of the explicit Preston equation at a given x-value.

Usage

DEPE(P, x, simpver = NULL)

Arguments

Р	the parameters of the explicit Preston equation or one of its simplified versions.
x	the x-value used in the explicit Preston equation.
simpver	an optional argument to use the simplified version of the explicit Preston equa-
	uon.

Details

When simpver = NULL, the first-order derivative of the explicit Preston equation at a given *x*-value is selected:

$$f(x) = \frac{b\left[a^4 c_1 + a^3 \left(2 c_2 - 1\right) x + a^2 \left(3 c_3 - 2 c_1\right) x^2 - 3 a c_2 x^3 - 4 c_3 x^4\right]}{a^4 \sqrt{a^2 - x^2}},$$

where P has five parameters: a, b, c_1, c_2 , and c_3 .

When simpver = 1, the first-order derivative of the simplified version 1 is selected:

$$f(x) = \frac{b \left[a^4 c_1 + a^3 \left(2 c_2 - 1 \right) x - 2 a^2 c_1 x^2 - 3 a c_2 x^3 \right]}{a^4 \sqrt{a^2 - x^2}},$$

where P has four parameters: a, b, c_1 , and c_2 .

When simpver = 2, the first-order derivative of the simplified version 2 is selected:

$$f(x) = \frac{b\left[a^4 c_1 - a^3 x - 2 a^2 c_1 x^2\right]}{a^4 \sqrt{a^2 - x^2}},$$

where P has three parameters: $a, b, and c_1$.

When simpver = 3, the first-order derivative of the simplified version 3 is selected:

$$f(x) = \frac{b \left[a^3 \left(2 c_2 - 1 \right) x - 3 a c_2 x^3 \right]}{a^4 \sqrt{a^2 - x^2}},$$

where P has three parameters: $a, b, and c_2$.

Note

The argument P in the DEPE function has the same parameters, as those in the EPE function.

Author(s)

Peijian Shi <pjshi@njfu.edu.cn>, Johan Gielis <johan.gielis@uantwerpen.be>, Brady K. Quinn <Brady.Quinn@dfo-mpo.gc.ca>.

References

Shi, P., Chen, L., Quinn, B.K., Yu, K., Miao, Q., Guo, X., Lian, M., Gielis, J., Niklas, K.J. (2022) Can we simply calculate the volume and surface area of an egg? Evidence from six species of poultry. *Annals of the New York Academy of Sciences* Under preparation.

See Also

EPE, fitEPE, SurfaceAreaEPE

Examples

DETE

Calculation of the First-Order Derivative of the Explicit Troscianko Equation

Description

DETE is used to calculate the first-order derivative of the explicit Troscianko equation at a given x-value.

Usage

DETE(P, x)

Arguments

Ρ	the parameters of the explicit Troscianko equation.
x	the x-value used in the explicit Troscianko equation.

Details

The first-order derivative of the explicit Troscianko equation at a given x-value is:

$$h(x) = \left\{ \alpha_1 + \frac{2\alpha_2}{a} x - \frac{x}{a} \left[1 - \left(\frac{x}{a}\right)^2 \right]^{-1} \right\} \exp\left\{ \alpha_0 + \alpha_1 \left(\frac{x}{a}\right) + \alpha_2 \left(\frac{x}{a}\right)^2 \right\} \sqrt{1 - \left(\frac{x}{a}\right)^2},$$

where P has five parameters: a, α_0 , α_1 , and α_2 .

Note

The argument P in the DETE function has the same parameters, as those in the ETE function.

30

DNRGE

Author(s)

Peijian Shi <pjshi@njfu.edu.cn>, Johan Gielis <johan.gielis@uantwerpen.be>, Brady K. Quinn <Brady.Quinn@dfo-mpo.gc.ca>.

References

Shi, P., Chen, L., Quinn, B.K., Yu, K., Miao, Q., Guo, X., Lian, M., Gielis, J., Niklas, K.J. (2022) Can we simply calculate the volume and surface area of an egg? Evidence from six species of poultry. *Annals of the New York Academy of Sciences* Under preparation.

See Also

ETE, fitETE, SurfaceAreaETE

Examples

DNRGE

Calculation of the First-Order Derivative of the Narushin-Romanov-Griffin Equation

Description

DNRGE is used to calculate the first-order derivative of the Narushin-Romanov-Griffin equation at a given *x*-value.

Usage

DNRGE(P, x)

Arguments

Р	the parameters of the Narushin-Romanov-Griffin equation.
х	the x-value used in the Narushin-Romanov-Griffin equation.

Details

Let us define:

$$f_{1}(x) = \frac{B}{2}\sqrt{\frac{A^{2} - 4x^{2}}{A^{2} + 8Cx + 4C^{2}}},$$

$$f_{2}(x) = \sqrt{\frac{A(A^{2} + 8Cx + 4C^{2})}{2(A - 2C)x^{2} + (A^{2} + 8AC - 4C^{2})x + 2AC^{2} + A^{2}C + A^{3}},$$

$$f_{3}(x) = A^{2} - 4x,$$

$$f_{4}(x) = A^{2} + 8Cx + 4C^{2},$$

$$E = \frac{\sqrt{5.5A^{2} + 11AC + 4C^{2}} \cdot (\sqrt{3}AB - 2D\sqrt{A^{2} + 2AC + 4C^{2}})}{\sqrt{3}AB(\sqrt{5.5A^{2} + 11AC + 4C^{2}} - 2\sqrt{A^{2} + 2AC + 4C^{2}})},$$

$$F = 2(A - 2C),$$

$$G = A^{2} + 8AC - 4C^{2},$$

$$H = 2AC^{2} + A^{2}C + A^{3},$$

and then the first-order derivative of the Narushin-Romanov-Griffin equation at a given x-value is:

$$J(x) = -\frac{4f_1(x)\left[Cf_3(x) + xf_4(x)\right]}{f_3(x) \cdot f_4(x)} \left\{1 - E \cdot \left[1 - f_2(x)\right]\right\} - \frac{AE}{2} \frac{f_1(x)}{f_2(x)} \frac{f_4(x) \cdot (2Fx + G)}{(Fx^2 + Gx + H)^2},$$

where P has four parameters: A, B, C, and D.

Note

The argument P in the DNRGE function has the same parameters, as those in the NRGE function.

Author(s)

Peijian Shi <pjshi@njfu.edu.cn>, Johan Gielis <johan.gielis@uantwerpen.be>, Brady K. Quinn <Brady.Quinn@dfo-mpo.gc.ca>.

References

Narushin, V.G., Romanov, M.N., Griffin, D.K. (2021) Egg and math: introducing a universal formula for egg shape. *Annals of the New York Academy of Sciences* 1505, 169–177. doi:10.1111/ nyas.14680

Narushin, V.G., Romanov, M.N., Mishra, B., Griffin, D.K. (2022) Mathematical progression of avian egg shape with associated area and volume determinations. *Annals of the New York Academy of Sciences* 1513, 65–78. doi:10.1111/nyas.14771

Shi, P., Chen, L., Quinn, B.K., Yu, K., Miao, Q., Guo, X., Lian, M., Gielis, J., Niklas, K.J. (2022) Can we simply calculate the volume and surface area of an egg? Evidence from six species of poultry. *Annals of the New York Academy of Sciences* Under preparation.

DSGE

See Also

fitNRGE, NRGE, SurfaceAreaNRGE

Examples

graphics.off()

DSGE

Calculation of the First-Order Derivative of the Simplified Gielis Equation

Description

DSGE is used to calculate the first-order derivative of the simplified Gielis equation at a given φ -value.

Usage

DSGE(P, phi)

Arguments

Р	the parameters of the simplified Gielis equation, including a , n_1 , and n_2
phi	the φ -value used in the simplified Gielis equation.

Details

The first-order derivative of the simplified Gielis equation with arguments simpver = 1 and m = 1 at a given φ -value is:

$$g(x) = \frac{a}{4} \frac{n_2}{n_1} \left[\left(\cos \frac{\varphi}{4} \right)^{n_2 - 1} \left(\sin \frac{\varphi}{4} \right) - \left(\sin \frac{\varphi}{4} \right)^{n_2 - 1} \left(\cos \frac{\varphi}{4} \right) \right] \left[\left(\cos \frac{\varphi}{4} \right)^{n_2} + \left(\sin \frac{\varphi}{4} \right)^{n_2} \right]^{-\frac{1}{n_1} - 1},$$

where P has three parameters: a, n_1 , and n_2 .

Note

The argument P in the DSGE function only has the three parameters: a, n_1 , and n_2 .

Author(s)

Peijian Shi <pjshi@njfu.edu.cn>, Johan Gielis <johan.gielis@uantwerpen.be>, Brady K. Quinn <Brady.Quinn@dfo-mpo.gc.ca>.

References

Chen, Z. (2012) Volume and area of revolution under polar coordinate system. *Studies in College Mathematics* 15(6), 9–11.

Shi, P., Chen, L., Quinn, B.K., Yu, K., Miao, Q., Guo, X., Lian, M., Gielis, J., Niklas, K.J. (2022) Can we simply calculate the volume and surface area of an egg? Evidence from six species of poultry. *Annals of the New York Academy of Sciences* Under preparation.

See Also

GE, fitGE, SurfaceAreaSGE

Examples

graphics.off()

eggs

Egg Boundary Data of Nine Species of Birds

Description

The data consist of the egg boundary data of nine species of birds.

Usage

data(eggs)

Details

In the data set, there are four columns of variables: Code, LatinName, x, and y. Code saves the codes of individual eggs; LatinName saves the Latin names of the nine species of birds; x saves the x coordinates of the egg boundary in the Cartesian coordinate system (cm); and y saves the y coordinates of the egg boundary in the Cartesian coordinate system (cm). In Code, codes 1-9 represent *Strix uralensis, Dromaius novaehollandiae, Turdus philomelos, Gallus gallus, Pandion haliaetus, Uria aalge, Uria lomvia, Gallinago media*, and *Aptenodytes patagonicus*, respectively.

References

Narushin, V.G., Romanov, M.N., Griffin, D.K. (2021) Egg and math: introducing a universal formula for egg shape. *Annals of the New York Academy of Sciences* 1505, 169–177. doi:10.1111/ nyas.14680

Shi, P., Gielis, J., Niklas, K.J. (2022) Comparison of a universal (but complex) model for avian egg shape with a simpler model. *Annals of the New York Academy of Sciences* 1514, 34–42. doi:10.1111/nyas.14799

Tian, F., Wang, Y., Sandhu, H.S., Gielis, J., Shi, P. (2020) Comparison of seed morphology of two ginkgo cultivars. *Journal of Forestry Research* 31, 751–758. doi:10.1007/s116760180770y

Examples

```
data(eggs)
uni.C <- sort( unique(eggs$Code) )</pre>
ind <- 8
Data <- eggs[eggs$Code==uni.C[ind], ]</pre>
x0
      <- Data$x
      <- Data$y
γ0
Res1 <- adjdata(x0, y0, ub.np=1000, times=1.2, len.pro=1/20)
x1
     <- Res1$x
     <- Res1$y
v1
dev.new()
plot( x1, y1, asp=1, cex.lab=1.5, cex.axis=1.5, type="l",
      xlab=expression(italic("x")), ylab=expression(italic("y")),
      pch=1, col=1)
Res2 <- adjdata(x0, y0, ub.np=60, times=1, len.pro=1/2, index.sp=20)</pre>
x2
     <- Res2$x
     <- Res2$y
y2
Res3 <- adjdata(x0, y0, ub.np=60, times=1, len.pro=1/2, index.sp=100)</pre>
х3
    <- Res3$x
у3
    <- Res3$y
dev.new()
plot( x2, y2, asp=1, cex.lab=1.5, cex.axis=1.5,
      xlab=expression(italic("x")), ylab=expression(italic("y")),
      pch=1, col=4 )
```

eggs

```
points( x3, y3, col=2)
graphics.off()
```

EPE

Calculation of the Ordinate For an Arbitrary Point on the Preston Curve in the Plane

Description

EPE is used to calculate the *y*-value for an arbitrary point on the Preston curve that was generated by the explicit Preston equation or one of its simplified versions for a given *x*-value.

Usage

EPE(P, x, simpver = NULL)

Arguments

Р	the parameters of the explicit Preston equation or one of its simplified versions.
х	the x-value used in the explicit Preston equation.
simpver	an optional argument to use the simplified version of the explicit Preston equa-
	tion.

Details

When simpver = NULL, the explicit Preston equation is selected:

$$y = b \sqrt{1 - \left(\frac{x}{a}\right)^2} \left(1 + c_1 \frac{x}{a} + c_2 \left(\frac{x}{a}\right)^2 + c_3 \left(\frac{x}{a}\right)^3\right),$$

where P has five parameters: a, b, c_1, c_2 , and c_3 .

When simpver = 1, the simplified version 1 is selected:

$$y = b\sqrt{1 - \left(\frac{x}{a}\right)^2} \left(1 + c_1 \frac{x}{a} + c_2 \left(\frac{x}{a}\right)^2\right),$$

where P has four parameters: a, b, c_1 , and c_2 .

When simpver = 2, the simplified version 2 is selected:

$$y = b \sqrt{1 - \left(\frac{x}{a}\right)^2} \left(1 + c_1 \frac{x}{a}\right),$$

where P has three parameters: $a, b, and c_1$.

When simpver = 3, the simplified version 3 is selected:

$$y = b \sqrt{1 - \left(\frac{x}{a}\right)^2} \left(1 + c_2 \left(\frac{x}{a}\right)^2\right),$$

where P has three parameters: $a, b, and c_2$.

36
EPE

Value

The y values predicted by the explicit Preston equation.

Note

We only considered the upper part of the egg-shape curve in the above expressions because the lower part is symmetrical to the upper part around the *x*-axis. The mid-line of an egg's profile in EPE is aligned to the *x*-axis, while the mid-line of an egg's profile in PE is aligned to the *y*-axis. The EPE function has the same parameters, P, as those in the PE function. The explicit Preston equation is used for calculating an egg's volume and surface area, when the parameters, which are saved in the P vector, are obtained using the fitEPE function or the lmPE function based on the TSE function. In addition, the values in x > a (i.e., the first element in P) are forced to be a, and the values in x < -a will be forced to be -a.

Author(s)

Peijian Shi <pjshi@njfu.edu.cn>, Johan Gielis <johan.gielis@uantwerpen.be>, Brady K. Quinn <Brady.Quinn@dfo-mpo.gc.ca>.

References

Shi, P., Chen, L., Quinn, B.K., Yu, K., Miao, Q., Guo, X., Lian, M., Gielis, J., Niklas, K.J. (2022) Can we simply calculate the volume and surface area of an egg? Evidence from six species of poultry. *Annals of the New York Academy of Sciences* Under preparation.

See Also

curveEPE, fitEPE, PE, SurfaceAreaEPE, VolumeEPE

Examples

37

ETE

Calculation of the Ordinate For an Arbitrary Point on the Troscianko Curve in the Plane

Description

ETE is used to calculate the *y*-value for an arbitrary point on the Troscianko curve that was generated by the explicit Troscianko equation.

Usage

ETE(P, x)

Arguments

Р	the parameters of the explicit Troscianko equation, including a, α_0, α_1 , and α_2 .
x	the x-value used in the explicit Troscianko equation.

Details

The explicit Troscianko equation is recommended as:

$$y = a \exp\left\{\alpha_0 + \alpha_1 \left(\frac{x}{a}\right) + \alpha_2 \left(\frac{x}{a}\right)^2\right\} \sqrt{1 - \left(\frac{x}{a}\right)^2},$$

where x and y represent the abscissa and ordinate of an arbitrary point on the explicit Troscianko curve; a, α_0 , α_1 , and α_2 are parameters to be estimated.

Value

The y values predicted by the explicit Troscianko equation.

Note

We only considered the upper part of the egg-shape curve in the above expressions because the lower part is symmetrical to the upper part around the *x*-axis. The mid-line of an egg's profile in ETE is aligned to the *x*-axis. The argument, P, in the ETE function has the same parameters, α_0 , α_1 , and α_2 , as those in the TE function. However, the former has an additional parameter *a* than the latter, which represents half the egg's length. The lmTE function is based on the TE function, while the fitETE function is based on the ETE function here. In addition, the values in x > a (i.e., the first element in P) are forced to be *a*, and the values in x < -a will be forced to be -a.

Author(s)

Peijian Shi <pjshi@njfu.edu.cn>, Johan Gielis <johan.gielis@uantwerpen.be>, Brady K. Quinn <Brady.Quinn@dfo-mpo.gc.ca>.

fitEPE

References

Biggins, J.D., Montgomeries, R.M., Thompson, J.E., Birkhead, T.R. (2022) Preston's universal formula for avian egg shape. *Ornithology* In press. doi:10.1093/ornithology/ukac028

Biggins, J.D., Thompson, J.E., Birkhead, T.R. (2018) Accurately quantifying the shape of birds' eggs. *Ecology and Evolution* 8, 9728–9738. doi:10.1002/ece3.4412

Shi, P., Gielis, J., Quinn, B.K., Niklas, K.J., Ratkowsky, D.A., Schrader, J., Ruan, H., Wang, L., Niinemets, Ü. (2022) 'biogeom': An R package for simulating and fitting natural shapes. *Annals of the New York Academy of Sciences* 1516, 123–134. doi:10.1111/nyas.14862

Shi, P., Wang, L., Quinn, B.K., Gielis, J. (2022) A new program to estimate the parameters of Preston's equation, a general formula for describing the egg shape of birds. *Symmetry* Under review.

Troscianko, J. (2014). A simple tool for calculating egg shape, volume and surface area from digital images. *Ibis*, 156, 874–878. doi:10.1111/ibi.12177

See Also

curveETE, fitETE, SurfaceAreaETE, VolumeETE

Examples

graphics.off()

fitEPE

Description

fitEPE is used to estimate the parameters of the explicit Preston equation or one of its simplified versions.

Usage

```
fitEPE(x, y, ini.val, simpver = NULL,
    control = list(), par.list = FALSE,
    stand.fig = TRUE, angle = NULL, fig.opt = FALSE, np = 2000,
    xlim = NULL, ylim = NULL, unit = NULL, main = NULL)
```

Arguments

the x coordinates of an egg's profile.
the y coordinates of an egg's profile.
the list of initial values for the model parameters.
an optional argument to use the simplified version of the explicit Preston equation.
the list of control parameters for using the optim function in package stats.
the option of showing the list of parameters on the screen.
the option of drawing the observed and predicted profiles of an egg at the stan- dard state (i.e., the egg's centre is located at $(0, 0)$, and the mid-line is aligned to the <i>x</i> -axis).
the angle between the mid-line and the x -axis, which can be defined by the user.
an optional argument of drawing the observed and predicted profiles of an egg at arbitrary angle between the major axis and the x -axis.
the number of data points on the predicted explicit Preston curve.
the range of the x -axis over which to plot the Preston curve.
the range of the y-axis over which to plot the Preston curve.
the unit of the x-axis and the y-axis when showing the Preston curve.
the main title of the figure.

Details

The simpler argument should correspond to EPE. Here, the major axis (i.e., the mid-line of an egg's profile) is the straight line trhough the two ends of the egg's length. The Nelder-Mead algorithm (Nelder and Mead, 1965) is used to carry out the optimization of minimizing the residual sum of squares (RSS) between the observed and predicted y values. The optim function in package stats was used to carry out the Nelder-Mead algorithm. When angle = NULL, the observed egg's profile will be shown at its initial angle in the scanned image; when angle is a numerical value (e.g., $\pi/4$) defined by the user, it indicates that the major axis is rotated by the amount ($\pi/4$) counterclockwise from the x-axis.

Value

par	the estimates of the model parameters.
scan.length	the observed length of the egg's profile.
scan.width	the observed width of the egg's profile.
scan.area	the observed area of the egg's profile.
<pre>scan.perimeter</pre>	the observed perimeter of the egg's profile.
r.sq	the coefficient of determination between the observed and predicted \boldsymbol{y} values on the Preston curve.
RSS	the residual sum of squares between the observed and predicted \boldsymbol{y} values on the Preston curve.

40

fitEPE

sample.size	the number of data points used in the data fitting.
x.stand.obs	the observed \boldsymbol{x} coordinates of the points on the Preston curve at the standard state.
y.stand.obs	the observed \boldsymbol{y} coordinates of the points on the Preston curve at the standard state.
y.stand.pred	the predicted y coordinates of the points on the Preston curve at the standard state.
x.obs	the observed x coordinates of the points on the Preston curve at the transferred polar angles as defined by the user.
y.obs	the observed y coordinates of the points on the Preston curve at the transferred polar angles as defined by the user.
y.pred	the predicted y coordinates of the points on the Preston curve at the transferred polar angles as defined by the user.

Note

In the outputs, there are no x.stand.pred and x.pred, because y.stand.obs and y.stand.pred share the same x values (i.e., x.stand.obs), and y.obs and y.pred share the same x values (i.e., x.obs).

Author(s)

Peijian Shi <pjshi@njfu.edu.cn>, Johan Gielis <johan.gielis@uantwerpen.be>, Brady K. Quinn <Brady.Quinn@dfo-mpo.gc.ca>.

