Package ‘bnspatial’

October 12, 2022

Title Spatial Implementation of Bayesian Networks and Mapping
Version 1.1.1

Date 2020-01-16

Maintainer Dario Masante <dario.masante@gmail.com>

Copyright Centre for Ecology and Hydrology - CEH
URL http://github.com/dariomasante/bnspatial

BugReports https://github.com/dariomasante/bnspatial/issues
Imports raster, rgdal, sf, gRbase, gRain, doParallel, foreach, utils
Suggests knitr, rmarkdown

Description Allows spatial implementation of Bayesian networks and mapping in geographi-
cal space. It makes maps of expected value (or most likely state) given known and unknown con-
ditions, maps of uncertainty measured as coefficient of variation or Shannon index (en-
tropy), maps of probability associated to any states of any node of the network. Some addi-
tional features are provided as well: parallel processing options, data discretization rou-
tines and function wrappers designed for users with minimal knowledge of the R language. Out-
puts can be exported to any common GIS format.

License GPL-3

LazyLoad yes

LazyData yes

NeedsCompilation no

RoxygenNote 7.0.2

VignetteBuilder knitr

Author Dario Masante [aut, cre]

Depends R (>=3.5.0)

Repository CRAN

Date/Publication 2020-01-17 08:10:02 UTC

http://github.com/dariomasante/bnspatial
https://github.com/dariomasante/bnspatial/issues

2 aoi

R topics documented:
Q01 . . e e e e e e e e 2
bnspatial L. e 3
ConwyData e 6
dataDiscretize e e e e e e e e 8
extractByMask L 10
linkNode e e 11
loadNetwork e e e 13
mapTarget e e e e e 14
queryNet e e 16
SEtClasses e e e 18

Index 20

aoi Build area of interest (A.O.1.)
Description

This function creates a spatial object (raster or vector) defining the area of interest, by taking a
bounding box or a spatial object, or unioning the input spatial objects if more than one are provided.
When msk is a list of rasters, extent is set equal to their combined extent (union) and resolution to
the finest resolution among them.

Usage

aoi(msk, mskSub = NULL, xy = FALSE, bbox = NULL)

Arguments

msk

mskSub

Xy

bbox

a character (path to raster or vector file), or a bounding box as numeric (xmin,xmax,ymin,ymax),
or one or more (as list of) rasters of class "RasterLayer", or a single object of

class "sf" or "SpatialPolygonsDataFrame". The reference data (raster or vector)

to be used as mask. All model outputs will have the same extent (outline) as this

object. All locations with no data (i.e. NA) cells in msk input will be ignored as

well.

vector of values, for raster data only. The subset values from msk which should
be considered to build the area of interest. All other values will be ignored and
masked out during modelling.

logical. Should return a two column matrix of x and y coordinates of cells centre
(raster data) or the IDs of features? Defaults to FALSE, returning an object of
class RasterLayer or sf.

numeric of four elements, the coordinates defining a rectangle (bounding box)
to limit the area of interest. Must be ordered as xmin, Xxmax, ymin, ymax. Coor-
dinates must be in the same reference system as spatial data.

bnspatial 3

Details

If rasters are used, all model outputs will have the same resolution and same extent as inherited
from msk. All locations with no data (i.e. NA) cells from msk will be ignored as well.

Value

An object of class RasterLayer or sf, or a matrix of coordinates of mask cells (raster only). In the
former case, valid cells (i.e. the area of interest) will have value 1, NA otherwise.

