
Package ‘blockmodeling’
November 22, 2022

Type Package

Title Generalized and Classical Blockmodeling of Valued Networks

Version 1.1.4

Date 2022-11-17

Imports stats, methods, Matrix, parallel

Suggests sna, doRNG, doParallel, foreach

Depends R (>= 2.10)

Maintainer Aleš Žiberna <ales.ziberna@gmail.com>

Description
This is primarily meant as an implementation of generalized blockmodeling for valued networks.
In addition, measures of similarity or dissimilarity based on structural equivalence and
regular equivalence (REGE algorithms) can be computed and partitioned matrices can be plotted:
Žiberna (2007)<doi:10.1016/j.socnet.2006.04.002>, Žiberna (2008)<doi:10.1080/00222500701790207>,
Žiberna (2014)<doi:10.1016/j.socnet.2014.04.002>.

License GPL (>= 2)

Encoding UTF-8

RoxygenNote 7.2.1

NeedsCompilation yes

Author Aleš Žiberna [aut, cre],
Marjan Cugmas [ctb]

Repository CRAN

Date/Publication 2022-11-22 12:30:02 UTC

R topics documented:
baker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
blockmodeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
canClu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
clu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
critFunC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
expandMat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1

https://doi.org/10.1016/j.socnet.2006.04.002
https://doi.org/10.1080/00222500701790207
https://doi.org/10.1016/j.socnet.2014.04.002


2 baker

find.cut . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
formatA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
funByBlocks.default . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
genMatrixMult . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
genRandomPar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
gplot1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
ircNorm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
loadmatrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
nanRep . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
nkpar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
notesBorrowing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
one2two . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
optRandomParC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
orderClu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
plot.critFun . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
printBlocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
rand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
recode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
REGE.FC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
relInv . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
reorderImage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
RF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
sedist . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
splitClu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
ss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
unlistClu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
unlistCluInt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Index 58

baker Citation data between social work journals for the 1985-86 period

Description

This example consists of the citation data between social work journals for the 1985-86 period,
collected and analyzed in Baker (1992)

Usage

data(baker)

Format

An object of class matrix (inherits from array) with 20 rows and 20 columns.



blockmodeling 3

References

Baker, D. R. (1992). A Structural Analysis of Social Work Journal Network: 1985-1986. Journal
of Social Service Research, 15(3-4), 153-168. doi: 10.1300/J079v15n03_09

Examples

# data(baker)
# Transforming it to matrix format
# baker <- as.matrix(baker)
# putting zeros on the diagonal
# diag(baker) <- 0

blockmodeling An R package for Generalized and classical blockmodeling of valued
networks

Description

This package is primarily meant as an implementation of Generalized blockmodeling. In addition,
functions for computation of (dis)similarities in terms of structural and regular equivalence, plotting
and other "utility" functions are provided.

Author(s)

Aleš Žiberna

References

Doreian, P., Batagelj, V., & Ferligoj, A. (2005). Generalized blockmodeling, (Structural analysis in
the social sciences, 25). Cambridge [etc.]: Cambridge University Press.

Žiberna, A. (2007). Generalized Blockmodeling of Valued Networks. Social Networks, 29(1),
105-126. doi: 10.1016/j.socnet.2006.04.002

Žiberna, A. (2008). Direct and indirect approaches to blockmodeling of valued networks in terms of
regular equivalence. Journal of Mathematical Sociology, 32(1), 57-84. doi: 10.1080/00222500701790207

Žiberna, A. (2014). Blockmodeling of multilevel networks. Social Networks, 39(1), 46-61. doi:
10.1016/j.socnet.2014.04.002

See Also

optRandomParC, critFunC, optParC, IM, clu, err, plotMat



4 blockmodeling

Examples

#Generating a simple network corresponding to the simple Sum of squares
# Structural equivalence with blockmodel:
# nul com
# nul nul
n <- 20
net <- matrix(NA, ncol = n, nrow = n)
clu <- rep(1:2, times = c(5, 15))
tclu <- table(clu)
net[clu == 1, clu == 1] <- rnorm(n = tclu[1] * tclu[1], mean = 0, sd = 1)
net[clu == 1, clu == 2] <- rnorm(n = tclu[1] * tclu[2], mean = 4, sd = 1)
net[clu == 2, clu == 1] <- rnorm(n = tclu[2] * tclu[1], mean = 0, sd = 1)
net[clu == 2, clu == 2] <- rnorm(n = tclu[2] * tclu[2], mean = 0, sd = 1)

# Computation of criterion function with the correct partition
res <- critFunC(M = net, clu = clu, approaches = "hom", homFun = "ss", blocks = "com")
res$err # The error is relatively small
plot(res)

# Computation of criterion function with the correct partition and correct pre-specified blockmodel
# Prespecified blockmodel used
# nul com
# nul nul
B <- array(NA, dim = c(1, 1, 2, 2))
B[1, 1, , ] <- "nul"
B[1, 1, 1, 2] <- "com"
B[1, 1, , ]
res <- critFunC(M = net, clu = clu, approaches = "hom", homFun = "ss", blocks = B)
err(res) # The error is relatively small
IM(res)
plot(res)

# Computation of criterion function with the correct partition
# and pre-specified blockmodel with some alternatives
# Prespecified blockmodel used
# nul nul|com
# nul nul
B <- array(NA, dim = c(2, 2, 2))
B[1, , ] <- "nul"
B[2, 1, 2] <- "com"
res <- critFunC(M = net, clu = clu, approaches = "hom", homFun = "ss", blocks = B)
err(res) # The error is relatively small
IM(res)
plot(res)

# Optimizing a very bad partition
cluStart <- rep(1:2, times = 10)
res <- optParC(M = net,

clu = cluStart,
approaches = "hom", homFun = "ss", blocks = "com")

clu(res) # Hopefully we get the original partition)



canClu 5

err(res)
plot(res)

# Optimizing 10 random chosen partitions with optRandomParC
res <- optRandomParC(M = net, k = 2, rep = 10,
approaches = "hom", homFun = "ss", blocks = "com")
clu(res) # Hopefully we get the original partition)
err(res)
plot(res)

# Adapt network for Valued blockmodeling with the same model
net[net > 4] <- 4
net[net < 0] <- 0

# Computation of criterion function with the correct partition
res <- critFunC(M = net, clu = clu, approaches = "val",

blocks = c("nul", "com"), preSpecM = 4)
err(res) # The error is relatively small
IM(res)
# The image corresponds to the one used for generation of
# The network
plot(res)

canClu Create canonical partition and find unique canonical partitions in a
list of partitions.

Description

It is used to convert any partition to a canonical partition. A canonical partition is a partition where
the first unit is in cluster 1, the next unit that is not in cluster 1 in in cluster 2 and so on. So if we
would take first appearances of clusters in the order they appear in the partition vector, we would
get integers from 1 to the number of clusters.

Usage

canClu(clu)

canCluUniqe(cluList)

Arguments

clu A partition - a vector or a list of vectors/partitions.
cluList A list of partitions(vectors).

Value

For function canClu - a canonical partition or a list of such partitions. For function canCluUniqe -
A list of unique canonical partitions.



6 clu

See Also

clu

Examples

clu<-c(3,2,2,3,1,2)
canClu(clu)

clu Function for extraction of some elements for objects, returend by func-
tions for Generalized blockmodeling

Description

Functions for extraction of partition (clu), all best partitions (partitions), image or blockmodel
(IM)) and total error or inconsistency (err) for objects, returned by functions critFunC or optRandomParC.

Usage

clu(res, which = 1, ...)

partitions(res)

err(res, ...)

IM(res, which = 1, drop = TRUE, ...)

EM(res, which = 1, drop = TRUE, ...)

Arguments

res Result of function critFunC or optRandomParC.

which From which (if there are more than one) "best" solution should the element be
extracted. Warning! which grater than the number of "best" partitions produces
an error.

... Not used.

drop If TRUE (default), dimensions that have only one level are dropped (drop func-
tion is applied to the final result).

Value

The desired element.

Author(s)

Aleš Žiberna



critFunC 7

References

Doreian, P., Batagelj, V., & Ferligoj, A. (2005). Generalized blockmodeling, (Structural analysis in
the social sciences, 25). Cambridge [etc.]: Cambridge University Press.

Žiberna, A. (2007). Generalized Blockmodeling of Valued Networks. Social Networks, 29(1),
105-126. doi: 10.1016/j.socnet.2006.04.002

Žiberna, A. (2008). Direct and indirect approaches to blockmodeling of valued networks in terms of
regular equivalence. Journal of Mathematical Sociology, 32(1), 57-84. doi: 10.1080/00222500701790207

See Also

critFunC, plot.mat, optRandomParC

Examples

n <- 8 # If larger, the number of partitions increases dramatically,
# as does if we increase the number of clusters
net <- matrix(NA, ncol = n, nrow = n)
clu <- rep(1:2, times = c(3, 5))
tclu <- table(clu)
net[clu == 1, clu == 1] <- rnorm(n = tclu[1] * tclu[1], mean = 0, sd = 1)
net[clu == 1, clu == 2] <- rnorm(n = tclu[1] * tclu[2], mean = 4, sd = 1)
net[clu == 2, clu == 1] <- rnorm(n = tclu[2] * tclu[1], mean = 0, sd = 1)
net[clu == 2, clu == 2] <- rnorm(n = tclu[2] * tclu[2], mean = 0, sd = 1)

# We select a random partition and then optimize it
all.par <- nkpartitions(n = n, k = length(tclu))
# Forming the partitions
all.par <- lapply(apply(all.par, 1, list),function(x) x[[1]])
# to make a list out of the matrix
res <- optParC(M = net,

clu = all.par[[sample(1:length(all.par), size = 1)]],
approaches = "hom", homFun = "ss", blocks = "com")

plot(res) # Hopefully we get the original partition
clu(res) # Hopefully we get the original partition
err(res) # Error
IM(res) # Image matrix/array.
EM(res) # Error matrix/array.

critFunC Functions for Generalized blockmodeling for valued networks

Description

Functions for implementation of Generalized blockmodeling for valued networks where the values
of the ties are assumed to be measured on at least interval scale. critFunC calculates the criterion
function, based on the network, partition and blockmodel/equivalece. optParC optimizes a partition
based on the criterion function based on a local search algorithm.



8 critFunC

Usage

critFunC(
M,
clu,
approaches,
blocks,
isTwoMode = NULL,
isSym = NULL,
diag = 1,
IM = NULL,
EM = NULL,
Earr = NULL,
justChange = FALSE,
rowCluChange = c(0, 0),
colCluChange = c(0, 0),
sameIM = FALSE,
regFun = "max",
homFun = "ss",
usePreSpecM = NULL,
preSpecM = NULL,
save.initial.param = TRUE,
relWeights = 1,
posWeights = 1,
blockTypeWeights = 1,
combWeights = NULL,
returnEnv = FALSE,
mulReg = TRUE,
addGroupLlErr = TRUE

)

optParC(
M,
clu,
approaches,
blocks,
nMode = NULL,
isSym = NULL,
diag = 1,
useMulti = FALSE,
maxPar = 50,
IM = NULL,
EM = NULL,
Earr = NULL,
justChange = TRUE,
sameIM = FALSE,
regFun = "max",
homFun = "ss",
usePreSpecM = NULL,



critFunC 9

preSpecM = NULL,
minUnitsRowCluster = 1,
minUnitsColCluster = 1,
maxUnitsRowCluster = 9999,
maxUnitsColCluster = 9999,
relWeights = 1,
posWeights = 1,
blockTypeWeights = 1,
combWeights = NULL,
exchageClusters = "all",
fixClusters = NULL,
save.initial.param = TRUE,
mulReg = TRUE,
addGroupLlErr = TRUE

)

Arguments

M A matrix representing the (usually valued) network. For multi-relational net-
works, this should be an array with the third dimension representing the relation.
The network can have one or more modes (diferent kinds of units with no ties
among themselves). If the network is not two-mode, the matrix must be square.

clu A partition. Each unique value represents one cluster. If the nework is one-
mode, than this should be a vector, else a list of vectors, one for each mode.
Similarly, if units are comprised of several sets, clu should be the list containing
one vector for each set.

approaches One of the approaches (for each relation in multi-relational netowrks in a vector)
described in Žiberna (2007). Possible values are:
"bin" - binary blockmodeling,
"val" - valued blockmodeling,
"hom" - homogeneity blockmodeling,
"ss" - sum of squares homogeneity blockmodeling, and
"ad" - absolute deviations homogeneity blockmodeling.