References

Nelder, J.A., Mead, R. (1965) A simplex method for function minimization. *Computer Journal* 7, 308–313. doi:10.1093/comjnl/7.4.308

Preston, F.W. (1953) The shapes of birds' eggs. The Auk 70, 160–182.

Shi, P., Chen, L., Quinn, B.K., Yu, K., Miao, Q., Guo, X., Lian, M., Gielis, J., Niklas, K.J. (2022) Can we simply calculate the volume and surface area of an egg? Evidence from six species of poultry. *Annals of the New York Academy of Sciences* Under preparation.

Shi, P., Gielis, J., Quinn, B.K., Niklas, K.J., Ratkowsky, D.A., Schrader, J., Ruan, H., Wang, L., Niinemets, Ü. (2022) 'biogeom': An R package for simulating and fitting natural shapes. *Annals of the New York Academy of Sciences* 1516, 123–134. doi:10.1111/nyas.14862

Shi, P., Wang, L., Quinn, B.K., Gielis, J. (2022) A new program to estimate the parameters of Preston's equation, a general formula for describing the egg shape of birds. *Symmetry* Under review.

Todd, P.H., Smart, I.H.M. (1984) The shape of birds' eggs. *Journal of Theoretical Biology* 106, 239–243. doi:10.1016/00225193(84)900213

See Also

curveEPE, PE, 1mPE, TSE

Examples

```
data(eggs)
uni.C <- sort( unique(eggs$Code) )</pre>
ind <- 8
Data <- eggs[eggs$Code==uni.C[ind], ]</pre>
x0
     <- Data$x
y0
      <- Data$y
Res1 <- adjdata(x0, y0, ub.np=2000, times=1.2, len.pro=1/20)</pre>
    <- Res1$x
x1
y1
   <- Res1$y
dev.new()
plot( x1, y1, asp=1, cex.lab=1.5, cex.axis=1.5, type="l", col=4,
      xlab=expression(italic("x")), ylab=expression(italic("y")) )
            <- NULL
  simpver
            <- lmPE( x1, y1, simpver=simpver, dev.angle=seq(-0.05, 0.05, by=0.0001),
  res1
                     unit="cm", fig.opt=FALSE )
  x0.ini
            <-mean(x1)
  y0.ini
            <- mean( y1 )
  theta.ini <- res1$theta
  a.ini
          <- res1$scan.length / 2
  b.ini
           <- res1$scan.width / 2
  c1.ini
          <- res1$par[2] / res1$par[1]
  c2.ini
            <- res1$par[3] / res1$par[1]
  c3.ini
            <- res1$par[4] / res1$par[1]
  ini.val <- list(x0.ini, y0.ini, theta.ini, a.ini, b.ini, c1.ini, c2.ini, c3.ini)</pre>
  res0 <- fitEPE( x=x1, y=y1, ini.val=ini.val,</pre>
                 simpver=simpver, unit="cm", par.list=FALSE,
                 stand.fig=FALSE, angle=NULL, fig.opt=FALSE,
                 control=list(reltol=1e-30, maxit=50000),
                 np=2000 )
  n.loop <- 12
  Show <- FALSE
  for(i in 1:n.loop){
    ini.val <- res0$par</pre>
   if(i==n.loop) Show <- TRUE</pre>
   print(paste(i, "/", n.loop, sep=""))
    res0 <- fitEPE( x=x1, y=y1, ini.val=ini.val,</pre>
                   simpver=simpver, unit="cm", par.list=FALSE,
                   stand.fig=Show, angle=pi/4, fig.opt=Show,
                   control=list(reltol=1e-30, maxit=50000),
                   np=2000 )
  }
```

The numerical values of the location and model parameters

42

fitETE

res0\$par

```
# The root-mean-square error (RMSE) between
# the observed and predicted y values
sqrt(res0$RSS/res0$sample.size)
sqrt(sum((res0$y.stand.obs-res0$y.stand.pred)^2)/length(res0$y.stand.obs))
# To calculate the volume of the egg
VolumeEPE(P=res0$par[4:8])
# To calculate the surface area of the egg
SurfaceAreaEPE(P=res0$par[4:8])
```

```
graphics.off()
```

```
fitETE
```

Data-Fitting Function for the Explicit Troscianko Equation

Description

fitETE is used to estimate the parameters of the explicit Troscianko equation.

Usage

```
fitETE(x, y, ini.val, control = list(), par.list = FALSE,
    stand.fig = TRUE, angle = NULL, fig.opt = FALSE, np = 2000,
    xlim = NULL, ylim = NULL, unit = NULL, main = NULL)
```

Arguments

Х	the x coordinates of an egg's profile.
У	the y coordinates of an egg's profile.
ini.val	the list of initial values for the model parameters.
control	the list of control parameters for using the optim function in package stats.
par.list	the option of showing the list of parameters on the screen.
stand.fig	the option of drawing the observed and predicted profiles of an egg at the stan- dard state (i.e., the egg's centre is located at $(0, 0)$, and the mid-line is aligned to the <i>x</i> -axis).
angle	the angle between the mid-line and the x -axis, which can be defined by the user.
fig.opt	an optional argument of drawing the observed and predicted profiles of an egg at arbitrary angle between the major axis and the <i>x</i> -axis.
np	the number of data points on the predicted explicit Troscianko curve.
xlim	the range of the x-axis over which to plot the Troscianko curve.
ylim	the range of the y-axis over which to plot the Troscianko curve.
unit	the unit of the x-axis and the y-axis when showing the Troscianko curve.
main	the main title of the figure.

Details

Here, the major axis (i.e., the mid-line of an egg's profile) is the straight line trhough the two ends of the egg's length. The Nelder-Mead algorithm (Nelder and Mead, 1965) is used to carry out the optimization of minimizing the residual sum of squares (RSS) between the observed and predicted y values. The optim function in package **stats** was used to carry out the Nelder-Mead algorithm. When angle = NULL, the observed egg's profile will be shown at its initial angle in the scanned image; when angle is a numerical value (e.g., $\pi/4$) defined by the user, it indicates that the major axis is rotated by the amount ($\pi/4$) counterclockwise from the x-axis.

Value

par	the estimates of the model parameters.
scan.length	the observed length of the egg's profile.
scan.width	the observed width of the egg's profile.
scan.area	the observed area of the egg's profile.
<pre>scan.perimeter</pre>	the observed perimeter of the egg's profile.
r.sq	the coefficient of determination between the observed and predicted \boldsymbol{y} values on the Troscianko curve.
RSS	the residual sum of squares between the observed and predicted \boldsymbol{y} values on the Troscianko curve.
sample.size	the number of data points used in the data fitting.
x.stand.obs	the observed \boldsymbol{x} coordinates of the points on the Troscianko curve at the standard state.
y.stand.obs	the observed y coordinates of the points on the Troscianko curve at the standard state.
y.stand.pred	the predicted y coordinates of the points on the Troscianko curve at the standard state.
x.obs	the observed x coordinates of the points on the Troscianko curve at the transferred polar angles as defined by the user.
y.obs	the observed y coordinates of the points on the Troscianko curve at the transferred polar angles as defined by the user.
y.pred	the predicted y coordinates of the points on the Troscianko curve at the transferred polar angles as defined by the user.

Note

In the outputs, there are no x.stand.pred and x.pred, because y.stand.obs and y.stand.pred share the same x values (i.e., x.stand.obs), and y.obs and y.pred share the same x values (i.e., x.obs).

Author(s)

Peijian Shi <pjshi@njfu.edu.cn>, Johan Gielis <johan.gielis@uantwerpen.be>, Brady K. Quinn <Brady.Quinn@dfo-mpo.gc.ca>.

fitETE

References

Biggins, J.D., Montgomeries, R.M., Thompson, J.E., Birkhead, T.R. (2022) Preston's universal formula for avian egg shape. *Ornithology* In press. doi:10.1093/ornithology/ukac028

Biggins, J.D., Thompson, J.E., Birkhead, T.R. (2018) Accurately quantifying the shape of birds' eggs. *Ecology and Evolution* 8, 9728–9738. doi:10.1002/ece3.4412

Nelder, J.A., Mead, R. (1965) A simplex method for function minimization. *Computer Journal* 7, 308–313. doi:10.1093/comjnl/7.4.308

Shi, P., Gielis, J., Quinn, B.K., Niklas, K.J., Ratkowsky, D.A., Schrader, J., Ruan, H., Wang, L., Niinemets, Ü. (2022) 'biogeom': An R package for simulating and fitting natural shapes. *Annals of the New York Academy of Sciences* 1516, 123–134. doi:10.1111/nyas.14862

Shi, P., Wang, L., Quinn, B.K., Gielis, J. (2022) A new program to estimate the parameters of Preston's equation, a general formula for describing the egg shape of birds. *Symmetry* Under review.

Troscianko, J. (2014). A simple tool for calculating egg shape, volume and surface area from digital images. *Ibis*, 156, 874–878. doi:10.1111/ibi.12177

See Also

curveETE, TE, 1mTE

Examples

data(eggs)

```
uni.C <- sort( unique(eggs$Code) )</pre>
ind <- 8
Data <- eggs[eggs$Code==uni.C[ind], ]</pre>
      <- Data$x
x0
      <- Data$y
y0
Res1 <- adjdata(x0, y0, ub.np=2000, times=1.2, len.pro=1/20)</pre>
     <- Res1$x
x1
     <- Res1$y
y1
dev.new()
plot( x1, y1, asp=1, cex.lab=1.5, cex.axis=1.5, type="l", col=4,
      xlab=expression(italic("x")), ylab=expression(italic("y")) )
            <- lmTE( x1, y1, unit="cm", fig.opt=FALSE )
  res1
  if(FALSE){
    P0 <- c(res1$scan.length/2, res1$par)</pre>
    xx <- seq(-res1$scan.length/2, res1$scan.length/2, len=2000)</pre>
    yy1 <- ETE(P0, xx)
    yy2 <- -ETE(P0, xx)
    dev.new()
    plot( xx, yy1, cex.lab=1.5, cex.axis=1.5, asp=1, col=2,
          ylim=c(-res1$scan.length/2, res1$scan.length/2),
          type="l", xlab=expression(x), ylab=expression(y) )
```

```
fitGE
```

```
lines( xx, yy2, col=4 )
 }
 x0.ini
            <- mean( x1 )
 y0.ini
            <- mean( y1 )
 theta.ini <- res1$theta</pre>
 a.ini
            <- res1$scan.length / 2
 alpha0.ini <- res1$par[1]</pre>
 alpha1.ini <- res1$par[2]</pre>
 alpha2.ini <- res1$par[3]</pre>
 ini.val <- list(x0.ini, y0.ini, theta.ini, a.ini, alpha0.ini, alpha1.ini, alpha2.ini)</pre>
 res0 <- fitETE( x=x1, y=y1, ini.val=ini.val,</pre>
                 unit="cm", par.list=FALSE,
                 stand.fig=FALSE, angle=NULL, fig.opt=FALSE,
                 control=list(reltol=1e-30, maxit=50000),
                 np=2000 )
 n.loop <- 12
 Show <- FALSE
 for(i in 1:n.loop){
    ini.val <- res0$par</pre>
    if(i==n.loop) Show <- TRUE</pre>
   print(paste(i, "/", n.loop, sep=""))
    res0 <- fitETE( x=x1, y=y1, ini.val=ini.val,</pre>
                   unit="cm", par.list=FALSE,
                   stand.fig=Show, angle=pi/4, fig.opt=Show,
                   control=list(reltol=1e-30, maxit=50000),
                   np=2000 )
 }
 # The numerical values of the location and model parameters
 res0$par
 # The root-mean-square error (RMSE) between
 # the observed and predicted y values
 sqrt(res0$RSS/res0$sample.size)
 sqrt(sum((res0$y.stand.obs-res0$y.stand.pred)^2)/length(res0$y.stand.obs))
 # To calculate the volume of the egg
 VolumeETE(P=res0$par[4:7])
 # To calculate the surface area of the egg
 SurfaceAreaETE(P=res0$par[4:7])
graphics.off()
```

46

Description

fitGE is used to estimate the parameters of the original (or twin) Gielis equation or one of its simplified versions.

Usage

```
fitGE(expr, x, y, ini.val, m = 1, simpver = NULL,
    nval = nval, control = list(), par.list = FALSE,
    stand.fig = TRUE, angle = NULL, fig.opt = FALSE, np = 2000,
    xlim = NULL, ylim = NULL, unit = NULL, main = NULL)
```

Arguments

expr	the original (or twin) Gielis equation or one of its simplified versions.
x	the x coordinates of a polygon's boundary.
У	the y coordinates of a polygon's boundary.
ini.val	the list of initial values for the model parameters.
m	the given m value that determines the number of angles of the Gielis curve within $[0,2\pi).$
simpver	an optional argument to use the simplified version of the original (or twin) Gielis equation.
nval	the specified value for n_1 or n_2 or n_3 in the simplified versions.
control	the list of control parameters for using the optim function in package stats.
par.list	the option of showing the list of parameters on the screen.
stand.fig	the option of drawing the observed and predicted polygons at the standard state (i.e., the polar point is located at $(0, 0)$, and the major axis overlaps with the <i>x</i> -axis).
angle	the angle between the major axis and the x -axis, which can be defined by the user.
fig.opt	an optional argument of drawing the observed and predicted polygons at arbitrary angle between the major axis and the x -axis.
np	the number of data points on the predicted Gielis curve.
xlim	the range of the x-axis over which to plot the Gielis curve.
ylim	the range of the <i>y</i> -axis over which to plot the Gielis curve.
unit	the unit of the x -axis and the y -axis when showing the Gielis curve.
main	the main title of the figure.

The arguments of m, simpver, and nval should correspond to expr (i.e., GE or TGE). Please note the differences in the simplified version number and the number of parameters between GE and TGE. The Nelder-Mead algorithm (Nelder and Mead, 1965) is used to carry out the optimization of minimizing the residual sum of squares (RSS) between the observed and predicted radii. The optim function in package **stats** was used to carry out the Nelder-Mead algorithm. When angle = NULL, the observed polygon will be shown at its initial angle in the scanned image; when angle is a numerical value (e.g., $\pi/4$) defined by the user, it indicates that the major axis is rotated by the amount ($\pi/4$) counterclockwise from the *x*-axis.

Value

par	the estimates of the model parameters.
scan.length	the observed length of the polygon.
scan.width	the observed width of the polygon.
scan.area	the observed area of the polygon.
r.sq	the coefficient of determination between the observed and predicted polar radii.
RSS	the residual sum of squares between the observed and predicted polar radii.
sample.size	the number of data points used in the data fitting.
phi.stand.obs	the polar angles at the standard state.
phi.trans	the transferred polar angles rotated as defined by the user.
r.stand.obs	the observed polar radii at the standard state.
r.stand.pred	the predicted polar radii at the standard state.
x.stand.obs	the observed x coordinates at the standard state.
x.stand.pred	the predicted x coordinates at the standard state.
y.stand.obs	the observed y coordinates at the standard state.
y.stand.pred	the predicted y coordinates at the standard state.
r.obs	the observed polar radii at the transferred polar angles as defined by the user.
r.pred	the predicted polar radii at the transferred polar angles as defined by the user.
x.obs	the observed x coordinates at the transferred polar angles as defined by the user.
x.pred	the predicted x coordinates at the transferred polar angles as defined by the user.
y.obs	the observed y coordinates at the transferred polar angles as defined by the user.
y.pred	the predicted y coordinates at the transferred polar angles as defined by the user.

Note

simpver in GE is different from that in TGE.

Author(s)

Peijian Shi <pjshi@njfu.edu.cn>, Johan Gielis <johan.gielis@uantwerpen.be>, Brady K. Quinn <Brady.Quinn@dfo-mpo.gc.ca>.

fitGE

References

Gielis, J. (2003) A generic geometric transformation that unifies a wide range of natural and abstract shapes. *American Journal of Botany* 90, 333–338. doi:10.3732/ajb.90.3.333

Li, Y., Quinn, B.K., Gielis, J., Li, Y., Shi, P. (2022) Evidence that supertriangles exist in nature from the vertical projections of *Koelreuteria paniculata* fruit. *Symmetry* 14, 23. doi:10.3390/sym14010023

Nelder, J.A., Mead, R. (1965) A simplex method for function minimization. *Computer Journal* 7, 308–313. doi:10.1093/comjnl/7.4.308

Shi, P., Gielis, J., Quinn, B.K., Niklas, K.J., Ratkowsky, D.A., Schrader, J., Ruan, H., Wang, L., Niinemets, Ü. (2022) 'biogeom': An R package for simulating and fitting natural shapes. *Annals of the New York Academy of Sciences* 1516, 123–134. doi:10.1111/nyas.14862

Shi, P., Ratkowsky, D.A., Gielis, J. (2020) The generalized Gielis geometric equation and its application. *Symmetry* 12, 645. doi:10.3390/sym12040645

Shi, P., Xu, Q., Sandhu, H.S., Gielis, J., Ding, Y., Li, H., Dong, X. (2015) Comparison of dwarf bamboos (*Indocalamus* sp.) leaf parameters to determine relationship between spatial density of plants and total leaf area per plant. *Ecology and Evolution* 5, 4578-4589. doi:10.1002/ece3.1728

See Also

areaGE, curveGE, DSGE, GE, SurfaceAreaSGE, TGE, VolumeSGE

Examples

```
data(eggs)
```

```
uni.C <- sort( unique(eggs$Code) )</pre>
ind <- 1
Data <- eggs[eggs$Code==uni.C[ind], ]</pre>
      <- Data$x
x0
v0
      <- Data$y
Res1 <- adjdata(x0, y0, ub.np=200, times=1.2, len.pro=1/20)</pre>
    <- Res1$x
x1
    <- Res1$y
y1
Res2 <- adjdata(x0, y0, ub.np=40, times=1, len.pro=1/2, index.sp=20)</pre>
x2
    <- Res2$x
    <- Res2$y
v2
Res3 <- adjdata(x0, y0, ub.np=100, times=1, len.pro=1/2, index.sp=100)</pre>
x3
     <- Res3$x
     <- Res3$y
у3
dev.new()
plot( x2, y2, asp=1, cex.lab=1.5, cex.axis=1.5,
      xlab=expression(italic("x")), ylab=expression(italic("y")),
      pch=1, col=4 )
points( x3, y3, col=2)
```

x0.ini <- mean(x1)

```
y0.ini
         <- mean( y1 )
theta.ini <- pi
         <- sqrt(2) * max( y0.ini-min(y1), x0.ini-min(x1) )
a.ini
n1.ini <- c(5, 25)
n2.ini <- c(15, 25)
if(ind == 2){
  n1.ini <- c(0.5, 1)
  n2.ini <- c(6, 12)
}
ini.val <- list(x0.ini, y0.ini, theta.ini, a.ini, n1.ini, n2.ini)</pre>
Res4 <- fitGE( GE, x=x1, y=y1, ini.val=ini.val,</pre>
                m=1, simpver=1, nval=1, unit="cm"
                par.list=FALSE, fig.opt=TRUE, angle=NULL,
                control=list(reltol=1e-20, maxit=20000),
                np=2000 )
Res4$par
sqrt(sum((Res4$y.stand.obs-Res4$y.stand.pred)^2)/Res4$sample.size)
ΧХ
      <- Res4$x.stand.obs
      <- Res4$y.stand.obs
уу
library(spatstat.geom)
poly0 <- as.polygonal(owin(poly=list(x=xx, y=yy)))</pre>
area(poly0)
areaGE(GE, P = Res4$par[4:6],
       m=1, simpver=1)
# The following code is used to
# calculate the root-mean-square error (RMSE) in the y-coordinates
ind1 <- which(yy >= 0)
ind2 <- which(yy < 0)
xx1 <- xx[ind1] # The upper part of the egg</pre>
yy1 <- yy[ind1]</pre>
xx2 <- xx[ind2] # The lower part of the egg</pre>
yy2 <- yy[ind2]</pre>
Para <- c(0, 0, 0, Res4$par[4:length(Res4$par)])</pre>
PartU <- curveGE(GE, P=Para, phi=seq(0, pi, len=100000), m=1, simpver=1, fig.opt=FALSE)
xv1
     <- PartU$x
yv1 <- PartU$y
PartL <- curveGE(GE, P=Para, phi=seq(pi, 2*pi, len=100000), m=1, simpver=1, fig.opt=FALSE)
xv2 <- PartL$x
yv2 <- PartL$y
ind3 <- c()
for(q in 1:length(xx1)){
  ind.temp <- which.min(abs(xx1[q]-xv1))</pre>
  ind3
           <- c(ind3, ind.temp)
}
ind4 <- c()
```

```
ind.temp <- which.min(abs(xx2[q]-xv2))</pre>
```

50

fitNRGE

```
ind4 <- c(ind4, ind.temp)
}
RSS <- sum((yy1-yv1[ind3])^2) + sum((yy2-yv2[ind4])^2)
RMSE <- sqrt( RSS/length(yy) )
# To calculate the volume of the Gielis egg when simpver=1 & m=1
VolumeSGE(P=Res4$par[4:6])
# To calculate the surface area of the Gielis egg when simpver=1 & m=1
SurfaceAreaSGE(P=Res4$par[4:6])
graphics.off()</pre>
```

fitNRGE

Parameter Estimation for the Narushin-Romanov-Griffin Equation

Description

fitNRGE is used to estimate the parameters of the Narushin-Romanov-Griffin equation.