See Also

extractByMask

Examples

Make a mask from a group of input layers:
list2env(ConwyData, environment())

network <- LandUseChange

spatialData <- c(ConwyLU, ConwySlope, ConwyStatus)
m <- aoi(spatialData)

m

Plot mask
library(raster)

m <- aoi(ConwyLU)
plot(m)

Make mask from a subset of values and plot
m <- aoi(ConwyLU, mskSub=c(2,3))
plot(m)

Return coordinates of valid mask locations
coord <- aoi(ConwyLU, xy=TRUE)
head(coord)

Using a bounding box
aoi(ConwyLU, bbox=c(270000, 284950, 347000, 365000))

For vectorial spatial data. Note xy=TRUE shall return the features IDs
Conwy = sf::st_read(system.file("extdata”, "Conwy.shp"”, package = "bnspatial”))
aoi(Conwy, bbox=c(270000, 284950, 347000, 365000))

bnspatial Spatialize the Bayesian network

4 bnspatial

Description

This function wraps most package functions, to ease the spatial implementation of Bayesian net-
works with minimal coding.

Usage

bnspatial(
network,
target,
spatialData,
lookup,
msk = NULL,
what = c("class"”, "entropy"),
midvals = NULL,
targetState = NULL,
spatial = TRUE,
inparallel = FALSE,
export = FALSE,
path = NULL,
field = NULL,
verbose = TRUE,

L

exportRaster = FALSE

Arguments

network The Bayesian network. An object of class grain, or a character (the path to the
.net file to be loaded)

target character. The node of interest to be modelled and mapped.

spatialData character with path to one or more raster files or to a single spatial vector file, ora
list of objects of class ’RasterLayer’ (for raster), or a single object of class ’sf” or
’SpatialPolygonsDataFrame’ (for spatial vector). The spatial data associated to
given network nodes, provided as file paths or as (list of) spatial objects. Items
must be ordered accordingly to the corresponding nodes listed in lookup, or
provided as named list, where names match exactly to the corresponding nodes
name.

lookup character (path to file) or a formatted list. This argument can be provided as path
to a comma separated file or a formatted list (see setClasses)

msk a character (path to raster or vector file), or a bounding box as numeric (xmin,xmax,ymin,ymax),
or one or more (as list of) rasters of class "RasterLayer", or a single object of
class "sf" or "SpatialPolygonsDataFrame". The reference data (raster or vector)
to be used as mask. All model outputs will have the same extent (outline) as this
object. All locations with no data (i.e. NA) cells in msk input will be ignored as
well.

what character. The required output, one or more of these are valid:

* "class" returns the relatively most likely state.

bnspatial

midvals

targetState

spatial

inparallel

export

path

field

verbose

exportRaster

Details

bnspatial

* "entropy"” calculates the Shannon index and returns the entropy, given the
node probabilities.

* "probability” returns an object for each state of the target node, with its
probability.

* "expected” gives the expected value for the target node (see Details). Only
valid for target nodes of continuous values. midValues argument must be
provided.

e "variation” returns the coefficient of variation, as a measure of uncer-
tainty. Only valid for target nodes of continuous values.

vector of length equal to the number of states of the target node. Applies only
if the target node is a continuous variable, in which case midvals must contain
the mid values for each of the intervals

character. One or more states of interest from the target node. Applies only
when argument what includes 'probability'. Default is set to all states of the
node.

logical. Should the output be spatially explicit -i.e. a georeferenced raster or
spatial vector? Default is TRUE, returning an object of class "RasterLayer" or
"sf" for polygons. If FALSE, returns a data frame with one row for each valid
cell/feature from msk and in columns the output required by what argument.

logical or integer. Should the function use parallel processing facilities? Default
is FALSE: a single process will be launched. If TRUE, all cores/processors but
one will be used. Alternatively, an integer can be provided to dictate the number
of cores/processors to be used.

Logical or character. Should the spatial output be exported to file? Applies
only if argument spatial=TRUE. When export=TRUE, output will be exported
in .tif (raster) or .shp (vector) format. For rasters, a character specifying another
extension can be provided, in which case the raster will be exported in that for-
mat. Only formats listed by writeFormats are valid. Argument exportRaster
is deprecated.

The directory to store the output files, when export is not FALSE. Default is
the working directory as from getwd(). File names are set by a default naming
convention, see Details.

character. Only for spatial vector data (e.g. shapefile), the field/column names
in the attribute table corresponding to the nodes, ordered accordingly.

logical. If verbose = TRUE a summary of class boundaries and associated nodes
and data will be printed to screen for checks.