The last two options are "shorthand" for specifying approaches="hom" and
homFun to either "ss" or "ad".

blocks A vector, a list of vectors or an array with names of allowed blocy types.

Only listing of allowed block types (blockmodel is not pre-specified).
A vector with names of allowed block types. For multi-relational networks, it
can be a list of such vectors. For approaches = "bin" or approaches = "val",
at least two should be selected. Possible values are:
"nul" - null or empty block
"com" - complete block
"rdo", "cdo" - row and column-dominant blocks (binary and valued approach
only)
"reg" - (f-)regular block
"rre", "cre" - row and column-(f-)regular blocks



10 critFunC

"rfn", "cfn" - row and column-dominant blocks (binary, valued only)
"den" - density block (binary approach only)
"avg" - average block (valued approach only)
"dnc" - do not care block - the error is always zero
The ordering is important, since if several block types have identical error, the
first on the list is selected.

A pre-specified blockmodel.
An array with four dimensions (see example below). The third and the fourth
represent the clusters (for rows and columns). The first is as long as the max-
imum number of allows block types for a given block. If some block has less
possible block types, the empty slots should have values NA. The second dimen-
sion is the number of relations (1 for single-relational networks). The values in
the array should be the ones from above. The array can have only three dimen-
sions in case of one-relational networks or if the same pre-specified blockmodel
is assumed for all relations. Further, it can have only two dimensions, if in
addition only one block type is allowed per block.

isTwoMode 1 for one-mode networks and 2 for two-mode networks. The default value is set
to NULL.

isSym Specifying if the matrix (for each relation) is symmetric.
diag Should the special status of diagonal be acknowledged. A single number or a

vector equal to the number of relation. The default value is set to 1. Codes:
0 - diagonal is treated in the same way as other values
1 - diagonal is treated separately, or
2 - diagonal values are ignored.

IM The obtained image for objects. For debugging purposes only.
EM Block errors by blocks. For debugging purposes only.
Earr The array of errors for all allowed block types by next dimensions: allowed

block types, relations, row clusters and column clusters. The dimensions should
match the dimensions of the block argument if specified as an array. For debug-
ging purposes only.

justChange Value specifying if only the errors for changed clusters should be computed.
Used only for debugging purposes by developers.

rowCluChange An array holding the two row clusters where the change occured. Used only for
debugging purposes by developers.

colCluChange An array holding the col row clusters where the change occured. Used only for
debugging purposes by developers.

sameIM Should we demand the same blockmodel image for all relations. The default
value is set to FALSE.

regFun Function f used in row-f-regular, column-f-regular, and f-regular blocks. Not
used in binary approach. For multi-relational networks, it can be a vector of
such character strings. The default value is set to "max".

homFun In case of homogeneity blockmodeling two variability criteria can be used: "ss"
- sum of squares (set by default), "ad" - absolute deviations and "bll" - - (mi-
nus) binary log-likelihood.



critFunC 11

usePreSpecM Specifying weather a pre-specified value should be used when computing incon-
sistency.

preSpecM Sufficient value for individual cells for valued approach. Can be a number or
a character string giving the name of a function. Set to "max" for implicit ap-
proach. For multi-relational networks, it can be a vector of such values. In case
ob binary blockmodeling this argument is a threshold used for binerizing the
network. Therefore all values with values lower than preSpecM are recoded into
0s, all other into 1s. For multi-relational networks, it can be a vector of such
values. In case of pre-specified blockmodeling, it can have the same dimensions
as blocks.

save.initial.param

Should the inital parameters (approaches, ...) be saved. The default value is
TRUE.

relWeights Weights for all type of relations in a blockmodel. The default value is set to 1.

posWeights Weigths for positions in the blockmodel (the dimensions must be the same as
the error matrix (rows, columns)). For now this is a matix (two-dimensional)
even for multi-relational networks.

blockTypeWeights

Weights for each type of block used, if they are to be different across block
types (see blocks above). It must be suplied in form of a named vector, where
the names are one or all allowed block types from blocks. If only some block
types are specified, the other have a default weight of 1. The default value is set
to 1.

combWeights Weights for all type of block used, The default value is set to NULL.The dimen-
sion must be the same as blocks, if blocks would be specified in array format
(which is usual in pre-specified case).

returnEnv Should the function also return the environment after its completion.

mulReg Should the errors that apply to rows/columns (and not to cells) should be multi-
plied by number of rows/columns. Defaults to TRUE.

addGroupLlErr Used only when stochastic generalized blockmodeling is used. Should the total
error included the part based on sizes of groups. Defaults to TRUE. Will return
wrong results for two-mode networks if critFunC is called directly (should be
fine if called via optParC function).

nMode Number of nodes. If NULL, then determined from clu.

useMulti Which version of local search should be used. The default value is set to FALSE.
If FALSE, first possible all moves in random order and then all possible ex-
changes in random order are tired. When a move with lower value of criterion
function is found, the algorithm moves to this new partition. If TRUE the version
of local search where all possible moves and exchanges are tired first and then
the one with the lowest error is selected and used. In this case, several optimal
partitions are found. maxPar best partitions are returned.

maxPar The number of partitions with optimal criterion fuction to be returned. Only
used If useMulti is TRUE.

minUnitsRowCluster

Minimum number of units in row cluster.



12 critFunC

minUnitsColCluster

Minimum number of units in col cluster.
maxUnitsRowCluster

Maximum number of units in row cluster.
maxUnitsColCluster

Maximum number of units in col cluster.
exchageClusters

A matrix of dimensions "number of clusters" x "number of clusters" indicating
to which clusters can units from a specific cluster be moved. Useful for multi-
level blockmodeling or/in some other cases where some units cannot mix.

fixClusters Clusters to be fixed. Used only if exchageClusters = "all". A vector of inte-
gers that specify clusters to be fixed, where clusters are numbered from 1 to the
total (in all modes or sets) number of clusters.

Value

critFunC returns a list containing:

M The matrix of the network analyzed.
err The error or inconsistency emplirical network with the ideal network for a given

blockmodel (model, approach,...) and paritition.
clu The analyzed partition.
EM Block errors by blocks.
IM The obtained image for objects.
BM Block means by block - only for Homogeneity blockmodeling.
Earr The array of errors for all allowed block types by next dimensions: allowed

block types, relations, row clusters and column clusters. The dimensions should
match the dimensions of the block argument if specified as an array.

optParC returns a list containing:

M The matrix of the network analyzed.
err The error or inconsistency emplirical network with the ideal network for a given

blockmodel (model, approach,...) and paritition.
clu The analyzed partition.
EM Block errors by blocks.
IM The obtained image for objects.
BM Block means by block - only for Homogeneity blockmodeling.
Earr The array of errors for all allowed block types by next dimensions: allowed

block types, relations, row clusters and column clusters. The dimensions should
match the dimensions of the block argument if specified as an array.

useMulti The value of the input paramter useMulti.
bestRowParMatrix

(If useMulti = TRUE) Matrix, where there are different solutions for columns,
where rows represent units.

sameErr The number of partitions with the minimum value of the criterion function.



critFunC 13

Author(s)

Aleš, Žiberna

References

Doreian, P., Batagelj, V., & Ferligoj, A. (2005). Generalized blockmodeling, (Structural analysis in
the social sciences, 25). Cambridge [etc.]: Cambridge University Press.

Žiberna, A. (2007). Generalized Blockmodeling of Valued Networks. Social Networks, 29(1),
105-126. doi: 10.1016/j.socnet.2006.04.002

Žiberna, A. (2008). Direct and indirect approaches to blockmodeling of valued networks in terms of
regular equivalence. Journal of Mathematical Sociology, 32(1), 57-84. doi: 10.1080/00222500701790207

Žiberna, A. (2014). Blockmodeling of multilevel networks. Social Networks, 39(1), 46-61. doi:
10.1016/j.socnet.2014.04.002

See Also

optRandomParC, IM, clu, err, plot.critFun

Examples

# Generating a simple network corresponding to the simple Sum of squares
# Structural equivalence with blockmodel:
# nul com
# nul nul
n <- 20
net <- matrix(NA, ncol = n, nrow = n)
clu <- rep(1:2, times = c(5, 15))
tclu <- table(clu)
net[clu == 1, clu == 1] <- rnorm(n = tclu[1] * tclu[1], mean = 0, sd = 1)
net[clu == 1, clu == 2] <- rnorm(n = tclu[1] * tclu[2], mean = 4, sd = 1)
net[clu == 2, clu == 1] <- rnorm(n = tclu[2] * tclu[1], mean = 0, sd = 1)
net[clu == 2, clu == 2] <- rnorm(n = tclu[2] * tclu[2], mean = 0, sd = 1)

# Computation of criterion function with the correct partition
res <- critFunC(M = net, clu = clu, approaches = "hom", homFun = "ss", blocks = "com")
res$err # The error is relatively small
plot(res)

# Computation of criterion function with the correct partition and correct pre-specified blockmodel
# Prespecified blockmodel used
# nul com
# nul nul
B <- array(NA, dim = c(1, 1, 2, 2))
B[1, 1, , ] <- "nul"
B[1, 1, 1, 2] <- "com"
B[1, 1, , ]
res <- critFunC(M = net, clu = clu, approaches = "hom", homFun = "ss", blocks = B)
res$err # The error is relatively small
res$IM
plot(res)



14 expandMat

# Computation of criterion function with the correct partition
# and pre-specified blockmodel with some alternatives
# Prespecified blockmodel used
# nul nul|com
# nul nul
B <- array(NA, dim = c(2, 2, 2))
B[1, , ] <- "nul"
B[2, 1, 2] <- "com"
res <- critFunC(M = net, clu = clu, approaches = "hom", homFun = "ss", blocks = B)
res$err # The error is relatively small
res$IM
plot(res)

# Computation of criterion function with random partition
set.seed(1)
clu.rnd <- sample(1:2, size = n, replace = TRUE)
res.rnd <- critFunC(M = net, clu = clu.rnd, approaches = "hom",
homFun = "ss", blocks = "com")
res.rnd$err # The error is larger
plot(res.rnd)

# Adapt network for Valued blockmodeling with the same model
net[net > 4] <- 4
net[net < 0] <- 0

# Computation of criterion function with the correct partition
res <- critFunC(M = net, clu = clu, approaches = "val",
blocks = c("nul", "com"), preSpecM = 4)
res$err # The error is relatively small
res$IM
# The image corresponds to the one used for generation of
# The network
plot(res)

# Optimizing one partition
res <- optParC(M = net, clu = clu.rnd,

approaches = "hom", homFun = "ss", blocks = "com")
plot(res) # Hopefully we get the original partition

expandMat Expands a square matrix by repeating each row/column the specified
number of times.

Description

Expands a square matrix by repeating each row/column the specified number of times.



find.cut 15

Usage

expandMat(mat, nn)

Arguments

mat A square matrix to be exapanded

nn A vector of number of times each row/column must be repeated. Its length must
match the number of rows/columns

Value

Sum of squared deviations from the mean using only valid (non NA) values.

