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This is the companion paper of thebrr package. We present the Bayesian
model implemented in brr and the usage of this package. The present
paper also addresses some extensions of the procedures available in the
literature.
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1. Introduction
The brr R package implements the Bayesian analysis of the two Poisson samples
model with the semi-conjugate family of priors introduced by Laurent & Legrand
([16]). Instructions for installation are given in its github repository https://github.
com/stla/brr.
The statistical model of interest is the two Poisson samples model, given by two

independent observations

{𝑥 ∼ 𝒫(𝜆𝑆)
𝑦 ∼ 𝒫(𝜇𝑇)

�

where 𝜆 > 0 and 𝜇 > 0 are the unknown incidence rates and 𝑆, 𝑇 > 0 are the known
observation-opportunity sizes. When 𝑆 and 𝑇 are some durations, they are sometimes
called the times at risk. For short, we will say the sample sizes throughout the paper.
This model can also be used in the case of two independent series of observations

(𝑥𝑖)𝑚
𝑖=1 and (𝑦𝑖)𝑛

𝑖=1 assuming

{𝑥𝑖 ∼i.i.d. 𝒫(𝜆𝑆𝑖)
𝑦𝑖 ∼i.i.d. 𝒫(𝜇𝑇𝑖)

�

by setting 𝑆 = ∑ 𝑆𝑖 and 𝑇 = ∑ 𝑇𝑖, and by using as observations the sufficient statistics
𝑥 = ∑ 𝑥𝑖 and 𝑦 = ∑ 𝑦𝑖.
Statistical inference on the rate ratio ϕ = 𝜆/𝜇, also called the relative risk, has a

large broad of applications. For instance, it is used in vaccine efficacy studies. To
study the effect of a vaccine, clinical statisticians randomly assign some subjects to a
vaccine group and others to a placebo group. Having this example in mind, we will
say that, throughout this paper, the first group (with sample size 𝑆) is the treated group
and the second group (with sample size 𝑇 ) is the control group. After a follow-up,
one observes the numbers 𝑥 and 𝑦 of individuals who developed the disease in the
vaccine group and the placebo group respectively. Here, the sample sizes 𝑆 and 𝑇 are
the person-times at risk, defined as the sum of the follow-up times of all individuals
in the corresponding group. The unknown parameters 𝜆 and 𝜇 are interpreted as the
disease incidence rates in the vaccine group and the placebo group respectively. The
vaccine efficacy is then defined by 𝑉𝐸 = 1 − ϕ ∈] − ∞, 1].
The semi-conjugate family of priors is particularly appropriate when the parame-

ter of main interest is the relative risk ϕ. Three different types of prior distributions
are available in the semi-conjugate family, which are distinguished according to their
informational aspect:

• the reference prior, also called the non-informative prior: to be used in the case
when one does not want to include some prior information about the incidence
rates;

• a semi-reference prior, also called a semi-informative prior: to be used in a case
when one wants to include some prior information about the incidence rate 𝜇
while one does not want to include some information about the relative risk ϕ;
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• a fully informative prior, also called an informative prior: to be used in the case
when one wants to include some prior information about all parameters.

The reference prior is derived from Bernardo’s theory of objective Bayesian statis-
tics, further developed by Berger & Bernardo ([1], [2]). Bernardo advocates the use of
reference priors as standards for scientific communications. His arguments are based
on solid theoretical foundations as well as judicious philosophical considerations. The
reference prior is relative to the choice of the parameter of interest, here the relative
risk ϕ, and it is intended to yield a posterior distribution which best reflects the infor-
mation about ϕ brought by the data and only the data. In fact, there is no prior dis-
tribution in this framework, there is only a posterior distribution, called the reference
posterior distribution. The reference prior is somehow an artificial prior distribution,
whose only role is to yield the reference posterior distribution by a formal applica-
tion of Bayes’ therorem. The fascinating story of this theory is beyond the scope of
this paper. The interested reader is referred to [3], [9], [11]. For a model with only
one parameter, the reference prior coincides, under usual regularity conditions, with
the well-known Jeffreys prior. An example of derivation of the reference prior for
multi-parameters model is given in Section 4. An appealing property of the reference
posterior is its good frequentist-matching property, that is to say, for example, that it
produces 95%-credibility intervals whose frequentist coverage is close to 95%.
Following a procedure proposed by Berger & Sun in [5], the semi-reference prior is

defined in the same way as the reference prior after choosing a prior distribution on 𝜇
and then averaging the model over 𝜇 with respect to this subjective prior distribution
on. Thus, in this framework, there is a prior distribution on 𝜇, but not on ϕ.
In Section 2 we present the usage brr after recalling the semi-conjugate family of

prior distributions.
In addition to the reference posterior distribution, Bernardo later developed inte-

grated objective Bayesian statistics. The reader is referred to [9], [8], [11], [13] for
details and historical references. Integrated objective Bayesian statistics provide a
Bayesian decision-theoretic solution to the usual problems of inference summaries:
point estimation, region estimation (credibility intervals), and hypotheses testing. Fol-
lowing the Bayesian decision theory, each of these procedures is based on a loss func-
tion, and the one proposed by Bernardo, namely the intrinsic discrepancy loss, is de-
rived from information-theoretic considerations. These procedures are implemented
in brr and will be presented in Section 3. In addition to the procedures based on
the intrinsic discrepancy loss as it is originally defined, brr includes similar proce-
dures based on another intrinsic discrepancy loss, more appropriate for the case of a
semi-informative prior.
Finally, in Section 4, we present some possible extensions of the semi-conjugate

family to the case of several control groups.

3



2. Usage of brr
We show in this section how to use brr. We mainly present the user-friendly way to
use it. The main points to remember are:

• create a brr object with the Brr function, in which you set the prior parameters
𝑎, 𝑏, 𝑐, 𝑑, the sample sizes 𝑆 and 𝑇 , and the observed counts 𝑥 and 𝑦;

• do not set the prior parameters if you want to use the non-informative prior.
We use the pipe operator %>% from the magrittr package for our illustrations.

> library(magrittr)

2.1. The semi-conjugate family
Before speaking about brr itself, let us recall the natural semi-conjugate family of
prior distributions introduced in [16] and the corresponding posterior distributions.
It involves the Beta prime distribution and the Beta distribution of the second kind.

The Beta prime distribution ℬ′(𝑐, 𝑑) with shape parameters 𝑐, 𝑑 > 0 is the law of
the (0, +∞)-valued random variable 𝑈(1 − 𝑈)−1 where 𝑈 is a random variable fol-
lowing the Beta distribution ℬ(𝑐, 𝑑) on (0, 1). The Beta distribution of second kind
ℬ2(𝑐, 𝑑; 𝜏) with shape parameters 𝑐, 𝑑 > 0 and scale parameter 𝜏 is the distribution
𝜏 × ℬ′(𝑐, 𝑑) (that is to say the law of a ℬ′(𝑐, 𝑑) random variable multiplied by 𝜏).
We use the notation 𝜏 × ℬ′(𝑐, 𝑑) below, which has the advantage to show that 𝜏 is
the scale parameter.
Now the semi-conjugate family is described below.
For any positive numbers 𝑎, 𝑏, 𝑐, 𝑑, assign the followng independent prior distribu-

tions on 𝜇 and ϕ = 𝜆/𝜇:

𝜇 ∼ 𝒢(𝑎, 𝑏) and ϕ ∼ 𝑇 + 𝑏
𝑆 × ℬ′(𝑐, 𝑑).

Then the joint posterior on (𝜇, ϕ) distribution is given by the semi-conjugacy rule

(𝜇 ∣ ϕ, 𝑥, 𝑦) ∼ 𝒢(𝑎+𝑥+𝑦, 𝑏+ϕ𝑆+𝑇) and (ϕ ∣ 𝑥, 𝑦) ∼ 𝑇 + 𝑏
𝑆 ×ℬ′(𝑐+𝑥, 𝑎+𝑑+𝑦).

