
Package ‘cfid’
October 26, 2022

Type Package

Title Identification of Counterfactual Queries in Causal Models

Version 0.1.4

Maintainer Santtu Tikka <santtuth@gmail.com>

Description Facilitates the identification of counterfactual queries in
structural causal models via the ID* and IDC* algorithms
by Shpitser, I. and Pearl, J. (2007, 2008)
<arXiv:1206.5294>, <https://jmlr.org/papers/v9/shpitser08a.html>.
Provides a simple interface for defining causal diagrams and counterfactual
conjunctions. Construction of parallel worlds graphs and counterfactual graphs
is carried out automatically based on the counterfactual query and the causal
diagram.

License GPL (>= 3)

Encoding UTF-8

URL https://github.com/santikka/cfid

RoxygenNote 7.2.1

Suggests covr, dagitty, igraph, mockery, testthat (>= 3.0.0)

Config/testthat/edition 3

NeedsCompilation no

Author Santtu Tikka [aut, cre] (<https://orcid.org/0000-0003-4039-4342>)

Repository CRAN

Date/Publication 2022-10-26 15:35:07 UTC

R topics documented:
cfid-package . 2
causal_effect . 4
counterfactual_conjunction . 5
dag . 7
export_graph . 9
functional . 10

1

https://arxiv.org/abs/1206.5294
https://jmlr.org/papers/v9/shpitser08a.html
https://github.com/santikka/cfid
https://orcid.org/0000-0003-4039-4342

2 cfid-package

identifiable . 11
import_graph . 13
probability . 13
query . 15

Index 16

cfid-package The cfid package

Description

Identification of Counterfactual Queries in Causal Models

Details

This package provides tools necessary for identifying counterfactual queries in causal models.
Causal graphs, counterfactual variables, and counterfactual conjunctions are defined via simple
interfaces.

Counterfactuals

In simple terms, counterfactual are statements involving multiple conceptual "worlds" where the
observed state of the worlds is different. As an example, consider two variables, Y = "headache",
and X = "aspirin". A counterfactual statement could be "If I have a headache and did not take
aspirin, would I not have a headache, had I taken aspirin instead". This statement involves two
worlds: the real or "actual" world, where aspirin was not taken, and a hypothetical world, where it
was taken. In more formal terms, this statement involves a counterfactual variable Yx that attains
two different values in two different worlds, forming a counterfactual conjunction: yx ∧ y′x′ , where
y and y′ are two different values of Y , and x and x′ are two different values of X .

Identifiability

Pearl’s ladder of causation consists of the associational, interventional and counterfactual levels,
with counterfactual being the highest level. The goal of identification is to find a transformation
of a higher level query into a lower level one. For the interventional case, this transformation
is known as causal effect identifiability, where interventional distributions are expressed in terms
of observational quantities. Tools for this type of identification are readily available, such as in
the causaleffect, dagitty, pcalg, and dosearch packages. Transformation from the highest
counterfactual level, is more difficult, both conceptually and computationally, since to reach the
observational level, we must first find a transformation of our counterfactual query into a interven-
tional query, and then transform this yet again to observational. Also, there transformations may
not always exist, for example in the presence of latent unobserved confounders, meaning that the
queries are non-identifiable. This package deals with the first transformation, i.e., expressing the
counterfactual queries in terms of interventional queries (and observational, when possible), as well
as the second one, transforming interventional distributions to observational quantities.

cfid-package 3

Algorithms

Identification is carried out in terms of G and P∗ and where G is a directed acyclic graph (DAG)
depicting the causal model in question (a causal graph for short), and P∗ is the set of all inter-
ventional distributions in causal models inducing G. Identification is carried out by the ID* and
IDC* algorithms by Shpitser and Pearl (2008) which aim to convenrt the input counterfactual prob-
ability into an expression which can be represented solely in terms of interventional distributions.
These algorithms are sound and complete, meaning that their output is always correct, and in the
case of a non-identifiable counterfactual, one can always construct a counterexample, witnessing
non-identifiability.