Author(s)

Aleš Žiberna

find.cut Computing the threshold

Description

The functions compute the maximum value of m/cut where a certain block is still classified as
alt.blocks and not "null". The difference between find.m and find.m2 it that find.m uses an
optimization approach and is faster and more precise than find.m2. However, find.m only supports
regular ("reg") and complete ("com") as alt.blocks, while find.m2 supports all block types. Also,
find.m does not always work, especially if cormet is not "none".

Usage

find.cut(M, clu, alt.blocks = "reg", cuts = "all", ...)

find.m(
M,
clu,
alt.blocks = "reg",
diag = !is.list(clu),
cormet = "none",
half = TRUE,
FUN = "max"

)

find.m2(M, clu, alt.blocks = "reg", neval = 100, half = TRUE, ms = NULL, ...)



16 find.cut

Arguments

M A matrix representing the (usually valued) network. For now, only one-relational
networks are supported. The network can have one or more modes (different
kinds of units with no ties among themselves. If the network is not two-mode,
the matrix must be square.

clu A partition. Each unique value represents one cluster. If the network is one-
mode, then this should be a vector, else a list of vectors, one for each mode.

alt.blocks Only one of allowed blocktypes, as alternative to the null block:
"com" - complete block
"rdo", "cdo" - row and column-dominant blocks (binary, valued, and implicit
approach only)
"reg" - (f-)regular block
"rre", "cre" - row and column-(f-)regular blocks
"rfn", "cfn" - row and column-dominant blocks (binary, valued, and implicit
approach only)
"den" - density block (binary approach only)
"avg" - average block (valued approach only).

cuts The cuts, which should be evaluated. If cuts="all" (default), all unique values
are evaluated.

... Other parameters to critFunC.

diag (default = TRUE) Should the special status of diagonal be acknowledged.

cormet Which method should be used to correct for different maximum error contribu-
tions
"none" - no correction
"censor" - censor values larger than M
"correct" - so that the maximum possible error contribution of the cell is the
same regardless of a condition (either that something must be 0 or at least M).

half Should the returned value of m be one half of the value where the inconsistencies
are the same.

FUN (default = "max") Function f used in row-f-regular, column-f-regular, and f-
regular blocks.

neval A number of different m values to be evaluated.

ms The values of m where the function should be evaluated.

Value

A matrix of maximal m/cut values.

Author(s)

Aleš Žiberna



formatA 17

References

Doreian, P., Batagelj, V. & Ferligoj, A. Anuška (2005). Generalized blockmodeling, (Structural
analysis in the social sciences, 25). Cambridge [etc.]: Cambridge University Press.

Žiberna, A. (2007). Generalized Blockmodeling of Valued Networks. Social Networks, 29(1),
105-126. doi: 10.1016/j.socnet.2006.04.002

Žiberna, A. (2008). Direct and indirect approaches to blockmodeling of valued networks in terms of
regular equivalence. Journal of Mathematical Sociology, 32(1), 57-84. doi: 10.1080/00222500701790207

Žiberna, A. (2014). Blockmodeling of multilevel networks. Social Networks, 39(1), 46-61. doi:
10.1016/j.socnet.2014.04.002

See Also

critFunC and maybe also optParC, plotMat

formatA A formating function for numbers

Description

Formats a vector or matrix of numbers so that all have equal length (digits). This is especially
suitable for printing tables.

Usage

formatA(x, digits = 2, FUN = round, ...)

Arguments

x A numerical vector or matrix.

digits The number of desired digits.

FUN Function used for "shortening" the numbers.

... Additional arguments to format.

Value

A character vector or matrix.

Author(s)

Aleš Žiberna

See Also

find.m, find.m2, find.cut



18 funByBlocks.default

Examples

A <- matrix(c(1, 1.02002, 0.2, 10.3), ncol = 2)
formatA(A)

funByBlocks.default Computation of function values by blocks

Description

Computes a value of a function over blocks of a matrix, defined by a partition.

Usage

## Default S3 method:
funByBlocks(

x = M,
clu,
M = x,
ignore.diag = "default",
sortNames = TRUE,
FUN = "mean",
...

)

## S3 method for class 'optMorePar'
funByBlocks(x, which = 1, orderClu = FALSE, sortNames = NULL, ...)

## S3 method for class 'opt.more.par'
funByBlocks(x, which = 1, orderClu = FALSE, sortNames = NULL, ...)

funByBlocks(x, ...)

fun.by.blocks(x, ...)

Arguments

x An object of suitable class or a matrix/array representing the (usually valued)
network. For multi-relational networks, this should be an array with the third
dimension representing the relation. The network can have one or more modes
(different kinds of units with no ties among themselves. If the network is not
two-mode, the matrix must be square.

clu A partition. Each unique value represents one cluster. If the network is one-
mode, then this should be a vector, else a list of vectors, one for each mode.



funByBlocks.default 19

M A matrix representing the (usually valued) network. For multi-relational net-
works, this should be an array with the third dimension representing the relation.
The network can have one or more modes (different kinds of units with no ties
among themselves. If the network is not two-mode, the matrix must be square.

ignore.diag Should the diagonal be ignored.
sortNames Should the rows and columns of the matrix be sorted based on their names.
FUN The function to be computed over the blocks.
... Further arguments to funByBlocks.default.
which Which (if several) of the "best" solutions should be used.
orderClu Should the partition be ordered before computing. FALSE by default. If TRUE,

orderClu is used (using default arguments) to order the clusters in a partition in
"decearsing" (see orderClu for interpretation) order. If TRUE, sortNames is set
to FALSE.

Value

A numerical matrix of FUN values by blocks, induced by a partition clu.

Author(s)

Aleš Žiberna

References

Žiberna, A. (2007). Generalized Blockmodeling of Valued Networks. Social Networks, 29(1),
105-126. doi: 10.1016/j.socnet.2006.04.002

Žiberna, A. (2008). Direct and indirect approaches to blockmodeling of valued networks in terms of
regular equivalence. Journal of Mathematical Sociology, 32(1), 57-84. doi: 10.1080/00222500701790207

See Also

optRandomParC, optParC

Examples

n <- 8 # If larger, the number of partitions increases dramatically,
# as does if we increase the number of clusters
net <- matrix(NA, ncol = n, nrow = n)
clu <- rep(1:2, times = c(3, 5))
tclu <- table(clu)
net[clu == 1, clu == 1] <- rnorm(n = tclu[1] * tclu[1], mean = 0, sd = 1)
net[clu == 1, clu == 2] <- rnorm(n = tclu[1] * tclu[2], mean = 4, sd = 1)
net[clu == 2, clu == 1] <- rnorm(n = tclu[2] * tclu[1], mean = 0, sd = 1)
net[clu == 2, clu == 2] <- rnorm(n = tclu[2] * tclu[2], mean = 0, sd = 1)
# Optimizing 10 random partitions with optRandomParC
res <- optRandomParC(M = net, k = 2, rep = 10, approaches = "hom", homFun = "ss", blocks = "com")
plot(res) # Hopefully we get the original partition
funByBlocks(res)
# Computing mean by blocks, ignoring the diagonal (default)



20 genMatrixMult

genMatrixMult Generalized matrix multiplication

Description

Computes a generalized matrix multiplication, where sum and product functions (elemet-wise and
summary functions) can be replaced by arbitrary functions.

Usage

genMatrixMult(A, B, FUNelement = "*", FUNsummary = sum)

Arguments

A The first matrix.

B The second matrix.

FUNelement Element-wise operator.

FUNsummary Summary function.

Value

A character vector or matrix.

Author(s)

Aleš Žiberna

See Also

matmult

Examples

# Operations can be anything
x <- matrix(letters[1:8], ncol = 2)
y <- matrix(1:10, nrow = 2)

genMatrixMult(x, y, FUNelement = paste,
FUNsummary = function(x) paste(x, collapse = "|"))

# Binary logic
set.seed(1)
x <- matrix(rbinom(8, size = 1, prob = 0.5) == 1, ncol = 2)
y <- matrix(rbinom(10, size = 1, prob = 0.5) == 1, nrow = 2)
genMatrixMult(x, y, FUNelement = "*", FUNsummary = any)



genRandomPar 21

genRandomPar The function for generating random partitions

Description

The function generates random partitions. The function is meant to be called by the function
optRandomParC.

Usage

genRandomPar(
k,
n,
seed = NULL,
mingr = 1,
maxgr = Inf,
addParam = list(genPajekPar = TRUE, probGenMech = NULL)

)

Arguments

k Number of clusters (by modes).

n Number of units (by modes).

seed Seed for generating random numbers (partitions).

mingr Minimal allowed group size.

maxgr Maximal allowed group size.

addParam This has to be a list with the following parameters (any or all can be missing,
then the default values (see usage) are used):
"genPajekPar" - Should the partitions be generated as in Pajek (Batagelj & Mr-
var, 2006). If FALSE, all partitions are selected completely at random while
making sure that the partitions have the required number of clusters.
probGenMech - Here the probabilities for 4 different generating mechanisms can
be specified. If this is not specified, the value is set to c(1/3, 1/3, 1/3, 0) if
genPajekPar is TRUE and to c(0, 0, 0, 1) if genPajekPar is FALSE. The first
3 mechanisms are the same as implemented in Pajek (the second one has almost
all units in only one cluster) and the fourth is completely random (from uniform
distribution).

Value

A random partition in the format required by optRandomParC. If a network has several modes, then
a list of partitions, one for each mode.

Author(s)

Aleš Žiberna



22 gplot1

References

Batagelj, V., & Mrvar, A. (2006). Pajek 1.11. Retrieved from http://vlado.fmf.uni-lj.si/pub/networks/pajek/

gplot1 A wrapper for function gplot - Two-Dimensional Visualization of
Graphs

Description

The function calls function gplot from the library sna with different defaults. Use fun for plotting
image graphs.

Usage

gplot1(
M,
diag = TRUE,
displaylabels = TRUE,
boxed.labels = FALSE,
loop.cex = 4,
edge.lwd = 1,
edge.col = "default",
rel.thresh = 0.05,
...

)

gplot2(
M,
uselen = TRUE,
usecurve = TRUE,
edge.len = 0.001,
diag = TRUE,
displaylabels = TRUE,
boxed.labels = FALSE,
loop.cex = 4,
arrowhead.cex = 2.5,
edge.lwd = 1,
edge.col = "default",
rel.thresh = 0.05,
...

)

Arguments

M A matrix (array) of a graph or set thereof. This data may be valued.

diag Boolean indicating whether or not the diagonal should be treated as valid data
Set this TRUE if and only if the data can contain loops. diag is FALSE by default.



ircNorm 23

displaylabels Boolean; should vertex labels be displayed.

boxed.labels Boolean; place vertex labels within boxes.

loop.cex An expansion factor for loops; may be given as a vector, if loops are to be of
different sizes.

edge.lwd Line width scale for edges; if set greater than 0, edge widths are scaled by
edge.lwd*dat. May be given as a vector or adjacency matrix, if edges are
to have different line widths.

edge.col Color for edges; may be given as a vector or adjacency matrix, if edges are to be
of different colors.

rel.thresh Real number indicating the lower relative (compared to the highest value) thresh-
old for tie values. Only ties of value thresh are displayed. By default, thresh
= 0.

... Additional arguments to plot or link{sna::gplot}:

mode: the vertex placement algorithm; this must correspond to a gplot.layout
function from package sna.

uselen Boolean; should we use edge.len to rescale edge lengths.

usecurve Boolean; should we use edge.curve.

edge.len If uselen == TRUE, curved edge lengths are scaled by edge.len.

arrowhead.cex An expansion factor for edge arrowheads.

Value

Plots a graph.