Note that the posterior is also a proper distribution when 𝑑 = 0 or 𝑏 = 0. The
following results are derived in [16]:

• when 𝑎 = 𝑐 = 0.5 and 𝑏 = 𝑑 = 0, the prior is the reference prior when ϕ is
the parameter of interest (we will simply call it the reference prior, since it will
always be understood that ϕ is the parameter of interest);

• when 𝑎, 𝑏 > 0, 𝑐 = 0.5 and 𝑑 = 0, the prior is the semi-reference prior when the
arbitrary Gamma prior distribution 𝒢(𝑎, 𝑏) is assigned on 𝜇.

4



The prior and posterior predictive distributions of the counts 𝑥 and 𝑦 are provided in
[15].
The following functions related to the semi-conjugate family are implemented in

the brr package.

• Any density function, distribution function, quantile function, and sampling func-
tion of a prior distribution has a name starting with, respectively, dprior_,
qprior_, pprior_ and rprior_, followed by the name of the parameter
or the name of an observation for a prior predictive distribution. For exam-
ple dprior_mu, dprior_phi, dprior_lambda, dprior_x, dprior_y.
The pprior_lambda function fails in many cases (see Appendix A). The
qprior_lambda function is not available. In the same way, functions whose
name starts with sprior_ generate a summary of the distribution. In addition,
there are the functions [d/p/q/r/s]prior_x_given_y for the conditional
prior predictive distribution of 𝑥 given a value of 𝑦.

• Similarly, any density function, distribution function, quantile function, sam-
pling function and summary function of a posterior distribution has a name start-
ing with, respectively, dpost_, qpost_, ppost_, rpost_ and spost, fol-
lowed by the name of the parameter or the name of an observation for a posterior
predictive distribution. Functions ppost_mu, qpost_mu, ppost_lambda
and qpost_lambda functions are not available.

• As we will see in the next section, all these functions can be more conveniently
called by setting the parameters in a brr object and using functions dprior,
dpost, etc.

Some distributions, such as the prior and posterior distributions of 𝜆, and the prior
and posterior predictive distribution of 𝑥, are not standard distributions. These special
distributions and their implementation or partial implementation in the brr package
are the subject of Appendix A.

2.2. The ergonomics of brr
The Brr function is intended to offer a convenient usage of the brr package. For
example, start by specifying the parameters 𝑎 and 𝑏 of the Gamma prior distribution
on 𝜇:

> model <- Brr(a=5, b=10)

The model variable created by this way is a brr object, and it can be used to
call more conveniently the functions related to the Bayesian inference. For example,
instead of calling dprior_mu(.,a=5,b=10), pprior_mu(.,a=5,b=10), etc,
you can simply use dprior(model,"mu",.), pprior(model,"mu",.), etc:
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> pprior(model, "mu", 1)

[1] 0.9707473

> pprior_mu(1, a=5, b=10)

[1] 0.9707473

In the same way, pprior(model,"phi",.) is a wrapper for the pprior_phi
function. For the moment it crashes because the required parameters are not specified
yet:

> try(pprior(model, "phi", 1)) %>% cat

Error in brr_generic("pprior", model, parameter, ...) :
Missing parameters. You must supply b, c, d, S, T.

As previously said, the variable model is a brr object. This is just a function
returning the list of specified parameters when it is called without arguments:

> model() %>% unlist

a b
5 10

But if it is called with arguments, then these arguments are added to the list:

> model <- model(c=3, d=4, S=10, T=10)
> model() %>% unlist

c d S T a b
3 4 10 10 5 10

Once 𝑎, 𝑏, 𝑐, 𝑑, 𝑆, 𝑇 are given in the brr object, all available functions related
to prior distributions can be called using dprior, pprior, qprior, rprior and
sprior, for example:

> pprior(model, "phi", 1)

[1] 0.3196159

> dprior(model, "lambda", 1)

[1] 0.3954872

> sprior(model, "phi") %>% unlist
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mode mean sd Q1 Q2 Q3
0.8000000 2.0000000 2.0000000 0.8446125 1.4566624 2.4762582

To get an overall summary of the model, apply, as usual for a R user, the summary
function to the brr object:

> summary(model)

Type of prior distribution: informative prior

*Prior distribution on μ*: Gamma(a=5,b=10)

+--------+--------+--------+--------+--------+--------+
| mode | mean | sd | Q1 | Q2 | Q3 |
+========+========+========+========+========+========+
| 0.4 | 0.5 | 0.2236 | 0.3369 | 0.4671 | 0.6274 |
+--------+--------+--------+--------+--------+--------+

*Prior distribution on ϕ*: Beta2(c=3,d=4,scale=2)

+--------+--------+------+--------+-------+-------+
| mode | mean | sd | Q1 | Q2 | Q3 |
+========+========+======+========+=======+=======+
| 0.8 | 2 | 2 | 0.8446 | 1.457 | 2.476 |
+--------+--------+------+--------+-------+-------+

*Sample sizes*
S (treated group): 10
T (control group): 10

*Observed counts*
x (treated group): not supplied yet
y (control group): not supplied yet

*Posterior distribution on ϕ*:
a, b, c, d, S, T, x and y must be supplied

To use the non-informative prior, simply do not set parameters 𝑎, 𝑏, 𝑐 and 𝑑, or set
them to NULL. Setting new values to a brr object replaces the old ones:

> model_noninfo <- model(a=NULL, b=NULL, c=NULL, d=NULL)
> model_noninfo() %>% unlist

S T
10 10
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As said in the introduction, the non-informative prior is not a real prior distribution.
Therefore, there is nothing to get from functions dprior, pprior, etc. There only
are posterior distributions, obviously requiring the observations 𝑥 and 𝑦 in addition to
the samples sizes 𝑆 and 𝑇 :

> model_noninfo <- model_noninfo(x=5, y=10)
> spost(model_noninfo, "phi") %>% unlist

mode mean sd Q1 Q2 Q3
0.3913043 0.5789474 0.3279396 0.3512455 0.5085074 0.7259461

Estimates and credibility intervals for the relative risk are givenwith functions coef
and confint:

> coef(model_noninfo)

Estimates of ϕ

mode : 0.3913043
mean : 0.5789474
median : 0.5085074
intrinsic : 0.5104047
intrinsic2 : NA

> confint(model_noninfo)

95%-credibility intervals about ϕ

+--------------+--------+-------+
| interval | lwr | upr |
+==============+========+=======+
| equi-tailed | 0.1631 | 1.405 |
+--------------+--------+-------+
| equi-tailed* | 0.1631 | 1.405 |
+--------------+--------+-------+
| hpd | 0.1009 | 1.218 |
+--------------+--------+-------+
| intrinsic | 0.1454 | 1.313 |
+--------------+--------+-------+
| intrinsic2 | NA | NA |
+--------------+--------+-------+

The meaning of intrinsic and intrinsic2will be explained in Section 3. The
outputs in the intrinsic2 lines are always NA when one uses the non-informative
prior.
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Descarding these lines for themoment, the confint function returns three credibil-
ity intervals. The equi-tailed and hpd intervals are well-known in Bayesian statistics.
The equi-tailed∗ credibility interval is introduced in [16] as a correction of the equi-
tailed interval in the case when the posterior distribution of ϕ has its mode at 0. In
other cases, it is exactly the same as the equi-tailed interval. The case of the correction
occurs when 𝑐 + 𝑥 ≤ 1, which happens when one uses the non-informative prior and
gets the count 𝑥 = 0 in the control group.
Predictions are provided by the predict function. This requires to set the values

of the new sample sizes in the brr object, under the names Snew and Tnew, but these
values are automatically set to be S and T if they are not provided by the user:
> predict(model_noninfo)

Predictions and 95%-credibility prediction intervals

+-------+--------+----------+-------+-------+
| obs | size | median | lwr | upr |
+=======+========+==========+=======+=======+
| xnew | 10 | 5 | 1 | 13 |
+-------+--------+----------+-------+-------+
| ynew | 10 | 10 | 3 | 20 |
+-------+--------+----------+-------+-------+

Alternatively, instead of setting the new sample sizes Snew and Tnew in the brr
object, it is possible to pass them as arguments of the predict function:
> predict(model_noninfo, Snew=20, Tnew=20)

Predictions and 95%-credibility prediction intervals

+-------+--------+----------+-------+-------+
| obs | size | median | lwr | upr |
+=======+========+==========+=======+=======+
| xnew | 20 | 10 | 2 | 24 |
+-------+--------+----------+-------+-------+
| ynew | 20 | 20 | 8 | 38 |
+-------+--------+----------+-------+-------+