Graphs

The causal graph associated with the causal model is given via a simple text-based interface, similar
to dagitty package syntax. Directed edges are given as X -> Y, and bidirected edges as X <-> Y,
which is a shorthand notation for latent confounders. For more details on graph construction, see
dag().

Counterfactual variables and conjunctions

Counterfactual variables are defined by their name, value and the conceptual world that they belong
to. A world is defined by a unique set of actions (interventions) via the do-operator (Pearl, 2009).
We can define the two counterfactual variables of the headache/aspirin example as follows:

cf(var = "Y", obs = 0, sub = c(X = 0))
cf(var = "Y", obs = 1, sub = c(X = 1))

Here, var defines the name of the variable, obs gives level the variable is assigned to (not the actual
value), and sub defines the vector of interventions that define the counterfactual world. For more
details, see counterfactual_variable(). Counterfactual conjunctions on the other hand, are
simply counterfactual statements (variables) that are observed at the same time. For more details,
see counterfactual_conjunction().

For complete examples of identifiable counterfactual queries, see identifiable(), which is the
main function of the package.

References

Pearl, J. (1995) Causal diagrams for empirical research. Biometrika, 82(4):669–688.

Pearl, J. (2009) Causality: Models, Reasoning, and Inference. Cambridge University Press, 2nd
edition.

Shpitser, I. and Pearl, J. (2007). What counterfactuals can be tested. In Proceedings of the 23rd
Conference on Uncertainty in Artificial Intelligence, 352–359.

Shpitser, I. and Pearl, J. (2008). Complete identification methods for the causal hierarchy. Journal
of Machine Learning Research, 9(64):1941–1979.

Makhlouf, K., Zhioua, S. and Palamidessi, C. (2021). Survey on causal-based machine learning
fairness notions. arXiv:2010.09553

4 causal_effect

causal_effect Causal Effect Identification

Description

Identify a causal effect of the form P (y|do(x), z) from P (v) in G.

Usage

causal_effect(g, y, x = character(0), z = character(0), v = integer(0))

Arguments

g A dag object depicting the causal diagram G.

y A character vector of response variables Y .

x A character vector of intervention variables X .

z An optional character vector of conditioning variables Z.

v An optional named integer vector giving the value assignments for observed
variables in the model, i.e. V = v or for a subset of V .

Value

An object of class query which is a list with the following components:

• id
A logical value that is TRUE if the query is identifiable and FALSE otherwise.

• formula
A functional object expressing the causal effect in terms of the joint probability distribution
P (v) for identifiable queries or NULL if the query is not identifiable.

• data
The available data, for causal_effect this is always "observations"

• causaleffect
The original query P (y|do(x), z) as a probability object.

• undefined
A logical value, this is always FALSE for causaleffect

counterfactual_conjunction 5

counterfactual_conjunction

Counterfactual Conjunction

Description

conj defines a conjunction of counterfactual statements (variables).

cf defines a counterfactual variable yx.

Usage

counterfactual_conjunction(...)

S3 method for class 'counterfactual_conjunction'
format(x, var_sep = " /\\ ", ...)

S3 method for class 'counterfactual_conjunction'
print(x, ...)

S3 method for class 'counterfactual_conjunction'
e1 + e2

S3 method for class 'counterfactual_conjunction'
x[i]

S3 method for class 'counterfactual_variable'
e1 + e2

conj(...)

counterfactual_variable(var, obs = integer(0L), sub = integer(0L))

S3 method for class 'counterfactual_variable'
format(x, use_primes = TRUE, ...)

S3 method for class 'counterfactual_variable'
print(x, ...)

cf(var, obs = integer(0L), sub = integer(0L))

Arguments

... Additional arguments passed to format.counterfactual_variable().

x A counterfactual_variable or a counterfactual_conjunction object.

var_sep A character string to separate counterfactual variables.

e1 A counterfactual_variable or a counterfactual_conjunction object.