Author(s)

Aleš Žiberna

See Also

link{sna::gplot}

ircNorm Function for iterated row and column normalization of valued matri-
ces

Description

The aim is to obtain a matrix with row and column sums equal to 1. This is achieved by iterating row
and column normalization. This is usually not possible if any row or column has only 1 non-zero
cell.



24 loadmatrix

Usage

ircNorm(M, eps = 10^-12, maxiter = 1000)

Arguments

M A non-negative valued matrix to be normalized.

eps The maximum allows squared deviation of a row or column’s maximum from
1 (if not exactly 0). Also, if the all deviations in two consequtive iterations are
smaller, the process is terminated.

maxiter Maximum number of iterations. If reached, the process is terminated and the
current solution returned.

Value

Normalized matrix.

Author(s)

Aleš Žiberna

Examples

A <- matrix(runif(100), ncol = 10)
A # A non-normalized matrix with different row and column sums.
apply(A, 1, sum)
apply(A, 2, sum)
A.norm <- ircNorm(A)
A.norm # Normalized matrix with all row and column sums approximately 1.
apply(A.norm, 1, sum)
apply(A.norm, 2, sum)

loadmatrix Functions for loading and writing Pajek files

Description

loadmatrix - Loads a Pajek ".mat" filename as a matrix.

Functions for reading/loading and writing Pajek files:

loadnetwork - Loads a Pajek ".net" filename as a matrix. For now, only simple one and two-mode
networks are supported (eg. only single relations, no time information).

loadnetwork2 - The same as above, but adapted to be called within loadpajek.

loadnetwork3 - Another version for reading networks.

loadnetwork4 - Another version for reading networks.

loadpajek - Loads a Pajek project file name (".paj") as a list with the following components:
Networks, Partitions, Vectors and Clusters. Clusters and hierarchies are dismissed.



loadmatrix 25

loadvector - Loads a Pajek ".clu" filename as a vector.

loadvector2 - The same as above, but adapted to be called within loadpajek - as a consequence
not suited for reading clusters.

savematrix - Saves a matrix into a Pajek ".mat" filename.

savenetwork - Saves a matrix into a Pajek ".net" filename.

savevector - Saves a vector into a Pajek ".clu" filename.

Usage

loadmatrix(filename)

loadnetwork(filename, useSparseMatrix = NULL, minN = 50)

loadnetwork2(
filename,
useSparseMatrix = NULL,
minN = 50,
safe = TRUE,
closeFile = TRUE

)

loadnetwork3(filename, useSparseMatrix = NULL, minN = 50)

loadnetwork4(filename, useSparseMatrix = NULL, minN = 50, fill = FALSE)

loadpajek(filename)

loadvector(filename)

loadvector2(filename)

savematrix(n, filename, twomode = 1)

savenetwork(n, filename, twomode = "default", symetric = NULL)

savevector(v, filename)

Arguments

filename The name of the file to be loaded or saved to or an open file object.
useSparseMatrix

Should a sparse matrix be use instead of the ordinary one? Sparse matrices
can only be used if package Matrix is installed. The default NULL uses sparse
matrices for networks with more that minN vertices.

minN The minimal number of units in the network to use sparse matrices.

safe If FALSE error will occur if not all vertices have labels. If TRUE reading works
faster.



26 nanRep

closeFile Should the connection be closed at the end. Should be always TRUE if function
is used directly.

fill If TRUE, then in case the rows have unequal length, blank fields are added.

n A matrix representing the network.

twomode 1 for one-mode networks and 2 for two-mode networks. Default sets the argu-
ment to 1 for square matrices and to 2 for others.

symetric If TRUE, only the lower part of the matrix is used and the values are interpreted
as "Edges", not "Arcs".

v A vector.

Value

NULL, a matrix or a vector.

Author(s)

Vladimir Batagelj & Andrej Mrvar (most functions), Aleš Žiberna (loadnetwork, loadpajek and
modification of others)

References

Batagelj, V., & Mrvar. A. (1999). Pajek - Program for Large Network Analysis. Retrieved from
http://vlado.fmf.uni-lj.si/pub/networks/pajek/.

de Nooy, W., Mrvar, A., & Batagelj. V. (2005). Exploratory Social Network Analysis with Pajek.
London: SAGE Publications.

See Also

plot.mat, critFunC, optRandomParC

nanRep Replaces NaN values by the speficied values (0 by default)

Description

Replaces NaN values by the speficied values (0 by default)

Usage

nanRep(x, rep = 0)

Arguments

x A vector or similar where the NaNs are to be replaced.

rep A value that should replace the NaNs (0 by default).



nkpar 27

Value

x with NaNs replaced by rep.

Author(s)

Aleš Žiberna

nkpar Functions for listing all possible partitions or just counting the number
of them

Description

The function nkpartitions lists all possible partitions of n objects in to k clusters.

Usage

nkpar(n, k)

nkpartitions(n, k, exact = TRUE, print = FALSE)

Arguments

n Number of units/objects.

k Number of clusters/groups.

exact Search for partitions with exactly k or at most k clusters.

print Print results as they are found.

Value

The matrix or number of possible partitions.

Author(s)

Chris Andrews

Examples

n <- 8 # If larger, the number of partitions increases dramatically,
# as does if we increase the number of clusters
net <- matrix(NA, ncol = n, nrow = n)
clu <- rep(1:2, times = c(3, 5))
tclu <- table(clu)
net[clu == 1, clu == 1] <- rnorm(n = tclu[1] * tclu[1], mean = 0, sd = 1)
net[clu == 1, clu == 2] <- rnorm(n = tclu[1] * tclu[2], mean = 4, sd = 1)
net[clu == 2, clu == 1] <- rnorm(n = tclu[2] * tclu[1], mean = 0, sd = 1)
net[clu == 2, clu == 2] <- rnorm(n = tclu[2] * tclu[2], mean = 0, sd = 1)



28 notesBorrowing

# Computation of criterion function with the correct partition
nkpar(n = n, k = length(tclu)) # Computing the number of partitions
all.par <- nkpartitions(n = n, k = length(tclu)) # Forming the partitions
all.par <- lapply(apply(all.par, 1, list), function(x) x[[1]])
# to make a list out of the matrix
res <- critFunC(M = net, clu = clu, approaches = "val",

blocks = c("nul", "com"), preSpecM = 4)
plot(res) # We get the original partition

notesBorrowing The notes borrowing network between social-informatics students

Description

The data come from a survey conducted in May 1993 on 13 social-informatics students (Hlebec,
1996). The network was constructed from answers to the question, "How often did you borrow
notes from this person?" for each of the fellow students. The respondents indicated the frequency
of borrowing by choosing (on a computer) a line of length 1-20, where 1 meant no borrowing. 1
was deducted from all answers, so that 0 now means no borrowing. The data was first used for
blockmodeling in Žiberna (2007).

Usage

data("notesBorrowing")

Format

The data set is a valued matrix with 13 rows and columns.

References

Hlebec, V., (1996). Metodološke značilnosti anketnega zbiranja podatkov v analizi omrežji: Mag-
istersko delo. FDV, Ljubljana.

Žiberna, A. (2007). Generalized blockmodeling of valued networks. Social Networks, 29, 105-126.
https://doi.org/10.1016/j.socnet.2006.04.002

Examples

data(notesBorrowing)

# Plot the network.
# (The function plotMat is from blockmodeling package.)
# plotMat(nyt)



one2two 29

one2two Two-mode network conversions

Description

Converting two mode networks from two to one mode matrix representation and vice versa. If a
two-mode matrix is converted into a one-mode matrix, the original two-mode matrix lies in the
upper right corner of the one-mode matrix.

Usage

one2two(M, clu = NULL)

two2one(M, clu = NULL)

Arguments

M A matrix representing the (usually valued) network.

clu A partition. Each unique value represents one cluster. This should be a list of
two vectors, one for each mode.

Value

Function returns list with the elements: a two mode matrix of a the two mode network in its upper
left corner.

M The matrix.

clu The partition, in form appropriate for the mode of the matrix.

Author(s)

Aleš Žiberna

See Also

optParC, optParC, optRandomParC, plot.mat

Examples

# Generating a simple network corresponding to the simple Sum of squares
# Structural equivalence with blockmodel:
# null com
# null null
n <- c(7, 13)
net <- matrix(NA, nrow = n[1], ncol = n[2])
clu <- list(rep(1:2, times = c(3, 4)), rep(1:2, times = c(5, 8)))
tclu <- lapply(clu, table)
net[clu[[1]] == 1, clu[[2]] == 1] <- rnorm(n = tclu[[1]][1] * tclu[[2]][1],



30 optRandomParC

mean = 0, sd = 1)
net[clu[[1]] == 1, clu[[2]] == 2] <- rnorm(n = tclu[[1]][1] * tclu[[2]][2],

mean = 4, sd = 1)
net[clu[[1]] == 2, clu[[2]] == 1] <- rnorm(n = tclu[[1]][2] * tclu[[2]][1],

mean = 4, sd = 1)
net[clu[[1]] == 2, clu[[2]] == 2] <- rnorm(n = tclu[[1]][2] * tclu[[2]][2],

mean = 0, sd = 1)
plot.mat(net, clu = clu) # Two mode matrix of a two mode network

# Converting to one mode network
M1 <- two2one(net)$M
plot.mat(M1, clu = two2one(net)$clu) # Plotting one mode matrix
# Converting one to two mode matrix and plotting
plot.mat(one2two(M1, clu = clu)$M, clu = clu)

optRandomParC Optimizing a set of partitions based on the value of a criterion function

Description

The function optimizes a set of partitions based on the value of a criterion function (see critFunC
for details on the criterion function) for a given network and blockmodel for Generalized block-
modeling (Žiberna, 2007) based on other parameters (see below). The optimization is done through
local optimization, where the neighborhood of a partition includes all partitions that can be obtained
by moving one unit from one cluster to another or by exchanging two units (from different clusters).
The number of clusters and a number of partitions to generate can be specified (optParC).

Usage

optRandomParC(
M,
k,
approaches,
blocks,
rep,
save.initial.param = TRUE,
save.initial.param.opt = FALSE,
deleteMs = TRUE,
max.iden = 10,
switch.names = NULL,
return.all = FALSE,
return.err = TRUE,
seed = NULL,
RandomSeed = NULL,
parGenFun = genRandomPar,
mingr = NULL,
maxgr = NULL,



optRandomParC 31

addParam = list(genPajekPar = TRUE, probGenMech = NULL),
maxTriesToFindNewPar = rep * 10,
skip.par = NULL,
useOptParMultiC = FALSE,
useMulti = useOptParMultiC,
printRep = ifelse(rep <= 10, 1, round(rep/10)),
n = NULL,
nCores = 1,
useParLapply = FALSE,
useLB = NULL,
chunk.size = 1,
cl = NULL,
stopcl = is.null(cl),
useRegParrallaBackend = FALSE,
...

)

## S3 method for class 'optMorePar'
print(x, ...)

Arguments

M A matrix representing the (usually valued) network. For multi-relational net-
works, this should be an array with the third dimension representing the relation.
The network can have one or more modes (diferent kinds of units with no ties
among themselves). If the network is not two-mode, the matrix must be square.

k The number of clusters used in the generation of partitions.

approaches One of the approaches (for each relation in multi-relational netowrks in a vector)
described in Žiberna (2007). Possible values are:
"bin" - binary blockmodeling,
"val" - valued blockmodeling,
"hom" - homogeneity blockmodeling,
"ss" - sum of squares homogeneity blockmodeling, and
"ad" - absolute deviations homogeneity blockmodeling.

The last two options are "shorthand" for specifying approaches="hom" and
homFun to either "ss" or "ad".

blocks A vector, a list of vectors or an array with names of allowed blocy types.