Usage

Arguments

х	the x coordinates of the edge of an egg's boundary.
У	the y coordinates of the edge of an egg's boundary.
dev.angle	the angle of deviation for the axis associated with the maximum distance be- tween two points on an egg's profile from the mid-line of the egg's profile.
ini.C	the initial value(s) of parameter C in the Narushin-Romanov-Griffin equation.
strip.num	the number of equidistant strips intersecting with the egg's boundary that are horizontally placed. See Shi et al. (2018, 2020) for details.
control	the list of control parameters for using the optim function in package stats.
fig.opt	an optional argument to draw the observed and predicted egg's boundaries.
np	the number of data points on the predicted Narushin-Romanov-Griffin curve.
xlim	the range of the x -axis over which to plot the Narushin-Romanov-Griffin curve.
ylim	the range of the y -axis over which to plot the Narushin-Romanov-Griffin curve.
unit	the units of the x -axis and the y -axis when showing the Narushin-Romanov-Griffin curve.
main	the main title of the figure.

Details

The NRGE (see NRGE) has a complex model structure with four parameters (i.e., A, B, C, and D). Because three out of four parameters of NRGE have clear biological and geometric meanings (i.e., A, B, and D), their values could be estimated by means of numerical calculation. After obtaining the numerical values of the three parameters, the Nelder-Mead algorithm (Nelder and Mead, 1965) was used to estimate C. Because of the failure of the optimization method to estimate the major axis (i.e., the mid-line) and model parameters of NRGE, it was difficult to define the egg length axis, although it is essential for calculating A, B, and D. For this reason, two methods were used to obtain the major axis: the maximum distance method, and the longest axis adjustment method. In the first method, the straight line through two points forming the maximum distance on the egg's profile is defined as the major axis (i.e., the mid-line). In the second method, we assume that there is an angle of deviation for the longest axis (i.e., the axis associated with the maximum distance between two points on an egg's profile) from the mid-line of the egg's profile. That is to say, the mid-line of an egg's profile is not the axis associated with the maximum distance between two points on the egg's profile. When angle = NULL, the maximum distance method is used; when angle is a numerical value or a numerical vector, the longest axis adjustment method is used. Here, the numerical value of dev. angle is not the angle of deviation for the major axis of an egg's profile from the x-axis, and instead it is the angle of deviation for the longest axis (associated with the maximum distance between two points on the egg's profile) from the mid-line of the egg's profile. Once the major axis is established, the distance of the major axis can be calculated as the estimate of A. Using the maximum distance method, A equals the maximum distance. Using the longest axis adjustment method, A may be slightly smaller than the maximum distance. After rotating the major axis to make it overlap with the x-axis, a large number of equidistant strips can be used (e.g., 2000) from the egg base to egg tip to intersect the egg's boundary. This methodology makes it easy to obtain the maximum egg's breadth (i.e., B) and D. The residual sum of squares (RSS) between the observed and predicted y values can be minimized using an optimization method (Nelder and Mead, 1965) to estimate C. Despite the complex structure of NRGE (see NRGE), the optimization method for estimating the remaining parameter C becomes feasible after the other three parameters have been numerically estimated. Please see Shi et al. (2022) for details.

Value

theta	the angle between the longest axis of an egg's profile (i.e., the axis associated with the maximum distance between two points on the egg's profile) and the x -axis.
epsilon	the optimal angle of deviation for the longest axis (associated with the maximum distance between two points on an egg's profile) from the mid-line of the egg's profile, when dev.angle is not NULL.
RSS.vector	the vector of residual sum of squares corresponding to dev.angle, when dev.angle is not NULL.
x.obs	the observed x coordinates.
y.obs	the observed y coordinates.
y.pred	the predicted y coordinates corresponding to the the observed x coordinates.
par	the estimates of the four model parameters in the Narushin-Romanov-Griffin equation.
scan.length	the length of the egg's boundary. The default is the maximum distance between two points on the egg's boundary.

fitNRGE

scan.width	the maximum width of the egg's boundary.
scan.area	the area of the egg's boundary.
scan.perimeter	the perimeter of the egg's boundary based on all data points on the egg's boundary.
RSS	the residual sum of squares between the observed and predicted y values.
sample.size	the number of data points used in the numerical calculation.
RMSE	the root-mean-square errors between the observed and predicted y values.

Note

theta is the calculated angle between the longest axis (i.e., the axis associated with the maximum distance between two points on an egg's profile) and the x-axis, and epsilon is the calculated angle of deviation for the longest axis from the mid-line of the egg's profile. This means that the angle between the mid-line and the x-axis is equal to theta + epsilon. In the outputs, there is no x.pred, because y.obs and y.pred share the same x values (i.e., x.obs).

Author(s)

Peijian Shi <pjshi@njfu.edu.cn>, Johan Gielis <johan.gielis@uantwerpen.be>, Brady K. Quinn <Brady.Quinn@dfo-mpo.gc.ca>.

References

Narushin, V.G., Romanov, M.N., Griffin, D.K. (2021) Egg and math: introducing a universal formula for egg shape. *Annals of the New York Academy of Sciences* 1505, 169–177. doi:10.1111/ nyas.14680

Nelder, J.A., Mead, R. (1965). A simplex method for function minimization. *Computer Journal* 7, 308–313. doi:10.1093/comjnl/7.4.308

Shi, P., Gielis, J., Niklas, K.J. (2022) Comparison of a universal (but complex) model for avian egg shape with a simpler model. *Annals of the New York Academy of Sciences* 1514, 34–42. doi:10.1111/nyas.14799

Shi, P., Gielis, J., Quinn, B.K., Niklas, K.J., Ratkowsky, D.A., Schrader, J., Ruan, H., Wang, L., Niinemets, Ü. (2022) 'biogeom': An R package for simulating and fitting natural shapes. *Annals of the New York Academy of Sciences* 1516, 123–134. doi:10.1111/nyas.14862

Shi, P., Niinemets, Ü., Hui, C., Niklas, K.J., Yu, X., Hölscher, D. (2020) Leaf bilateral symmetry and the scaling of the perimeter vs. the surface area in 15 vine species. *Forests* 11, 246. doi:10.3390/f11020246

Shi, P., Zheng, X., Ratkowsky, D.A., Li, Y., Wang, P., Cheng, L. (2018) A simple method for measuring the bilateral symmetry of leaves. *Symmetry* 10, 118. doi:10.3390/sym10040118

Tian, F., Wang, Y., Sandhu, H.S., Gielis, J., Shi, P. (2020) Comparison of seed morphology of two ginkgo cultivars. *Journal of Forestry Research* 31, 751–758. doi:10.1007/s116760180770y

See Also

curveNRGE, NRGE

Examples

```
data(eggs)
uni.C <- sort( unique(eggs$Code) )</pre>
ind <- 8
Data <- eggs[eggs$Code==uni.C[ind], ]</pre>
x0
     <- Data$x
v0
     <- Data$y
Res1 <- adjdata(x0, y0, ub.np=3000, len.pro=1/20)</pre>
x1
      <- Res1$x
      <- Res1$y
y1
dev.new()
plot( Res1$x, Res1$y, asp=1, cex.lab=1.5, cex.axis=1.5,
      xlab=expression(italic("x")), ylab=expression(italic("y")) )
  Res2 <- fitNRGE(x1, y1, dev.angle=NULL, ini.C=c(-1, -0.1, seq(0.1, 1, by=0.05)),
                  strip.num=2000, fig.opt=TRUE)
  dev.new()
  plot(Res2$x.obs, Res2$y.obs, asp=1, cex.lab=1.5, cex.axis=1.5,
       xlab=expression(italic("x")), ylab=expression(italic("y")),
       type="1", col=4)
  lines( Res2$x.obs, Res2$y.pred, col=2)
  Res3 <- fitNRGE(x1, y1, dev.angle=seq(-0.05, 0.05, by=0.01),</pre>
                  ini.C=c(-1, -0.1, seq(0.1, 1, by=0.05)),
                  strip.num=2000, fig.opt=TRUE)
  zeta <- Res3$theta + Res3$epsilon</pre>
  x2 <- x1*cos(zeta) + y1*sin(zeta)</pre>
  y2 <- y1*cos(zeta) - x1*sin(zeta)
  plot( x2-min(x2), y2-min(y2), asp=1, col="grey70", cex=1,
        xlab=expression(italic("x")), ylab=expression(italic("y")) )
  lines(Res3$x.obs-min(Res3$x.obs), Res3$y.obs-min(Res3$y.obs), col=4)
  lines(Res3$x.obs-min(Res3$x.obs), Res3$y.pred-min(Res3$y.obs), col=2)
  RMSE <- sqrt( Res3$RSS / Res3$sample.size )</pre>
  RMSE
  # To calculate the volume of the egg
  VolumeNRGE(P=Res3$par)
  # To calculate the surface area of the egg
  SurfaceAreaNRGE(P=Res3$par)
graphics.off()
```

54

fitovate

Description

fitovate is used to estimate the parameters of a simplified performance equation.

Usage

```
fitovate(expr, x, y, ini.val,
    par.list = FALSE, stand.fig = TRUE, control = list(),
    angle = NULL, fig.opt = FALSE, index.xmax = 3, np = 2000,
    xlim = NULL, ylim = NULL, unit = NULL, main = NULL)
```

Arguments

expr	the simplified version 1 of the performance equations.
x	the x coordinates of a polygon's boundary.
У	the y coordinates of a polygon's boundary.
ini.val	the initial values of the simplified version 1 of a performance equation.
par.list	an optional argument to show the list of parameters on the screen.
stand.fig	an optional argument to draw the observed and predicted polygons' boundaries at the standard state (i.e., the origin is located at $(0, 0)$, and the major axis overlaps with the <i>x</i> -axis).
control	the list of control parameters for using the optim function in package stats.
angle	the angle between the major axis of the polygon and the x -axis, which can be defined by the user.
fig.opt	an optional argument to draw the observed and predicted polygons at an arbitrary angle between the major axis and the x -axis.
index.xmax	the specified index in parameters representing x_{\max} .
np	the number of data points on the predicted ovate leaf-shape curve.
xlim	the range of the x -axis over which to plot the ovate leaf-shape curve.
ylim	the range of the y -axis over which to plot the ovate leaf-shape curve.
unit	the units of the x -axis and the y -axis when showing the ovate leaf-shape curve.
main	the main title of the figure.

Details

ini.val is a list for seven parameters: three location parameters, and four model parameters, i.e., y_{opt} , x_{opt} , x_{max} , and δ . This means that expr is limited to being the simplified version 1 (where $x_{min} = 0$) in MbetaE, MBriereE, and MLRFE. The initial values for the first three parameters in ini.val are location parameters, among which the first two are the planar coordinates of the transferred origin, and the third is the angle between the major axis of the polygon and the x-axis. The

Nelder-Mead algorithm (Nelder and Mead, 1965) is used to carry out the optimization of minimizing the residual sum of squares (RSS) between the observed and predicted radii. The optim function in package **stats** was used to carry out the Nelder-Mead algorithm. When angle = NULL, the observed polygon will be shown at its initial angle in the scanned image; when angle is a numerical value (e.g., $\pi/4$) defined by the user, it indicates that the major axis is rotated by the amount ($\pi/4$) counterclockwise from the x-axis.

Value

par	the estimates of the model parameters.
r.sq	the coefficient of determination between the observed and predicted \boldsymbol{y} values.
RSS	the residual sum of squares between the observed and predicted y values.
sample.size	the number of data points on the polygon's boundary in the data fitting.
scan.length	the observed length of the polygon's boundary.
scan.width	the observed width of the polygon's boundary.
scan.perimeter	the observed perimeter of the polygon's boundary.
scan.area	the observed area of the polygon's boundary.
pred.length	the predicted length of the polygon's boundary.
pred.width	the predicted width of the polygon's boundary.
pred.perimeter	the predicted perimeter of the polygon's boundary.
pred.area	the predicted area of the polygon's boundary.
x.stand.obs	the observed x coordinates at the standard state.
x.stand.pred	the predicted x coordinates at the standard state.
y.stand.obs	the observed y coordinates at the standard state.
y.stand.pred	the predicted y coordinates at the standard state.
x.obs	the observed x coordinates at the transferred angles defined by the user.
x.pred	the predicted x coordinates at the transferred angles defined by the user.
y.obs	the observed y coordinates at the transferred angles defined by the user.
y.pred	the predicted y coordinates at the transferred angles defined by the user.

Note

There are seven parameters in total for the value of par. The transferred angle denotes the angle between the major axis and the x-axis.

Author(s)

Peijian Shi <pjshi@njfu.edu.cn>, Johan Gielis <johan.gielis@uantwerpen.be>, Brady K. Quinn <Brady.Quinn@dfo-mpo.gc.ca>.

fitovate

References

Jin, J., Quinn, B.K., Shi, P. (2022) The modified Brière equation and its applications. *Plants* 11, 1769. doi:10.3390/plants11131769

Li, Y., Zheng, Y., Ratkowsky, D.A., Wei, H., Shi, P. (2022) Application of an ovate leaf shape model to evaluate leaf bilateral asymmetry and calculate lamina centroid location. *Frontiers in Plant Science* 12, 822907. doi:10.3389/fpls.2021.822907

Nelder, J.A., Mead, R. (1965) A simplex method for function minimization. *Computer Journal* 7, 308–313. doi:10.1093/comjnl/7.4.308

Shi, P., Fan, M., Ratkowsky, D.A., Huang, J., Wu, H., Chen, L., Fang, S., Zhang, C. (2017) Comparison of two ontogenetic growth equations for animals and plants. *Ecological Modelling* 349, 1–10. doi:10.1016/j.ecolmodel.2017.01.012

Shi, P., Gielis, J., Quinn, B.K., Niklas, K.J., Ratkowsky, D.A., Schrader, J., Ruan, H., Wang, L., Niinemets, Ü. (2022) 'biogeom': An R package for simulating and fitting natural shapes. *Annals of the New York Academy of Sciences* 1516, 123–134. doi:10.1111/nyas.14862

Shi, P., Yu, K., Niklas, K.J., Schrader, J., Song, Y., Zhu, R., Li, Y., Wei, H., Ratkowsky, D.A. (2021) A general model for describing the ovate leaf shape. *Symmetry* 13, 1524. doi:10.3390/sym13081524

See Also

areaovate, curveovate, MbetaE, MBriereE, MLRFE

Examples

```
data(Neocinnamomum)
```

```
uni.C <- sort( unique(Neocinnamomum$Code) )</pre>
ind <- 2
Data <- Neocinnamomum[Neocinnamomum$Code==uni.C[ind], ]</pre>
x0
      <- Data$x
      <- Data$y
v0
Res1 <- adjdata(x0, y0, ub.np=200, len.pro=1/20)</pre>
    <- Res1$x
x1
    <- Res1$y
v1
dev.new()
plot( Res1$x, Res1$y, asp=1, cex.lab=1.5, cex.axis=1.5,
      xlab=expression(italic("x")), ylab=expression(italic("y")) )
  x0.ini
            <- min( x1 )
            <- min( y1
  y0.ini
                        )
  theta.ini <- pi/4
  len.max <- max( max(y1)-min(y1), max(x1)-min(x1) ) *2/sqrt(2)</pre>
            <- c(0.1, 0.01, 0.001, 0.0001)
  a.ini
  m.ini
            <- c(0.1, 0.5, 1, 2)
  x2.ini
            <- len.max
  delta.ini <- c(0.5, 1)
```

```
ini.val
          <- list(x0.ini, y0.ini, theta.ini, a.ini, m.ini, x2.ini, delta.ini)
 Res2 <- fitovate(MBriereE, x=x1, y=y1, ini.val=ini.val,</pre>
            par.list=FALSE, fig.opt=TRUE, angle=pi/6,
            control=list(reltol=1e-20, maxit=20000),
            np=2000, unit=NULL)
 Res2$RSS
 x0.ini
            <- min( x1 )
 y0.ini
            <- min( y1 )
 theta.ini <- pi/4
 len.max <- max( max(y1)-min(y1), max(x1)-min(x1) ) *2/sqrt(2)</pre>
 yc.ini
            <- len.max/3
 xc.ini
            <- 1/4*len.max
            <- len.max
 x2.ini
 delta.ini <- c(0.5, seq(1, 5, by=5))</pre>
 ini.val <- list(x0.ini, y0.ini, theta.ini, yc.ini, xc.ini, x2.ini, delta.ini)</pre>
 Res3 <- fitovate( MbetaE, x=x1, y=y1, ini.val=ini.val,</pre>
                    par.list=TRUE, fig.opt=TRUE, angle=pi/3,
                    control=list(reltol=1e-20, maxit=20000),
                    np=2000, unit=NULL )
 Res3$RSS
 Res4 <- fitovate( MLRFE, x=x1, y=y1, ini.val=ini.val,</pre>
                    unit=NULL, par.list=FALSE, fig.opt=TRUE,
                    angle=NULL, control=list(reltol=1e-20,
                    maxit=20000), np=2000)
 Res4$RSS
graphics.off()
```

```
fitsigmoid
```

Data-Fitting Function for the Sigmoid Growth Equation

Description

fitsigmoid is used to estimate the parameters of a sigmoid growth equation based on the integral of a performance equation or one of its simplified versions.

Usage

```
fitsigmoid(expr, x, y, ini.val, simpver = 1,
    control = list(), par.list = FALSE, fig.opt = FALSE,
    xlim = NULL, ylim = NULL, xlab = NULL, ylab = NULL,
    main = NULL, subdivisions = 100L,
    rel.tol = .Machine$double.eps^0.25,
    abs.tol = rel.tol, stop.on.error = TRUE,
    keep.xy = FALSE, aux = NULL)
```

fitsigmoid

Arguments

expr	a performance equation or one of its simplified versions that is used to build a sigmoid growth equation.
x	the observed investigation times.
У	the observed y values (i.e., biomass, height, body length, etc.).
ini.val	the initial values of the model parameters.
simpver	an optional argument to use the simplified version of the performance equation.
control	the list of control parameters for using the optim function in package stats.
par.list	the option of showing the list of parameters on the screen.
fig.opt	an optional argument to draw the observations and the predicted sigmoid curve.
xlim	the range of the x-axis over which to plot a sigmoid growth curve.
ylim	the range of the y-axis over which to plot a sigmoid growth curve.
xlab	the label of the x-axis when showing a sigmoid growth curve.
ylab	the label of the y-axis when showing a sigmoid growth curve.
main	the main title of the figure.
subdivisions	please see the arguments for the integrate function in package stats.
rel.tol	please see the arguments for the integrate function in package stats.
abs.tol	please see the arguments for the integrate function in package stats.
<pre>stop.on.error</pre>	please see the arguments for the integrate function in package stats.
keep.xy	please see the arguments for the integrate function in package stats.
aux	please see the arguments for the integrate function in package stats.

Details

Here, ini.val only includes the initial values of the model parameters as a list. The Nelder-Mead algorithm (Nelder and Mead, 1965) is used to carry out the optimization of minimizing the residual sum of squares (RSS) between the observed and predicted *y* values. The optim function in package **stats** was used to carry out the Nelder-Mead algorithm. The performance equations denote MbetaE, MBriereE, MLRFE and their simplified versions. The arguments of P and simpver should correspond to expr (i.e., MbetaE or MBriereE or MLRFE). The sigmoid equation is the integral of a performance equation or one of its simplified versions.

Value

par	the estimates of the model parameters.
r.sq	the coefficient of determination between the observed and predicted \boldsymbol{y} values.
RSS	the residual sum of squares between the observed and predicted y values.
sample.size	the number of data points used in the data fitting.
х	the observed x values.
У	the observed y values.
y.pred	the predicted y values.

Here, the user can define other performance equations, but new equations or their simplified versions should include the lower and upper thresholds on the x-axis corresponding to y = 0, whose indices should be the same as those in MbetaE or MBriereE or MLRFE.

Author(s)

Peijian Shi <pjshi@njfu.edu.cn>, Johan Gielis <johan.gielis@uantwerpen.be>, Brady K. Quinn <Brady.Quinn@dfo-mpo.gc.ca>.