2.3. Comparison with frequentist inference
It is interesting to compare the results of the Bayesian inference with a frequentist
inference. A traditional frequentist way for statistical inference on the relative risk ϕ
consists in considering the conditional distribution of 𝑥 given the sum 𝑥 + 𝑦, which is
binomial with size parameter 𝑛 = 𝑥 + 𝑦 and proportion parameter

θ = 𝜆𝑆
𝜆𝑆 + 𝜇𝑇 = ϕ𝑆/𝑇

ϕ𝑆/𝑇 + 1.
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Then one gets inference on ϕ by inferring on θ in the binomial model and finally back-
transforming to get inference on ϕ.
The function rr_interval_binomial in the brr provides the confidence in-

terval of ϕ obtained by this way, and by taking the exact binomial confidence interval
of θ (the one provided by the well-known binom.test function). Another func-
tion, rr_interval_SK, provides the Sahai & Khurshid confidence interval which
is studied in [16] for comparison with the Bayesian inference based on the reference
posterior distribution. The function rr_intervals returns both frequentist confi-
dence intervals. The with function is useful to apply these functions from a brr
object:

> with(model_noninfo(), rr_intervals(x, y, S, T))

$binomial
[1] 0.1340969 1.6054984

$SK
[1] 0.1585795 1.4280107

attr(,"level")
[1] 0.95

As shown in [16], the Bayesian credibility intervals based on the reference poste-
rior distribution achieve a very good frequentist matching property: their frequentist
coverage is close to their credibility interval. For example a 95%-credibility interval
can be considered as a 95%-confidence interval.
In fact, after replacing 𝑥 with 𝑥 − 0.5 and 𝑦 with 𝑦 + 0.5, the upper bound of the

binomial confidence interval becomes the same as the one of the equi-tailed credibility
interval:

> with(model_noninfo(),
+ rr_interval_binomial(x-.5, y+.5, S, T)
+ )

[1] 0.1079239 1.4047929

And after replacing 𝑥 with 𝑥+0.5 and 𝑦 with 𝑦−0.5, the lower bound of the binomial
confidence interval becomes the same as the one of the equi-tailed credibility interval:

> with(model_noninfo(),
+ rr_interval_binomial(x+.5, y-.5, S, T)
+ )

[1] 0.1631324 1.8342167
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2.4. Graphical outputs
We take the model_noninfo example to illustrate this section, after renaming it to
a more convenient name:
> model <- model_noninfo

As we have seen, the function dpost(model,"phi",.) (for example) is con-
venient to evaluate the posterior density of ϕ. It can be used as follow to draw the
density:
> phi <- seq(0.5, 2, length.out=101)
> phi %>% { plot(., dpost(model, "phi", .), type="l") }

But brr provides a custom plot function for brr objects. For example a graphic
equivalent to the one generated by the previous code, but with automatic limits and
aesthetics, can be generated as follows (it is shown on Figure 1):
> par(mar=c(4,1,0,0))
> plot(model, dpost(phi), cex.lab=2, cex.axis=2)

φ
0.0 0.5 1.0 1.5 2.0 2.5

Figure 1: Output of plot(model, dpost(phi))

Similary, plot(model, dprior(lambda)) displays the curve of the prior den-
sity of 𝜆, plot(model, pprior(mu)) displays the curve of the prior distribution
function of 𝜇, etc.
The plot function also generates automatic bar plots for the predictive distribu-

tions, but the new sample size must be included in the brr object. For example (see
Figure 2):
> model <- model(Snew=10)
> par(mar=c(4,4,0,0))
> plot(model, dpost(x), cex.lab=2, cex.names=2, cex.axis=2)
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Figure 2: Output of plot(model, dpost(x))

3. Intrinsic hypothesis testing and intrinsic credible
intervals

The intrinsic discrepancy loss has been introduced by Bernardo and Rueda in [6],
and further considered by Bernardo and Juarez in [7]. It can be used for inference
summaries such as estimation but also for the problem of Bayesian hypothesis testing
([6, 9, 13]), and the problem of producing Bayesian credible regions ([8, 13]). All
these procedures are developed in the objective perspective, that is to say when one
uses the reference prior, but it is possible to use them with a subjective prior.
These procedures in the case of the two Poisson samplesmodel, and their implemen-

tation in brr, are explained in subsection 3.1. All necessary calculations are provided
in [14].
In subsection 3.2 we present another intrinsic discrepancywhich is more appropriate

in the case when one uses a semi-informative prior. All inference procedures that
follow from it are implemented in brr. The necessary calculations are provided in
Appendix B.
In subsection 3.3, we explain how brr handles a difficulty in the numerical evalu-

ation of the posterior expected loss.
The brr functions related to this section are listed below, where intrinsic(2)

means either intrinsic (first intrinsic discrepancy) or intrinsic2 (second in-
trinsic discrepancy):

• intrinsic(2)_discrepancy, computing the intrinsic discrepancy loss;

• intrinsic(2)_phi0, computing the posterior loss at a given value ϕ0 of ϕ;

• intrinsic(2)_phi0_sims, the same but evaluating the posterior loss with
the help of simulations instead of a numerical integration;
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• intrinsic(2)_estimate, computing the intrinsic estimate of ϕ, defined as
the value of ϕ0 at which the posterior loss is minimal;

• intrinsic(2)_interval, computing the intrinsic credibility interval about
the rate ratio ϕ;

• intrinsic(2)_H0, computing the posterior loss for intrinsic hypothesis test-
ing.

Concisely and in a pragmatic perspective, the points of this section to be remem-
bered are:

• to use intrinsic analysis in the fully non-informative framework, take the first
intrinsic discrepancy;

• to use intrinsic analysis in the semi-informative framework, take the second in-
trinsic discrepancy;

• intrinsic inference has solid theoretical fundations in the two previous non-informative
frameworks, but everybody is free to use it with a subjective prior;

• the results provided by intrinsic inference are more or less close to the results
provided by any other classical inference (the intrinsic estimate is usually closest
to the posterior median among the other estimates, and the intrinsic credible
interval is closest to the hpd credible interval).

3.1. First intrinsic discrepancy
The case of the two Poisson samples model with the semi-conjugate family of priors
is studied in [14]. For this model with ϕ as the parameter of interest, the intrinsic dis-
crepancy loss is the quantity ℓ(ϕ0; 𝜇, ϕ) interpreted as a measure of the incompatibility
of using ϕ0 as a proxy for the relative risk when the true values of the parameters are
ϕ and 𝜇, and it is defined by

ℓ(ϕ0; 𝜇, ϕ) ∶= inf
𝜇0>0

min{�δ(𝜇, ϕ ∣ 𝜇0, ϕ0), δ(𝜇0, ϕ0 ∣ 𝜇, ϕ)}�,

where δ(𝜇, ϕ ∣ 𝜇0, ϕ0) is the Kullback-Leibler divergence from the sampling distribu-
tion at (𝜇, ϕ) to the sampling distribution at (𝜇0, ϕ0).
Following Bayesian decision-theoretic principles, the posterior expected intrinsic

discrepancy (for short, the posterior loss) ̄ℓ(ϕ0 ∣ 𝑥, 𝑦) is obtained by integrating ℓ(ϕ0; 𝜇, ϕ)
over the posterior distribution of (𝜇, ϕ). As shown in [14], this can be expressed as a
one-dimensional integral. The posterior loss ̄ℓ(ϕ0 ∣ 𝑥, 𝑦) is evaluated in the brr pack-
age by the intrinsic_phi0 function. Figure 3 shows the curve ϕ0 ↦ ̄ℓ(ϕ0 ∣ 𝑥, 𝑦)
when we use the reference prior and we observe the two counts 𝑥 = 10 and 𝑦 = 20
with sample sizes 𝑆 = 𝑇 = 10000.
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Figure 3: Expected posterior intrinsic loss (blue) and posterior density of ϕ (black,
dotted).

Intrinsic estimate. The posterior loss ̄ℓ(ϕ0 ∣ 𝑥, 𝑦) is a convex function of ϕ0. The
value of ϕ0 where it achieves its minimum is the intrinsic estimate of the relative risk
ϕ. The simplest way to get it with the brr is to call the coef function on a brr object.
The example below is in the same situation as the one of Figure 3.