Only listing of allowed block types (blockmodel is not pre-specified).
A vector with names of allowed block types. For multi-relational networks, it
can be a list of such vectors. For approaches = "bin" or approaches = "val",
at least two should be selected. Possible values are:
"nul" - null or empty block
"com" - complete block
"rdo", "cdo" - row and column-dominant blocks (binary and valued approach
only)
"reg" - (f-)regular block



32 optRandomParC

"rre", "cre" - row and column-(f-)regular blocks
"rfn", "cfn" - row and column-dominant blocks (binary, valued only)
"den" - density block (binary approach only)
"avg" - average block (valued approach only)
"dnc" - do not care block - the error is always zero
The ordering is important, since if several block types have identical error, the
first on the list is selected.

A pre-specified blockmodel.
An array with four dimensions (see example below). The third and the fourth
represent the clusters (for rows and columns). The first is as long as the max-
imum number of allows block types for a given block. If some block has less
possible block types, the empty slots should have values NA. The second dimen-
sion is the number of relations (1 for single-relational networks). The values in
the array should be the ones from above. The array can have only three dimen-
sions in case of one-relational networks or if the same pre-specified blockmodel
is assumed for all relations. Further, it can have only two dimensions, if in
addition only one block type is allowed per block.

rep The number of repetitions/different starting partitions to check.
save.initial.param

Should the inital parameters (approaches, ...) be saved. The default value is
TRUE.

save.initial.param.opt

Should the inital parameters(approaches, ...) of using optParC be saved. The
default value is FALSE.

deleteMs Delete networks/matrices from the results of to save space.

max.iden Maximum number of results that should be saved (in case there are more than
max.iden results with minimal error, only the first max.iden will be saved).

switch.names Should partitions that only differ in group names be considered equal. By default
it is set to TRUE if blocks is either a vector or a list of vectors and to FALSE
otherwise.

return.all If FALSE, solution for only the best (one or more) partition/s is/are returned.

return.err Should the error for each optimized partition be returned.

seed Optional. The seed for random generation of partitions.

RandomSeed Optional. Integer vector, containing the random number generator. It is only
looked for in the user’s workspace.

parGenFun The function (object) that will generate random partitions. The default function
is genRandomPar. The function has to accept the following parameters: k (num-
ber o of partitions by modes, n (number of units by modes), seed (seed value
for random generation of partition), addParam (a list of additional parameters).

mingr Minimal allowed group size.

maxgr Maximal allowed group size.

addParam A list of additional parameters for function specified above. In the usage section
they are specified for the default function genRandomPar.



optRandomParC 33

maxTriesToFindNewPar

The maximum number of partition try when trying to find a new partition to
optimize that was not yet checked before - the default value is rep * 1000.

skip.par The partitions that are not allowed or were already checked and should therefore
be skipped.

useOptParMultiC

For backward compatibility. May be removed soon. See next argument.

useMulti Which version of local search should be used. Default is currently FALSE. If
FALSE, first possible all moves in random order and then all possible exchanges
in random order are tried. When a move with lower value of criterion function
is found, the algorithm moves to this new partition. If TRUE the version of local
search where all possible moves and exchanges are tried first and then the one
with the lowest error is selected and used. In this case, several optimal partitions
are found. maxPar best partitions are returned.

printRep Should some information about each optimization be printed.

n The number of units by "modes". It is used only for generating random parti-
tions. It has to be set only if there are more than two modes or if there are two
modes, but the matrix representing the network is one mode (both modes are in
rows and columns).

nCores Number of cores to be used. Value 0 means all available cores. It can also be a
cluster object.

useParLapply Should parLapplyLB or parLapply (see useLB) be used for parallel execu-
tion (on multiple cores). Otherwise mforeach is used. Defaults to FALSE.
If useParLapply = TRUE and useLB = TRUE, results are not reproducible.

useLB Should be logical if set. Only used if useParLapply = TRUE. Should load bal-
ancing be used (parLapplyLB instead of parLapply). Using load balancing
usually means faster execution, but results are with not reproducible. Defaults
to NULL, which is changed to TRUE, but a warning.

chunk.size chunk.size used in parLapplyLB if it is used, otherwise ignored. Defaults to 1.

cl The cluster to use (if formed beforehand). Defaults to NULL. Ignored if usePar-
Lapply=FALSE (default) and foreach::getDoParRegistered is true

stopcl Should the cluster be stoped after the function finishes. Defaults to is.null(cl).

useRegParrallaBackend

Should the function use already registered parallel backend. Defaults to FALSE.
If TRUE, you must make sure that an appropriate backend is correctly set up and
registered. Use only if useParLapply = FALSE (default) and nCore is not 1.

... Arguments passed to other functions, see critFunC.

x The result of optRandomParC.

genPajekPar Should the partitions be generated as in Pajek.

probGenMech Should the probabilities for different mechanisms for specifying the partitions
be set. If probGenMech is not set, it is determined based on the parameter
genPajekPar.



34 optRandomParC

Value

M The matrix of the network analyzed.

res If return.all = TRUE - A list of results the same as best - one best for each
partition optimized.

best A list of results from optParC, only without M.

err If return.err = TRUE - The vector of errors or inconsistencies of the empirical
network with the ideal network for a given blockmodel (model,approach,...) and
parititions.

nIter The vector of the number of iterations used - one value for each starting partition
that was optimized. It can show that maxiter is too low if a lot of these values
have the value of maxiter.

checked.par If selected - A list of checked partitions. If merge.save.skip.par is TRUE, this
list also includes the partitions in skip.par.

call The call used to call the function.

initial.param If selected - The initial parameters are used.

Warning

It should be noted that the time complexity of package blockmodeling is increasing with the number
of units and the number of clusters (due to its algorithm). Therefore the analysis of network with
more than 100 units can take a lot of time (from a few hours to a few days).

Author(s)

Aleš, Žiberna

References

Batagelj, V., & Mrvar, A. (2006). Pajek 1.11. Retrieved from http://vlado.fmf.uni-lj.si/pub/networks/pajek/

Doreian, P., Batagelj, V. & Ferligoj, A. (2005). Generalized blockmodeling, (Structural analysis in
the social sciences, 25). Cambridge [etc.]: Cambridge University Press.

Žiberna, A. (2007). Generalized Blockmodeling of Valued Networks. Social Networks, 29(1),
105-126. doi: 10.1016/j.socnet.2006.04.002

Žiberna, A. (2008). Direct and indirect approaches to blockmodeling of valued networks in terms of
regular equivalence. Journal of Mathematical Sociology, 32(1), 57-84. doi: 10.1080/00222500701790207

Žiberna, A. (2014). Blockmodeling of multilevel networks. Social Networks, 39(1), 46-61. doi:
10.1016/j.socnet.2014.04.002

See Also

critFunC, IM, clu, err, plot.optMorePar



orderClu 35

Examples

n <- 8 # If larger, the number of partitions increases dramatically
# as does if we increase the number of clusters
net <- matrix(NA, ncol = n, nrow = n)
clu <- rep(1:2, times = c(3, 5))
tclu <- table(clu)
net[clu == 1, clu == 1] <- rnorm(n = tclu[1] * tclu[1], mean = 0, sd = 1)
net[clu == 1, clu == 2] <- rnorm(n = tclu[1] * tclu[2], mean = 4, sd = 1)
net[clu == 2, clu == 1] <- rnorm(n = tclu[2] * tclu[1], mean = 0, sd = 1)
net[clu == 2, clu == 2] <- rnorm(n = tclu[2] * tclu[2], mean = 0, sd = 1)

# Optimizing 10 random chosen partitions with optRandomParC
res <- optRandomParC(M = net, k = 2, rep = 10,
approaches = "hom", homFun = "ss", blocks = "com")
plot(res) # Hopefully we get the original partition

orderClu Orders the partition so that mean values of fun applied to columns (if
funWay=2, default), rows (if funWay=1) or both (if funWay=c(1,2))
is decreasing by clusters.

Description

Orders the partition so that mean values of fun applied to columns (if funWay=2, default), rows (if
funWay=1) or both (if funWay=c(1,2)) is decreasing by clusters. The function can be used on the
results of critFunC, optRandomParC or similar, or matrix and a partition can be supplied. It should
also work on multirelational and lined networks.

Usage

orderClu(
x,
clu = NULL,
fun = sum,
funWay = 2,
nn = NULL,
returnList = TRUE,
scale = TRUE

)

Arguments

x A result of critFunC, optRandomParC or similar (something containing M (ma-
trix) and clu (partition)) or a matrix (or array for multirelational networks).

clu A partition - a vector or a list of vectors/partitions. It must be supplied only if x
is a matrix or array.



36 plot.critFun

fun A function used to summarize rows or columns. sum by default.

funWay In which "way" should fun be appluied - to columns (if funWay=2, default),
rows (if funWay=1) or both (if funWay=c(1,2))

nn The numbers of untis by sets of units. In principle, the function should determin
this automatically.

returnList Logical. Should the partition be returned in form of a list (for lined networks
only). TRUE by default.

scale Only used in case of multirelational networks. Should relations be scaled (TRUE
by default) before summation. It can also be a vector of weights by relations.

Value

An ordered partition. In an attribute ("reorder"). the information on how things were reordered.

See Also

clu

plot.critFun Functions for plotting a partitioned matrix (representing the network)

Description

The main function plot.mat or plotMat plots a (optionally partitioned) matrix. If the matrix is
partitioned, the rows and columns of the matrix are rearranged according to the partitions. Other
functions are only wrappers for plot.mat or plotMat for convenience when plotting the results of
the corresponding functions. The plotMatNm plots two matrices based on M, normalized by rows
and columns, next to each other. The plotArray plots an array. plot.mat.nm has been replaced
by plotMatNm.

Usage

## S3 method for class 'critFun'
plot(x, main = NULL, ...)

## S3 method for class 'crit.fun'
plot(x, main = NULL, ...)

plotMatNm(
M = x,
x = M,
...,
main.title = NULL,
title.row = "Row normalized",
title.col = "Column normalized",
main.title.line = -2,



plot.critFun 37

par.set = list(mfrow = c(1, 2))
)

## S3 method for class 'optMorePar'
plot(x, main = NULL, which = 1, ...)

## S3 method for class 'opt.more.par'
plot(x, main = NULL, which = 1, ...)

## S3 method for class 'optMoreParMode'
plot(x, main = NULL, which = 1, ...)

## S3 method for class 'opt.more.par.mode'
plot(x, main = NULL, which = 1, ...)

## S3 method for class 'optPar'
plot(x, main = NULL, which = 1, ...)

## S3 method for class 'opt.par'
plot(x, main = NULL, which = 1, ...)

## S3 method for class 'optParMode'
plot(x, main = NULL, which = 1, ...)

## S3 method for class 'opt.par.mode'
plot(x, main = NULL, which = 1, ...)

plotMat(
x = M,
clu = NULL,
orderClu = FALSE,
M = x,
ylab = "",
xlab = "",
main = NULL,
print.val = !length(table(M)) <= 2,
print.0 = FALSE,
plot.legend = !print.val && !length(table(M)) <= 2,
print.legend.val = "out",
print.digits.legend = 2,
print.digits.cells = 2,
print.cells.mf = NULL,
outer.title = FALSE,
title.line = ifelse(outer.title, -1.5, 7),
mar = c(0.5, 7, 8.5, 0) + 0.1,
cex.val = "default",
val.y.coor.cor = 0,
val.x.coor.cor = 0,



38 plot.critFun

cex.legend = 1,
legend.title = "Legend",
cex.axes = "default",
print.axes.val = NULL,
print.x.axis.val = !is.null(colnames(M)),
print.y.axis.val = !is.null(rownames(M)),
x.axis.val.pos = 1.01,
y.axis.val.pos = -0.01,
cex.main = par()$cex.main,
cex.lab = par()$cex.lab,
yaxis.line = -1.5,
xaxis.line = -1,
legend.left = 0.4,
legend.up = 0.03,
legend.size = 1/min(dim(M)),
legend.text.hor.pos = 0.5,
par.line.width = 3,
par.line.width.newSet = par.line.width[1] * 2,
par.line.col = "blue",
par.line.col.newSet = "red",
IM.dens = NULL,
IM = NULL,
wnet = NULL,
wIM = NULL,
use.IM = length(dim(IM)) == length(dim(M)) | !is.null(wIM),
dens.leg = c(null = 100, nul = 100),
blackdens = 70,
plotLines = FALSE,
frameMatrix = TRUE,
x0ParLine = -0.1,
x1ParLine = 1,
y0ParLine = 0,
y1ParLine = 1.1,
colByUnits = NULL,
colByRow = NULL,
colByCol = NULL,
mulCol = 2,
joinColOperator = "+",
colTies = FALSE,
maxValPlot = NULL,
printMultipliedMessage = TRUE,
replaceNAdiagWith0 = TRUE,
colLabels = FALSE,
MplotValues = NULL,
...