References

Jin, J., Quinn, B.K., Shi, P. (2022) The modified Brière equation and its applications. *Plants* 11, 1769. doi:10.3390/plants11131769

Nelder, J.A., Mead, R. (1965) A simplex method for function minimization. *Computer Journal* 7, 308–313. doi:10.1093/comjnl/7.4.308

Shi, P., Fan, M., Ratkowsky, D.A., Huang, J., Wu, H., Chen, L., Fang, S., Zhang, C. (2017) Comparison of two ontogenetic growth equations for animals and plants. *Ecological Modelling* 349, 1–10. doi:10.1016/j.ecolmodel.2017.01.012

Shi, P., Gielis, J., Quinn, B.K., Niklas, K.J., Ratkowsky, D.A., Schrader, J., Ruan, H., Wang, L., Niinemets, Ü. (2022) 'biogeom': An R package for simulating and fitting natural shapes. *Annals of the New York Academy of Sciences* 1516, 123–134. doi:10.1111/nyas.14862

See Also

areaovate, MbetaE, MBriereE, MLRFE, sigmoid

Examples

```
# The shrimp growth data(See the supplementary table in West et al., 2001)
# West, G.B., Brown, J.H., Enquist, B.J. (2001) A general model for ontogenetic growth.
      Nature 413, 628-631.
#
t0 <- c(3, 60, 90, 120, 150, 180, 384)
m0 <- c(0.001, 0.005, 0.018, 0.037, 0.06, 0.067, 0.07)
dev.new()
plot( t0, m0, cex.lab=1.5, cex.axis=1.5, col=4,
      xlab=expression(italic(x)), ylab=expression(italic(y)) )
xopt0 <- seq(100, 150, by=5)</pre>
ini.val <- list(0.035, xopt0, 200, 1)</pre>
resu1 <- fitsigmoid(MLRFE, x=t0, y=m0, ini.val=ini.val, simpver=1, fig.opt=TRUE, par.list=TRUE)
  delta0 <- c(0.5, 1, 2, 5, 10, 20)
  ini.val <- list(0.035, 150, -100, 200, delta0)
  resu2 <- fitsigmoid(MLRFE, x=t0, y=m0, ini.val=ini.val, simpver=NULL,</pre>
               fig.opt=TRUE, control=list(reltol=1e-20, maxit=20000),
```

```
subdivisions = 100L, rel.tol=.Machine$double.eps^0.25,
```

fracdim

```
abs.tol=.Machine$double.eps^0.25, stop.on.error=TRUE,
    keep.xy=FALSE, aux=NULL)
xopt0 <- seq(100, 150, by=5)
ini.val <- list(0.035, xopt0, 200, 1)
resu3 <- fitsigmoid(MbetaE, x=t0, y=m0, ini.val=ini.val, simpver=1, fig.opt=TRUE)
m.ini <- c(0.5, 1, 2, 3, 4, 5, 10, 20)
ini.val <- list(1e-8, m.ini, 200, 1)
resu3 <- fitsigmoid(MBriereE, x=t0, y=m0, ini.val=ini.val, simpver=1,
    fitsigmoid(MBriereE, x=t0, y=m0, ini.val=ini.val, simpver=1, simp
```

graphics.off()

fracdim	Calculation of Fractal Dimension of Lef Veins Based on the Box
	Counting Method

Description

fracdim is used to calculate the fractal dimension of leaf veins based on the box-counting method.

Usage

Arguments

х	the x coordinates of leaf-vein pixels.
У	the y coordinates of leaf-vein pixels.
frac.fig	the option of drawing the results of the linear fitting.
denomi.range	the number of equidistant segments of the maximum range between the range of the x coordinates and that of the y coordinates.
ratiox	the the x coordinate of the location parameter for positioning the legend.
ratioy	the the y coordinate of the location parameter for positioning the legend.
main	the main title of the figure.

Details

The box-counting approach uses a group of boxes (squares for simplicity) with different sizes (δ) to divide the leaf vein image into different parts. Let N represent the number of boxes that include at least one pixel of leaf vein. The maximum of the range of the x coordinates and the range of the y coordinates for leaf-vein pixels is defined as z. Let δ represent the vector of z/denomi.range. Then, we used the following equation to calculate the fractal dimension of leaf veins:

 $\ln N = a + b \ln \left(\delta^{-1} \right),$

where b is the theoretical value of the fractal dimension. We can use its estimate as the numerical value of the fractal dimension for a leaf venation network.

Value

а	the estimate of the intercept.
sd.a	the standard deviation of the estimated intercept.
lci.a	the lower bound of the 95% confidence interval of the estimated intercept.
uci.a	the upper bound of the 95% confidence interval of the estimated intercept
b	the estimate of the slope.
sd.b	the standard deviation of the estimated slope.
lci.a	the lower bound of the 95% confidence interval of the estimated slope.
uci.a	the upper bound of the 95% confidence interval of the estimated slope.
r.sq	the coefficient of determination.
delta	the vector of box sizes.
N	the number of boxes that include at least one pixel of leaf vein.

Note

Here, x and y cannot be adjusted by the adjdata function because the leaf veins are not the leaf's boundary data.

Author(s)

Peijian Shi <pjshi@njfu.edu.cn>, Johan Gielis <johan.gielis@uantwerpen.be>, Brady K. Quinn <Brady.Quinn@dfo-mpo.gc.ca>.

References

Shi, P., Gielis, J., Quinn, B.K., Niklas, K.J., Ratkowsky, D.A., Schrader, J., Ruan, H., Wang, L., Niinemets, Ü. (2022) 'biogeom': An R package for simulating and fitting natural shapes. *Annals of the New York Academy of Sciences* 1516, 123–134. doi:10.1111/nyas.14862

Shi, P., Yu, K., Niinemets, Ü., Gielis, J. (2021) Can leaf shape be represented by the ratio of leaf width to length? Evidence from nine species of *Magnolia* and *Michelia* (Magnoliaceae). *Forests* 12, 41. doi:10.3390/f12010041

Vico, P.G., Kyriacos, S., Heymans, O., Louryan, S., Cartilier, L. (1998) Dynamic study of the extraembryonic vascular network of the chick embryo by fractal analysis. *Journal of Theoretical Biology* 195, 525–532. doi:10.1006/jtbi.1998.0810

GE

See Also

veins

Examples

GE

Calculation of the Polar Radius of the Gielis Curve

Description

GE is used to calculate polar radii of the original Gielis equation or one of its simplified versions at given polar angles.

Usage

GE(P, phi, m = 1, simpver = NULL, nval = 1)

Arguments

Р	the parameters of the original Gielis equation or one of its simplified versions.
phi	the polar angle(s).
m	the given m value that determines the number of angles of the Gielis curve within $[0, 2\pi)$.
simpver	an optional argument to use the simplified version of the original Gielis equation.
nval	the specified value for n_1 or n_2 or n_3 in the simplified versions.

Details

When simpver = NULL, the original Gielis equation is selected:

$$r\left(\varphi\right) = a\left(\left|\cos\left(\frac{m}{4}\varphi\right)\right|^{n_2} + \left|\frac{1}{k}\sin\left(\frac{m}{4}\varphi\right)\right|^{n_3}\right)^{-\frac{1}{n_1}},$$

where r represents the polar radius at the polar angle φ ; m determines the number of angles within $[0, 2\pi)$; and a, k, n_1, n_2 , and n_3 need to be provided in P.

When simpver = 1, the simplified version 1 is selected:

$$r(\varphi) = a\left(\left|\cos\left(\frac{m}{4}\varphi\right)\right|^{n_2} + \left|\sin\left(\frac{m}{4}\varphi\right)\right|^{n_2}\right)^{-\frac{1}{n_1}},$$

where a, n_1 , and n_2 need to be provided in P.

When simpver = 2, the simplified version 2 is selected:

$$r(\varphi) = a\left(\left|\cos\left(\frac{m}{4}\varphi\right)\right|^{n_2} + \left|\sin\left(\frac{m}{4}\varphi\right)\right|^{n_2}\right)^{-\frac{1}{n_1}},$$

where a and n_1 need to be provided in P, and n_2 should be specified in nval.

When simpver = 3, the simplified version 3 is selected:

$$r\left(\varphi\right) = a\left(\left|\cos\left(\frac{m}{4}\varphi\right)\right|^{n_1} + \left|\sin\left(\frac{m}{4}\varphi\right)\right|^{n_1}\right)^{-\frac{1}{n_1}},$$

where a needs to be provided in P, and n_1 should be specified in nval.

When simpver = 4, the simplified version 4 is selected:

$$r(\varphi) = a\left(\left|\cos\left(\frac{m}{4}\varphi\right)\right|^{n_1} + \left|\sin\left(\frac{m}{4}\varphi\right)\right|^{n_1}\right)^{-\frac{1}{n_1}},$$

where a and n_1 need to be provided in P.

When simpver = 5, the simplified version 5 is selected:

$$r(\varphi) = a\left(\left|\cos\left(\frac{m}{4}\varphi\right)\right|^{n_2} + \left|\sin\left(\frac{m}{4}\varphi\right)\right|^{n_3}\right)^{-\frac{1}{n_1}},$$

where a, n_1, n_2 , and n_3 need to be provided in P.

When simpver = 6, the simplified version 6 is selected:

$$r(\varphi) = a\left(\left|\cos\left(\frac{m}{4}\varphi\right)\right|^{n_2} + \left|\frac{1}{k}\sin\left(\frac{m}{4}\varphi\right)\right|^{n_2}\right)^{-\frac{1}{n_1}},$$

where a, k, n_1 , and n_2 need to be provided in P.

When simpver = 7, the simplified version 7 is selected:

$$r\left(\varphi\right) = a\left(\left|\cos\left(\frac{m}{4}\varphi\right)\right|^{n_2} + \left|\frac{1}{k}\sin\left(\frac{m}{4}\varphi\right)\right|^{n_2}\right)^{-\frac{1}{n_1}},$$

where a, k, and n_1 need to be provided in P, and n_2 should be specified in nval.

When simpver = 8, the simplified version 8 is selected:

$$r\left(\varphi\right) = a\left(\left|\cos\left(\frac{m}{4}\varphi\right)\right|^{n_1} + \left|\frac{1}{k}\sin\left(\frac{m}{4}\varphi\right)\right|^{n_1}\right)^{-\frac{1}{n_1}},$$

where a and k are parameters that need to be provided in P, and n_1 should be specified in nval.

When simpver = 9, the simplified version 9 is selected:

$$r\left(\varphi\right) = a\left(\left|\cos\left(\frac{m}{4}\varphi\right)\right|^{n_{1}} + \left|\frac{1}{k}\sin\left(\frac{m}{4}\varphi\right)\right|^{n_{1}}\right)^{-\frac{1}{n_{1}}},$$

where a, k, and n_1 need to be provided in P.

Value

The polar radii predicted by the original Gielis equation or one of its simplified versions.

Note

simpver here is different from that in the TGE function.

Author(s)

Peijian Shi <pjshi@njfu.edu.cn>, Johan Gielis <johan.gielis@uantwerpen.be>, Brady K. Quinn <Brady.Quinn@dfo-mpo.gc.ca>.

References

Gielis, J. (2003) A generic geometric transformation that unifies a wide range of natural and abstract shapes. *American Journal of Botany* 90, 333–338. doi:10.3732/ajb.90.3.333

Li, Y., Quinn, B.K., Gielis, J., Li, Y., Shi, P. (2022) Evidence that supertriangles exist in nature from the vertical projections of *Koelreuteria paniculata* fruit. *Symmetry* 14, 23. doi:10.3390/sym14010023

Shi, P., Gielis, J., Quinn, B.K., Niklas, K.J., Ratkowsky, D.A., Schrader, J., Ruan, H., Wang, L., Niinemets, Ü. (2022) 'biogeom': An R package for simulating and fitting natural shapes. *Annals of the New York Academy of Sciences* 1516, 123–134. doi:10.1111/nyas.14862

Shi, P., Ratkowsky, D.A., Gielis, J. (2020) The generalized Gielis geometric equation and its application. *Symmetry* 12, 645. doi:10.3390/sym12040645

Shi, P., Xu, Q., Sandhu, H.S., Gielis, J., Ding, Y., Li, H., Dong, X. (2015) Comparison of dwarf bamboos (*Indocalamus* sp.) leaf parameters to determine relationship between spatial density of plants and total leaf area per plant. *Ecology and Evolution* 5, 4578–4589. doi:10.1002/ece3.1728

See Also

areaGE, curveGE, DSGE, fitGE, SurfaceAreaSGE, TGE, VolumeSGE

Examples

graphics.off()

ginkgoseed

Description

The data consist of the boundary data of four side projections of *G. biloba* (Cultivar 'Fozhi') seeds sampled at Nanjing Forestry University campus on September 23, 2021.

Usage

data(ginkgoseed)

Details

In the data set, there are three columns of variables: Code, x, and y. Code saves the codes of individual fruit; x saves the x coordinates of the side projections of seeds in the Cartesian coordinate system (cm); and y saves the y coordinates of the side projections of seeds in the Cartesian coordinate system (cm).

References

Tian, F., Wang, Y., Sandhu, H.S., Gielis, J., Shi, P. (2020) Comparison of seed morphology of two ginkgo cultivars. *Journal of Forestry Research* 31, 751–758. doi:10.1007/s116760180770y

Examples

```
data(ginkgoseed)
```

n3.ini

<- 1

```
uni.C <- sort( unique(ginkgoseed$Code) )</pre>
ind <- 1
Data <- ginkgoseed[ginkgoseed$Code==uni.C[ind], ]</pre>
x0
      <- Data$x
      <- Data$y
γ0
Res1 <- adjdata(x0, y0, ub.np=2000, len.pro=1/20)</pre>
dev.new()
plot( Res1$x, Res1$y, asp=1, cex.lab=1.5, cex.axis=1.5, type="l",
      xlab=expression(italic("x")), ylab=expression(italic("y")) )
            <- Res1$x
  x1
            <- Res1$y
  y1
  x0.ini
            <- mean( x1 )
  y0.ini
            <- mean( y1 )
  theta.ini <- pi/4
  a.ini
            <- 1
  n1.ini
           <- seq(0.6, 1, by=0.1)
  n2.ini
            <- 1
```

graphics.off()

kр

Boundary Data of the Vertical Projections of Koelreuteria paniculata Fruit

Description

The data consist of the boundary data of four vertical projections of *K. paniculata* fruit sampled at Nanjing Forestry University campus in early October 2021.

Usage

data(kp)

Details

In the data set, there are three columns of variables: Code, x, and y. Code saves the codes of individual fruit; x saves the x coordinates of the vertical projections of fruit in the Cartesian coordinate system (cm); and y saves the y coordinates of the vertical projections of fruit in the Cartesian coordinate system (cm).

References

Li, Y., Quinn, B.K., Gielis, J., Li, Y., Shi, P. (2022) Evidence that supertriangles exist in nature from the vertical projections of *Koelreuteria paniculata* fruit. *Symmetry* 14, 23. doi:10.3390/sym14010023

Examples

```
data(kp)
uni.C <- sort( unique(kp$Code) )
ind <- 1
Data <- kp[kp$Code==uni.C[ind], ]
x0 <- Data$x
y0 <- Data$y
Res1 <- adjdata(x0, y0, ub.np=200, len.pro=1/20)</pre>
```

```
dev.new()
plot( Res1$x, Res1$y, asp=1, cex.lab=1.5, cex.axis=1.5, type="l",
      xlab=expression(italic("x")), ylab=expression(italic("y")) )
 х1
            <- Res1$x
 у1
            <- Res1$y
 x0.ini
            <- mean( x1 )
            <- mean( y1 )
 y0.ini
 theta.ini <- pi
            <- 0.9
 a.ini
            <- c(1, 4)
 n1.ini
            <- 5
 n2.ini
 n3.ini
            <- c(5, 10, 15)
 ini.val <- list(x0.ini, y0.ini, theta.ini,</pre>
                    a.ini, n1.ini, n2.ini, n3.ini)
 Res2 <- fitGE( GE, x=x1, y=y1, ini.val=ini.val,</pre>
                 m=3, simpver=5, nval=1, unit="cm",
                 par.list=FALSE, fig.opt=TRUE, angle=NULL,
                 control=list(reltol=1e-20, maxit=20000),
                 np=2000 )
```

graphics.off()

1mPE

Parameter Estimation for the Todd-Smart Equation

Description

ImPE is used to estimate the parameters of the Todd-Smart equation using the multiple linear regression.

Usage

```
lmPE(x, y, simpver = NULL, dev.angle = NULL, weights = NULL, fig.opt = TRUE,
    prog.opt = TRUE, xlim = NULL, ylim = NULL, unit = NULL, main = NULL,
    extr.method = "Shi")
```

Arguments

Х	the x coordinates of the edge of an egg's boundary.
У	the y coordinates of the edge of an egg's boundary.
simpver	an optional argument to use the simplified version of the original Todd-Smart equation.
dev.angle	the angle of deviation for the axis associated with the maximum distance be- tween two points on an egg's profile from the mid-line of the egg's profile.

weights	the weights for the multiple linear regression.
fig.opt	an optional argument to draw the observed and predicted egg's boundaries.
prog.opt	an optional argument to show the running progress for different values of dev.angle when dev.angle is not NULL.
xlim	the range of the x-axis over which to plot the Todd-Smart curve.
ylim	the range of the y-axis over which to plot the Todd-Smart curve.
unit	the units of the x -axis and the y -axis when showing the Todd-Smart curve.
main	the main title of the figure.
extr.method	an optional argument to fit the planar coordinate data of an egg's profile ex- tracted using different methods.

Details

There are two methods to obtain the major axis (i.e., the mid-line) of an egg's profile: the maximum distance method, and the longest axis adjustment method. In the first method, the straight line through two points forming the maximum distance on the egg's boundary is defined as the major axis. In the second method, we assume that there is an angle of deviation for the longest axis (i.e., the axis associated with the maximum distance between two points on an egg's profile) from the mid-line of the egg's profile. That is to say, the mid-line of an egg's profile is not the axis associated with the maximum distance between two points on the egg's profile. When dev.angle = NULL, the maximum distance method is used; when dev.angle is a numerical value or a numerical vector, the longest axis adjustment method is used. Here, the numerical value of dev. angle is not the angle of deviation for the major axis of an egg's profile from the x-axis, and instead it is the angle of deviation for the longest axis (associated with the maximum distance between two points on the egg's profile) from the mid-line of the egg's profile. It is better to take the option of extr.method = "Shi" for correctly fitting the planar coordinate data of an egg's profile extracted using the protocols proposed by Shi et al. (2015, 2018) (and also see Su et al. (2019)), while it is better to take the option of extr.method = "Biggins" for correctly fitting the planar coordinate data of an egg's profile extracted using the protocols proposed by Biggins et al. (2018). For the planar coordinate data extracted using the protocols of Biggins et al. (2018), there are fewer data points on the two ends of the mid-line than other parts of the egg's profile, which means that the range of the observed x values might be smaller than the actual egg's length. A group of equidistant x values are set along the mid-line, and each x value corresponds to two y values that are respectively located at the upper and lower sides of the egg's profile. Because of the difference in the curvature for differnt parts of the egg's profile, the equidistant x values cannot render the extracted data points on the egg's profile to be regular. For the planar coordinate data extracted using the protocols of Shi et al. (2015, 2018), the data points are more regularly distributed on the egg's profile (perimeter) than those of Biggins et al. (2018), although the x values of the data points along the mid-line are not equidistant.

Value

lm.tse	the fitted results of the multiple linear regression.
par	the estimates of the four model parameters in the Todd-Smart equation.
theta	the angle between the longest axis of an egg's profile (i.e., the axis associated with the maximum distance between two points on the egg's profile) and the x -axis.

epsilon	the optimal angle of deviation for the longest axis (associated with the maximum distance between two points on an egg's profile) from the mid-line of the egg's profile, when dev.angle is not NULL.
RSS.vector	the vector of residual sum of squares corresponding to dev. angle, when dev. angle is not NULL.
x.obs	the observed x coordinates.
y.obs	the observed y coordinates.
y.pred	the predicted y coordinates corresponding to the the observed x coordinates.
x.stand.obs	the observed x coordinates when the egg length is fixed to be 2 ranging from -1 to 1.
y.stand.obs	the observed y coordinates when the egg length is fixed to be 2 ranging from -1 to 1.
y.stand.pred	the predicted y coordinates corresponding to the the observed x coordinates, when the egg length is fixed to be 2 ranging from -1 to 1.
scan.length	the length of the egg's boundary. The default is the maximum distance between two points on the egg's boundary.
scan.width	the maximum width of the egg's boundary.
scan.area	the area of the egg's boundary.
<pre>scan.perimeter</pre>	the perimeter of the egg's boundary based on all data points on the egg's bound- ary.
RSS.scaled	the residual sum of squares between the observed and predicted y values for a scaled egg's profile whose length equals 2.
RSS	the residual sum of squares between the observed and predicted y values.
sample.size	the number of data points used in the numerical calculation.
RMSE.scaled	the root-mean-square errors between the observed and predicted y values for a scaled egg's profile whose length equals 2.
RMSE	the root-mean-square errors between the observed and predicted y values.

Note

theta is the calculated angle between the longest axis (i.e., the axis associated with the maximum distance between two points on an egg's profile) and the x-axis, and epsilon is the calculated angle of deviation for the longest axis from the mid-line of the egg's profile. This means that the angle between the mid-line and the x-axis is equal to theta + epsilon. Here, RSS, and RMSE are for the observed and predicted y coordinates of the egg's profile, not for those when the egg's length is scaled to 2. There are two figures when fig.opt = TRUE: (i) the observed and predicted egg's boundaries when the egg's length is scaled to 2, and (ii) the observed and predicted egg's boundaries at their actual scales.

Author(s)

Peijian Shi <pjshi@njfu.edu.cn>, Johan Gielis <johan.gielis@uantwerpen.be>, Brady K. Quinn <Brady.Quinn@dfo-mpo.gc.ca>.