> model <- Brr(x=10, y=20, S=10000, T=10000)
> coef(model)

Estimates of ϕ

mode : 0.4418605
mean : 0.5384615
median : 0.5042123
intrinsic : 0.5055021
intrinsic2 : NA

Typically, the intrinsic estimate is greater than the mode, and close to the median.
The intrinsic2 line in the output of coef(model) returns the intrinsic estimate
based on the second intrinsic discrepancy (object of the next subsection). It is NA in
this example, because the second intrinsic discrepancy only makes sense when one
uses an informative prior on 𝜇.
Intrinsic credible interval. The intrinsic 100(1−𝛼)%-credibility interval is defined
as the 100(1−𝛼)%-credibility interval made of values of ϕ0 having the lower posterior
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loss ̄ℓ(ϕ0 ∣ 𝑥, 𝑦). An example is given on Figure 4, on which the intrinsic credible
interval is shown by the green dotted segment. The figure also shows the construction
of this interval. It is easy to compute it by optimization when the inverse cumulative
function 𝐹−1 of the posterior distribution of ϕ is available, following a way similar to
the one used for the computation if the HPD interval. Indeed, every 100(1 − 𝛼)%-
credibility interval has form [𝐹−1(ϵ), 𝐹−1(ϵ + 1 − 𝛼)] for some value of ϵ ∈ [0, 𝛼],
and among these intervals, the intrinsic credible interval is the one whose bounds
𝐹−1(ϵ) and 𝐹−1(ϵ + 1 − 𝛼) have the same posterior loss.
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Figure 4: Construction of the intrinsic credible interval.

Intrinsic hypothesis testing. Given a hypothesis 𝐻0 ∶ {ϕ ∈ Φ0}, the intrinsic dis-
crepancy from 𝐻0 to (𝜇, ϕ) is defined as the minimal value of the intrinsic discrepancy
ℓ(ϕ0; 𝜇, ϕ) when ϕ0 runs over 𝐻0:

ℓ(𝐻0; 𝜇, ϕ) = min
ϕ0∈Φ0

ℓ(ϕ0; 𝜇, ϕ)

Then the intrinsic hypothesis test (called the Bayesian reference criterion in case of
the reference prior) is defined by the rejection rule:

{reject 𝐻0 if ̄ℓ(𝐻0 ∣ 𝑥, 𝑦) > ℓ∗

do not reject 𝐻0 if ̄ℓ(𝐻0 ∣ 𝑥, 𝑦) ≤ ℓ∗
�

where ℓ∗ is a given threshold and ̄ℓ(𝐻0 ∣ 𝑥, 𝑦) is the posterior expected value of the
intrinsic discrepancy from 𝐻0 to (ϕ, 𝜇), or, for short, the posterior loss.
Bernardo ([9, 13]) proposes to consider threshold values ℓ∗ = log 10, log 100,

log 1000 as mild, strong, and very strong evidence against 𝐻0, respectively.
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The intrinsic_H0 function in the brr package performs the intrinsic hypothesis
test for one-sided hypotheses 𝐻0 ∶ {ϕ > ϕ∗} or 𝐻0 ∶ {ϕ < ϕ∗}. For the example of
Figure 3, we get a value lower than log 10 for the hypothesis 𝐻0 ∶ {ϕ > 1}, thereby not
allowing to reject 𝐻0 with the mild evidence threshold ℓ∗ = log 10.

> model <- Brr(x=10, y=20, S=10000, T=10000)
> with(model(),
+ intrinsic_H0(phi.star=1, alternative="less",
+ x=x, y=y,S=S, T=T)
+ ) %>% exp

[1] 8.115875

For comparison, the conditional frequentist method yields a 𝑝-value about 10%:

> with( model(), binom.test(x,x+y)$p.value )

[1] 0.09873715

3.2. Second intrinsic discrepancy
As said before, the intrinsic discrepancy was originally developed to be used with the
non-informative reference prior, but nothing prevents one to use it with an informative
subjective prior.
However, if one uses a semi-informative prior (informative about𝜇, non-informative

about ϕ), then, following the principles of objective Bayesian theory, the intrinsic dis-
crepancy should be derived from the marginal model, that is to say the model having ϕ
as unique parameter, obtained after averaging the original two-parameters model with
respect to the subjective prior distribution 𝒢(𝑎, 𝑏) on 𝜇.
In the marginal model, the sampling distribution of the pair (𝑥, 𝑦) of the two counts

is a bivariate negative binomial distribution, having ϕ as unique unknown parameter (a
fortiori the parameter of interest). Therefore the derivation of the intrinsic discrepancy
for this model is easier than its derivation for the original two-parameters model. We
denote it by ℓ𝑎,𝑏 to emphasize that it is derived after the prior distribution 𝒢(𝑎, 𝑏) has
been fixed. It is defined by

ℓ𝑎,𝑏(ϕ0; ϕ) ∶= min{�δ(ϕ ∣ ϕ0), δ(ϕ0 ∣ ϕ)}�,

where δ(ϕ ∣ ϕ0) is the Kullback-Leibler divergence from the sampling distribution at
ϕ to the sampling distribution at ϕ0. Its derivation is provided in Appendix B.
The posterior expected loss ̄ℓ𝑎,𝑏(ϕ0 ∣ 𝑥, 𝑦) is then defined by averaging the intrinsic

discrepancy ℓ𝑎,𝑏(ϕ0; ϕ) over ϕ with respect to its posterior distribution. Then the in-
trinsic estimate and the intrinsic credible interval are defined exactly as in the case of
the two-parameters model. Intrinsic hypothesis testing of a hypothesis 𝐻0 ∶ {ϕ ∈ Φ0}
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is also similar to the case of the two-parameters model. It is based on the intrin-
sic discrepancy ℓ𝑎,𝑏(𝐻0; ϕ) from 𝐻0 to ϕ, defined as the minimal value of the intrin-
sic discrepancy ℓ𝑎,𝑏(ϕ0; ϕ) when ϕ0 runs over 𝐻0. Then the posterior expected loss
̄ℓ𝑎,𝑏(𝐻0 ∣ 𝑥, 𝑦) is obtained by averaging the intrinsic discrepancy ℓ𝑎,𝑏(𝐻0; ϕ) with re-
spect to the posterior distribution of ϕ, and then the test is carried out by comparing
the posterior expected loss ̄ℓ𝑎,𝑏(𝐻0 ∣ 𝑥, 𝑦) to some threshold ℓ∗.

3.3. Difficulty in the numerical integration
The posterior expected loss can be expressed as a one-dimensional integral with re-
spect to a Beta prime distribution. This is shown in [14] for the first intrinsic discrep-
ancy, and this is straightforward for the second intrinsic discrepancy. By the relation
between the Beta prime distribution and the Beta distribution, and in order to facilitate
the numerical integration, this integral can be transformed into an integral on the finite
interval (0, 1) with respect to a Beta distribution by applying the change of variables
ϕ = 𝑇+𝑏

𝑆
𝑢

1−𝑢 , where 𝑢 is the variable of integration on (0, 1).
However, the numerical integration on (0, 1) fails in some cases. This occurs when

the Beta distribution has its mode at 0 or 1 and has a small variation, or when it is
concentrated on a very small subinterval on (0, 1). On Figure 5, we show two examples
for which the numerical integration fails for the second intrinsic discrepancy.
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(a) Case when 0 is the mode, obtained with
𝑥 = 0 and 𝑦 = 13000.
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(b) Case of a nonnegative mode, obtained
with 𝑥 = 100 and 𝑦 = 40000.

Figure 5: Two cases of integration problem. Black: posterior distribution of ϕ. Blue:
second intrinsic discrepancy loss at ϕ0 = 0.005. Red: product. In both
cases, the prior is the semi-informative prior distribution with 𝑎 = 10 and
𝑏 = 100, and the samples sizes are 𝑆 = 𝑇 = 100.