Additional arguments to force one or more nodes to a state (i.e. fixing evidence).
If the node is associated to any input spatial data, the latter will be ignored, thus
resulting spatially equal everywhere. Node name must be provided as argument
and the associated fixed state as character; both node and state names must be
typed exactly as their names in the network.

deprecated, use export instead.

6 ConwyData

The expected value is calculated by summing the mid values of target node states weighted by their
probability: p1 * midvVal_1 +p2 xmidval_2+ ... + pn*midval_n
When a spatial object is exported to a file, the file name is set by default, accordingly to the following
naming convention:
e "class"” <target node name>_Class.<file format -default .tif>
* "entropy" <target node name>_ShanEntropy.<file format -default .tif>
* "probability"” <target node name>_Probability_.<targetState>.<file format -default .tif>
» "expected” <target node name>_ExpectedValue.<file format -default .tif>
* "variation” <target node name>_CoefVariation.<file format -default .tif>

An additional comma separated file (.csv) is written to the same directory when "class”, providing
a key to interpret the spatial object values and the state they refer to.

Value

A list of "RasterLayer" or "SpatialPolygonsDataFrame" objects or a data.frame, depending on input
arguments: see mapTarget. Some basic information about discretization and network/data link are
printed on screen during execution.

See Also

setClasses; mapTarget; linkNode; loadNetwork

Examples

list2env(ConwyData, environment())

network <- LandUseChange
spatialData <- c(ConwyLU, ConwySlope, ConwyStatus)
lookup <- LUclasses

bn <- bnspatial(network, 'FinallLULC', spatialData, lookup)
bn

ConwyData Land use change data

Description

Data derived from the Conwy catchment in North Wales (UK), widely modified for demonstration
purposes. Once loaded, the data consist of several objects:

» LandUseChange An object of class grain. The Bayesian network, built for demonstration
purposes.

https://cran.r-project.org/package=gRain

ConwyData 7

ConwyLU An object of class RasterLayer. A simplified version of the current land use map
from the Conwy catchment (Wales, UK). It includes three classes: arable (raster value 3),
forest (2), other (1).

ConwySlope An object of class RasterLayer. A raster of slope derived from a digital elevation
model at 50 meters resolution, units are degrees.

ConwyStatus An object of class RasterLayer. The land ownership type (dummy data), divided
into three possible classes: public (raster value 4), private (3), protected (1).

evidence A matrix. The collection of available spatial data (see above) as extracted from
each location (i.e. cell) in the catchment, where the latter is represented by the raster ob-
ject ConwyLU. Each value from the spatial data was discretized through dataDiscretize or
bulkDiscretize functions, then assigned to the corresponding state from the Bayesian net-
work (LandUseChange).

LUclasses A list with the classification of input spatial data (its corresponding states and val-
ues). The list is formatted accordingly to bnspatial functions requirement and as returned by
functions importClasses and setClasses.

Usage

data(ConwyData)

Format

A dataset in native RData format.

Examples

library(bnspatial)
data(ConwyData)
list2env(ConwyData, environment())

1sO)

The network nodes and states
LandUseChange$universe$levels

Lookup list relating raster values and network nodes
LUclasses

Table of evidence extracted from input spatial data
head(evidence, 12)

The input spatial data (raster format)
par(mfrow=c(2,2))

raster: :plot(ConwyLU)
raster::plot(ConwySlope)

raster: :plot(ConwyStatus)

The input spatial data (vector format)
Conwy <- sf::st_read(system.file("extdata”, "Conwy.shp"”, package = "bnspatial”), quiet = TRUE)
plot(Conwy) # May be slow to show up

https://cran.r-project.org/package=raster

8 dataDiscretize

dataDiscretize Discretize data

Description

These functions discretize continuous input data into classes. Classes can be defined by the user or,
if the user provides the number of expected classes, calculated from quantiles (default option) or by
equal intervals.

dataDiscretize processes a single variable at a time, provided as vector. bulkDiscretize dis-
cretizes multiple input rasters, optionally by using parallel processing.