1mPE

References

Biggins, J.D., Montgomeries, R.M., Thompson, J.E., Birkhead, T.R. (2022) Preston's universal formula for avian egg shape. *Ornithology* In press. doi:10.1093/ornithology/ukac028

Biggins, J.D., Thompson, J.E., Birkhead, T.R. (2018) Accurately quantifying the shape of birds' eggs. *Ecology and Evolution* 8, 9728–9738. doi:10.1002/ece3.4412

Nelder, J.A., Mead, R. (1965). A simplex method for function minimization. *Computer Journal* 7, 308–313. doi:10.1093/comjnl/7.4.308

Preston, F.W. (1953) The shapes of birds' eggs. The Auk 70, 160-182.

Shi, P., Gielis, J., Quinn, B.K., Niklas, K.J., Ratkowsky, D.A., Schrader, J., Ruan, H., Wang, L., Niinemets, Ü. (2022) 'biogeom': An R package for simulating and fitting natural shapes. *Annals of the New York Academy of Sciences* 1516, 123–134. doi:10.1111/nyas.14862

Shi, P., Huang, J., Hui, C., Grissino-Mayer, H.D., Tardif, J., Zhai, L., Wang, F., Li, B. (2015) Capturing spiral radial growth of conifers using the superellipse to model tree-ring geometric shape. *Frontiers in Plant Science* 6, 856. doi:10.3389/fpls.2015.00856

Shi, P., Niinemets, Ü., Hui, C., Niklas, K.J., Yu, X., Hölscher, D. (2020) Leaf bilateral symmetry and the scaling of the perimeter vs. the surface area in 15 vine species. *Forests* 11, 246. doi:10.3390/f11020246

Shi, P., Ratkowsky, D.A., Li, Y., Zhang, L., Lin, S., Gielis, J. (2018) General leaf-area geometric formula exists for plants - Evidence from the simplified Gielis equation. *Forests* 9, 714. doi:10.3390/ f9110714

Shi, P., Wang, L., Quinn, B.K., Gielis, J. (2022) A new program to estimate the parameters of Preston's equation, a general formula for describing the egg shape of birds. *Symmetry* Under review.

Su, J., Niklas, K.J., Huang, W., Yu, X., Yang, Y., Shi, P. (2019) Lamina shape does not correlate with lamina surface area: An analysis based on the simplified Gielis equation. *Global Ecology and Conservation* 19, e00666. doi:10.1016/j.gecco.2019.e00666

Todd, P.H., Smart, I.H.M. (1984) The shape of birds' eggs. *Journal of Theoretical Biology* 106, 239–243. doi:10.1016/00225193(84)900213

See Also

curveEPE, fitEPE, PE, TSE

Examples

```
data(eggs)
```

```
uni.C <- sort( unique(eggs$Code) )
ind <- 8
Data <- eggs[eggs$Code==uni.C[ind], ]
x0 <- Data$x
y0 <- Data$y
Res1 <- adjdata(x0, y0, ub.np=3000, len.pro=1/20)
x1 <- Res1$x
y1 <- Res1$y</pre>
```

```
dev.new()
plot( Res1$x, Res1$y, asp=1, cex.lab=1.5, cex.axis=1.5,
      xlab=expression(italic("x")), ylab=expression(italic("y")) )
 Res2 <- lmPE(x1, y1, simpver=NULL, dev.angle=NULL, unit="cm")</pre>
 summary( Res2$lm.tse )
 Res2$RMSE.scaled / 2
 if(FALSE){
   dev.new()
   xg1 <- seq(-1, 1, len=1000)
   yg1 <- TSE(P=Res2$par, x=xg1, simpver=NULL)</pre>
   xg2 <- seq(1, -1, len=1000)
   yg2 <- -TSE(P=Res2$par, x=xg2, simpver=NULL)</pre>
   plot(xg1, yg1, asp=1, type="l", col=2, ylim=c(-1,1), cex.lab=1.5, cex.axis=1.5,
      xlab=expression(italic(x)), ylab=expression(italic(y)))
   lines(xg2, yg2, col=4)
   dev.new()
   plot(Res2$x.obs, Res2$y.obs, asp=1, cex.lab=1.5, cex.axis=1.5,
      xlab=expression(italic(x)), ylab=expression(italic(y)), type="l")
   lines(Res2$x.obs, Res2$y.pred, col=2)
   dev.new()
   plot(Res2$x.stand.obs, Res2$y.stand.obs, asp=1, cex.lab=1.5, cex.axis=1.5,
      xlab=expression(italic(x)), ylab=expression(italic(y)), type="l")
   lines(Res2$x.stand.obs, Res2$y.stand.pred, col=2)
 }
 Res3 <- lmPE(x1, y1, simpver=NULL, dev.angle=seq(-0.05, 0.05, by=0.0001), unit="cm")
 summary( Res3$lm.tse )
 Res3$epsilon
 Res3$RMSE.scaled / 2
 Res4 <- lmPE(x1, y1, simpver=1, dev.angle=NULL, unit="cm")</pre>
 summary( Res4$lm.tse )
graphics.off()
```

```
1mTE
```

Parameter Estimation for the Troscianko Equation

Description

ImTE is used to estimate the parameters of the Troscianko equation using the multiple linear regression, and the estimated values of the parameters are only used as the initial values for using the fitETE function

72
lmTE

Usage

Arguments

x	the x coordinates of the edge of an egg's boundary.
У	the y coordinates of the edge of an egg's boundary.
dev.angle	the angle of deviation for the axis associated with the maximum distance be- tween two points on an egg's profile from the mid-line of the egg's profile.
weights	the weights for the multiple linear regression.
fig.opt	an optional argument to draw the observed and predicted egg's boundaries.
prog.opt	an optional argument to show the running progress for different values of dev.angle when dev.angle is not NULL.
xlim	the range of the x -axis over which to plot the Troscianko curve.
ylim	the range of the y -axis over which to plot the Troscianko curve.
unit	the units of the x-axis and the y-axis when showing the Troscianko curve.
main	the main title of the figure.

Details

The estimated values of the parameters using the *lmTE* function tend to be NOT globally optimal, and the values are only used as the initial values for using the fitETE function. There are two methods to obtain the major axis (i.e., the mid-line) of an egg's profile: the maximum distance method, and the longest axis adjustment method. In the first method, the straight line through two points forming the maximum distance on the egg's boundary is defined as the major axis. In the second method, we assume that there is an angle of deviation for the longest axis (i.e., the axis associated with the maximum distance between two points on an egg's profile) from the midline of the egg's profile. That is to say, the mid-line of an egg's profile is not the axis associated with the maximum distance between two points on the egg's profile. When dev.angle = NULL, the maximum distance method is used; when dev.angle is a numerical value or a numerical vector, the longest axis adjustment method is used. Here, the numerical value of dev.angle is not the angle of deviation for the major axis of an egg's profile from the x-axis, and instead it is the angle of deviation for the longest axis (associated with the maximum distance between two points on the egg's profile) from the mid-line of the egg's profile. The planar coordinate data of an egg's profile are extracted using the protocols proposed by Shi et al. (2015, 2018) (and also see Su et al. (2019)). For the planar coordinate data extracted using the protocols of Shi et al. (2015, 2018), the data points are more regularly distributed on the egg's profile (perimeter), although the x values of the data points along the mid-line are not equidistant.

Value

lm.te	the fitted results of the multiple linear regression.
par	the estimates of the four model parameters in the Troscianko equation.

theta	the angle between the longest axis of an egg's profile (i.e., the axis associated with the maximum distance between two points on the egg's profile) and the x -axis.
epsilon	the optimal angle of deviation for the longest axis (associated with the maximum distance between two points on an egg's profile) from the mid-line of the egg's profile, when dev.angle is not NULL.
RSS.vector	the vector of residual sum of squares corresponding to ${\tt dev.angle}$, when ${\tt dev.angle}$ is not NULL.
x.obs	the observed x coordinates.
y.obs	the observed y coordinates.
y.pred	the predicted y coordinates corresponding to the the observed x coordinates.
x.stand.obs	the observed x coordinates when the egg length is fixed to be 2 ranging from -1 to 1.
y.stand.obs	the observed y coordinates when the egg length is fixed to be 2 ranging from -1 to 1.
y.stand.pred	the predicted y coordinates corresponding to the the observed x coordinates, when the egg length is fixed to be 2 ranging from -1 to 1.
scan.length	the length of the egg's boundary. The default is the maximum distance between two points on the egg's boundary.
scan.width	the maximum width of the egg's boundary.
scan.area	the area of the egg's boundary.
<pre>scan.perimeter</pre>	the perimeter of the egg's boundary based on all data points on the egg's bound- ary.
RSS.scaled	the residual sum of squares between the observed and predicted y values for a scaled egg's profile whose length equals 2.
RSS	the residual sum of squares between the observed and predicted y values.
sample.size	the number of data points used in the numerical calculation.
RMSE.scaled	the root-mean-square errors between the observed and predicted y values for a scaled egg's profile whose length equals 2.
RMSE	the root-mean-square errors between the observed and predicted y values.

Note

theta is the calculated angle between the longest axis (i.e., the axis associated with the maximum distance between two points on an egg's profile) and the x-axis, and epsilon is the calculated angle of deviation for the longest axis from the mid-line of the egg's profile. This means that the angle between the mid-line and the x-axis is equal to theta + epsilon. Here, RSS, and RMSE are for the observed and predicted y coordinates of the egg's profile, not for those when the egg's length is scaled to 2. There are two figures when fig.opt = TRUE: (i) the observed and predicted egg's boundaries when the egg's length is scaled to 2, and (ii) the observed and predicted egg's boundaries at their actual scales.

lmTE

Author(s)

Peijian Shi <pjshi@njfu.edu.cn>, Johan Gielis <johan.gielis@uantwerpen.be>, Brady K. Quinn <Brady.Quinn@dfo-mpo.gc.ca>.

References

Biggins, J.D., Montgomeries, R.M., Thompson, J.E., Birkhead, T.R. (2022) Preston's universal formula for avian egg shape. *Ornithology* In press. doi:10.1093/ornithology/ukac028

Biggins, J.D., Thompson, J.E., Birkhead, T.R. (2018) Accurately quantifying the shape of birds' eggs. *Ecology and Evolution* 8, 9728–9738. doi:10.1002/ece3.4412

Nelder, J.A., Mead, R. (1965). A simplex method for function minimization. *Computer Journal* 7, 308–313. doi:10.1093/comjnl/7.4.308

Shi, P., Huang, J., Hui, C., Grissino-Mayer, H.D., Tardif, J., Zhai, L., Wang, F., Li, B. (2015) Capturing spiral radial growth of conifers using the superellipse to model tree-ring geometric shape. *Frontiers in Plant Science* 6, 856. doi:10.3389/fpls.2015.00856

Shi, P., Ratkowsky, D.A., Li, Y., Zhang, L., Lin, S., Gielis, J. (2018) General leaf-area geometric formula exists for plants - Evidence from the simplified Gielis equation. *Forests* 9, 714. doi:10.3390/ f9110714

Shi, P., Wang, L., Quinn, B.K., Gielis, J. (2022) A new program to estimate the parameters of Preston's equation, a general formula for describing the egg shape of birds. *Symmetry* Under review.

Su, J., Niklas, K.J., Huang, W., Yu, X., Yang, Y., Shi, P. (2019) Lamina shape does not correlate with lamina surface area: An analysis based on the simplified Gielis equation. *Global Ecology and Conservation* 19, e00666. doi:10.1016/j.gecco.2019.e00666

Troscianko, J. (2014). A simple tool for calculating egg shape, volume and surface area from digital images. *Ibis*, 156, 874–878. doi:10.1111/ibi.12177

See Also

fitETE, TE

data(eggs)

Examples

```
Res2 <- lmTE(x1, y1, dev.angle=NULL, unit="cm")</pre>
summary( Res2$lm.te )
Res2$RMSE.scaled / 2
if(FALSE){
  dev.new()
  xg1 <- seq(-1, 1, len=1000)</pre>
 yg1 <- TE(P=Res2$par, x=xg1)</pre>
 xg2 <- seq(1, -1, len=1000)
 yg2 <- -TE(P=Res2$par, x=xg2)</pre>
 plot(xg1, yg1, asp=1, type="1", col=2, ylim=c(-1,1), cex.lab=1.5, cex.axis=1.5,
    xlab=expression(italic(x)), ylab=expression(italic(y)))
  lines(xg2, yg2, col=4)
  dev.new()
 plot(Res2$x.obs, Res2$y.obs, asp=1, cex.lab=1.5, cex.axis=1.5,
    xlab=expression(italic(x)), ylab=expression(italic(y)), type="l")
  lines(Res2$x.obs, Res2$y.pred, col=2)
  dev.new()
 plot(Res2$x.stand.obs, Res2$y.stand.obs, asp=1, cex.lab=1.5, cex.axis=1.5,
    xlab=expression(italic(x)), ylab=expression(italic(y)), type="l")
  lines(Res2$x.stand.obs, Res2$y.stand.pred, col=2)
}
Res3 <- lmTE(x1, y1, dev.angle=seq(-0.05, 0.05, by=0.0001), unit="cm")
summary( Res3$lm.te )
Res3$epsilon
Res3$RMSE.scaled / 2
```

graphics.off()

MbetaE

Modified Beta Equation

Description

MbetaE is used to calculate y values at given x values using the modified beta equation or one of its simplified versions.

Usage

MbetaE(P, x, simpver = 1)

76

MbetaE

Arguments

Р	the parameters of the modified beta equation or one of its simplified versions.
x	the given x values.
simpver	an optional argument to use the simplified version of the modified beta equation.

Details

When simpver = NULL, the modified beta equation is selected:

$$\begin{aligned} &\text{if } x \in (x_{\min}, x_{\max}), \\ y = y_{\text{opt}} \left[\left(\frac{x_{\max} - x}{x_{\max} - x_{\text{opt}}} \right) \left(\frac{x - x_{\min}}{x_{\text{opt}} - x_{\min}} \right)^{\frac{x_{\text{opt}} - x_{\min}}{x_{\max} - x_{\text{opt}}}} \right]^{\delta}; \\ &\text{if } x \notin (x_{\min}, x_{\max}), \\ &y = 0. \end{aligned}$$

Here, x and y represent the independent and dependent variables, respectively; y_{opt} , x_{opt} , x_{\min} , and x_{\max} are constants to be estimated; y_{opt} represents the maximum y, and x_{opt} is the x value associated with the maximum y (i.e., y_{opt}); and x_{\min} and x_{\max} represent the lower and upper intersections between the curve and the x-axis. y is defined as 0 when $x < x_{\min}$ or $x > x_{\max}$. There are five elements in P, representing the values of y_{opt} , x_{opt} , x_{\min} , x_{\max} , and δ , respectively.

When simpver = 1, the simplified version 1 is selected:

$$\begin{aligned} & \text{if } x \in (0, x_{\max}), \\ y &= y_{\text{opt}} \left[\left(\frac{x_{\max} - x}{x_{\max} - x_{\text{opt}}} \right) \left(\frac{x}{x_{\text{opt}}} \right)^{\frac{x_{\text{opt}}}{x_{\max} - x_{\text{opt}}}} \right]^{\delta} \\ & \text{if } x \notin (0, x_{\max}), \\ & y = 0. \end{aligned}$$

There are four elements in P, representing the values of y_{opt} , x_{opt} , x_{max} , and δ , respectively. When simpver = 2, the simplified version 2 is selected:

$$\begin{split} &\text{if } x \in (x_{\min}, x_{\max}), \\ &y = y_{\text{opt}} \left(\frac{x_{\max} - x}{x_{\max} - x_{\text{opt}}} \right) \left(\frac{x - x_{\min}}{x_{\text{opt}} - x_{\min}} \right)^{\frac{x_{\text{opt}} - x_{\min}}{x_{\max} - x_{\text{opt}}}}; \\ &\text{if } x \notin (x_{\min}, x_{\max}), \\ &y = 0. \end{split}$$

There are four elements in P, representing the values of y_{opt} , x_{opt} , x_{\min} , and x_{\max} , respectively. When simpver = 3, the simplified version 3 is selected:

if
$$x \in (0, x_{\max})$$
,

MbetaE

$$y = y_{\text{opt}} \left(\frac{x_{\text{max}} - x}{x_{\text{max}} - x_{\text{opt}}} \right) \left(\frac{x}{x_{\text{opt}}} \right)^{\frac{x_{\text{opt}}}{x_{\text{max}} - x_{\text{opt}}}};$$

if $x \notin (0, x_{\text{max}}),$
 $y = 0.$

There are three elements in P, representing the values of y_{opt} , x_{opt} , and x_{max} , respectively.

Value

The y values predicted by the modified beta equation or one of its simplified versions.

Note

We have added a parameter δ in the original beta equation (i.e., simpver = 2) to increase the flexibility for data fitting.

Author(s)

Peijian Shi <pjshi@njfu.edu.cn>, Johan Gielis <johan.gielis@uantwerpen.be>, Brady K. Quinn <Brady.Quinn@dfo-mpo.gc.ca>.

References

Shi, P., Fan, M., Ratkowsky, D.A., Huang, J., Wu, H., Chen, L., Fang, S., Zhang, C. (2017) Comparison of two ontogenetic growth equations for animals and plants. *Ecological Modelling* 349, 1–10. doi:10.1016/j.ecolmodel.2017.01.012

Shi, P., Gielis, J., Quinn, B.K., Niklas, K.J., Ratkowsky, D.A., Schrader, J., Ruan, H., Wang, L., Niinemets, Ü. (2022) 'biogeom': An R package for simulating and fitting natural shapes. *Annals of the New York Academy of Sciences* 1516, 123–134. doi:10.1111/nyas.14862

See Also

areaovate, curveovate, fitovate, MBriereE, MLRFE, sigmoid

Examples

graphics.off()

MBriereE

Description

MBriereE is used to calculate y values at given x values using the modified Brière equation or one of its simplified versions.

Usage

MBriereE(P, x, simpver = 1)

Arguments

Р	the parameters of the modified Brière equation or one of its simplified versions.
x	the given x values.
simpver	an optional argument to use the simplified version of the modified Brière equa- tion.

Details

When simpver = NULL, the modified Brière equation is selected:

if
$$x \in (x_{\min}, x_{\max})$$
,
 $y = a \left| x(x - x_{\min})(x_{\max} - x)^{1/m} \right|^{\delta}$;
if $x \notin (x_{\min}, x_{\max})$,
 $y = 0$.

Here, x and y represent the independent and dependent variables, respectively; and a, m, x_{\min} , and x_{\max} are constants to be estimated, where x_{\min} and x_{\max} represents the lower and upper intersections between the curve and the x-axis. y is defined as 0 when $x < x_{\min}$ or $x > x_{\max}$. There are five elements in P, representing the values of a, m, x_{\min}, x_{\max} , and δ , respectively.

When simpver = 1, the simplified version 1 is selected:

if
$$x \in (0, x_{\max})$$
,
 $y = a \left| x^2 (x_{\max} - x)^{1/m} \right|^{\delta}$;
if $x \notin (0, x_{\max})$,
 $y = 0$.

There are four elements in P, representing the values of a, m, x_{max} , and δ , respectively. When simpver = 2, the simplified version 2 is selected:

if
$$x \in (x_{\min}, x_{\max})$$
,

$$y = ax(x - x_{\min})(x_{\max} - x)^{1/m};$$

if $x \notin (x_{\min}, x_{\max}),$
 $y = 0.$

There are four elements in P representing the values of a, m, x_{\min} , and x_{\max} , respectively. When simpver = 3, the simplified version 3 is selected:

if
$$x \in (0, x_{\max})$$
,
 $y = ax^2(x_{\max} - x)^{1/m}$;
if $x \notin (0, x_{\max})$,
 $y = 0$.

There are three elements in P representing the values of a, m, and x_{max} , respectively.

Value

The y values predicted by the modified Brière equation or one of its simplified versions.

Note

We have added a parameter δ in the original Brière equation (i.e., simpver = 2) to increase the flexibility for data fitting.

Author(s)

Peijian Shi <pjshi@njfu.edu.cn>, Johan Gielis <johan.gielis@uantwerpen.be>, Brady K. Quinn <Brady.Quinn@dfo-mpo.gc.ca>.

References

Brière, J.-F., Pracros, P, Le Roux, A.-Y., Pierre, J.-S. (1999) A novel rate model of temperaturedependent development for arthropods. *Environmental Entomology* 28, 22–29. doi:10.1093/ee/ 28.1.22

Cao, L., Shi, P., Li, L., Chen, G. (2019) A new flexible sigmoidal growth model. *Symmetry* 11, 204. doi:10.3390/sym11020204

Jin, J., Quinn, B.K., Shi, P. (2022) The modified Brière equation and its applications. *Plants* 11, 1769. doi:10.3390/plants11131769

Shi, P., Gielis, J., Quinn, B.K., Niklas, K.J., Ratkowsky, D.A., Schrader, J., Ruan, H., Wang, L., Niinemets, Ü. (2022) 'biogeom': An R package for simulating and fitting natural shapes. *Annals of the New York Academy of Sciences* 1516, 123–134. doi:10.1111/nyas.14862

See Also

areaovate, curveovate, fitovate, MbetaE, MLRFE, sigmoid

MLRFE

Examples

graphics.off()

MLRFE

Modified Lobry-Rosso-Flandrois (LRF) Equation

Description

MLRFE is used to calculate y values at given x values using the modified LRF equation or one of its simplified versions.