6 counterfactual_conjunction

e2 A counterfactual_variable or a counterfactual_conjunction object.

i An integer index vector.

var A character vector of length one naming the variable (i.e., Y).

obs An integer vector of length one or zero. If given, denotes the observed value of
var (i.e., Y = y)

sub A named integer vector where the names correspond to the variables intervened
on (via do(X = x)) and values to the value assignments (their levels, e.g., x).

use_primes A logical value indicating whether primes should be used to differentiate be-
tween value assignments

Value

conj returns an object of class counterfactual_conjunction.

cf returns an object of class counterfactual_variable.

Counterfactual Conjunctions

A counterfactual conjunction is a conjunction (or a set in some contexts) of counterfactual state-
ments that are assumed to hold simultaneously.

For example, the statement "The value of Y was observed to be y, and the value of Y was observed
to be y′ under the intervention do(X = x)" consists of two variables: variable Y without interven-
tion, and Y under the intervention do(X = x) (which is Yx). This conjunction can be succinctly
written as y ∧ y′x.

Conjunctions can also be constructed via the alias conj or iteratively from counterfactual_variable
objects (see examples).

Counterfactual Variables

Assume that Y is a single variable and X is a vector of variables. Here, The notation yx means that
the variable Y (var) attains the value y (obs) under the intervention do(X = x) (sub).

Note that different values of obs for a two variables with the same var and the same sub do not
denote their actual values, but the levels (i.e., obs = 0 is different from obs = 1, but the variables
do not actually attain values 0 and 1). In other words, if var is different for two counterfactual
variables, but they have the same value obs, this does not mean that these variables have the same
value. They will only actually have the same value if they share both var and obs.

For more information about the do-operator, see Pearl (2009). The shortcut alias cf can also be
used to construct counterfactual variables.

Examples

The conjunction described under 'details'
v1 <- cf("Y", 0)
v2 <- cf("Y", 1, c("X" = 0))
c1 <- conj(v1, v2)

Alternative construction
c1 <- v1 + v2

dag 7

Adding further variables
v3 <- cf("X", 1)
c2 <- c1 + v3

A specific value of a variable (a unique combination of `var` and `sub`)
can only appear once in a given conjunction,
otherwise the conjunction would be trivially inconsistent
v4 <- cf("Y", 0, c("X" = 0))
v5 <- cf("Y", 1, c("X" = 0))
c3 <- try(conj(v4, v5))

Y without an assigned value or any interventions
cf("Y")

Y with a value assignment y, but no interventions
cf("Y", 0)

Y with a different value y', but no interventions
cf("Y", 1)

Y with the same value as the previous under the intervention do(X = x)
cf("Y", 1, c("X" = 0))

Y with yet another value y'', under the intervention
do(X = x', Z = z), i.e., the intervention on X has a different value
than the previous (x != x') and Z is also assigned the value z
cf("Y", 2, c("X" = 1, "Z" = 0))

dag Directed Acyclic Graph

Description

Define a directed acyclic graph (DAG) describing the causal model.

Usage

dag(x, u = character(0L))

S3 method for class 'dag'
print(x, ...)

Arguments

x A dag object

u A character vector of variable names which should be considered unobserved
(besides those defined by bidirected edges). These variables are subsequently
removed via latent projection. Variable names not found in the graph are ig-
nored.

8 dag

... Not used

Details

The syntax for x follows the dagitty package closely for compatibility. However, not all features
of dagitty graphs are supported. The resulting adjacency matrix of the definition is checked for
cycles.

Directed edges are defined as X -> Y meaning that there is an edge from X to Y in the graph. Edges
can be combined in sequence to create paths for concise descriptions, for example X -> Y <- Z -> W.

Unobserved latent confounders are defined using bidirected edges as X <-> Y which means that
there is an additional variable U[X,Y] in the graph, and the edges X <- U[X,Y] -> Y, respectively.

Different statements in x can be distinguished from one another using either semicolons, line breaks,
or spaces.