)

plotArray(



plot.critFun 39

x = M,
M = x,
IM = NULL,
...,
main.title = NULL,
main.title.line = -2,
mfrow = NULL

)

## S3 method for class 'mat'
plot(
x = M,
clu = NULL,
orderClu = FALSE,
M = x,
ylab = "",
xlab = "",
main = NULL,
print.val = !length(table(M)) <= 2,
print.0 = FALSE,
plot.legend = !print.val && !length(table(M)) <= 2,
print.legend.val = "out",
print.digits.legend = 2,
print.digits.cells = 2,
print.cells.mf = NULL,
outer.title = FALSE,
title.line = ifelse(outer.title, -1.5, 7),
mar = c(0.5, 7, 8.5, 0) + 0.1,
cex.val = "default",
val.y.coor.cor = 0,
val.x.coor.cor = 0,
cex.legend = 1,
legend.title = "Legend",
cex.axes = "default",
print.axes.val = NULL,
print.x.axis.val = !is.null(colnames(M)),
print.y.axis.val = !is.null(rownames(M)),
x.axis.val.pos = 1.01,
y.axis.val.pos = -0.01,
cex.main = par()$cex.main,
cex.lab = par()$cex.lab,
yaxis.line = -1.5,
xaxis.line = -1,
legend.left = 0.4,
legend.up = 0.03,
legend.size = 1/min(dim(M)),
legend.text.hor.pos = 0.5,
par.line.width = 3,



40 plot.critFun

par.line.width.newSet = par.line.width[1] * 2,
par.line.col = "blue",
par.line.col.newSet = "red",
IM.dens = NULL,
IM = NULL,
wnet = NULL,
wIM = NULL,
use.IM = length(dim(IM)) == length(dim(M)) | !is.null(wIM),
dens.leg = c(null = 100, nul = 100),
blackdens = 70,
plotLines = FALSE,
frameMatrix = TRUE,
x0ParLine = -0.1,
x1ParLine = 1,
y0ParLine = 0,
y1ParLine = 1.1,
colByUnits = NULL,
colByRow = NULL,
colByCol = NULL,
mulCol = 2,
joinColOperator = "+",
colTies = FALSE,
maxValPlot = NULL,
printMultipliedMessage = TRUE,
replaceNAdiagWith0 = TRUE,
colLabels = FALSE,
MplotValues = NULL,
...

)

Arguments

x A result from a corresponding function or a matrix or similar object representing
a network.

main Main title.

... Additional arguments to plot.default for plotMat and also to plotMat for
other functions.

M A matrix or similar object representing a network - either x or M must be sup-
plied - both are here to make the code compatible with generic and with older
functions.

main.title Main title in plotArray version.

title.row Title for the row-normalized matrix in nm version

title.col Title for the column-normalized matrix in nm version
main.title.line

The line in which main title is printed in plotArray version.

par.set A list of possible plotting parameters (to par) to be used in nm version



plot.critFun 41

which Which (if there are more than one) of optimal solutions to plot.

clu A partition. Each unique value represents one cluster. If the network is one-
mode, then this should be a vector, else a list of vectors, one for each mode/set.

orderClu Should the partition be ordered before plotting. FALSE by default. If TRUE,
orderClu is used (using default arguments) to order the clusters in a partition in
"decreasing" (see orderClu for interpretation) order.

ylab Label for y axis.

xlab Label for x axis.

print.val Should the values be printed in the matrix.

print.0 If print.val = TRUE Should the 0s be printed in the matrix.

plot.legend Should the legend for shades be plotted.
print.legend.val

Should the values be printed in the legend.
print.digits.legend

The number of digits that should appear in the legend.
print.digits.cells

The number of digits that should appear in the cells (of the matrix and/or legend).

print.cells.mf If not NULL, the above argument is ignored, the cell values are printed as the cell
are multiplied by this factor and rounded.

outer.title Should the title be printed on the ’inner’ or ’outer’ margin of the plot, default is
’inner’ margin.

title.line The line (from the top) where the title should be printed. The suitable values
depend heavily on the displayed type.

mar A numerical vector of the form c(bottom, left, top, right) which gives the
lines of margin to be specified on the four sides of the plot. The R default for
ordinary plots is c(5, 4, 4, 2) + 0.1, while this function default is c(0.5, 7,
8.5, 0) + 0.1.

cex.val The size of the values printed. The default is 10 / 'number of units'.

val.y.coor.cor Correction for centering the values in the squares in y direction.

val.x.coor.cor Correction for centering the values in the squares in x direction.

cex.legend Size of the text in the legend.

legend.title The title of the legend.

cex.axes Size of the characters in axes. Default makes the cex so small that all categories
can be printed.

print.axes.val Should the axes values be printed. Default prints each axis if rownames or
colnames is not NULL.

print.x.axis.val

Should the x axis values be printed. Default prints each axis if rownames or
colnames is not NULL.

print.y.axis.val

Should the y axis values be printed. Default prints each axis if rownames or
colnames is not NULL.



42 plot.critFun

x.axis.val.pos The x coordinate of the y axis values.

y.axis.val.pos The y coordinate of the x axis values.

cex.main Size of the text in the main title.

cex.lab Size of the text in matrix.

yaxis.line The position of the y axis (the argument ’line’).

xaxis.line The position of the x axis (the argument ’line’).

legend.left How much left should the legend be from the matrix.

legend.up How much up should the legend be from the matrix.

legend.size Relative legend size.
legend.text.hor.pos

Horizontal position of the legend text (bottom) - 0 = bottom, 0.5 = middle,...

par.line.width The width of the line that separates the partitions.
par.line.width.newSet

The width of the line that separates that separates the sets/modes - only used
when clu is a list and par.line.width has length 1.

par.line.col The color of the line that separates the partitions.
par.line.col.newSet

The color of the line that separates that separates the sets/modes - only used
when clu is a list and par.line.col has length 1.

IM.dens The density of shading lines in each block.

IM The image (as obtained with critFunC) of the blockmodel. dens.leg is used
to translate this image into IM.dens.

wnet Specifies which matrix (if more) should be plotted - used if M is an array.

wIM Specifies which IM (if more) should be used for plotting. The default value is set
to wnet) - used if IM is an array.

use.IM Specifies if IM should be used for plotting.

dens.leg It is used to translate the IM into IM.dens.

blackdens At which density should the values on dark colors of lines be printed in white.

plotLines Should the lines in the matrix be printed. The default value is set to FALSE, best
set to TRUE for very small networks.

frameMatrix Should the matrix be framed (if plotLines is FALSE). The default value is set
to TRUE.

x0ParLine Coordinates for lines separating clusters.

x1ParLine Coordinates for lines separating clusters.

y0ParLine Coordinates for lines separating clusters.

y1ParLine Coordinates for lines separating clusters.

colByUnits Coloring units. It should be a vector of unit length.

colByRow Coloring units by rows. It should be a vector of unit length.

colByCol Coloring units by columns. It should be a vector of unit length.



plot.critFun 43

mulCol Multiply color when joining with row, column. Only used when when colByUnits
is not NULL.

joinColOperator

Function to join colByRow and colByCol. The default value is set to "+".

colTies If TRUE, ties are colored, if FALSE, 0-ties are colored.

maxValPlot The value to use as a maximum when computing colors (ties with maximal
positive value are plotted as black).

printMultipliedMessage

Should the message ’* all values in cells were multiplied by’ be printed on the
plot. The default value is set to TRUE.

replaceNAdiagWith0

If replaceNAdiagWith0 = TRUE Should the NA values on the diagonal of a ma-
trix be replaced with 0s.

colLabels Should the labels of units be colored. If FALSE, these are not colored, if TRUE,
they are colored with colors of clusters as defined by palette. This can be also a
vector of colors (or integers) for one-mode networks or a list of two such vectors
for two-mode networks.

MplotValues A matrix to strings to plot in cells. Only to be used if other values than those
in the original matrix (x or M arguments) should be used. Defaults to NULL, in
which case the valued from original matrix are plotted (if this is not prevented
by some other arguments). Overrides all other arguments that deal with cell
values (e.g. print.digits.cells). Sets print.val to TRUE and plot.legend
to FALSE.

mfrow mfrow Argument to par - number of row and column plots to be plotted on one
figure.

Value

The functions are used for their side effect - plotting.

Author(s)

Aleš Žiberna

References

Žiberna, A. (2007). Generalized Blockmodeling of Valued Networks. Social Networks, 29(1),
105-126. doi: 10.1016/j.socnet.2006.04.002

Žiberna, A. (2008). Direct and indirect approaches to blockmodeling of valued networks in terms of
regular equivalence. Journal of Mathematical Sociology, 32(1), 57-84. doi: 10.1080/00222500701790207

See Also

critFunC, optRandomParC



44 printBlocks

Examples

# Generation of the network
n <- 20
net <- matrix(NA, ncol = n, nrow = n)
clu <- rep(1:2, times = c(5, 15))
tclu <- table(clu)
net[clu == 1, clu == 1] <- rnorm(n = tclu[1] * tclu[1], mean = 0, sd = 1)
net[clu == 1, clu == 2] <- rnorm(n = tclu[1] * tclu[2], mean = 4, sd = 1)
net[clu == 2, clu == 1] <- rnorm(n = tclu[2] * tclu[1], mean = 0, sd = 1)
net[clu == 2, clu == 2] <- rnorm(n = tclu[2] * tclu[2], mean = 0, sd = 1)

# Ploting the network
plotMat(M = net, clu = clu, print.digits.cells = 3)
class(net) <- "mat"
plot(net, clu = clu)
# See corresponding functions for examples for other ploting
# functions
# presented, that are essentially only the wrappers for "plot.max"

printBlocks Nice printing of the blocks parameter as used in optRandomParC and
critFunC.

Description

Nice printing of the blocks parameter as used in optRandomParC and critFunC.

Usage

printBlocks(blocks)

Arguments

blocks blocks parameter as used in optRandomParC and critFunC.

Value

Used for side effects (printing)

Author(s)

Aleš, Žiberna

See Also

optRandomParC, critFunC



rand 45

rand Comparing partitions on one or multiple sets of units

Description

Rand Index and Rand Index corrected/adjusted for chance for comparing partitions (Hubert & Ara-
bie, 1985). The functions also support computing these indices on partitions on multiple sets (where
a "combined" partition is a list of multiple partitions). The names of the clusters do not matter.