Usage

MLRFE(P, x, simpver = 1)

Arguments

Р	the parameters of the modified LRF equation or one of its simplified versions.
x	the given x values.
simpver	an optional argument to use the simplified version of the modified LRF equation.

Details

When simpver = NULL, the modified LRF equation is selected:

$$\begin{split} & \text{if } x \in \left(x_{\min}, \frac{x_{\min} + x_{\max}}{2}\right), \\ y = y_{\text{opt}} \left\{ \frac{\left(x - x_{\min}\right)\left(x - x_{\max}\right)^2}{\left(x_{\max} - x_{\text{opt}}\right)\left[\left(x_{\max} - x_{\text{opt}}\right) - \left(x_{\min} - x_{\text{opt}}\right)\left(x_{\text{opt}} + x_{\max} - 2x\right)\right]}\right\}^{\delta}; \\ & \text{if } x \in \left[\frac{x_{\min} + x_{\max}}{2}, x_{\max}\right), \\ y = y_{\text{opt}} \left\{ \frac{\left(x - x_{\max}\right)\left(x - x_{\min}\right)^2}{\left(x_{\text{opt}} - x_{\min}\right)\left[\left(x_{\text{opt}} - x_{\min}\right)\left(x - x_{\text{opt}}\right) - \left(x_{\text{opt}} - x_{\min}\right)\left(x_{\text{opt}} + x_{\min} - 2x\right)\right]}\right\}^{\delta}; \\ & \text{if } x \notin (x_{\min}, x_{\max}), \\ & y = 0. \end{split}$$

Here, x and y represent the independent and dependent variables, respectively; y_{opt} , x_{opt} , x_{\min} , and x_{\max} are constants to be estimated; y_{opt} represents the maximum y, and x_{opt} is the x value associated with the maximum y (i.e., y_{opt}); and x_{\min} and x_{\max} represents the lower and upper intersections between the curve and the x-axis. There are five elements in P, representing the values of y_{opt} , x_{\min} , x_{\max} , and δ , respectively.

When simpver = 1, the simplified version 1 is selected:

$$\begin{split} & \text{if } x \in \left(0, \frac{x_{\max}}{2}\right), \\ y = y_{\text{opt}} \left\{ \frac{x \left(x - x_{\max}\right)^2}{\left(x_{\max} - x_{\text{opt}}\right) \left[\left(x_{\max} - x_{\text{opt}}\right) \left(x - x_{\text{opt}}\right) + x_{\text{opt}} \left(x_{\text{opt}} + x_{\max} - 2x\right)\right]} \right\}^{\delta}; \\ & \text{if } x \in \left[\frac{x_{\max}}{2}, x_{\max}\right), \\ y = y_{\text{opt}} \left\{ \frac{\left(x - x_{\max}\right) x^2}{x_{\text{opt}} \left[x_{\text{opt}} \left(x - x_{\text{opt}}\right) - \left(x_{\text{opt}} - x_{\max}\right) \left(x_{\text{opt}} - 2x\right)\right]} \right\}^{\delta}; \\ & \text{if } x \notin (0, x_{\max}), \\ & y = 0. \end{split}$$

There are four elements in P, representing the values of y_{opt} , x_{opt} , x_{max} , and δ , respectively. When simpver = 2, the simplified version 2 is selected:

$$\begin{aligned} & \text{if } x \in \left(x_{\min}, \frac{x_{\min} + x_{\max}}{2}\right), \\ y &= \frac{y_{\text{opt}} \left(x - x_{\min}\right) \left(x - x_{\max}\right)^2}{\left(x_{\max} - x_{\text{opt}}\right) \left[\left(x_{\max} - x_{\text{opt}}\right) \left(x - x_{\text{opt}}\right) - \left(x_{\min} - x_{\text{opt}}\right) \left(x_{\text{opt}} + x_{\max} - 2x\right)\right]}; \\ & \text{if } x \in \left[\frac{x_{\min} + x_{\max}}{2}, x_{\max}\right), \\ y &= \frac{y_{\text{opt}} \left(x - x_{\max}\right) \left(x - x_{\min}\right)^2}{\left(x_{\text{opt}} - x_{\min}\right) \left[\left(x_{\text{opt}} - x_{\min}\right) \left(x - x_{\text{opt}}\right) - \left(x_{\text{opt}} - x_{\max}\right) \left(x_{\text{opt}} + x_{\min} - 2x\right)\right]}; \\ & \text{if } x \notin (x_{\min}, x_{\max}), \\ & y = 0. \end{aligned}$$

There are four elements in P, representing the values of y_{opt} , x_{opt} , x_{\min} , and x_{\max} , respectively. When simpver = 3, the simplified version 3 is selected:

$$\begin{split} & \text{if } x \in \left(0, \frac{x_{\max}}{2}\right), \\ y = \frac{y_{\text{opt}} x \left(x - x_{\max}\right)^2}{\left(x_{\max} - x_{\text{opt}}\right) \left[\left(x_{\max} - x_{\text{opt}}\right) \left(x - x_{\text{opt}}\right) + x_{\text{opt}} \left(x_{\text{opt}} + x_{\max} - 2x\right)\right]}; \\ & \text{if } x \in \left[\frac{x_{\max}}{2}, x_{\max}\right), \\ y = \frac{y_{\text{opt}} \left(x - x_{\max}\right) x^2}{x_{\text{opt}} \left[x_{\text{opt}} \left(x - x_{\text{opt}}\right) - \left(x_{\text{opt}} - x_{\max}\right) \left(x_{\text{opt}} - 2x\right)\right]}; \\ & \text{if } x \notin (0, x_{\max}), \\ & y = 0. \end{split}$$

There are three elements in P, representing the values of y_{opt} , x_{opt} , and x_{max} , respectively.

Neocinnamomum

Value

The y values predicted by the modified LRF equation or one of its simplified versions.

Note

We have added n parameter δ in the original LRF equation (i.e., simpver = 2) to increase the flexibility for data fitting.

Author(s)

Peijian Shi <pjshi@njfu.edu.cn>, Johan Gielis <johan.gielis@uantwerpen.be>, Brady K. Quinn <Brady.Quinn@dfo-mpo.gc.ca>.

References

Shi, P., Fan, M., Ratkowsky, D.A., Huang, J., Wu, H., Chen, L., Fang, S., Zhang, C. (2017) Comparison of two ontogenetic growth equations for animals and plants. *Ecological Modelling* 349, 1–10. doi:10.1016/j.ecolmodel.2017.01.012

Shi, P., Gielis, J., Quinn, B.K., Niklas, K.J., Ratkowsky, D.A., Schrader, J., Ruan, H., Wang, L., Niinemets, Ü. (2022) 'biogeom': An R package for simulating and fitting natural shapes. *Annals of the New York Academy of Sciences* 1516, 123–134. doi:10.1111/nyas.14862

See Also

areaovate, curveovate, fitovate, MbetaE, MBriereE, sigmoid

Examples

graphics.off()

Neocinnamomum Leaf Boundary Data of Seven Species of Neocinnamomum

Description

The data consist of the leaf boundary data of seven species of Neocinnamomum.

Usage

data(Neocinnamomum)

Details

In the data set, there are four columns of variables: Code, LatinName, x, and y. Code saves the codes of individual leaves; LatinName saves the Latin names of the seven species of *Neocinnamomum*; x saves the x coordinates of the leaf boundary in the Cartesian coordinate system (cm); and y saves the y coordinates of the leaf boundary in the Cartesian coordinate system (cm).

References

Shi, P., Fan, M., Ratkowsky, D.A., Huang, J., Wu, H., Chen, L., Fang, S., Zhang, C. (2017) Comparison of two ontogenetic growth equations for animals and plants. *Ecological Modelling* 349, 1–10. doi:10.1016/j.ecolmodel.2017.01.012

Shi, P., Yu, K., Niklas, K.J., Schrader, J., Song, Y., Zhu, R., Li, Y., Wei, H., Ratkowsky, D.A. (2021) A general model for describing the ovate leaf shape. *Symmetry*, 13, 1524. doi:10.3390/sym13081524

Examples

```
data(Neocinnamomum)
```

```
uni.C <- sort( unique(Neocinnamomum$Code) )</pre>
ind <- 2
Data <- Neocinnamomum[Neocinnamomum$Code==uni.C[ind], ]</pre>
x0
      <- Data$x
y0
      <- Data$y
length(x0)
Res1 <- adjdata(x0, y0, ub.np=200, len.pro=1/20)
      <- Res1$x
x1
у1
      <- Res1$y
length(x1)
dev.new()
plot( Res1$x, Res1$y, asp=1, cex.lab=1.5, cex.axis=1.5,
      xlab=expression(italic("x")), ylab=expression(italic("y")) )
```

```
graphics.off()
```

NRGE

The Narushin-Romanov-Griffin Equation (NRGE)

Description

NRGE is used to calculate y values at given x values using the Narushin-Romanov-Griffin equation (NRGE).

Usage

NRGE(P, x)

NRGE

Arguments

Р	the four parameters (i.e., A, B, C, and D) of the Narushin-Romanov-Griffin
	equation.
х	the given x values.

Details

The Narushin-Romanov-Griffin equation (Narushin et al., 2021) has four parameters in total, among which three parameters have clear geometric meanings.

$$f_1(x) = \frac{B}{2} \sqrt{\frac{A^2 - 4x^2}{A^2 + 8Cx + 4C^2}},$$

$$E = \frac{\sqrt{5.5A^2 + 11AC + 4C^2} \cdot (\sqrt{3}AB - 2D\sqrt{A^2 + 2AC + 4C^2})}{\sqrt{3}AB (\sqrt{5.5A^2 + 11AC + 4C^2} - 2\sqrt{A^2 + 2AC + 4C^2})},$$

$$f_2(x) = \sqrt{\frac{A (A^2 + 8Cx + 4C^2)}{2(A - 2C)x^2 + (A^2 + 8AC - 4C^2)x + 2AC^2 + A^2C + A^3}},$$

$$f(x) = \pm f_1(x) \cdot \{1 - E \cdot [1 - f_2(x)]\}.$$

Here, f(x) is the Narushin-Romanov-Griffin equation, which is used to predict the y coordinates at the given x coordinates; A represents the egg's length; B represents the egg's maximum breadth; C is a parameter to be estimated, and it can be expressed as (A - B)/(2q), where q is a parameter to be estimated; D represents the egg's breadth associated with (3/4)L from the egg base (to the egg tip) on the egg length axis (which can be regarded as the major axis of the egg shape).

Value

The y values predicted by the Narushin-Romanov-Griffin equation.

Note

Here, parameter C is a parameter to be estimated, which can be directly calculated numerically based on the egg-shape data.

Author(s)

Peijian Shi <pjshi@njfu.edu.cn>, Johan Gielis <johan.gielis@uantwerpen.be>, Brady K. Quinn <Brady.Quinn@dfo-mpo.gc.ca>.

References

Narushin, V.G., Romanov, M.N., Griffin, D.K. (2021) Egg and math: introducing a universal formula for egg shape. *Annals of the New York Academy of Sciences* 1505, 169–177. doi:10.1111/ nyas.14680

Shi, P., Gielis, J., Niklas, K.J. (2022) Comparison of a universal (but complex) model for avian egg shape with a simpler model. *Annals of the New York Academy of Sciences* 1514, 34–42. doi:10.1111/nyas.14799

Tian, F., Wang, Y., Sandhu, H.S., Gielis, J., Shi, P. (2020) Comparison of seed morphology of two ginkgo cultivars. *Journal of Forestry Research* 31, 751–758. doi:10.1007/s116760180770y

See Also

curveNRGE, fitNRGE, SurfaceAreaNRGE, VolumeNRGE

Examples

PE	Calculation of the Abscissa, Ordinate and Distance From the Origin
	For an Arbitrary Point on the Preston Curve

Description

PE is used to calculate the abscissa, ordinate and distance from the origin for an arbitrary point on the Preston curve that was generated by the original Preston equation or one of its simplified versions at a given angle.

Usage

PE(P, zeta, simpver = NULL)

Arguments

Р	the parameters of the original Preston equation or one of its simplified versions.
zeta	the angle(s) used in the Preston equation.
simpver	an optional argument to use the simplified version of the original Preston equa- tion.

Details

When simpver = NULL, the original Preston equation is selected:

 $y = a \sin \zeta,$

 $x = b \cos \zeta \left(1 + c_1 \sin \zeta + c_2 \sin^2 \zeta + c_3 \sin^3 \zeta \right),$

$$r = \sqrt{x^2 + y^2}$$

where x and y represent the abscissa and ordinate of an arbitrary point on the Preston curve corresponding to an angle ζ ; r represents the distance of the point from the origin; a, b, c_1 , c_2 , and c_3 are parameters to be estimated.

When simpver = 1, the simplified version 1 is selected:

$$y = a \sin \zeta,$$

$$x = b \cos \zeta \left(1 + c_1 \sin \zeta + c_2 \sin^2 \zeta \right),$$

$$r = \sqrt{x^2 + y^2},$$

where x and y represent the abscissa and ordinate of an arbitrary point on the Preston curve corresponding to an angle ζ ; r represents the distance of the point from the origin; a, b, c_1 , and c_2 are parameters to be estimated.

When simpver = 2, the simplified version 2 is selected:

$$y = a \sin \zeta,$$

$$x = b \cos \zeta \left(1 + c_1 \sin \zeta\right),$$

$$r = \sqrt{x^2 + y^2},$$

where x and y represent the abscissa and ordinate of an arbitrary point on the Preston curve corresponding to an angle ζ ; r represents the distance of the point from the origin; a, b, and c_1 are parameters to be estimated.

When simpver = 3, the simplified version 3 is selected:

$$y = a \sin \zeta,$$

$$x = b \cos \zeta \left(1 + c_2 \sin^2 \zeta\right),$$

$$r = \sqrt{x^2 + y^2},$$

where x and y represent the abscissa and ordinate of an arbitrary point on the Preston curve corresponding to an angle ζ ; r represents the distance of the point from the origin; a, b, and c_2 are parameters to be estimated.

Value

х	the abscissa(s) of the Preston curve corresponding to the given angle(s).
У	the ordinate(s) of the Preston curve corresponding to the given angle(s).
r	the distance(s) of the Preston curve corresponding to the given angle(s) from the
	origin.

Note

 ζ is NOT the polar angle corresponding to r, i.e.,

$$y \neq r \sin \zeta,$$

$$x \neq r \cos \zeta.$$

Let φ be the polar angle corresponding to r. We have:

$$\zeta = \arcsin\frac{r\sin\varphi}{a}.$$

Peijian Shi <pjshi@njfu.edu.cn>, Johan Gielis <johan.gielis@uantwerpen.be>, Brady K. Quinn <Brady.Quinn@dfo-mpo.gc.ca>.

References

Biggins, J.D., Montgomeries, R.M., Thompson, J.E., Birkhead, T.R. (2022) Preston's universal formula for avian egg shape. *Ornithology* In press. doi:10.1093/ornithology/ukac028

Biggins, J.D., Thompson, J.E., Birkhead, T.R. (2018) Accurately quantifying the shape of birds' eggs. *Ecology and Evolution* 8, 9728–9738. doi:10.1002/ece3.4412

Preston, F.W. (1953) The shapes of birds' eggs. The Auk 70, 160–182.

Shi, P., Gielis, J., Quinn, B.K., Niklas, K.J., Ratkowsky, D.A., Schrader, J., Ruan, H., Wang, L., Niinemets, Ü. (2022) 'biogeom': An R package for simulating and fitting natural shapes. *Annals of the New York Academy of Sciences* 1516, 123–134. doi:10.1111/nyas.14862

Todd, P.H., Smart, I.H.M. (1984) The shape of birds' eggs. *Journal of Theoretical Biology* 106, 239–243. doi:10.1016/00225193(84)900213

See Also

EPE, 1mPE, TSE

Examples

shoots

Description

The height data of four species of bamboo at Nanjing Forestry University campus in 2016.

Usage

data(shoots)

Details

In the data set, there are four columns of variables: Code, LatinName, x, and y. Code saves the number codes of different bamboo species; LatinName saves the Latin names of different bamboo species; x saves the investigation times (days from a specific starting time of growth, and where every bamboo has a different starting time of growth); and y saves the measured aboveground height values (cm).

Code = 1 represents *Phyllostachys iridescens*, and the starting time (namely time = \emptyset) was defined as 12:00, 3rd April, 2016;

Code = 2 represents *Phyllostachys mannii*, and the starting time (namely time = 0) was defined as 12:00, 4th April, 2016;

Code = 3 represents *Pleioblastus maculatus*, and the starting time (namely time = \emptyset) was defined as 12:00, 29th April, 2016;

Code = 4 represents *Sinobambusa tootsik*, and the starting time (namely time = 0) was defined as 12:00, 18th April, 2016.

References

Shi, P., Fan, M., Ratkowsky, D.A., Huang, J., Wu, H., Chen, L., Fang, S., Zhang, C. (2017) Comparison of two ontogenetic growth equations for animals and plants. *Ecological Modelling* 349, 1–10. doi:10.1016/j.ecolmodel.2017.01.012

Examples

```
data(shoots)
attach(shoots)
# Choose a species
# 1: Phyllostachys iridescens; 2: Phyllostachys mannii;
# 3: Pleioblastus maculatus; 4: Sinobambusa tootsik
ind <- 4
x1 <- x[Code == ind]
y1 <- y[Code == ind]
dev.new()
plot(x1, y1, cex=1.5, cex.lab=1.5, cex.axis=1.5, xlab="Time (days)", ylab="Height (cm)")</pre>
```

graphics.off()

sigmoid

Sigmoid Growth Equation

Description

sigmoid is used to calculate the y values (e.g., biomass, height, body length, and so on) at given investigation times.

Usage

```
sigmoid(expr, P, x, simpver = 1, subdivisions = 100L,
    rel.tol = .Machine$double.eps^0.25,
    abs.tol = rel.tol, stop.on.error = TRUE,
    keep.xy = FALSE, aux = NULL)
```

Arguments

expr	a performance equation or one of its simplified versions.
Ρ	the parameters of the performance equation or one of its simplified versions.
х	the given investigation times.
simpver	an optional argument to use the simplfied version of the performance equation.
subdivisions	please see the arguments for the integrate function in package stats.
rel.tol	please see the arguments for the integrate function in package stats.
abs.tol	please see the arguments for the integrate function in package stats.
stop.on.error	please see the arguments for the integrate function in package stats.
keep.xy	please see the arguments for the integrate function in package stats.
aux	please see the arguments for the integrate function in package stats.

Details

The performance equations denote MbetaE, MBriereE, MLRFE, and their simplified versions. The arguments of P and simpver should correspond to expr (i.e., MbetaE or MBriereE or MLRFE). The sigmoid curve is the integral of the performance equation or one of its simplified versions.

sigmoid

Value

The y values (i.e., biomass, height, body length, and so on) at given investigation times. The growth euqation is actually an integral of the performance equation or one of its simplified versions.

Note

Here, the user can define other performance equations, but new equations or their simplified versions should include the lower and upper thresholds in the x-axis corresponding to y = 0, whose indices of the parameters in P should be the same as those in Mbeta or MBriere or MLRF.

Author(s)

Peijian Shi <pjshi@njfu.edu.cn>, Johan Gielis <johan.gielis@uantwerpen.be>, Brady K. Quinn <Brady.Quinn@dfo-mpo.gc.ca>.

References

Jin, J., Quinn, B.K., Shi, P. (2022) The modified Brière equation and its applications. *Plants* 11, 1769. doi:10.3390/plants11131769

Shi, P., Fan, M., Ratkowsky, D.A., Huang, J., Wu, H., Chen, L., Fang, S., Zhang, C. (2017) Comparison of two ontogenetic growth equations for animals and plants. *Ecological Modelling* 349, 1–10. doi:10.1016/j.ecolmodel.2017.01.012

Shi, P., Gielis, J., Quinn, B.K., Niklas, K.J., Ratkowsky, D.A., Schrader, J., Ruan, H., Wang, L., Niinemets, Ü. (2022) 'biogeom': An R package for simulating and fitting natural shapes. *Annals of the New York Academy of Sciences* 1516, 123–134. doi:10.1111/nyas.14862

See Also

fitsigmoid, MbetaE, MBriereE, MLRFE

Examples

starfish

Description

The data consist of the boundary data of eight sea stars from five species.

Usage

```
data(starfish)
```

Details

In the data set, there are four columns of variables: Code, LatinName, x, and y. Code saves the codes of individual sea stars; LatinName saves the Latin names of the eight sea stars; x saves the x coordinates of the eight sea stars in the Cartesian coordinate system (cm); and y saves the y coordinates of the eight sea stars in the Cartesian coordinate system (cm). In Code, codes 1-9 represent Anthenoides tenuis, Culcita schmideliana sample 1, Culcita schmideliana sample 2, Culcita schmideliana sample 3, Stellaster equestris, Tosia australis, Tosia magnifica sample 1, and Tosia magnifica sample 2, respectively. See Table A1 published in Shi et al. (2020).