Note that the figures do not show the situation after the change of variables, they
show the scaled Beta prime posterior distribution of ϕ and the intrinsic loss as a func-
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tion of ϕ. However the picture is similar after the change of variables, especially in
these cases when ϕ = 𝑇+𝑏

𝑆
𝑢

1−𝑢 is concentrated at values close to 0, because ϕ ≈ 𝑇+𝑏
𝑆 𝑢 for

such cases. The dashed red curve shows the product of the intrinsic discrepancy and
the posterior distribution, that is to say the function to be integrated on (0, ∞). After
the change of variables, the posterior loss has form ∫1

0 𝑔(𝑢)𝑓 (𝑢)d𝑢, where 𝑓 is a Beta
pdf. We have empirically checked that, if the Beta distribution falls into a range (hav-
ing form [0, 𝑏] ⊂ [0, 1] in the first case and [𝑎, 𝑏] ⊂ [0, 1] in the second case), into
which the Beta distribution falls with very high probability, then the product 𝑔(𝑢)𝑓 (𝑢)
is close to 0 and it decreases as it moves away from this range. Therefore, the value
of the integral is controlled by the value of the product 𝑔(𝑢)𝑓 (𝑢) at 𝑢 = 𝑏 in the first
case, and by the values at 𝑢 = 𝑎 and 𝑢 = 𝑏 in the second case.
Thus, to solve the integration problem, brr has an internal function which deter-

mines the range of the Beta distribution given a desired accuracy. This function is
called beta_integration_range, and the beta_range argument of the func-
tions intrinsic(2)_phi0 (TRUE by default) allows the user to control the usage
of this method. The range of integration is (0, 1) if this argument is set to FALSE. For
the two previous examples, the results are in agreement with simulations:

> # first example
> S <- T <- 100; a <- 10; b <- 100; phi0 <- 0.005
> x <- 0; y <- 13000;
> intrinsic2_phi0(phi0, x, y, S, T, a, b)

[1] 0.0465223

> intrinsic2_phi0(phi0, x, y, S, T, a, b, beta_range=FALSE)

[1] 4.218559e-08

> intrinsic2_phi0_sims(phi0, x, y, S, T, a, b)

[1] 0.04651436

> # second example
> x <- 100; y <- 40000
> intrinsic2_phi0(phi0, x, y, S, T, a, b)

[1] 0.0002432546

> intrinsic2_phi0(phi0, x, y, S, T, a, b, beta_range=FALSE)

[1] 1.789674e-13

> intrinsic2_phi0_sims(phi0, x, y, S, T, a, b)

[1] 0.0002438253
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4. Extension to several treated groups
Consider now the three samples Poisson model in the situation when there are two
treated groups:

⎧{{
⎨{{⎩

𝑥1 ∼ 𝒫(𝜆1𝑆1)
𝑥2 ∼ 𝒫(𝜆2𝑆2)
𝑦 ∼ 𝒫(𝜇𝑇)

�

and denote ϕ1 = 𝜆1/𝜇 and ϕ2 = 𝜆2/𝜇 the two relative risks.
We give three different semi-conjugate families of prior distributions for this model.

As we said in the introduction, the reference prior for a model with two parameters
relies on the choice of a parameter of interest. When there are more than two pa-
rameters, it relies on the choice of an interest ordering between parameters. The first
semi-conjugate family contains the reference prior when the ordering (from the main
parameter of interest to the main nuisance parameter) is ϕ1, ϕ2, 𝜇. The second one
contains the reference prior when the ordering is ϕ1/ϕ2, ϕ2, 𝜇. The third one, up to a
caveat, contains the reference prior when the ordering is (ϕ1, ϕ2), 𝜇.
These semi-conjugate families are not implemented in brr. In fact, we will see that

the second control group can be dropped when we are interested in ϕ1 only. And the
control group can be dropped when we are interested in ϕ1/ϕ2 only. These facts are
in agreement with the intution. And because of them, we do not see some motivating
reasons to implement these semi-conjugate families in brr.
We explain the derivation of the reference prior for the first family. However our

derivation is a bit heuristic because we do not check some technical details. For the
second family, the method of derivation is the same and it is not more difficult, and we
only provide the results. The method is a bit less easy for the third family because the
parameter of interest (ϕ1, ϕ2) is two-dimensional, and we will provide the derivation
for this family.

4.1. First semi-conjugate family: (ϕ1, ϕ2, 𝜇) ordering
For positive numbers 𝑎, 𝑏, 𝑐1, 𝑑1, 𝑐2, 𝑑2, assign the independent prior distributions on
𝜇 and (ϕ1, ϕ2) given by

𝜇 ∼ 𝒢(𝑎, 𝑏), (ϕ2 ∣ ϕ1) ∼ ϕ1𝑆1 + 𝑇 + 𝑏
𝑆2

×ℬ′(𝑐2, 𝑑2) and ϕ1 ∼ 𝑇 + 𝑏
𝑆1

×ℬ′(𝑐1, 𝑑1).
Then the joint posterior on (𝜇, ϕ2, ϕ1) is given by

(𝜇 ∣ ϕ1, ϕ2, 𝑥1, 𝑥2, 𝑦) ∼ 𝒢(𝑎 + 𝑥1 + 𝑥2 + 𝑦, ϕ1𝑆1 + ϕ2𝑆2 + 𝑇 + 𝑏),
(ϕ2 ∣ ϕ1, 𝑥1, 𝑥2, 𝑦) ∼ ϕ1𝑆1 + 𝑇 + 𝑏

𝑆2
× ℬ′(𝑐2 + 𝑥2, 𝑎 + 𝑑2 + 𝑥1 + 𝑦) and

(ϕ1 ∣ 𝑥1, 𝑥2, 𝑦) ∼ 𝑇 + 𝑏
𝑆1

× ℬ′(𝑐1 + 𝑥1, 𝑎 + 𝑑1 + 𝑦).

In particular :
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• when 𝑎 = 𝑐1 = 𝑐2 = 0.5 and 𝑏 = 𝑑1 = 𝑑2 = 0, the prior is the reference prior
when ϕ1 is parameter of first interest and ϕ2 the parameter of second interest;

• when 𝑎, 𝑏 > 0, 𝑐1 = 𝑐2 = 0.5 and 𝑑1 = 𝑑2 = 0, the prior is the semi-reference
prior with information on 𝜇 when ϕ1 is parameter of first interest and ϕ2 the
parameter of second interest;

• when 𝑎, 𝑏, 𝑐2, 𝑑2 > 0, 𝑐1 = 0.5 and 𝑑1 = 0, the prior is the semi-reference prior
with information on 𝜇 and ϕ2 (when, a fortiori, ϕ1 is parameter of interest).

Observe that the posterior distribution of ϕ1 does not involve anything related to the
second control group: it does not involve 𝑥2, 𝑆2, nor the prior parameters 𝑐2 and 𝑑2. In
the non-informative case, it is the same as the posterior distribution that would be ob-
tained with the two Poisson samples model by dropping the second control group. But
the joint posterior of (𝜇, ϕ1) would be different. The conditional posterior distribu-
tion (𝜇 ∣ ϕ1, 𝑥1, 𝑥2, 𝑦) belongs to the same family as the marginal posterior distribution
(𝜇 ∣ 𝑥, 𝑦) in the two Poisson samples model. The predictive distributions of 𝑥 and 𝑦
would be different too.
The reference prior is derived in parallel to the derivation of the semi-conjugate

family as follows, in three steps. We do not provide the calculations. At each step,
they are similar to the calculations for the case of only one control group, which are
given in details in [16].
• First step: 𝜇 given (ϕ1, ϕ2).
The likelihood of 𝜇 conditional to ϕ1 and ϕ2 satisfies

𝐿(𝜇 ∣ ϕ1, ϕ2, 𝑦, 𝑥1, 𝑥2) ∝ exp {−𝜇(ϕ1𝑆1 + ϕ2𝑆2 + 𝑇)} 𝜇𝑦+𝑥1+𝑥2 ,
from which it is straightforward to see the conditional conjugate family (𝜇 ∣ ϕ1, ϕ2) ∼
𝒢(𝑎, 𝑏). The conditional reference prior is the Jeffreys prior given by the square root of
the Fisher information associated to this conditional likelihood, which is the likelihood
of the rate of a Poisson likelihood, and it is known that this Jeffreys prior is 𝒢(𝑎, 𝑏)
with 𝑎 = 1