Usage

dataDiscretize(
data,
classBoundaries = NULL,
classStates = NULL,
method = "quantile”

)

bulkDiscretize(formattedLst, xy, inparallel = FALSE)

Arguments

data numeric vector. The continuous data to be discretized.

classBoundaries
numeric vector or single integer. Interval boundaries to be used for data dis-
cretization. Outer values (minimum and maximum) required. -Inf or Inf are
allowed, in which case data minimum and maximum will be used to evaluate
the mid values of outer classes. Alternatively, a single integer to indicate the
number of classes, to split by quantiles (default) or equal intervals.

classStates vector. The state labels to be assigned to the discretized data.

method character. What splitting method should be used? This argument is ignored if a

vector of values is passed to classBoundaries.

* quantile splits data into quantiles (default).

* equal splits data into equally sized intervals based on data minimum and
maximum.

formattedLst A formatted list as returned by 1inkNode and 1inkMultiple

Xy matrix. A matrix of spatial coordinates; first column is x (longitude), second
column is y (latitude) of locations (in rows).

inparallel logical or integer. Should the function use parallel processing facilities? Default
is FALSE: a single process will be launched. If TRUE, all cores/processors but
one will be used. Alternatively, an integer can be provided to dictate the number
of cores/processors to be used.

dataDiscretize 9

Details

dataDiscretize

Value

dataDiscretize returns a named list of 4 vectors:
* $discreteDatathe discretized data, labels are applied accordingly if classStates argument
is provided
* $classBoundariesthe class boundaries, i.e. values splitting the classes
* $midValuesthe mid point for each class (the mean of its lower and upper boundaries)
* $classStatesthe labels assigne to each class

bulkDataDiscretize returns a matrix: in columns each node associated to input spatial data, in
rows their discretized values at coordinates specified by argument xy.

Examples
s <- runif(30)

Split by user defined values. Values out of boundaries are set to NA:
dataDiscretize(s, classBoundaries = c(0.2, 0.5, 0.8))

Split by quantiles (default):
dataDiscretize(s, classStates = c('a', 'b', 'c'))

Split by equal intervals:
dataDiscretize(s, classStates = c('a', 'b', 'c'), method = "equal”)

When -Inf and Inf are provided as external boundaries, $midValues of outer classes

are calculated on the minimum and maximum values:

dataDiscretize(s, classBoundaries=c(@, 0.5, 1), classStates=c("first"”, "second”))[c(2,3)]
dataDiscretize(s, classBoundaries=c(-Inf, 0.5, Inf), classStates=c("first"”, "second”))[c(2,3)]

Discretize multiple spatial data by location
list2env(ConwyData, environment())

network <- LandUseChange
spatialData <- c(ConwyLU, ConwySlope, ConwyStatus)

Link multiple spatial data to the network nodes and discretize

spDatalLst <- linkMultiple(spatialData, network, LUclasses, verbose = FALSE)
coord <- aoi(ConwyLU, xy=TRUE)

head(bulkDiscretize(spDatalLst, coord))

10 extractByMask

extractByMask Extract raster values by mask

Description

This function extracts the values from a given input raster based on a mask.

Usage

extractByMask(layer, msk, spatial = FALSE, rast = NULL)

Arguments
layer an object of class "RasterLayer" (package raster). The raster from which data
will be extracted
msk an object of class "RasterLayer" or a two column matrix of coordinates. The
reference raster (or coordinates) to be used as mask for extraction.
spatial logical. Should the output be spatially explicit -i.e. a georeferenced raster?
Default is FALSE, returning a vector of extracted values from rast. If TRUE
an object of class "RasterLayer" is returned.
rast deprecated, use layer instead.
Details

When input data given to rast does not match the resolution and extent of a raster mask argument,
the latter is preferred. The function will therefore return a vector of n elements, one for each non
NA cell in the mask. Input raster cells falling inside mask cells, but not over their cells centre will
be ignored.