Subgraphs can be defined by enclosing the definition within curly braces. For example X -> {Y Z}
defines an edge from X to both Y and Z. Individual statements within a subgraph can be separated by
a comma or semicolon, but this is optional. Edges can also be defined within subgraphs, and sub-
graphs can be nested. For example, X -> {Z -> Y} is the same definition as X -> Z; X -> Y; Z -> Y.
Similarly X <-> {Z -> {A B}} -> Y is the same as X <-> {Z A B} -> Y; Z -> {A B}.

Note that in the context of this package, vertex labels will always be converted into upper case,
meaning that typing Z or z will always represent the same variable. This is done to enforce the
notation of counterfactual variables, where capital letters denote variables and small letters denote
their value assignments.

Value

An object of class dag, which is a square adjacency matrix with the following attributes:

• labels
A character vector (or a list) of vertex labels.

• latent
A logical vector indicating latent variables.

• order
An integer vector giving a topological order for the vertices.

• text
A character string giving representing the DAG. .

Examples

dag("X -> {Y Z} <- W <-> G")

Subgraphs can appear on both sides of an edge
dag("{X Z} -> {Y W}")

Semicolons can be used to distinguish individual statements
dag("X -> Z -> Y; X <-> Y")

Commas can be used to distinguish variables within groups if there
are no edges within the group

export_graph 9

dag("{x, y, z} -> w")

Edges within subgraphs is supported
dag("{X -> Z} -> {Y <-> W}")

Nested subgraphs are supported
dag("{X -> {Z -> {Y <-> W}}}")

Line breaks are also supported for statement separation
dag("

Z -> W
X -> Y

")

export_graph Export Graph

Description

Convert a valid graph object into a supported external format.

Usage

export_graph(
g,
type = c("dagitty", "causaleffect", "dosearch"),
use_bidirected = TRUE,
...

)

Arguments

g An object of class dag.
type A character string matching one of the following: "dagitty", "causaleffect"

or "dosearch". For "dagitty" and "causaleffect", the packages dagitty
and igraph must be available, respectively.

use_bidirected A logical value indicating if bidirected edges should be used in the resulting
object. If TRUE, the result will have explicit X <-> Y edges. If FALSE, an explicit
latent variable X <- U[X,Y] -> Y will be used instead (only applicable if type is
"dosearch").

... Additional arguments passed to format for formatting vertex labels.

Value

If type is "dagitty", returns a dagitty object. If type is "causaleffect", returns an igraph
graph, with its edge attributes set according to the causaleffect package syntax. If type is
"dosearch", returns a character vector of length one that describes g in the dosearch package
syntax.

10 functional

functional Identifying Functional of a Counterfactual Query

Description

Identifying functionals are more complicated probabilistic expressions that cannot be expressed as
simple observational or interventional

Usage

functional(sumset = NULL, terms = NULL, numerator = NULL, denominator = NULL)

S3 method for class 'functional'
format(x, use_primes = TRUE, use_do = FALSE, ...)

S3 method for class 'functional'
print(x, ...)

Arguments

sumset A list of objects of class counterfactual_variable (without interventions
and with value assignments). If the probability depicts marginalization, sumset
defines the set of variables to be marginalized over.

terms A list of functional objects if the object in question is meant to represent a
product of terms.

numerator A functional or a probability object. If the functional represents a condi-
tional probability that cannot be expressed simply in terms of the set of inputs,
this is the numerator of the quotient representation.

denominator A functional or a probability object. The denominator of the quotient rep-
resentation.

x A functional object.

use_primes A logical value. If TRUE (the default), any value assignment of a counterfactual
variable with obs will be formatted with as many primes in the superscript as the
value of obs, e.g., obs = 0 outputs "y", obs = 1 outputs "y'", obs = 2 outputs
"y''" and so forth. The alternative when FALSE is to simply denote the obs
value via superscript directly as "y^{(obs)}", where obs is evaluated.

use_do A logical value. If TRUE, the explicit do-operation is used to denote inter-
ventional probabilities (e.g., P (y|do(x))). If FALSE (the default), the subscript
notation is used instead (e.g., Px(y)).

... Additional arguments passed to format.