2 and 𝑏 = 0.
• Second step: ϕ2 given ϕ1.
At this step, one consider the likelihood of ϕ1 conditional to ϕ2, obtained by inte-

grating the original likelihood with respect to a 𝒢(𝑎, 𝑏) distribution on 𝜇. One gets,
after easy calculations

𝐿(ϕ2 ∣ ϕ1, 𝑦, 𝑥1, 𝑥2) ∝ ϕ𝑥2
2

(1 + 𝑟1ϕ1 + 𝑟2ϕ2)𝑎+𝑦+𝑥1+𝑥2

with 𝑟𝑖 = 𝑆𝑖
𝑇 + 𝑏 . It is then straightforward to see that the conditional prior distribution

(ϕ2 ∣ ϕ1) ∼ ϕ1𝑆1+𝑇+𝑏
𝑆2

× ℬ′(𝑐2, 𝑑2) has the announced conjugacy property.
The corresponding Fisher information obtained after calculations is

𝐼(ϕ2 ∣ ϕ1) ∝ 1
ϕ2(1 + 𝑟1ϕ1 + 𝑟2ϕ2) ∝ ϕ−1

2
1 + 𝑟2

𝑟1ϕ1+1ϕ2
,
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thereby giving the Jeffreys prior (ϕ2 ∣ ϕ1) ∼ ϕ1𝑆1 + 𝑇 + 𝑏
𝑆2

× ℬ′(1
2 , 0).

• Third step: ϕ1.
This time we integrate the previous likelihood with respect to the distribution of

(ϕ2 ∣ ϕ1), and get after calculations

𝐿(ϕ1 ∣ 𝑦, 𝑥1, 𝑥2) ∝ ϕ𝑥1
1

(1 + 𝑟1ϕ1)𝑎+𝑦+𝑥1

wherefrom it is straightfoward to see that the prior distribution ϕ1 ∼ 𝑇+𝑏
𝑆1

× ℬ′(𝑐1, 𝑑1)
has the annouced conjugacy property.
The corresponding Fisher information is, after some calculations,

𝐼(ϕ1) ∝ 1
ϕ1(1 + 𝑟1ϕ1),

yielding the Jeffreys prior ϕ1 ∼ 𝑇 + 𝑏
𝑆1

× ℬ′(1
2 , 0).

As we announced, our derivation of the reference prior is a bit heuristic. Firstly,
we should check at each step that the regularity conditions hold in order to take the
Jeffreys prior. More importantly, the heuristic nature of our derivation mainly lies in
the fact that at the second and third steps, we treat the conditional reference prior of the
previous step as if it were a proper distribution. In order to properly do the derivation,
we should use an increasing sequence of compact sets approximating the parameter
space (see [4]).

4.2. Second semi-conjugate family: (ϕ1/ϕ2, ϕ2, 𝜇) ordering
As we saw, there is no interest to use the previous semi-conjugate family if one is
interested in ϕ1 only. Posterior probabilities of hypotheses such as ϕ1 > ϕ2, or more
generally ϕ1 > 𝑘ϕ2, are relevant quantities for comparing the two relative risks. But
since ϕ1 > 𝑘ϕ2 is equivalent to ϕ1

ϕ2
> 𝑘, one should consider the ratio 𝜌 = ϕ1

ϕ2
as the

parameter of interest if one is interested in such probabilities. The reference prior for
the interest ordering (𝜌, ϕ2, 𝜇) belongs to the following semi-conjugate family.
For positive numbers 𝑎, 𝑏, 𝑐1, 𝑑1, 𝑐2, 𝑑2, assign the independent prior distributions

on 𝜇 and (𝜌, ϕ2) given by

𝜇 ∼ 𝒢(𝑎, 𝑏), (ϕ2 ∣ 𝜌) ∼ 𝑇 + 𝑏
𝜌𝑆1 + 𝑆2

× ℬ′(𝑐2, 𝑑2) and 𝜌 ∼ 𝑆2
𝑆1

× ℬ′(𝑐1, 𝑑1).

Then the joint posterior on (𝜇, ϕ2, 𝜌) is given by
(𝜇 ∣ 𝜌, ϕ2, 𝑥1, 𝑥2, 𝑦) ∼ 𝒢(𝑎 + 𝑥1 + 𝑥2 + 𝑦, ϕ1𝑆1 + ϕ2𝑆2 + 𝑇 + 𝑏),
(ϕ2 ∣ 𝜌1, 𝑥1, 𝑥2, 𝑦) ∼ 𝑇 + 𝑏

𝑆2 + 𝜌𝑆1
× ℬ′(𝑐2 + 𝑥1 + 𝑥2, 𝑎 + 𝑑2 + 𝑦) and

(𝜌 ∣ 𝑥1, 𝑥2, 𝑦) ∼ 𝑆2
𝑆1

× ℬ′(𝑐1 + 𝑥1, 𝑐2 + 𝑑1 + 𝑥1).

21



In particular :

• when 𝑎 = 𝑐1 = 𝑐2 = 0.5 and 𝑏 = 𝑑1 = 𝑑2 = 0, the prior is the reference prior
when 𝜌 is parameter of first interest and ϕ2 the parameter of second interest;

• when 𝑎, 𝑏 > 0, 𝑐1 = 𝑐2 = 0.5 and 𝑑1 = 𝑑2 = 0, the prior is the semi-reference
prior with information on 𝜇 when 𝜌 is parameter of first interest and ϕ2 the
parameter of second interest;

• when 𝑎, 𝑏, 𝑐2, 𝑑2 > 0, 𝑐1 = 0.5 and 𝑑1 = 0, the prior is the semi-reference prior
with information on 𝜇 and ϕ2 (when, a fortiori, 𝜌 is parameter of interest).

For this semi-conjugate family, the posterior distribution of 𝜌 does not involve any-
thing related to the treated group: it does not involve 𝑦, 𝑇 , nor the prior parameters 𝑎
and 𝑏.

4.3. Third semi-conjugate family: (�(ϕ1, ϕ2), 𝜇)� ordering
In the third semi-conjugate family, the prior and posterior distributions of (ϕ1, ϕ2) is
a bivariate Beta distribution of the second kind. Say that a pair of random variables
(ϕ1, ϕ2) has the bivariate Beta distribution of the second kind ℬ2(𝑐1, 𝑐2, 𝑑; 𝜏1, 𝜏2)
with shape parameters 𝑐1, 𝑐2, 𝑑, and scale parameters 𝜏1 and 𝜏2, when it has the
distribution of (𝜏1

𝐺1
𝐺0

,𝜏2
𝐺2
𝐺0

)where𝐺0,𝐺1,𝐺2 are independent random variables with
laws 𝐺0 ∼ 𝒢(1, 𝑑), 𝐺1 ∼ 𝒢(1, 𝑐1), 𝐺2 ∼ 𝒢(1, 𝑐2). Then the marginals distributions
are ϕ1 ∼ ℬ2(𝑐1, 𝑑, 𝜏1) and ϕ2 ∼ ℬ2(𝑐2, 𝑑, 𝜏2), and the conditional distribution of ϕ2
given ϕ1 is (ϕ2 ∣ ϕ1) ∼ ℬ2 (𝑐2, 𝑐1 + 𝑑,𝜏2 (1 + ϕ1𝜏1 )).
The third semi-conjugate family is the following one.
For positive numbers 𝑎, 𝑏, 𝑐1, 𝑑1, 𝑐2, 𝑑2, assign the independent prior distributions

on 𝜇 and (ϕ1, ϕ2) given by

𝜇 ∼ 𝒢(𝑎, 𝑏), (ϕ1, ϕ2) ∼ ℬ2 (𝑐1, 𝑐2, 𝑑; 𝑇 + 𝑏
𝑆1

, 𝑇 + 𝑏
𝑆2

)

Then the joint posterior on (𝜇, ϕ1, ϕ1) is given by

(𝜇 ∣ ϕ1, ϕ2, 𝑥1, 𝑥2, 𝑦) ∼ 𝒢(𝑎 + 𝑥1 + 𝑥2 + 𝑦, ϕ𝑆1 + ϕ2𝑆2 + 𝑇 + 𝑏),
(ϕ1, ϕ2 ∣ 𝑥1, 𝑥2, 𝑦) ∼ ℬ2 (𝑐1 + 𝑥1, 𝑐2 + 𝑥2, 𝑑 + 𝑎 + 𝑦; 𝑇 + 𝑏