Value

a vector, or an object of class "RasterLayer". The values from the input raster (rast argument)
at coordinates provided as matrix, or those overlapping with non NA cells in the mask raster. If
spatial == TRUE an object of class "RasterLayer" is returned.

See Also

aoi

Examples

data(ConwyData)
list2env(ConwyData, environment())

m <- aoi(msk=ConwyLU, mskSub=c(2,3))
head(extractByMask(ConwySlope, msk=m), 20)

https://cran.r-project.org/package=raster

linkNode

11

Extract making a raster

library(raster)

plot(extractByMask(ConwySlope, msk=m, spatial=TRUE))

linkNode

Link nodes to spatial data

Description

1inkNode links a node of the Bayesian network to the corresponding spatial data, returning a list of
objects, including the spatial data and relevant info about the node.
linkMultiple operates on multiple nodes and related spatial data.

Usage

linkNode(
layer,
network,
node,
intervals,

categorical =

field = NULL,

NULL,

verbose = TRUE,
spatial = TRUE

)

linkMultiple(spatialData, network, lookup, field = NULL, verbose = TRUE)

Arguments

layer

network

node

intervals

categorical
field

verbose

character (path to file) or an object of class "RasterLayer", "sf" or "SpatialPoly-
gonsDataFrame". The spatial data corresponding to the network node as by
argument node.

The Bayesian network. An object of class grain, or a character (the path to the
.net file to be loaded)

character. The network node to be coupled with the file/object indicated by
layer argument

A list of numeric vectors. For categorical variables the spatial data values as-
sociated to each state of the node, for continuous variables the boundary values
dividing into the corresponding states, including upper and lower boundaries.

logical, or NULL. Is the node a categorical variable? If NULL the function will
attempt to assign the logical value by looking at intervals argument.
character. Only for spatial vector data (e.g. shapefile), the field/column names
in the attribute table corresponding to the nodes, ordered accordingly.

logical. If verbose = TRUE a summary of class boundaries and associated nodes
and data will be printed to screen for checks.

12

spatial

spatialData

lookup

Details

linkNode

logical. Should the output list include the input as raster or spatial vector? De-
fault is TRUE, returning the list with an object of class "RasterLayer" or "sf" for
each node associated. If FALSE, returns only the values.

character with path to one or more raster files or to a single spatial vector file, or a
list of objects of class ’RasterLayer’ (for raster), or a single object of class ’sf” or
’SpatialPolygonsDataFrame’ (for spatial vector). The spatial data associated to
given network nodes, provided as file paths or as (list of) spatial objects. Items
must be ordered accordingly to the corresponding nodes listed in lookup, or
provided as named list, where names match exactly to the corresponding nodes
name.

character (path to file) or a formatted list. This argument can be provided as path
to a comma separated file or a formatted list (see setClasses)

In future releases, this function may be rewritten to provide an S4/S3 object.

Value

linkNode returns a list of objects, including the spatial data and the related node information.
linkMultiple returns a list of lists. Each element of the list includes the spatial data and summary
information for each of the input nodes.

See Also

dataDiscretize; setClasses

Examples

Load data into global environment
list2env(ConwyData, environment())
lookup <- LUclasses

network <- LandUseChange
1n <- linkNode(layer=ConwyLU, network, node='CurrentLULC', intervals=c(2, 3, 1))

1n

Link the Bayesian network to multiple spatial data at once, using a lookup list
spatialData <- c(ConwyLU, ConwySlope, ConwyStatus)
linkMultiple(spatialData, network, lookup, verbose = FALSE)

Method for spatial vectorial data (i.e. class 'sf' or 'SpatialPolygon')
spatialData <- system.file("extdata”, "Conwy.shp”, package = "bnspatial”)
1st <- linkMultiple(spatialData, network, lookup, field= c('LU', 'Slope', 'Status'))

1st

loadNetwork 13

loadNetwork Load a Bayesian network

Description

This function loads the Bayesian network from a native gRain object of class grain or an external
file with extension .net (as provided by external softwares Hugin or GeNle), optionally compiling
the network.