References

Shi, P., Ratkowsky, D.A., Gielis, J. (2020) The generalized Gielis geometric equation and its application. *Symmetry* 12, 645. doi:10.3390/sym12040645

Examples

```
data(starfish)
uni.C <- sort( unique(starfish$Code) )</pre>
ind <- 2
Data <- starfish[starfish$Code==uni.C[ind], ]</pre>
x0
      <- Data$x
y0
      <- Data$y
dev.new()
plot( x0, y0, asp=1, type="l", cex.lab=1.5, cex.axis=1.5,
      xlab=expression(italic("x")), ylab=expression(italic("y")) )
length(x0)
Res1 <- adjdata(x0, y0, ub.np=400, times=1.2, len.pro=1/20)</pre>
х1
     <- Res1$x
у1
    <- Res1$y
dev.new()
plot( x1, y1, asp=1, type="1", cex.lab=1.5, cex.axis=1.5,
      xlab=expression(italic("x")), ylab=expression(italic("y")) )
length(x1)
```

graphics.off()

SurfaceAreaEPE

Calculation of the Surface Area of An Egg Based on the Explicit Preston Equation

Description

SurfaceAreaEPE is used to calculate the surface area of an egg that follows the explicit Preston equation.

Usage

SurfaceAreaEPE(P, simpver = NULL, subdivisions = 100L, rel.tol = .Machine\$double.eps^0.25, abs.tol = rel.tol, stop.on.error = TRUE, keep.xy = FALSE, aux = NULL)

Arguments

Р	the parameters of the explicit Preston equation or one of its simplified versions.
simpver	an optional argument to use the simplified version of the explicit Preston equa- tion.
subdivisions	please see the arguments for the integrate function in package stats.
rel.tol	please see the arguments for the integrate function in package stats.
abs.tol	please see the arguments for the integrate function in package stats.
<pre>stop.on.error</pre>	please see the arguments for the integrate function in package stats.
keep.xy	please see the arguments for the integrate function in package stats.
aux	please see the arguments for the integrate function in package stats.

Details

The formula of the surface area (S) of an egg based on the explicit Preston equation or one of its simplified versions is:

$$S(x) = 2\pi \int_{-a}^{a} y \sqrt{1 + \left(\frac{dy}{dx}\right)^2} dx$$

where *y* denotes the explicit Preston equation (i.e., EPE), and *a* denotes half the egg's length. When simpver = NULL, P has five parameters: *a*, *b*, c_1 , c_2 , and c_3 ; when simpver = 1, P has four parameters: *a*, *b*, c_1 , and c_2 ; when simpver = 2, P has three parameters: *a*, *b*, and c_1 ; when simpver = 3, P has three parameters: *a*, *b*, and c_2 .

Note

The argument P in the SurfaceAreaEPE function has the same parameters, as those in the EPE function.

Author(s)

Peijian Shi <pjshi@njfu.edu.cn>, Johan Gielis <johan.gielis@uantwerpen.be>, Brady K. Quinn <Brady.Quinn@dfo-mpo.gc.ca>.

References

Narushin, V.G., Romanov, M.N., Mishra, B., Griffin, D.K. (2022) Mathematical progression of avian egg shape with associated area and volume determinations. *Annals of the New York Academy of Sciences* 1513, 65–78. doi:10.1111/nyas.14771

Shi, P., Chen, L., Quinn, B.K., Yu, K., Miao, Q., Guo, X., Lian, M., Gielis, J., Niklas, K.J. (2022) Can we simply calculate the volume and surface area of an egg? Evidence from six species of poultry. *Annals of the New York Academy of Sciences* Under preparation.

See Also

DEPE, EPE, fitEPE, VolumeEPE

Examples

Par4 <- c(4.27, 2.90, 0.0868, 0.0224, -0.0287)
SurfaceAreaEPE(P = Par4, simpver = NULL)</pre>

SurfaceAreaETE	Calculation of the Surface Area of An Egg Based on the Explicit Tros-
	cianko Equation

Description

SurfaceAreaETE is used to calculate the surface area of an egg that follows the explicit Troscianko equation.

Usage

```
SurfaceAreaETE(P, subdivisions = 100L,
            rel.tol = .Machine$double.eps^0.25, abs.tol = rel.tol,
            stop.on.error = TRUE, keep.xy = FALSE, aux = NULL)
```

Arguments

Р	the parameters of the explicit Troscianko equation.
subdivisions	please see the arguments for the integrate function in package stats.
rel.tol	please see the arguments for the integrate function in package stats.
abs.tol	please see the arguments for the integrate function in package stats.
stop.on.error	please see the arguments for the integrate function in package stats.
keep.xy	please see the arguments for the integrate function in package stats.
aux	please see the arguments for the integrate function in package stats.

Details

The formula of the surface area (S) of an egg based on the explicit Troscianko equation is:

$$S(x) = 2\pi \int_{-a}^{a} y \sqrt{1 + \left(\frac{dy}{dx}\right)^2} \, dx,$$

where y denotes the explicit Troscianko equation (i.e., ETE), and a denotes half the egg's length.

Note

The argument P in the SurfaceAreaETE function has the same parameters, as those in the ETE function.

Author(s)

Peijian Shi <pjshi@njfu.edu.cn>, Johan Gielis <johan.gielis@uantwerpen.be>, Brady K. Quinn <Brady.Quinn@dfo-mpo.gc.ca>.

References

Narushin, V.G., Romanov, M.N., Mishra, B., Griffin, D.K. (2022) Mathematical progression of avian egg shape with associated area and volume determinations. *Annals of the New York Academy of Sciences* 1513, 65–78. doi:10.1111/nyas.14771

Shi, P., Chen, L., Quinn, B.K., Yu, K., Miao, Q., Guo, X., Lian, M., Gielis, J., Niklas, K.J. (2022) Can we simply calculate the volume and surface area of an egg? Evidence from six species of poultry. *Annals of the New York Academy of Sciences* Under preparation.

See Also

DETE, ETE, fitETE, VolumeETE

Examples

```
Par5 <- c(2.25, -0.38, -0.29, -0.16)
SurfaceAreaETE(P = Par5)
```

Calculation of the Surface Area of An Egg Based on the Narushin-Romanov-Griffin Equation

Description

SurfaceAreaNRGE is used to calculate the surface area of an egg that follows the Narushin-Romanov-Griffin equation.

Usage

```
SurfaceAreaNRGE(P, subdivisions = 100L,
            rel.tol = .Machine$double.eps^0.25, abs.tol = rel.tol,
            stop.on.error = TRUE, keep.xy = FALSE, aux = NULL)
```

Arguments

Р	the parameters of the Narushin-Romanov-Griffin equation.
subdivisions	please see the arguments for the integrate function in package stats.
rel.tol	please see the arguments for the integrate function in package stats.
abs.tol	please see the arguments for the integrate function in package stats.
stop.on.error	please see the arguments for the integrate function in package stats.
keep.xy	please see the arguments for the integrate function in package stats.
aux	please see the arguments for the integrate function in package stats.

Details

The formula of the surface area (S) of an egg based on the Narushin-Romanov-Griffin equation is:

$$S(x) = 2\pi \int_{-A/2}^{A/2} y \sqrt{1 + \left(\frac{dy}{dx}\right)^2} \, dx,$$

where y denotes the Narushin-Romanov-Griffin equation (i.e., NRGE), and A denotes the egg's length, which is the first element in the parameter vector, P.

Note

The argument P in the SurfaceAreaNRGE function has the same parameters, as those in the NRGE function.

Author(s)

Peijian Shi <pjshi@njfu.edu.cn>, Johan Gielis <johan.gielis@uantwerpen.be>, Brady K. Quinn <Brady.Quinn@dfo-mpo.gc.ca>.

References

Narushin, V.G., Romanov, M.N., Griffin, D.K. (2021) Egg and math: introducing a universal formula for egg shape. *Annals of the New York Academy of Sciences* 1505, 169–177. doi:10.1111/ nyas.14680

Narushin, V.G., Romanov, M.N., Mishra, B., Griffin, D.K. (2022) Mathematical progression of avian egg shape with associated area and volume determinations. *Annals of the New York Academy of Sciences* 1513, 65–78. doi:10.1111/nyas.14771

Shi, P., Chen, L., Quinn, B.K., Yu, K., Miao, Q., Guo, X., Lian, M., Gielis, J., Niklas, K.J. (2022) Can we simply calculate the volume and surface area of an egg? Evidence from six species of poultry. *Annals of the New York Academy of Sciences* Under preparation.

96

SurfaceAreaSGE

See Also

curveNRGE, DNRGE, fitNRGE, NRGE, VolumeNRGE

Examples

```
Par6 <- c(4.51, 3.18, 0.1227, 2.2284)
SurfaceAreaNRGE(P = Par6)</pre>
```

SurfaceAreaSGE	Calculation of the Surface Area of An Egg Based on the Simplified
	Gielis Equation

Description

SurfaceAreaSGE is used to calculate the surface area of an egg that follows the simplified Gielis equation.

Usage

```
SurfaceAreaSGE(P, subdivisions = 100L,
            rel.tol = .Machine$double.eps^0.25, abs.tol = rel.tol,
            stop.on.error = TRUE, keep.xy = FALSE, aux = NULL)
```

Arguments

Р	the parameters of the simplified Gielis equation, including a , n_1 , and n_2
subdivisions	please see the arguments for the integrate function in package stats.
rel.tol	please see the arguments for the integrate function in package stats.
abs.tol	please see the arguments for the integrate function in package stats.
<pre>stop.on.error</pre>	please see the arguments for the integrate function in package stats.
keep.xy	please see the arguments for the integrate function in package stats.
aux	please see the arguments for the integrate function in package stats.

Details

The formula of the surface area (S) of an egg based on the simplified Gielis equation is:

$$S(\varphi) = 2\pi \int_0^\pi \sin\left(\varphi\right) r \sqrt{r^2 + \left(\frac{dr}{d\varphi}\right)^2} d\varphi,$$

where the polar raidus (r) is the function of the polar angle (φ) :

$$r\left(\varphi\right) = a\left(\left|\cos\left(\frac{m}{4}\varphi\right)\right|^{n_2} + \left|\sin\left(\frac{m}{4}\varphi\right)\right|^{n_2}\right)^{-\frac{1}{n_1}},$$

namely the simplified Gielis equation (i.e., GE) with arguments simpver = 1 and m = 1.

Note

The argument P in the SurfaceAreaSGE function only has the three parameters: a, n_1 , and n_2 .

Author(s)

Peijian Shi <pjshi@njfu.edu.cn>, Johan Gielis <johan.gielis@uantwerpen.be>, Brady K. Quinn <Brady.Quinn@dfo-mpo.gc.ca>.

References

Chen, Z. (2012) Volume and area of revolution under polar coordinate system. *Studies in College Mathematics* 15(6), 9–11.

Shi, P., Chen, L., Quinn, B.K., Yu, K., Miao, Q., Guo, X., Lian, M., Gielis, J., Niklas, K.J. (2022) Can we simply calculate the volume and surface area of an egg? Evidence from six species of poultry. *Annals of the New York Academy of Sciences* Under preparation.

See Also

DSGE, fitGE, GE, VolumeSGE

Examples

```
Par7 <- c(1.124, 14.86, 49.43)
SurfaceAreaSGE(P = Par7)</pre>
```

ΤE

The Troscianko Equation (TE)

Description

TE is used to calculate y values at given x values using the re-expression of Troscianko's egg-shape equation, which was proposed by Biggins et al. (2018, 2022).

Usage

TE(P, x)

Arguments

Р	the parameters of the Troscianko equation, including α_0, α_1 , and α_2 .
х	the given x values ranging from -1 to 1.

Details

The Troscianko equation is recommended as (Biggins et al., 2022):

$$y = \exp(\alpha_0 + \alpha_1 x + \alpha_2 x^2) \sqrt{1 - x^2},$$

where x and y represent the abscissa and ordinate of an arbitrary point on the Troscianko curve; α_0 , α_1 , and α_2 are parameters to be estimated.

Value

The y values predicted by the Troscianko equation.

Note

Here, x and y in the Troscianko equation are actually equal to y/a and x/a, respectively, in the explicit Troscianko equation, where a represents half the egg length (See ETE for details). This means that the egg length is scaled to be 2, and the maximum egg width is correspondingly adjusted to keep the same scale.

Author(s)

Peijian Shi <pjshi@njfu.edu.cn>, Johan Gielis <johan.gielis@uantwerpen.be>, Brady K. Quinn <Brady.Quinn@dfo-mpo.gc.ca>.

References

Biggins, J.D., Montgomeries, R.M., Thompson, J.E., Birkhead, T.R. (2022) Preston's universal formula for avian egg shape. *Ornithology* In press. doi:10.1093/ornithology/ukac028

Biggins, J.D., Thompson, J.E., Birkhead, T.R. (2018) Accurately quantifying the shape of birds' eggs. *Ecology and Evolution* 8, 9728–9738. doi:10.1002/ece3.4412

Nelder, J.A., Mead, R. (1965). A simplex method for function minimization. *Computer Journal* 7, 308–313. doi:10.1093/comjnl/7.4.308

Shi, P., Gielis, J., Quinn, B.K., Niklas, K.J., Ratkowsky, D.A., Schrader, J., Ruan, H., Wang, L., Niinemets, Ü. (2022) 'biogeom': An R package for simulating and fitting natural shapes. *Annals of the New York Academy of Sciences* 1516, 123–134. doi:10.1111/nyas.14862

Shi, P., Wang, L., Quinn, B.K., Gielis, J. (2022) A new program to estimate the parameters of Preston's equation, a general formula for describing the egg shape of birds. *Symmetry* Under review.

Troscianko, J. (2014). A simple tool for calculating egg shape, volume and surface area from digital images. *Ibis*, 156, 874–878. doi:10.1111/ibi.12177

See Also

fitETE, 1mTE

Examples

```
Par <- c(-0.377, -0.29, -0.16)
xb1 <- seq(-1, 1, len=20000)
yb1 <- TE(P=Par, x=xb1)
xb2 <- seq(1, -1, len=20000)
yb2 <- -TE(P=Par, x=xb2)
dev.new()
plot(xb1, yb1, asp=1, type="1", col=2, ylim=c(-1, 1), cex.lab=1.5, cex.axis=1.5,
xlab=expression(italic(x)), ylab=expression(italic(y)))
lines(xb2, yb2, col=4)
graphics.off()</pre>
```

TGE

Description

TGE is used to calculate the polar radii of the twin Gielis equation or one of its simplified versions at given polar angles.

Usage

TGE(P, phi, m = 1, simpver = NULL, nval = 1)

Arguments

Р	the parameters of the twin Gielis equation or one of its simplified versions.
phi	the polar angle(s).
m	the given m value that determines the number of angles of the twin Gielis curve within $[0, 2\pi)$.
simpver	an optional argument to use the simplified version of the twin Gielis equation.
nval	the specified value for n_2 or n_3 in the simplified versions.

Details

The general form of the twin Gielis equation can be represented as follows:

$$r\left(\varphi\right) = \exp\left\{\frac{1}{\alpha + \beta \ln\left[r_{e}\left(\varphi\right)\right]} + \gamma\right\},$$

where r represents the polar radius of the twin Gielis curve at the polar angle φ , and r_e represents the elementary polar radius at the polar angle φ . There is a hyperbolic link function to link their log-transformations, i.e.,

$$\ln \left[r\left(\varphi\right) \right] = \frac{1}{\alpha + \beta \ln \left[r_e\left(\varphi\right) \right]} + \gamma.$$

The first three elements of P are α , β , and γ , and the remaining element(s) of P are the parameters of the elementary polar function, i.e., $r_e(\varphi)$. See Shi et al. (2020) for details.

When simpver = NULL, the original twin Gielis equation is selected:

$$r_e\left(\varphi\right) = \left|\cos\left(\frac{m}{4}\varphi\right)\right|^{n_2} + \left|\frac{1}{k}\sin\left(\frac{m}{4}\varphi\right)\right|^{n_3},$$

where r_e represents the elementary polar radius at the polar angle φ ; *m* determines the number of angles of the twin Gielis curve within $[0, 2\pi)$; and k, n_2 , and n_3 are the fourth to the sixth elements in P. In total, there are six elements in P.

When simpver = 1, the simplified version 1 is selected:

$$r_e(\varphi) = \left|\cos\left(\frac{m}{4}\varphi\right)\right|^{n_2} + \left|\sin\left(\frac{m}{4}\varphi\right)\right|^{n_2},$$

where n_2 is the fourth element in P. There are four elements in total in P.

When simpver = 2, the simplified version 2 is selected:

$$r_e(\varphi) = \left|\cos\left(\frac{m}{4}\varphi\right)\right|^{n_2} + \left|\sin\left(\frac{m}{4}\varphi\right)\right|^{n_2},$$

where n_2 should be specified in nval, and P only includes three elements, i.e., α , β , and γ .

When simpver = 3, the simplified version 3 is selected:

$$r_e(\varphi) = \left|\cos\left(\frac{m}{4}\varphi\right)\right|^{n_2} + \left|\sin\left(\frac{m}{4}\varphi\right)\right|^{n_3},$$

where n_2 and n_3 are the fourth and fifth elements in P. There are five elements in total in P.

When simpver = 4, the simplified version 4 is selected:

$$r_e\left(\varphi\right) = \left|\cos\left(\frac{m}{4}\varphi\right)\right|^{n_2} + \left|\frac{1}{k}\sin\left(\frac{m}{4}\varphi\right)\right|^{n_2},$$

where k and n_2 are the fourth and fifth elements in P. There are five elements in total in P.

When simpver = 5, the simplified version 5 is selected:

$$r_e(\varphi) = \left|\cos\left(\frac{m}{4}\varphi\right)\right|^{n_2} + \left|\frac{1}{k}\sin\left(\frac{m}{4}\varphi\right)\right|^{n_2},$$

where k is the fourth element in P. There are four elements in total in P. n_2 should be specified in nval.

Value

The polar radii predicted by the twin Gielis equation or one of its simplified versions.

Note

simpver here is different from that in the GE function.

Author(s)

Peijian Shi <pjshi@njfu.edu.cn>, Johan Gielis <johan.gielis@uantwerpen.be>, Brady K. Quinn <Brady.Quinn@dfo-mpo.gc.ca>.

References

Li, Y., Quinn, B.K., Gielis, J., Li, Y., Shi, P. (2022) Evidence that supertriangles exist in nature from the vertical projections of *Koelreuteria paniculata* fruit. *Symmetry* 14, 23. doi:10.3390/sym14010023

Shi, P., Gielis, J., Quinn, B.K., Niklas, K.J., Ratkowsky, D.A., Schrader, J., Ruan, H., Wang, L., Niinemets, Ü. (2022) 'biogeom': An R package for simulating and fitting natural shapes. *Annals of the New York Academy of Sciences* 1516, 123–134. doi:10.1111/nyas.14862

Shi, P., Ratkowsky, D.A., Gielis, J. (2020) The generalized Gielis geometric equation and its application. *Symmetry* 12, 645. doi:10.3390/sym12040645

See Also

areaGE, curveGE, fitGE, GE

Examples

TSE

The Todd-Smart Equation (TSE)

Description

TSE is used to calculate y values at given x values using the Todd and Smart's re-expression of Preston's universal egg shape.

Usage

TSE(P, x, simpver = NULL)

Arguments

Ρ	the parameters of the original Todd-Smart equation or one of its simplified versions.
x	the given x values ranging from -1 to 1.
simpver	an optional argument to use the simplified version of the original Todd-Smart equation.

Details

When simpver = NULL, the original Preston equation is selected:

$$y = d_0 z_0 + d_1 z_1 + d_2 z_2 + d_3 z_3$$

where

$$z_0 = \sqrt{1 - x^2},$$

$$z_1 = x\sqrt{1 - x^2},$$

103

$$z_2 = x^2 \sqrt{1 - x^2},$$

$$z_3 = x^3 \sqrt{1 - x^2},$$

Here, x and y represent the abscissa and ordinate of an arbitrary point on the Todd-Smart curve; d_0 , d_1 , d_2 , and d_3 are parameters to be estimated.

When simpver = 1, the simplified version 1 is selected:

$$y = d_0 z_0 + d_1 z_1 + d_2 z_2$$

where x and y represent the abscissa and ordinate of an arbitrary point on the Todd-Smart curve; d_0 , d_1 , and d_2 are parameters to be estimated.

When simpver = 2, the simplified version 2 is selected:

$$y = d_0 z_0 + d_1 z_1,$$

where x and y represent the abscissa and ordinate of an arbitrary point on the Todd-Smart curve; d_0 , and d_1 are parameters to be estimated.

When simpver = 3, the simplified version 3 is selected:

$$y = d_0 z_0 + d_2 z_2,$$

where x and y represent the abscissa and ordinate of an arbitrary point on the Todd-Smart curve; d_0 , and d_2 are parameters to be estimated.

Value

The y values predicted by the Todd-Smart equation.

Note

Here, x and y in the Todd-Smart equation are actually equal to y/a and x/a, respectively, in the Preston equation (See PE for details). Since a represents half the egg length, this means that the egg length is fixed to be 2, and the maximum egg width is correspondingly adjusted to keep the same scale.

Author(s)

Peijian Shi <pjshi@njfu.edu.cn>, Johan Gielis <johan.gielis@uantwerpen.be>, Brady K. Quinn <Brady.Quinn@dfo-mpo.gc.ca>.