Details

When formatted via print or format, the arguments are prioritized in the following order if con-
flicting definitions are given: (sumset, terms), (numerator, denominator).

identifiable 11

Value

An object of class functional, which is a list containing all of the arguments of the constructor.

A character representation of the functional object in LaTeX syntax.

identifiable Identify a Counterfactual Query

Description

Determine the identifiability of a (conditional) counterfactual conjunction.

Usage

identifiable(
g,
gamma,
delta = NULL,
data = c("interventions", "observations", "both")

)

Arguments

g A dag object describing the causal graph (to obtain a dag from another format,
see import_graph().

gamma An R object that can be coerced into a counterfactual_conjunction object
that represents the counterfactual causal query.

delta An R object that can be coerced into a counterfactual_conjunction object
that represents the conditioning conjunction (optional).

data A character string that accepts one of the following: "interventions" (the
default), "observations"or "both". This argument defines the target level of
identification. If "interventions" is used, the identification is attempted down
to the intervention level. If "observations" is used, identification is attempted
down to the observational level. If "both" is used, identification is carried out
for each term to the lowest level where the term is still identifiable.

Details

To identify a non-conditional conjunction P (γ), the argument delta should be NULL.

To identify a conditional conjunction P (γ|δ), both gamma and delta should be specified.

First, a parallel worlds graph is constructed based on the query. In a parallel worlds graph, for each
do-action that appears in γ (and δ) a copy of the original graph is created with the new observational
variables attaining their post-interventional values but sharing the latent variables. This graph is
known as a parallel worlds graph. From the parallel worlds graph, a counterfactual graph is derived
such that each variable is unique, which might not be the case in a parallel worlds graph.

12 identifiable

Finally, the ID* (or IDC*) algorithm is applied to determine identifiability of the query. Similar to
the ID and IDC algorithms for causal effects, these algorithms exploit the so called c-component
factorization to split the query into smaller subproblems, which are then solved recursively. If
argument data is "observations" or "both", identification of interventional probabilities in the
resulting functional is further attempted in terms of the joint probability distribution by using the
ID and IDC algorithms (see causal_effect).

Value

An object of class query which is a list containing one or more of the following:

• id
A logical value that is TRUE if the query is identifiable and FALSE otherwise from the avail-
able data in g. Note that in cases where gamma itself is inconsistent, the query will be identi-
fiable, but with probability 0.

• formula
An object of class functional giving the identifying functional of the query in LaTeX syn-
tax via format or print, if identifiable. This expression is given in terms of the available
data. For tautological statements, the resulting probability is 1, and for inconsistent state-
ments, the resulting probability is 0. For formatting options, see format.functional() and
format.probability().

• undefined
A logical value that is TRUE if a conditional conjunction p(γ|δ) is undefined, for example when
p(δ) = 0, and FALSE otherwise.

• gamma
The original counterfactual conjunction..

• delta
The original conditioning counterfactual conjunction.

• data
The original data.

See Also

dag(), counterfactual_variable(), probability(), functional()

Examples

Examples that appears in Shpitser and Pearl (2008)
g1 <- dag("X -> W -> Y <- Z <- D X <-> Y")
g2 <- dag("X -> W -> Y <- Z <- D X <-> Y X -> Y")
v1 <- cf("Y", 0, c(X = 0))
v2 <- cf("X", 1)
v3 <- cf("Z", 0, c(D = 0))
v4 <- cf("D", 0)
c1 <- conj(v1)
c2 <- conj(v2, v3, v4)
c3 <- conj(v1, v2, v3, v4)

Identifiable conditional conjunction

import_graph 13

identifiable(g1, c1, c2)

Identifiable conjunction
identifiable(g1, c3)

Non-identifiable conjunction
identifiable(g2, c3)

import_graph Import Graph

Description

Import and construct a valid DAG from an external format. Accepts dagitty graphs, igraph graphs
in the causaleffect package syntax, and character strings in the dosearch package syntax.

Usage

import_graph(x)

Arguments

x A graph object in a valid external format.

Value

A dag object.

probability Symbolic Probability Distributions

Description

Defines an interventional or observational (conditional) probability P (y|do(x), z). For formatting
options, see format.probability().