Usage
loadNetwork(network, target = NULL)

Arguments
network The Bayesian network. An object of class grain, or a character (the path to the
.net file to be loaded)
target character. The node of interest to be modelled and mapped.
Details

Bayesian networks built with the package bnlearn can be imported with the function bnlearn: :as.grain,
which converts them into grain objects.

.net file format as provided from Netica 5.24 currently does not correspond to a valid Hugin .net

file.

Argument target has default set to NULL, but if provided the network will be compiled for faster

querying.
Value

An object of class grain. The Bayesian network. If target argument is provided the network is
compiled for a faster querying .

Note

Under current release, this function wraps a set of hidden functions copied in block from the gRain
package, as current CRAN policy discourages accessing hidden functions with the ":::" operator.
These functions will be progressively substituted by bnspatial native ones.

Examples

Load from external file (.net format)
raw = system.file("extdata/LandUseChange.net"”, package = "bnspatial”)
loadNetwork(raw)

Compile using target node
loadNetwork(raw, 'FinallLULC')

http://www.hugin.com/
http://www.bayesfusion.com/
https://cran.r-project.org/package=bnlearn
https://cran.r-project.org/package=gRain

14

mapTarget

mapTarget

Make maps for target node

Description

This function creates the required spatial outputs for the target node.

Usage

mapTarget(
target,

statesProb,

what = c("class”, "entropy"),

msk,

midvals = NULL,

targetState

NULL,

spatial = TRUE,
export = FALSE,
path = getwd(),

exportRaster

Arguments

target

statesProb

what

msk

= export

character. The node of interest to be modelled and mapped.

matrix. The probability matrix as returned by queryNet and queryNetParallel.
Columns must be named accordingly to states of the target node. Columns are
the target node states and rows each location considered from the area of in-
terest.

character. The required output, one or more of these are valid:

* "class” returns the relatively most likely state.

* "entropy" calculates the Shannon index and returns the entropy, given the
node probabilities.

* "probability” returns an object for each state of the target node, with its
probability.

» "expected” gives the expected value for the target node (see Details). Only
valid for target nodes of continuous values. midValues argument must be
provided.

e "variation” returns the coefficient of variation, as a measure of uncer-
tainty. Only valid for target nodes of continuous values.

an object of class "RasterLayer" (raster) or a spatial vector of class "sf" (vector
spatial polygons). The reference spatial boundaries to be used as mask. All
model outputs will have the same extent/outline as this object. All locations
with no data (i.e. NA) will be ignored.

mapTarget

midvals

targetState

spatial

export

path

exportRaster

Details

mapTarget

15

vector of length equal to the number of states of the target node. Applies only
if the target node is a continuous variable, in which case midvals must contain
the mid values for each of the intervals

character. One or more states of interest from the target node. Applies only
when argument what includes 'probability'. Default is set to all states of the
node.

logical. Should the output be spatially explicit -i.e. a georeferenced raster or
spatial vector? Default is TRUE, returning an object of class "RasterLayer" or
"sf" for polygons. If FALSE, returns a data frame with one row for each valid
cell/feature from msk and in columns the output required by what argument.

Logical or character. Should the spatial output be exported to file? Applies
only if argument spatial=TRUE. When export=TRUE, output will be exported
in .tif (raster) or .shp (vector) format. For rasters, a character specifying another
extension can be provided, in which case the raster will be exported in that for-
mat. Only formats listed by writeFormats are valid. Argument exportRaster
is deprecated.

The directory to store the output files, when export is not FALSE. Default is
the working directory as from getwd(). File names are set by a default naming
convention, see Details.

deprecated, use export instead.