Usage

rand(clu1, clu2, tab)

crand(
clu1,
clu2,
tab,
multiSets = c("weights", "unlist"),
weights = c("size", "equal"),
returnIndividual = "attr"

)

rand2(clu1, clu2)

crand2(clu1, clu2)

Arguments

clu1 The first of the two partitions to be compared, given in the form of vectors,
where for each unit a cluster membership is given. Alternatively, this can be a
contingency table obtained as a table(clu1, clu2). If a partition, clu2 must
also be provided. In case of multiple sets, this should be pa list of partitions.

clu2 If clu1 is partition or a list of partitions, this must be a comaptible the second
partition or list of partitions.

tab A contingency table obtained as a table(clu1, clu2). This is included for
back-compatibility reasons. If this is present, all other arguments are ignored.

multiSets How should we compute the index in case of multiple sets of unis (if clu1
and clu2 are lists of partitions)? Possible values are "unlist" and "weight" (the
default).

weights Weights to be used if multiSets is "weight". It can be "equal", "size" (default)
or a numeric (non-negative) vector of the same length as the number of sets (the
number of partitions in the list of partitions).

returnIndividual

If multiSets is "weight", should the indices for individual sets be also returned.
If TRUE, the function returns a list instead of a single value. If the values is
"attr" (the default), the indices by sets are given as an attribute "bySets"



46 recode

Value

The value of Rand Index (corrected/adjusted for chance) unless multiSets="weight" and returnIndividual=FALSE.
In this case, a list with two items is return. The "global" index is in global, while the the indices
by sets are in bySets.

Author(s)

Aleš Žiberna

References

Hubert, L., & Arabie, P. (1985). Comparing Partitions. Journal of Classification, 2(1), 193-218.

recode Recode

Description

Recodes values in a vector.

Usage

recode(x, oldcode = sort(unique(x)), newcode)

Arguments

x A vector.

oldcode A vector of old codes.

newcode A vector of new codes.

Value

A recoded vector.

Author(s)

Aleš Žiberna

Examples

x <- rep(1:3, times = 1:3)
newx <- recode(x, oldcode = 1:3, newcode = c("a", "b", "c"))



REGE.FC 47

REGE.FC REGE - Algorithms for compiting (dis)similarities in terms of regular
equivalnece

Description

REGE - Algorithms for compiting (dis)similarities in terms of regular equivalnece (White & Reitz,
1983). REGE, REGE.for - Classical REGE or REGGE, as also implemented in Ucinet. Similar-
ities in terms of regular equivalence are computed. The REGE.for is a wrapper for calling the
FORTRAN subrutine written by White (1985a), modified to be called by R. The REGE does the
same, however it is written in R. The functions with and without ".for" differ only in whether they
are implemented in R of FORTRAN. Needless to say, the functions implemented in FORTRAN
are much faster. REGE.ow, REGE.ow.for - The above function, modified so that a best match is
searched for each arc separately (and not for both arcs, if they exist, together). REGE.nm.for
- REGE or REGGE, modified to use row and column normalized matrices instead of the origi-
nal matrix. REGE.ownm.for - The above function, modified so that a best match for an outgoing
ties is searched on row-normalized network and for incoming ties on column-normalized network.
REGD.for - REGD or REGDI, a dissimilarity version of the classical REGE or REGGE. Dissim-
ilarities in terms of regular equivalence are computed. The REGD.for is a wrapper for calling the
FORTRAN subroutine written by White (1985b), modified to be called by R. REGE.FC - Actually
an earlier version of REGE. The difference is in the denominator. See Žiberna (2007) for details.
REGE.FC.ow - The above function, modified so that a best match is searched for each arc separately
(and not for both arcs, if they exist, together). other - still in testing stage.

Usage

REGE.FC(
M,
E = 1,
iter = 3,
until.change = TRUE,
use.diag = TRUE,
normE = FALSE

)

REGE.FC.ow(
M,
E = 1,
iter = 3,
until.change = TRUE,
use.diag = TRUE,
normE = FALSE

)

REGE(M, E = 1, iter = 3, until.change = TRUE, use.diag = TRUE)

REGE.ow(M, E = 1, iter = 3, until.change = TRUE, use.diag = TRUE)



48 REGE.FC

REGE.for(M, iter = 3, E = 1)

REGD.for(M, iter = 3, E = 0)

REGE.ow.for(M, iter = 3, E = 1)

REGD.ow.for(M, iter = 3, E = 0)

REGE.ownm.for(M, iter = 3, E = 1)

REGE.ownm.diag.for(M, iter = 3, E = 1)

REGE.nm.for(M, iter = 3, E = 1)

REGE.nm.diag.for(M, iter = 3, E = 1)

REGE.ne.for(M, iter = 3, E = 1)

REGE.ow.ne.for(M, iter = 3, E = 1)

REGE.ownm.ne.for(M, iter = 3, E = 1)

REGE.nm.ne.for(M, iter = 3, E = 1)

REGD.ne.for(M, iter = 3, E = 0)

REGD.ow.ne.for(M, iter = 3, E = 0)

Arguments

M Matrix or a 3 dimensional array representing the network. The third dimension
allows for several relations to be analyzed.

E Initial (dis)similarity in terms of regular equivalnece.

iter The desired number of iterations.

until.change Should the iterations be stopped when no change occurs.

use.diag Should the diagonal be used. If FALSE, all diagonal elements are set to 0.

normE Should the equivalence matrix be normalized after each iteration.

Value

E A matrix of (dis)similarities in terms of regular equivalnece.

Eall An array of (dis)similarity matrices in terms of regular equivalence, each third
dimension represets one iteration. For ".for" functions, only the initial and the
final (dis)similarities are returned.

M Matrix or a 3 dimensional array representing the network used in the call.

iter The desired number of iterations.



REGE.FC 49

use.diag Should the diagonal be used - for functions implemented in R only.

...

References

Žiberna, A. (2008). Direct and indirect approaches to blockmodeling of valued networks in terms of
regular equivalence. Journal of Mathematical Sociology, 32(1), 57-84. doi: 10.1080/00222500701790207

White, D. R., & Reitz, K. P. (1983). Graph and semigroup homomorphisms on networks of rela-
tions. Social Networks, 5(2), 193-234.

White, D. R.(1985a). DOUG WHITE’S REGULAR EQUIVALENCE PROGRAM. Retrieved from
http://eclectic.ss.uci.edu/~drwhite/REGGE/REGGE.FOR

White, D. R. (1985b). DOUG WHITE’S REGULAR DISTANCES PROGRAM. Retrieved from
http://eclectic.ss.uci.edu/~drwhite/REGGE/REGDI.FOR

White, D. R. (2005). REGGE. Retrieved from http://eclectic.ss.uci.edu/~drwhite/REGGE/

#’ @author Aleš Žiberna based on Douglas R. White’s original REGE and REGD

See Also

sedist, critFunC, optParC, plot.mat

Examples

n <- 20
net <- matrix(NA, ncol = n, nrow = n)
clu <- rep(1:2, times = c(5, 15))
tclu <- table(clu)
net[clu == 1, clu == 1] <- 0
net[clu == 1, clu == 2] <- rnorm(n = tclu[1] * tclu[2], mean = 4, sd = 1) * sample(c(0, 1),

size = tclu[1] * tclu[2], replace = TRUE, prob = c(3/5, 2/5))
net[clu == 2, clu == 1] <- 0
net[clu == 2, clu == 2] <- 0

D <- REGE.for(M = net)$E # Any other REGE function can be used
plot.mat(net, clu = cutree(hclust(d = as.dist(1 - D), method = "ward.D"),

k = 2))
# REGE returns similarities, which have to be converted to
# disimilarities

res <- optRandomParC(M = net, k = 2, rep = 10, approaches = "hom", homFun = "ss", blocks = "reg")
plot(res) # Hopefully we get the original partition



50 reorderImage

relInv Functions for computing "relative inverse" (x[1]/x).

Description

For a vector x, it computes x[1]/x. For relInv2, if certain elements of the result are not finite (e.g.
if certain elements of x are 0), these elements are replaced with 0s.

Usage

relInv(x)

relInv2(x)

Arguments

x A numeric vector. For relInv it should not contain 0s (while for relInv2 it
can).

Value

A vector computed as x[1]/x. For relInv2, if the non-finite elements are replaced with 0s.

Author(s)

Aleš Žiberna

reorderImage Reordering an image matrix of the blockmodel (or an error matrix
based on new and old partition

Description

Reorders an image matrix of the blockmodel (or an error matrix based on new and old partition.
The partitions should be the same, except that classes can have different labels. It is useful when
we want to have a different order of classes in figures and then also in image matrices. Currently it
is only suitable for one-mode blockmodels.

Usage

reorderImage(IM, oldClu, newClu)

Arguments

IM An image or error matrix.
oldClu Old partition.
newClu New partition, the same as the old one except for class labeles.



RF 51

Value

Reorder matrix (rows and columns are reordred).

Author(s)

Ales Ziberna

References

Žiberna, A. (2007). Generalized Blockmodeling of Valued Networks. Social Networks, 29(1),
105-126. doi: 10.1016/j.socnet.2006.04.002

Žiberna, A. (2008). Direct and indirect approaches to blockmodeling of valued networks in terms of
regular equivalence. Journal of Mathematical Sociology, 32(1), 57-84. doi: 10.1080/00222500701790207

See Also

critFunC, plot.mat, clu, IM, err

RF Calculate the value of the Relative Fit function

Description

The function calculates the value of the Relative Fit function. Currently implemented only for
one-relational one-mode or two-mode networks.

Usage

RF(res, m = 10, loops = NULL)

Arguments

res An object returned by the function optRandomParC.

m The number of randomized networks for the estimation of the expected value of
a criterion function. It has to be as high as possible. Defaults to 10.

loops Whether loops are treated the same as any other values or not.

Details

The function randomizes an empirical network to compute the value of the Relative Fit function.
The networks are randomized in such a way that the values on the links are randomly relocated.
Other approaches to randomization also exist and might be more appropriate in some cases, see
Cugmas et al. (2021).



52 sedist

Value

• RF - The value of the Relative Fit function.

• err - The value of a criterion function that is used for blockmodeling (for empirical network).

• rand.err - A vector with the values of the criterion function that is used for blockmodeling
(for randomized networks).

Author(s)

Marjan Cugmas and Aleš Žiberna

References

Cugmas, M., Žiberna, A., & Ferligoj, A. (2021). The Relative Fit measure for evaluating a block-
model. Statistical Methods & Applications, 30(5), 1315-1335. doi:10.1007/s10260021005951

See Also

optRandomParC

Examples

n <- 8 # If larger, the number of partitions increases
# dramatically as does if we increase the number of clusters
net <- matrix(NA, ncol = n, nrow = n)
clu <- rep(1:2, times = c(3, 5))
tclu <- table(clu)
net[clu == 1, clu == 1] <- rnorm(n = tclu[1] * tclu[1], mean = 0, sd = 1)
net[clu == 1, clu == 2] <- rnorm(n = tclu[1] * tclu[2], mean = 4, sd = 1)
net[clu == 2, clu == 1] <- rnorm(n = tclu[2] * tclu[1], mean = 0, sd = 1)
net[clu == 2, clu == 2] <- rnorm(n = tclu[2] * tclu[2], mean = 0, sd = 1)

res <- optRandomParC(M = net, k = 2, rep = 10, approaches = "hom", homFun = "ss", blocks = "com")
RF(res = res, m = 100, loops = TRUE)

sedist Computes distances in terms of Structural equivalence (Lorrain &
White, 1971)

Description

The functions compute the distances in terms of Structural equivalence (Lorrain and White, 1971)
between the units of a one-mode network. Several options for treating the diagonal values are
supported.

https://doi.org/10.1007/s10260-021-00595-1


sedist 53

Usage

sedist(
M,
method = "default",
fun = "default",
fun.on.rows = "default",
handle.interaction = "switch",
use = "pairwise.complete.obs",
...