Usage

probability(val = NULL, var = NULL, do = NULL, cond = NULL)

S3 method for class 'probability'
format(x, use_primes = TRUE, use_do = FALSE, ...)

S3 method for class 'probability'
print(x, ...)

14 probability

Arguments

val An integer value of either 0 or 1 for almost sure events.

var A list of objects of class counterfactual_variable (without interventions
and with value assignments). var defines the observations y in P (y|do(x), z).

do A list of counterfactual_variable variable objects (without interventions
and with value assignments). Defines the intervention set x in P (y|do(x), z).

cond A list of counterfactual_variable variable objects (without interventions
and with value assignments).Defines the conditioning set z in P (y|do(x), z).

x A probability object.

use_primes A logical value. If TRUE (the default), any value assignment of a counterfactual
variable with obs will be formatted with as many primes in the superscript as the
value of obs, e.g., obs = 0 outputs "y", obs = 1 outputs "y'", obs = 2 outputs
"y''" and so forth. The alternative when FALSE is to simply denote the obs
value via superscript directly as "y^{(obs)}", where obs is evaluated.

use_do A logical value. If TRUE, the explicit do-operation is used to denote inter-
ventional probabilities (e.g., P (y|do(x))). If FALSE (the default), the subscript
notation is used instead (e.g., Px(y)).

... Additional arguments passed to format.

Value

An object of class probability, which is a list containing all of the arguments of the constructor.

A character representation of the probability object in LaTeX syntax.

See Also

counterfactual_variable(), functional()

Examples

Example from Makhlouf, Zhioua and Palamidessi (2021)
g2 <- dag("C -> A -> Y; C -> Y")
v1 <- cf("Y", 0, c(A = 1))
v2 <- cf("A", 0)
c1 <- conj(v1)
c2 <- conj(v2)
f <- identifiable(g2, c1, c2)$formula

Default, using primes and subscript notation
format(f)

Without primes, no do-operator
format(f, use_primes = FALSE)

Primes, with do-operator
format(f, use_do = TRUE)

Without primes, with do-operator

query 15

format(f, use_primes = FALSE, use_do = TRUE)

query Query Objects

Description

Objects of class query describe the output of identifiable and causal_effect. They are list
objects with a custom print method and contain data related to the identifiability results. See
identifiable and causal_effect for details.

Usage

S3 method for class 'query'
print(x, ...)

Arguments

x A query object

... Arguments passed to format.functional and format.counterfactual_conjunction

Index

+.counterfactual_conjunction
(counterfactual_conjunction), 5

+.counterfactual_variable
(counterfactual_conjunction), 5

[.counterfactual_conjunction
(counterfactual_conjunction), 5

causal_effect, 4, 12, 15
cf (counterfactual_conjunction), 5
cfid-package, 2
conj (counterfactual_conjunction), 5
counterfactual_conjunction, 5
counterfactual_conjunction(), 3
counterfactual_variable

(counterfactual_conjunction), 5
counterfactual_variable(), 3, 12, 14

dag, 7
dag(), 3, 12

export_graph, 9

format.counterfactual_conjunction, 15
format.counterfactual_conjunction

(counterfactual_conjunction), 5
format.counterfactual_variable

(counterfactual_conjunction), 5
format.counterfactual_variable(), 5
format.functional, 15
format.functional (functional), 10
format.functional(), 12
format.probability (probability), 13
format.probability(), 12, 13
functional, 10
functional(), 12, 14

identifiable, 11, 15
identifiable(), 3
import_graph, 13
import_graph(), 11

print.counterfactual_conjunction
(counterfactual_conjunction), 5

print.counterfactual_variable
(counterfactual_conjunction), 5

print.dag (dag), 7
print.functional (functional), 10
print.probability (probability), 13
print.query (query), 15
probability, 13
probability(), 12

query, 15

16

	cfid-package
	causal_effect
	counterfactual_conjunction
	dag
	export_graph
	functional
	identifiable
	import_graph
	probability
	query
	Index