The expected value is calculated by summing the mid values of target node states weighted by their
probability: p1 * midval_1 + p2 # midval_2 + ... + pn *midval_n
When exporting to a file, the file name is set by default, according to the following naming conven-

tion:

* "class” <target node name>_Class.<file format -default .tif>

* "entropy" <target node name>_ShanEntropy.<file format -default .tif>

e "probability” <target node name>_Probability_.<targetState>.<file format -default .tif>

* "expected” <target node name>_ExpectedValue.<file format -default .tif>

e "variation” <target node name>_CoefVariation.<file format -default .tif>

An additional comma separated file (.csv) is written to the same directory when "class”, providing
a key to interpret the values and the state they refer to.

Value

A list of objects, one for each item required in what argument. If spatial = TRUE a list of rasters
of class "RasterLayer" are returned, or a single spatial vector of class "sf" with one column for each
output requested. If FALSE, for raster data it returns a list of vectors with the values associated to
each non NA cell in msk raster (i.e. the vectorised raster). For vector data it returns a data frame. If
argument export is specified, outputs are exported to files to the directory specified in path.

16 queryNet

See Also

bnspatial, aoi, queryNet

Examples

list2env(ConwyData, environment())

network <- LandUseChange
target <- 'FinallLULC'
statesProb <- queryNet(network, target, evidence)

maps <- mapTarget(target, statesProb, msk=ConwyLU)

library(raster)
plot(maps$Class)
plot(maps$Entropy)

Returns required outputs by coordinates for each 'msk' cell in a data frame:
noMap <- mapTarget(target, statesProb, msk=ConwyLU, spatial=FALSE)
head(noMap)

Create a probability surface for the "forest” state of target node "FinalLULC”
mp <- mapTarget('FinalLULC', statesProb, what='probability', targetState='forest', msk=ConwyLU)
plot(mp$Probability$forest)

With spatial vector (totally made up data here, just for demo):

library(sf)

spVector <- st_read(system.file("extdata”, "Conwy.shp"”, package = "bnspatial”))
ev <- evidence[1:nrow(spVector), 1]

probs <- queryNet(network, 'FinallLULC', ev)
mp <- mapTarget('FinalLULC', statesProb=probs,
what=c('entropy', 'probability'), targetState='forest', msk=spVector)

queryNet Query the Bayesian network

Description

This function queries the Bayesian network and returns the probabilities for each state of the target
node. Available input variables are set as evidence.

queryNetParallel works as queryNet, but makes use of multi cores/processors facilities for big
network queries, by splitting data into chunks and processing them in parallel.

Usage

queryNet (network, target, evidence, ...)

queryNetParallel(network, target, evidence, inparallel = TRUE, ...)

queryNet 17

Arguments
network The Bayesian network. An object of class grain, or a character (the path to the
.net file to be loaded)
target character. The node of interest to be modelled and mapped.
evidence matrix or data.frame. Named columns are the known input variables; rows are
the discrete states associated to them for each record (NA allowed).
Additional arguments to force one or more nodes to a state (i.e. fixing evidence).
If the node is associated to any input spatial data, the latter will be ignored, thus
resulting spatially equal everywhere. Node name must be provided as argument
and the associated fixed state as character; both node and state names must be
typed exactly as their names in the network.
inparallel logical or integer. Number of cores to be used by queryNetParallel. Default
is TRUE, so the maximum number available minus one is set.
Value

A matrix of probabilities: columns are the states of the target node and rows are the probabilities
associated to each record (i.e. spatial locations) from evidence.

Examples
list2env(ConwyData, environment())
network <- LandUseChange

g <- queryNet(network, 'FinalLULC', evidence)
head(q)

Fix a given node on a state (i.e. fixed evidence) by providing an additional argument
g <- queryNet(network, 'FinallLULC', evidence, Stakeholders = 'farmers')
head(q)

Fix evidence for two nodes, including one of the spatial inputs (i.e. overriden by evidence)
g <- queryNet(network, 'FinalLULC', evidence, Stakeholders = 'farmers', CurrentLULC = 'forest')
head(q)

For a programmatic approach, the arguments could be passed as named list:

1st <- list(Stakeholders = 'farmers', CurrentLULC = 'forest')

queryNet(network, 'FinalLULC', evidence, 1st)

Use parallel processing
g <- queryNetParallel(network, 'FinalLULC', evidence, inparallel=2)
head(q)

18

setClasses

setClasses

Set classes or intervals

Description

Functions setClasses and importClasses return a formatted list from given arguments, to be
used for the integration and error checking of Bayesian network and input spatial variables. For
setClasses a vector with node names and a list of vectors for both states of nodes and (optional)
their boundaries in the spatial data must be provided, in the right order. For importClasses a
formatted text file must be provided (see Details).