𝑆1
, 𝑇 + 𝑏

𝑆2
)

There is a permissibility problem about the reference prior with the pair (ϕ1, ϕ2)
as the parameter of interest. Taking the square root of the determinant of the Fisher
information 𝐼(ϕ1, ϕ2) as the Jeffreys prior, we find a non-permissible improper prior
distribution, in the sense that the formal application of Bayes’ formula with this prior
distribution possibly yields an improper posterior distribution.
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We provide some details. After integrating the likelihoodwith respect to the𝒢(𝑎, 𝑏)
of 𝜇, one gets the following likelihood of (ϕ1, ϕ2):

𝐿(ϕ1, ϕ2 ∣ 𝑦, 𝑥1, 𝑥2) ∝ ϕ𝑥1
1 ϕ𝑥2

2
(1 + 𝑟1ϕ1 + 𝑟2ϕ2)𝑎+𝑦+𝑥1+𝑥2

with 𝑟𝑖 = 𝑆𝑖
𝑇 + 𝑏 . In fact we can generalize without cost to the case of more than two

control groups. The likelihood would be

𝐿(ϕ1, ϕ2, … ∣ 𝑦, 𝑥1, 𝑥2, …) ∝ ∏ ϕ𝑥𝑘
𝑘

(1 + ∑ 𝑟𝑘ϕ𝑘)𝑎+𝑦+∑ 𝑥𝑘
,

and the following derivations are given for this more general case.
After calculations, the Fisher information matrix 𝐼(ϕ1, ϕ2, …) is found to be propor-

tional to (1 + ∑ 𝑟𝑘ϕ𝑘)−1𝑀 where the (𝑖, 𝑗)-th entry of the matrix 𝑀 is

𝑀𝑖,𝑗 =
⎧{
⎨{⎩

𝑆𝑖 [1 + ∑𝑘≠𝑖 𝑟𝑘ϕ𝑘]
ϕ𝑖

if 𝑖 = 𝑗
−𝑆𝑖𝑆𝑗 if 𝑖 ≠ 𝑗.

�

The Jeffreys prior is the square root of the determinant of the Fisher information ma-
trix, and this determinant is given by the following lemma.
Lemma 1. Let 𝑛 be a positive integer and let 𝑎1, … , 𝑎𝑛, 𝜆1, … , 𝜆𝑛 and 𝐾 be positive
real numbers. Let 𝑀 = (𝑚𝑖,𝑗) be the 𝑛 × 𝑛-matrix with diagonal entries

𝑚𝑖,𝑖 = 𝑎𝑖
𝜆𝑖

⎛⎜
⎝

𝐾 + ∑
𝑗≠𝑖

𝑎𝑗𝜆𝑗
⎞⎟
⎠

and off-diagonal entries 𝑚𝑖,𝑗 = −𝑎𝑖𝑎𝑗, 𝑖 ≠ 𝑗. Then one has

det𝑀 = 𝐾(𝐾 + ∑𝑛
𝑖=1 𝑎𝑗𝜆𝑗)

𝑛−1

∏𝑛
𝑖=1 𝜆𝑖

𝑛
∏
𝑖=1

𝑎𝑖.

Proof. One has 𝑀 = 𝐷 − 𝐴 where the matrix 𝐴 has (𝑖, 𝑗)-th entry 𝑎𝑖𝑎𝑗, and 𝐷 is the
diagonal matrix with diagonal (𝑑1, … , 𝑑𝑛) where

𝑑𝑖 = ⎛⎜
⎝

𝐾 +
𝑛

∑
𝑗=1

𝑎𝑗𝜆𝑗
⎞⎟
⎠

𝑎𝑖
𝜆𝑖

.

The (𝑖, 𝑗)-th entry of the matrix 𝐻 ∶= 𝐴𝐷−1 is ℎ𝑖,𝑗 = 𝑎𝑖𝑎𝑗𝑑−1
𝑗 . This implies by standard

linear algebra that the characteristic polynomial of 𝐻 is 𝑋𝑛−1(𝑋 −∑𝑛
𝑖=1 ℎ𝑖,𝑖). Therefore

det𝑀 = det(𝐼 − 𝐴𝐷−1) det𝐷 = (1 −
𝑛

∑
𝑖=1

ℎ𝑖,𝑖)
𝑛

∏
𝑖=1

𝑑𝑖,

and the announced result follows.
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Applying this lemma in the case of two treated groups gives the Jeffreys prior

(ϕ1, ϕ2) ∼ ℬ2 (𝑐1 = 1
2 , 𝑐2 = 1

2 , 𝑑 = −1
2 ; 𝑇 + 𝑏

𝑆1
, 𝑇 + 𝑏

𝑆2
) .

The problem with this improper prior is that it yields, through a formal application of
Bayes’ formula, a possibly improper posterior distribution: this happens in the case
when 𝑎 + 𝑦 ≤ 1

2 , which occurs when 𝑎 = 1
2 and one observes 𝑦 = 0. For more than two

groups, this is even worse, because one gets 𝑑 = −𝑛−1
2 in the general case, where 𝑛 is

the number of treated groups.

A. Special distributions
Some distributions related to the semi-conjugate are not standard. They are presented
in this section, but we do not give every detail about them. For more details, the reader
is referred to [15] and the help provided in the brr package. This section is intended
to say a word about their implementation, and also to help the reading of the article
[15] as well as to provide a complement to this article.
These distributions involve some hypergeometric functions. The brr package uses

the implementations of these functions in the gsl package when they are available.
We use the Pochhammer symbol (𝑎)𝑥 in this section, defined by

(𝑎)𝑥 = Γ(𝑎 + 𝑥)
Γ(𝑎) ,

which is the ascending factorial when 𝑥 is a positive integer:

(𝑎)𝑥 = 𝑎(𝑎 + 1) … (𝑎 + 𝑥 − 1).
Thebrr package also uses thegsl package forΓ-related functions such as the Pochham-
mer symbol.

A.1. Continuous distributions
The prior and posterior distributions on 𝜆 as well as the posterior distribution on 𝜇
involve the Tricomi hypergeometric function 𝑈 defined by

𝑈(𝛼, 𝛽, 𝑧) = 1
Γ(𝛼) ∫∞

0
𝑒−𝑧𝑡𝑡𝛼−1(1 + 𝑡)𝛽−𝛼−1d𝑡.

This function has name hyperg_U in the gsl package.
The prior distribution on 𝜆 is called a Gamma-Beta2 distribution in the brr pack-

age, where Beta2 is a shortcut for the Beta distribution of second kind. The Gamma-
Beta2 distribution is a mixture distribution of Gamma distributions with a Beta2 mix-
ing distribution on the rate parameter (see ?GB2Dist for more details). If 𝑎 is the
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shape of the Gamma distribution, 𝑐 and 𝑑 the shape parameters of the Beta2 distribu-
tion and 𝜏 its scale parameter, then its density as a function of 𝑥 > 0 is

(𝑎)𝛼
𝐵(𝑑, 𝑐)𝜏𝑎𝑥𝑎−1𝑈(𝑎 + 𝑐, 𝑎 − 𝑑 + 1, 𝜏𝑥).

Its cumulative distribution function involves the Meijer 𝐺-function because of the fol-
lowing equality taken from [20]:

∫𝑦
0

𝑥𝑎−1𝑈(𝛼, 𝛽, 𝑥)d𝑥 = 1
Γ(𝛼)Γ(𝛼 − 𝛽 + 1)𝐺2,2

2,3 (𝑦 ∣� 1, 𝑎 − 𝛼 + 1
𝑎, 𝑎 − 𝛽 + 1, 0) .

Meijer 𝐺-functions are not available in R. It is possible to express the Meijer function
𝐺2,2

2,3 with the help of the 2𝐹2 hypergeometric function. The pGB2 function in the
brr uses this fact to evaluate the cdf by calling the genhypergeo function of the
hypergeo package. But the evaluation fails for many cases.
An implementation of Meijer 𝐺-functions is provided in Python by the mpmath

library. Below we give a R function to evaluate the integral above by calling Python
with the rPython package. It also uses lngamma from the gsl package.