)

Arguments

M A matrix representing the (usually valued) network. For now, only one-relational
networks are supported. The network must be one-mode.

method The method used to compute distances - any of the methods allowed by func-
tions dist, "cor" or "cov" (all package::stats) or just "cor" or "cov" (given
as a character).

fun Which function should be used to compute distances (given as a character).
fun.on.rows For non-standard function - does the function compute measure on rows (such

as "cor", "cov",...) of the data matrix (as opposed to computing measure on
columns (such as dist).

handle.interaction

How should the interaction between the vertices analysed be handled:
"switch" (the default) - assumes that when comparing units i and j, M[i,i]
should be compared with M[j,j] and M[i,j] with M[j,i]. These two comparisons
are weighted by 2. This should be used with Euclidean distance to get the cor-
rected Euclidean distance with p = 2.
"switch2" - the same (alias)
"switch1" - the same as above, only that the two comparisons are weighted by
1. This should be used with Euclidean distance to get the corrected Wuclidean
distance with p = 1.
"ignore" (diagonal) - Diagonal is ignored. This should be used with Euclidean
distance to get the corrected Euclidean distance with p = 0.
"none" - the matrix is used "as is"

use For use with methods "cor" and "cov", for other methods (the default option
should be used if handle.interaction == "ignore"), "pairwise.complete.obs"
are always used, if stats.dist.cor.cov = TRUE.

... Additional arguments to fun

Details

If both method and fun are "default", the Euclidean distances are computed. The "default"
method for fun = "dist" is "euclidean" and for fun = "cor" "pearson".

Value

A matrix (usually of class dist) is returned.



54 splitClu

Author(s)

Aleš Žiberna

References

Batagelj, V., Ferligoj, A., & Doreian, P. (1992). Direct and indirect methods for structural equiva-
lence. Social Networks, 14(1-2), 63-90. doi: 10.1016/0378-8733(92)90014-X

Lorrain, F., & White, H. C. (1971). Structural equivalence of individuals in social networks. Journal
of Mathematical Sociology, 1(1), 49-80. doi: 10.1080/0022250X.1971.9989788

See Also

dist, hclust, REGE, optParC, optParC, optRandomParC

Examples

# Generating a simple network corresponding to the simple Sum of squares
# Structural equivalence with blockmodel:
# null com
# null null
n <- 20
net <- matrix(NA, ncol = n, nrow = n)
clu <- rep(1:2, times = c(5, 15))
tclu <- table(clu)
net[clu == 1, clu == 1] <- rnorm(n = tclu[1] * tclu[1], mean = 0, sd = 1)
net[clu == 1, clu == 2] <- rnorm(n = tclu[1] * tclu[2], mean = 4, sd = 1)
net[clu == 2, clu == 1] <- rnorm(n = tclu[2] * tclu[1], mean = 0, sd = 1)
net[clu == 2, clu == 2] <- rnorm(n = tclu[2] * tclu[2], mean = 0, sd = 1)

D <- sedist(M = net)
plot.mat(net, clu = cutree(hclust(d = D, method = "ward"), k = 2))

splitClu Functions creating a list of partitions based on a single partition and
information on the number of units in each set.

Description

Function splitClu creates a list of partitions based on a single partition (clu) and information on
the number of units in each set (n).

Function splitCluRes does the same but extracts the information from the result of (old versions
of) functions critFunC, optParC, optRandomParC or similar (newer versions should already return
a list of partitions in case they are used on networks with more sets of units.



ss 55

Usage

splitClu(clu, n, renumber = FALSE)

splitCluRes(res, renumber = FALSE)

Arguments

clu A vector representing a partition of units from different sets. Result of some
legacy code for optRandomParC or optParC or similar functions.

n A vector with number of units per set. The assuption is that the first n[1] ele-
ments of clu are for the first set, the second n[2] elements of clu are for the
second set and so on. sum(n) must be equal to length(clu).

renumber If TRUE, elements of each partition (for each set) in the list are renumbered to be
from 1:"number of clusters" in that partition). Defaults to FALSE.

res Result of (old versions of) functions critFunC, optParC, optRandomParC or
similar.

Value

A list of partitions if clu, one for each set of units. A single vector if only one set of units is present.

Author(s)

Aleš Žiberna

See Also

clu, unlistClu, unlistCluInt

Examples

n <- c(8,8)
clu <- c(rep(1:2, times = c(3, 5)), rep(3:4, times = c(3, 5)))
splitClu(clu = clu, n = n )
splitClu(clu = clu, n = n, renumber = TRUE)

ss Sum of Squared deviations from the mean and sum of Absolute Devia-
tions from the median

Description

Functions to compute Sum of Squared deviations from the mean and sum of Absolute Deviations
from the median. ssNa removes missing values (NAs) before calling the ss function.



56 unlistClu

Usage

ss(x)

ssNa(x)

ad(x)

Arguments

x A numeric vector.

Value

Sum of Squared deviations from the mean or sum of Absolute Deviations from the median.

Author(s)

Aleš Žiberna

unlistClu Function for "unlisting" a partition.

Description

Essentially, if the argument is a list (otherwise function just returns its argument), the function calls
unlist on it. Before it, it however makes sure that names from different elements of the list to not
repeat. The opposite of splitClu. The n argument of the splitClu is returned as an attribute. If
renumber=TRUE (default), it is practically identical to unlistCluInt.

Usage

unlistClu(clu, renumber = FALSE)

Arguments

clu A list representing a partition of units from different sets. Each element should
be a partition for one set.

renumber If TRUE (default), are renumbered so that they are 1:"total number of clusters".
If any cluster "ID" is present in more than one set of units (one partition, one
element of the list), this is done even if renumber = FALSE.

Value

A vector representing a partition. It also has an attribute n with the number of units that were in
each set.



unlistCluInt 57

Author(s)

Aleš Žiberna

See Also

clu, splitClu, unlistCluInt

Examples

n <- c(8,8)
cluList <- c(rep(1:2, times = c(3, 5)), rep(5:6, times = c(3, 5)))
unlistClu(clu = clu)
unlistClu(clu = clu, renumber = FALSE)

unlistCluInt Unlist a partition.

Description

It is used to convert a partition by sets into a single "simple" partition. Simple partition is a partition
of only one set, that is a vector where units with the same value are considered to belong to the
same cluster. The partitions by sets is a list, where each element of a list is a "simple" partition that
corresponds to one set. The function first converts all elements of the lists to integers, that makes
sure that each set uses different integers and on the end uses unlist function on such list.

Usage

unlistCluInt(clu)

Arguments

clu A partition by sets, that is a list of "simple" partitions.

Value

The unlisted partition - one vector containing only integers.

See Also

clu, splitClu, unlistClu

Examples

cluList<-list(c("a","b","a"),c("b","c","b","c"))
unlistCluInt(cluList)

cluList<-list(c(1,1,1,2,2,2),c(1,1,1,2,2,2,3,3))
unlistCluInt(cluList)



Index

∗ algebra
genMatrixMult, 20

∗ array
genMatrixMult, 20

∗ character
formatA, 17

∗ cluster
blockmodeling, 3
critFunC, 7
find.cut, 15
funByBlocks.default, 18
genRandomPar, 21
nkpar, 27
one2two, 29
optRandomParC, 30
rand, 45
REGE.FC, 47
sedist, 52

∗ datasets
baker, 2
notesBorrowing, 28

∗ file
loadmatrix, 24

∗ graphs
blockmodeling, 3
critFunC, 7
gplot1, 22
loadmatrix, 24
one2two, 29
optRandomParC, 30
plot.critFun, 36
REGE.FC, 47
sedist, 52

∗ hplot
plot.critFun, 36

∗ manip
clu, 6
expandMat, 14
ircNorm, 23

nanRep, 26
recode, 46
relInv, 50
reorderImage, 50
splitClu, 54
unlistClu, 56

∗ math
funByBlocks.default, 18

∗ package
blockmodeling, 3

∗ print
printBlocks, 44

∗ univar
ss, 55

ad (ss), 55

baker, 2
blockmodeling, 3

canClu, 5
canCluUniqe (canClu), 5
clu, 3, 6, 6, 13, 34, 36, 51, 55, 57
crand (rand), 45
crand2 (rand), 45
critFunC, 3, 6, 7, 7, 17, 26, 30, 33–35, 43, 44,

49, 51, 54, 55

dist, 54

EM (clu), 6
err, 3, 13, 34, 51
err (clu), 6
expandMat, 14

find.cut, 15, 17
find.m, 17
find.m (find.cut), 15
find.m2, 17
find.m2 (find.cut), 15
formatA, 17

58



INDEX 59

fun.by.blocks (funByBlocks.default), 18
funByBlocks (funByBlocks.default), 18
funByBlocks.default, 18

genMatrixMult, 20
genRandomPar, 21, 32
gplot1, 22
gplot2 (gplot1), 22

hclust, 54

IM, 3, 13, 34, 51
IM (clu), 6
ircNorm, 23

loadmatrix, 24
loadnetwork (loadmatrix), 24
loadnetwork2 (loadmatrix), 24
loadnetwork3 (loadmatrix), 24
loadnetwork4 (loadmatrix), 24
loadpajek (loadmatrix), 24
loadvector (loadmatrix), 24
loadvector2 (loadmatrix), 24

matmult, 20

nanRep, 26
nkpar, 27
nkpartitions (nkpar), 27
notesBorrowing, 28

one2two, 29
optParC, 3, 17, 19, 29, 49, 54, 55
optParC (critFunC), 7
optRandomParC, 3, 6, 7, 13, 19, 21, 26, 29, 30,

33, 35, 43, 44, 54, 55
orderClu, 19, 35, 41

Pajek (loadmatrix), 24
partitions (clu), 6
plot, 23
plot.crit.fun (plot.critFun), 36
plot.critFun, 13, 36
plot.mat, 7, 26, 29, 49, 51
plot.mat (plot.critFun), 36
plot.opt.more.par (plot.critFun), 36
plot.opt.par (plot.critFun), 36
plot.optMorePar, 34
plot.optMorePar (plot.critFun), 36
plot.optMoreParMode (plot.critFun), 36

plot.optPar (plot.critFun), 36
plot.optParMode (plot.critFun), 36
plotArray (plot.critFun), 36
plotMat, 3, 17
plotMat (plot.critFun), 36
plotMatNm (plot.critFun), 36
print.optMorePar (optRandomParC), 30
printBlocks, 44

rand, 45
rand2 (rand), 45
recode, 46
REGD.for (REGE.FC), 47
REGD.ne.for (REGE.FC), 47
REGD.ow.for (REGE.FC), 47
REGD.ow.ne.for (REGE.FC), 47
REGE, 54
REGE (REGE.FC), 47
REGE.FC, 47
relInv, 50
relInv2 (relInv), 50
reorderImage, 50
RF, 51

savematrix (loadmatrix), 24
savenetwork (loadmatrix), 24
savevector (loadmatrix), 24
sedist, 49, 52
splitClu, 54, 56, 57
splitCluRes (splitClu), 54
ss, 55
ssNa (ss), 55

two2one (one2two), 29

unlistClu, 55, 56, 57
unlistCluInt, 55, 57, 57


	baker
	blockmodeling
	canClu
	clu
	critFunC
	expandMat
	find.cut
	formatA
	funByBlocks.default
	genMatrixMult
	genRandomPar
	gplot1
	ircNorm
	loadmatrix
	nanRep
	nkpar
	notesBorrowing
	one2two
	optRandomParC
	orderClu
	plot.critFun
	printBlocks
	rand
	recode
	REGE.FC
	relInv
	reorderImage
	RF
	sedist
	splitClu
	ss
	unlistClu
	unlistCluInt
	Index