References

Biggins, J.D., Montgomeries, R.M., Thompson, J.E., Birkhead, T.R. (2022) Preston's universal formula for avian egg shape. *Ornithology* In press. doi:10.1093/ornithology/ukac028

Biggins, J.D., Thompson, J.E., Birkhead, T.R. (2018) Accurately quantifying the shape of birds' eggs. *Ecology and Evolution* 8, 9728–9738. doi:10.1002/ece3.4412

Nelder, J.A., Mead, R. (1965). A simplex method for function minimization. *Computer Journal* 7, 308–313. doi:10.1093/comjnl/7.4.308

Preston, F.W. (1953) The shapes of birds' eggs. The Auk 70, 160-182.

Shi, P., Gielis, J., Quinn, B.K., Niklas, K.J., Ratkowsky, D.A., Schrader, J., Ruan, H., Wang, L., Niinemets, Ü. (2022) 'biogeom': An R package for simulating and fitting natural shapes. *Annals of the New York Academy of Sciences* 1516, 123–134. doi:10.1111/nyas.14862

Todd, P.H., Smart, I.H.M. (1984) The shape of birds' eggs. *Journal of Theoretical Biology* 106, 239–243. doi:10.1016/00225193(84)900213

See Also

1mPE, PE

Examples

```
Par <- c(0.695320398, -0.210538656, -0.070373518, 0.116839895)
xb1 <- seq(-1, 1, len=20000)
yb1 <- TSE(P=Par, x=xb1)
xb2 <- seq(1, -1, len=20000)
yb2 <- -TSE(P=Par, x=xb2)
dev.new()
plot(xb1, yb1, asp=1, type="1", col=2, ylim=c(-1, 1), cex.lab=1.5, cex.axis=1.5,
xlab=expression(italic(x)), ylab=expression(italic(y)))
lines(xb2, yb2, col=4)</pre>
```

graphics.off()

veins

Leaf Vein Data of Michelia compressa

Description

The data consist of the leaf vein data of a leaf of *M. compressa* sampled at Nanjing Forestry University campus in late July 2019.

Usage

data(veins)

Details

In the data set, there are two columns of variables: x and y. x saves the x coordinates of the leaf veins in the Cartesian coordinate system (cm); y saves the y coordinates of the leaf veins in the Cartesian coordinate system (cm).

Note

The data cannot be adjusted by the adjdata function.

VolumeEPE

References

Shi, P., Yu, K., Niinemets, Ü., Gielis, J. (2021) Can leaf shape be represented by the ratio of leaf width to length? Evidence from nine species of *Magnolia* and *Michelia* (Magnoliaceae). *Forests* 12, 41. doi:10.3390/f12010041

See Also

fracdim

Examples

data(veins)

dev.new()

graphics.off()

VolumeEPE	Calculation of the Volume of An Egg Based on the Explicit Preston
	Equation

Description

VolumeEPE is used to calculate the volume of an egg that follows the explicit Preston equation.

Usage

VolumeEPE(P, simpver = NULL)

Arguments

Pthe parameters of the explicit Preston equation or one of its simplified versions.simpveran optional argument to use the simplified version of the explicit Preston equation.

Details

When simpver = NULL, the volume formula (V) of the explicit Preston equation is selected:

$$V(x) = \frac{4\pi}{315}ab^2\left(105 + 21c_1^2 + 42c_2 + 9c_2^2 + 18c_1c_3 + 5c_3^2\right),$$

where P has five parameters: a, b, c_1, c_2 , and c_3 .

When simpver = 1, the volume formula of the simplified version 1 is selected:

$$V(x) = \frac{4\pi}{315}a b^2 \left(105 + 21 c_1^2 + 42 c_2 + 9 c_2^2\right),$$

where P has four parameters: a, b, c_1 , and c_2 .

When simpver = 2, the volume formula of the simplified version 2 is selected:

$$V(x) = \frac{4\pi}{315} a b^2 \left(105 + 21 c_1^2\right),$$

where P has three parameters: a, b, and c_1 .

When simpver = 3, the volume formula of the simplified version 3 is selected:

$$V(x) = \frac{4\pi}{315}a b^2 \left(105 + 42 c_2 + 9 c_2^2\right),$$

where P has three parameters: a, b, and c_2 .

Note

The argument P in the VolumeEPE function has the same parameters, as those in the EPE function.

Author(s)

Peijian Shi <pjshi@njfu.edu.cn>, Johan Gielis <johan.gielis@uantwerpen.be>, Brady K. Quinn <Brady.Quinn@dfo-mpo.gc.ca>.

References

Narushin, V.G., Romanov, M.N., Mishra, B., Griffin, D.K. (2022) Mathematical progression of avian egg shape with associated area and volume determinations. *Annals of the New York Academy of Sciences* 1513, 65–78. doi:10.1111/nyas.14771

Shi, P., Chen, L., Quinn, B.K., Yu, K., Miao, Q., Guo, X., Lian, M., Gielis, J., Niklas, K.J. (2022) Can we simply calculate the volume and surface area of an egg? Evidence from six species of poultry. *Annals of the New York Academy of Sciences* Under preparation.

See Also

EPE, fitEPE, SurfaceAreaEPE

Examples

```
Par3 <- c(4.27, 2.90, 0.0868, 0.0224, -0.0287)
VolumeEPE(P=Par3, simpver=NULL)
# Test the case when simpver = NULL
а
    <- Par3[1]
b
    <- Par3[2]
c1
    <- Par3[3]
c2
    <- Par3[4]
    <- Par3[5]
с3
pi*4/315*a*b^2*(105+21*c1^2+42*c2+9*c2^2+18*c1*c3+5*c3^2)
myfun <- function(x){</pre>
  pi*EPE(P=Par3, x=x, simpver=NULL)^2
integrate(myfun, -4.27, 4.27)$value
```

VolumeETE

Description

VolumeETE is used to calculate the volume of an egg that follows the explicit Troscianko equation.

Usage

```
VolumeETE(P, subdivisions = 100L,
    rel.tol = .Machine$double.eps^0.25, abs.tol = rel.tol,
    stop.on.error = TRUE, keep.xy = FALSE, aux = NULL)
```

Arguments

Р	the parameters of the explicit Troscianko equation.
subdivisions	please see the arguments for the integrate function in package stats.
rel.tol	please see the arguments for the integrate function in package stats.
abs.tol	please see the arguments for the integrate function in package stats.
stop.on.error	please see the arguments for the integrate function in package stats.
keep.xy	please see the arguments for the integrate function in package stats.
aux	please see the arguments for the integrate function in package stats.

Details

The formula of the volume (V) of an egg based on the explicit Troscianko equation is:

$$V(x) = \pi \int_{-a}^{a} y^2 \, dx,$$

where y denotes the explicit Troscianko equation (i.e., ETE), and a denotes half the egg's length.

Note

The argument P in the VolumeETE function has the same parameters, as those in the ETE function.

Author(s)

Peijian Shi <pjshi@njfu.edu.cn>, Johan Gielis <johan.gielis@uantwerpen.be>, Brady K. Quinn <Brady.Quinn@dfo-mpo.gc.ca>.

References

Narushin, V.G., Romanov, M.N., Mishra, B., Griffin, D.K. (2022) Mathematical progression of avian egg shape with associated area and volume determinations. *Annals of the New York Academy of Sciences* 1513, 65–78. doi:10.1111/nyas.14771

Shi, P., Chen, L., Quinn, B.K., Yu, K., Miao, Q., Guo, X., Lian, M., Gielis, J., Niklas, K.J. (2022) Can we simply calculate the volume and surface area of an egg? Evidence from six species of poultry. *Annals of the New York Academy of Sciences* Under preparation.

See Also

ETE, fitETE, SurfaceAreaETE

Examples

```
Par5 <- c(2.25, -0.38, -0.29, -0.16)
VolumeETE(P=Par5)
myfun <- function(x){
    pi*ETE(P=Par5, x=x)^2
}
integrate(myfun, -2.25, 2.25)$value</pre>
```

VolumeNRGE

Calculation of the Volume of An Egg Based on the Narushin-Romanov-Griffin Equation

Description

VolumeNRGE is used to calculate the volume of an egg that follows the Narushin-Romanov-Griffin equation.

Usage

```
VolumeNRGE(P, subdivisions = 100L,
    rel.tol = .Machine$double.eps^0.25, abs.tol = rel.tol,
    stop.on.error = TRUE, keep.xy = FALSE, aux = NULL)
```

Arguments

Р	the parameters of the Narushin-Romanov-Griffin equation.
subdivisions	please see the arguments for the integrate function in package stats.
rel.tol	please see the arguments for the integrate function in package stats.
abs.tol	please see the arguments for the integrate function in package stats.
stop.on.error	please see the arguments for the integrate function in package stats.
keep.xy	please see the arguments for the integrate function in package stats.
aux	please see the arguments for the integrate function in package stats.

108
VolumeNRGE

Details

The formula of the volume (V) of an egg based on the Narushin-Romanov-Griffin equation is:

$$V(x) = \pi \int_{-A/2}^{A/2} y^2 \, dx,$$

where y denotes the Narushin-Romanov-Griffin equation (i.e., NRGE), and A denotes the egg's length, which is the first element in the parameter vector, P.

Note

The argument P in the VolumeNRGE function has the same parameters, as those in the NRGE function.

Author(s)

Peijian Shi <pjshi@njfu.edu.cn>, Johan Gielis <johan.gielis@uantwerpen.be>, Brady K. Quinn <Brady.Quinn@dfo-mpo.gc.ca>.

References

Narushin, V.G., Romanov, M.N., Griffin, D.K. (2021) Egg and math: introducing a universal formula for egg shape. *Annals of the New York Academy of Sciences* 1505, 169–177. doi:10.1111/ nyas.14680

Narushin, V.G., Romanov, M.N., Mishra, B., Griffin, D.K. (2022) Mathematical progression of avian egg shape with associated area and volume determinations. *Annals of the New York Academy of Sciences* 1513, 65–78. doi:10.1111/nyas.14771

Shi, P., Chen, L., Quinn, B.K., Yu, K., Miao, Q., Guo, X., Lian, M., Gielis, J., Niklas, K.J. (2022) Can we simply calculate the volume and surface area of an egg? Evidence from six species of poultry. *Annals of the New York Academy of Sciences* Under preparation.

See Also

curveNRGE, fitNRGE, NRGE, SurfaceAreaNRGE

Examples

```
Par6 <- c(4.51, 3.18, 0.1227, 2.2284)
VolumeNRGE(P=Par6)
myfun <- function(x){
    pi*NRGE(P=Par6, x=x)^2
}
integrate(myfun, -4.51/2, 4.51/2)$value</pre>
```

VolumeSGE

Calculation of the Volume of An Egg Based on the Simplified Gielis Equation

Description

VolumeSGE is used to calculate the volume of an egg that follows the simplified Gielis equation.

Usage

```
VolumeSGE(P, subdivisions = 100L,
    rel.tol = .Machine$double.eps^0.25, abs.tol = rel.tol,
    stop.on.error = TRUE, keep.xy = FALSE, aux = NULL)
```

Arguments

Р	the parameters of the simplified Gielis equation, including a , n_1 , and n_2
subdivisions	please see the arguments for the integrate function in package stats.
rel.tol	please see the arguments for the integrate function in package stats.
abs.tol	please see the arguments for the integrate function in package stats.
stop.on.error	please see the arguments for the integrate function in package stats.
keep.xy	please see the arguments for the integrate function in package stats.
aux	please see the arguments for the integrate function in package stats.

Details

The formula of the volume (V) of an egg based on the simplified Gielis equation is:

$$V(\varphi) = \frac{2}{3} \pi \int_0^\pi \sin(\varphi) r^3(\varphi) d\varphi,$$

where the polar raidus (r) is the function of the polar angle (φ):

$$r\left(\varphi\right) = a\left(\left|\cos\left(\frac{m}{4}\varphi\right)\right|^{n_2} + \left|\sin\left(\frac{m}{4}\varphi\right)\right|^{n_2}\right)^{-\frac{1}{n_1}},$$

namely the simplified Gielis equation (i.e., GE) with arguments simpver = 1 and m = 1.

Note

The argument P in the VolumeSGE function only has the three parameters: a, n_1 , and n_2 .

Author(s)

Peijian Shi <pjshi@njfu.edu.cn>, Johan Gielis <johan.gielis@uantwerpen.be>, Brady K. Quinn <Brady.Quinn@dfo-mpo.gc.ca>.

whitespruce

References

Chen, Z. (2012) Volume and area of revolution under polar coordinate system. *Studies in College Mathematics* 15(6), 9–11.

Shi, P., Chen, L., Quinn, B.K., Yu, K., Miao, Q., Guo, X., Lian, M., Gielis, J., Niklas, K.J. (2022) Can we simply calculate the volume and surface area of an egg? Evidence from six species of poultry. *Annals of the New York Academy of Sciences* Under preparation.

See Also

fitGE, GE, SurfaceAreaSGE

Examples

Par7 <- c(1.124, 14.86, 49.43) VolumeSGE(P = Par7)

whitespruce

Planar Coordinates of Picea glauca Tree Rings

Description

The data consist of the planar coordinates of Picea glauca tree rings.

Usage

data(whitespruce)

Details

In the data set, there are three columns of variables: Code, x, and y. Code saves the age codes of tree rings from the 2nd year to the 44th year; x saves the x coordinates of the tree rings in the Cartesian coordinate system (cm); and y saves the y coordinates of the tree rings in the Cartesian coordinate system (cm).

References

Shi, P., Huang, J., Hui, C., Grissino-Mayer, H.D., Tardif, J., Zhai, L., Wang, F., Li, B. (2015) Capturing spiral radial growth of conifers using the superellipse to model tree-ring geometric shape. *Frontiers in Plant Science* 6, 856. doi:10.3389/fpls.2015.00856

Examples

```
data(whitespruce)
```

```
uni.C <- sort( unique(whitespruce$Code) )</pre>
Data <- whitespruce[whitespruce$Code==uni.C[10], ]</pre>
x0
      <- Data$x
γ0
      <- Data$y
Res1 <- adjdata(x0, y0, ub.np=2000, len.pro=1/20)
plot( Res1$x, Res1$y, asp=1, cex.lab=1.5, cex.axis=1.5, type="l",
      xlim=c(3, 13), ylim=c(3, 13), col="grey73", lwd=2,
      xlab=expression(italic("x")), ylab=expression(italic("y")) )
  uni.C <- sort( unique(whitespruce$Code) )</pre>
  for(i in 1:length(uni.C)){
   Data <- whitespruce[whitespruce$Code==uni.C[i], ]</pre>
          <- Data$x
   x0
   y0
          <- Data$y
    Res1 <- adjdata(x0, y0, ub.np=200, len.pro=1/10)</pre>
    if(i == 1){
      plot( Res1$x, Res1$y, asp=1, cex.lab=1.5, cex.axis=1.5, type="l",
            xlim=c(3, 13), ylim=c(3, 13), col=1, lwd=1,
            xlab=expression(italic("x")), ylab=expression(italic("y")) )
    }
    if(i > 1) lines(Res1$x, Res1$y, col=1, lwd=1)
  }
  uni.C
        <- sort( unique(whitespruce$Code) )</pre>
  uni.C
         <- uni.C[1:12]
  Length <- c()
  results <- data.frame(Code=c(), x0=c(), y0=c(), theta=c(),</pre>
                   a=c(), k=c(), n1=c(), r.sq=c(), RSS=c(), N=c())
  for(i in 1:length(uni.C)){
   Data
              <- whitespruce[whitespruce$Code==uni.C[i], ]
    x0
              <- Data$x
   y0
              <- Data$y
   Res1
              <- adjdata(x0, y0, ub.np=200, len.pro=1/10)
              <- Res1$x
   x1
              <- Res1$y
   y1
   x0.ini
              <- mean( x1 )
    y0.ini
              <- mean( y1 )
    theta.ini <- c(0, pi/4, pi/2)
    a.ini
              <- 0.9
    k.ini
              <- 1
    n1.ini
              <- c(1.5, 2, 2.5)
    ini.val <- list(x0.ini, y0.ini, theta.ini,</pre>
                      a.ini, k.ini, n1.ini)
```

112

```
print(paste("Progress: ", i, "/", length(uni.C), sep=""))
  H <- NULL
  try( H <- fitGE(GE, x=x1, y=y1, ini.val=ini.val,</pre>
                  m=4, simpver=9, unit="cm", par.list=FALSE,
                  stand.fig=FALSE, angle=NULL, fig.opt=FALSE,
                  control=list(reltol=1e-20, maxit=20000),
                  np=2000), silent=TRUE )
  if(is.null(H)){
    RE <- data.frame(Code=uni.C[i], x0=NA, y0=NA, theta=NA,</pre>
             a=NA, k=NA, n1=NA, r.sq=NA, RSS=NA, N=NA)
  }
  if(!is.null(H)){
    RE
           <- data.frame(Code=uni.C[i], x0=H$par[1], y0=H$par[2],
                theta=H$par[3], a=H$par[4], k=H$par[5], n1=H$par[6],
                r.sq=H$r.sq, RSS=H$RSS, N=H$sample.size)
    Length <- c(Length, max(max(H$y.stand.pred)[1]-min(H$y.stand.pred)[1],</pre>
                max(H$x.stand.pred)[1]-min(H$x.stand.pred)[1])[1])
    if(i == 1){
      plot(H$x.obs, H$y.obs, asp=1, xlim=c(7.4, 8.6), ylim=c(7.4, 8.6),
           cex.lab=1.5, cex.axis=1.5, type="l", lwd=2, col="grey70",
           xlab=expression(italic("x")), ylab=expression(italic("y")))
      lines(H$x.pred, H$y.pred, col=2)
    }
    if(i > 1){
      lines(H$x.obs, H$y.obs, lwd=2, col="grey70")
      lines(H$x.pred, H$y.pred, col=2)
    }
  }
  results <- rbind(results, RE)</pre>
}
# To adjust the estimates of partial parameters to ensure k <= 1
results2
                    <- results
Ind
                    <- resultsk > 1
results2$theta[Ind] <- results$theta[Ind] + pi/2</pre>
results2$a[Ind] <- results$a[Ind] * results$k[Ind]^(1/results$n1[Ind])</pre>
results2$k[Ind]
                    <- 1/results$k[Ind]
results2
Length/2
```

Index

* package biogeom, 15 adjdata, 3, 11, 13, 62, 104 areaGE, 5, 24, 49, 65, 102 areaovate, 7, 28, 57, 60, 78, 80, 83 bambooleaves, 9 bilat. 10 biogeom, 15 curveEPE, 18, 37, 41, 71 curveETE, 20, 39, 45 curveGE, 7, 22, 49, 65, 102 curveNRGE, 25, 53, 86, 97, 109 curveovate, 8, 26, 57, 78, 80, 83 DEPE, 28, 29, 94 DETE, 30, 30, 95 DNRGE, 31, 32, 97 DSGE, 33, 34, 49, 65, 98 eggs, 34 EPE, 19, 29, 36, 37, 88, 93, 94, 106 ETE, 22, 30, 31, 38, 38, 95, 99, 107, 108 fitEPE, 19, 29, 37, 39, 71, 94, 106 fitETE, 22, 31, 38, 39, 43, 72, 73, 75, 95, 99, 108 fitGE, 7, 24, 34, 46, 65, 98, 102, 111 fitNRGE, 26, 33, 51, 86, 97, 109 fitovate, 8, 28, 55, 78, 80, 83 fitsigmoid, 58, 91 fracdim, 13, 61, 105 GE, 7, 24, 34, 49, 63, 97, 98, 101, 102, 110, 111 ginkgoseed, 66 integrate, 6, 7, 59, 90, 93, 94, 96, 97, 107, 108,110 intersect.owin, 13

kp, 67 ImPE, 19, 37, 41, 68, 88, 104 1mTE, 38, 45, 72, 73, 99 locator, 11 MbetaE, 8, 27, 28, 55, 57, 59, 60, 76, 80, 83, 91 MBriereE, 8, 27, 28, 55, 57, 59, 60, 78, 79, 83, 91 MLRFE, 7, 8, 27, 28, 55, 57, 59, 60, 78, 80, 81, 91 Neocinnamomum, 83 NRGE, 25, 26, 32, 33, 52, 53, 84, 96, 97, 109 optim, 40, 43, 44, 47, 48, 51, 55, 56, 59 PE, 19, 37, 41, 71, 86, 103, 104 quantile, 3set.seed, 11 shoots, 89 sigmoid, 8, 60, 78, 80, 83, 90 starfish, 92 SurfaceAreaEPE, 29, 37, 93, 93, 106 SurfaceAreaETE, 31, 39, 94, 95, 108 SurfaceAreaNRGE, 33, 86, 95, 96, 109 SurfaceAreaSGE, 34, 49, 65, 97, 98, 111 TE, 38, 45, 75, 98 TGE, 7, 24, 49, 65, 100 TSE, 19, 37, 41, 71, 88, 102 veins, 63, 104 VolumeEPE, 37, 94, 105, 106 VolumeETE, 39, 95, 107, 107 VolumeNRGE, 86, 97, 108, 109 VolumeSGE, 49, 65, 98, 110, 110 whitespruce, 111

wilcox.test, 12