> library(rPython); library(gsl)
> python.exec("from mpmath import *")
> python.exec( "def I(a,alpha,beta,x):
+ return float(meijerg(
+ [[1,-alpha+a+1],[]],
+ [[a,-beta+a+1],[0]],
+ x))" )
> pGB2_python <- function(q, a, c, d, tau){
+ exp(lngamma(c)-lngamma(d)-lngamma(a))*
+ python.call("I", a, a+c, a-d+1, tau*q)
+ }

Here is an example for which both pGB2_python and pGB2 give the correct result:

> a <- 3; c <- 2; d <- 2.5; tau <- 2
> pGB2_python(1, a, c, d, tau)

[1] 0.3339994

> pGB2(1, a, c, d, tau)

[1] 0.3339994

The posterior distribution of 𝜆 as well as the posterior distribution of 𝜇 belong to
the family of so-called Gamma-Inverse Beta distributions in brr (see ?GIBDist for
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some details). The pdf of these distributions as a function of 𝑥 > 0 have the following
form: 𝜌𝑎

Γ(𝑎)
Γ(𝛼 + 𝛽)

Γ(𝛽) 𝑥𝑎−1 𝑒−𝜌𝑧U(𝛼, 𝑎 − 𝛽 + 1, 𝜌𝑥)

The cdf of these distributions involve the Meijer function 𝐺2,3
2,1 because of the equal-

ity
∫𝑦

0
exp(−𝑥)𝑥𝑎−1𝑈(𝛼, 𝛽, 𝑥)d𝑥 = 𝐺2,1

2,3 (𝑦 ∣� 1, 𝑎 + 𝛼 − 𝛽 + 1
𝑎, 𝑎 − 𝛽 + 1, 0 ) ,

which can be found in [21]. Below we give a R function to evaluate the integral above
by calling Python with the rPython package.

> python.exec( "def J(a,alpha,beta,x):
+ return float(meijerg([[1],
+ [alpha-beta+a+1]],
+ [[a,-beta+a+1],[0]],
+ x))" )
> pGIB_python <- function(x,a,alpha,beta,rho=1){
+ exp(lnpoch(beta,alpha)-lngamma(a))*x^(a-1)*
+ python.call("J", a, alpha, a-beta+1, rho*x)
+ }

The result is an agreement with simulations on this example:
> a <- 1; alpha <- 2; beta <- 9; rho <- 2
> pGIB_python(1,a,alpha,beta,rho)

[1] 0.9120724

> ecdf(rGIB(1e6,a,alpha,beta,rho))(1)

[1] 0.912279

A.2. Discrete distributions
The conditional prior predictive distribution of 𝑥 given 𝑦 is a Beta-Negative binomial
distribution. Its probability masses are given by

𝑝(𝑥 ∣ 𝑦) = (𝑎 + 𝑦)𝑥
𝑥!

𝐵(𝑐 + 𝑥, 𝑎 + 𝑦 + 𝑑)
𝐵(𝑐, 𝑑) .

This distribution is available in the SuppDists package as a generalized hypergeo-
metric distribution. By noting that

𝑝(𝑥 ∣ 𝑦) = (𝑎)𝑥
𝑥!

𝐵(𝑐 + 𝑥, 𝑎 + 𝑑)
𝐵(𝑐, 𝑑)

(𝑎 + 𝑥)𝑦(𝑎 + 𝑑)𝑦
(𝑎)𝑦(𝑐 + 𝑥 + 𝑎 + 𝑑)𝑦
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and knowing that
𝑝(𝑦) =

(𝑎)𝑦
𝑦!

𝑏𝑎𝑇 𝑦

(𝑏 + 𝑇)𝑎+𝑦 ,
one gets the prior predictive distribution of 𝑥 by summation:

𝑝(𝑥) = ( 𝑏
𝑏 + 𝑇 )

𝑎 𝐵(𝑐 + 𝑥, 𝑎 + 𝑑)
𝐵(𝑐, 𝑑)

(𝑎)𝑥
𝑥! 2𝐹1 (𝑎 + 𝑥, 𝑎 + 𝑑, 𝑐 + 𝑥 + 𝑎 + 𝑑, 𝑇

𝑏 + 𝑇 )

where 2𝐹1 is the Gauss hypergeometric function. The brr package uses the imple-
mentation of 2𝐹1 offered by the gsl package.
The Gauss hypergeometric function is also involved in the posterior predictive dis-

tributions of 𝑥 and 𝑦. These special discrete distributions are presented in [15].
The brr implementations of the cumulative functions of these special discrete dis-

tributions simply perform the sum of the probability masses.

B. Intrinsic discrepancy for the marginal model

Set ψ = 𝑆
𝑇 + 𝑏ϕ to lighten the notation. The marginal likelihood 𝐿𝑎,𝑏(ψ ∣ 𝑥, 𝑦) is such

that (see [16] for calculations if needed)

𝐿𝑎,𝑏(ψ ∣ 𝑥, 𝑦) ∝
ψ

ψ𝑥

(ψ + 1)𝑥+𝑦+𝑎 .

Therefore

log 𝐿𝑎,𝑏(𝑥, 𝑦 ∣ ψ)
𝐿𝑎,𝑏(𝑥, 𝑦 ∣ ψ0) = 𝑥𝑀 + (𝑦 + 𝑎)𝑁

with
𝑀 = 𝑀(ϕ, ϕ0) = log ψ

ψ0
+ log ψ0 + 1

ψ + 1
and

𝑁 = 𝑁(ϕ, ϕ0) = log ψ0 + 1
ψ + 1 .

The expectations of 𝑥 and 𝑦 in the marginal model are

𝔼ϕ(𝑥) = ϕ𝑆 × 𝑎
𝑏 and 𝔼ϕ(𝑦) = 𝑇 × 𝑎

𝑏.
One gets the Kullback-Leibler divergence

δ(ϕ ∣ ϕ0) = 𝔼ϕ [log 𝐿𝑎,𝑏(𝑥, 𝑦 ∣ ψ)
𝐿𝑎,𝑏(𝑥, 𝑦 ∣ ψ0)]

= 𝑎
𝑏 (𝑀ϕ𝑆 + (𝑇 + 𝑏)𝑁)

= 𝑎
𝑏(𝑇 + 𝑏)(𝑀ψ + 𝑁).
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The intrinsic discrepancy is defined by

ℓ(ϕ0, ϕ) ∶= min{δ(ϕ ∣ ϕ0), δ(ϕ0 ∣ ϕ)}

and one can prove that

ℓ(ϕ0, ϕ) = {δ(ϕ ∣ ϕ0) if ϕ ≤ ϕ0
δ(ϕ0 ∣ ϕ) if ϕ ≥ ϕ0.

�

Indeed, remark that 𝑀(ϕ, ϕ0) = −𝑀(ϕ0, ϕ) and 𝑁(ϕ, ϕ0) = −𝑁(ϕ0, ϕ), hence

δ(ϕ ∣ ϕ0) − δ(ϕ0 ∣ ϕ) = 𝑎
𝑏(𝑇 + 𝑏) ((ψ + ψ0)𝑀 + 2𝑁)

and

𝜕
𝜕ψ0

((ψ + ψ0)𝑀 + 2𝑁) = ψ ( 1
ψ0 + 1 − 1

ψ0
) + ψ0 ( 1

ψ0 + 1 − 1
ψ0

) + 𝑀 + 2
ψ0 + 1

= ψ0 − ψ
ψ0(ψ0 + 1) + 𝑀.

Because of

𝑀(ϕ, ϕ0) = log( ψ
ψ0

ψ0 + 1
ψ + 1 ) = log(1 + ψ − ψ0

ψ0(ψ + 1)) ,

the inequality ϕ ≥ ϕ0 holds if and only if 𝑀(ϕ, ϕ0) ≤ ψ − ψ0
ψ0(ψ + 1) , and this is equivalent

to

𝜕
𝜕ψ0

((ψ + ψ0)𝑀 + 2𝑁) ≤ ψ0 − ψ
ψ0(ψ0 + 1) + ψ − ψ0

ψ0(ψ + 1)

= − (ψ − ψ0)2

ψ0(ψ0 + 1)(ψ + 1) ≤ 0.
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