Usage

setClasses(nodes, states, classBoundaries, wr = NULL, layer = NULL)

importClasses(classFile)

Arguments

nodes

states

classBoundaries

wr

layer

classFile

Details

character. The nodes known and available as spatial data.

A list of characters. The states associated to each of the nodes (order must match
nodes names).

A list of the boundary values splitting the nodes into their corresponding states.
They must be sorted in ascending order. For nominal categorical variables of
raster data, classBoundaries must be the unique raster values associated to
node states.

character. Optional, the full path to the file to be written. Default is set to NULL,
otherwise it writes the formatted list returned by setClasses to the specified
path. Suggested file format is .txt, albeit not mandatory.

character. Optional argument to indicate the path to files with input spatial data.
If not NULL, then all nodes must have a corresponding file path, stored in the
’layer’ element of output list.

character. A text file where for each input variable associated to a node (see
Details) three lines are specified as follows: the first one indicates the node
name, as in the Bayesian network; the second indicates the states associated
with such node, as they are in the Bayesian network (note that underscores are
not allowed); the third one contains the values associated to each state in the
spatial data (for discrete variables) or the class boundaries dividing the states
(for continuous variables), including minimum and maximum.

As a reference for the text file format required by importClasses, for each node of the network:
First line: the node name.
Second line: the node states, comma separated (spaces allowed). NOTE: commas are NOT allowed

setClasses 19

inside the state names.

Third line: interval values from the spatial data associated to the states (integer values for discrete
data; interval boundaries, including endpoints, for continuous data). The same exact order as node
states is required.

For example:

CurrentLULC
forest,other,arable
2,1,3

Slope

flat, moderate, steep
-Inf, 1, 7, Inf
LegalStatus

public, private, protected
4,3, 1

It is possible to write the formatted file automatically using setClasses, by setting argument wr as
path to the text file to be created.

Value
A formatted list, specifying states break values for continuous nodes and integer values for categor-
ical nodes.

See Also

dataDiscretize

Examples

Load classes from external formatted text file

Not run: importClasses('LUclasses.txt')

raw = system.file("extdata/LUclasses.txt”, package = "bnspatial”)
importClasses(raw)

Same as:
setClasses(c('Slope', 'CurrentLULC', 'LegalStatus'), list(c('flat', 'moderate', 'steep'),

c('forest', 'arable', 'other'), c('public', 'private', 'protected')),
list(c(-Inf, @, 5, Inf), c(2, 3, 1), (c(4, 3, 1))

Index

aoi, 2, 10, 16

bnspatial, 3, 16
bulkDiscretize, 7
bulkDiscretize (dataDiscretize), 8

ConwyData, 6

ConwyLU (ConwyData), 6
ConwySlope (ConwyData), 6
ConwyStatus (ConwyData), 6

dataDiscretize, 7,8, 12, 19

evidence (ConwyData), 6
extractByMask, 3, 10

importClasses, 7
importClasses (setClasses), 18

LandUseChange (ConwyData), 6
linkMultiple, 8
linkMultiple (1inkNode), 11
linkNode, 6, 8, 11
loadNetwork, 6, 13

LUclasses (ConwyData), 6

mapTarget, 6, 14

queryNet, 14, 16, 16
gueryNetParallel (queryNet), 16

setClasses, 4,6, 7,12, 18

writeFormats, 5, 15

20

	aoi
	bnspatial
	ConwyData
	dataDiscretize
	extractByMask
	linkNode
	loadNetwork
	mapTarget
	queryNet
	setClasses
	Index

